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End-to-End diagnosis of breast biopsy images with transformers
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G. Elmorec,2, Linda G. Shapiroa,2,*

aUniversity of Washington, Seattle, USA

bDepartment of Pathology, The University of Vermont College of Medicine, USA

cDavid Geffen School of Medicine, University of California, Los Angeles, USA

Abstract

Diagnostic disagreements among pathologists occur throughout the spectrum of benign to 

malignant lesions. A computer-aided diagnostic system capable of reducing uncertainties would 

have important clinical impact. To develop a computer-aided diagnosis method for classifying 

breast biopsy images into a range of diagnostic categories (benign, atypia, ductal carcinoma in 

situ, and invasive breast cancer), we introduce a transformer-based hollistic attention network 

called HATNet. Unlike state-of-the-art histopatho-logical image classification systems that use a 

two pronged approach, i.e., they first learn local representations using a multi-instance learning 

framework and then combine these local representations to produce image-level decisions, 

HATNet streamlines the histopathological image classification pipeline and shows how to 

learn representations from gigapixel size images end-to-end. HATNet extends the bag-of-words 

approach and uses self-attention to encode global information, allowing it to learn representations 

from clinically relevant tissue structures without any explicit supervision. It outperforms the 

previous best network Y-Net, which uses supervision in the form of tissue-level segmentation 

masks, by 8%. Importantly, our analysis reveals that HATNet learns representations from clinically 

relevant structures, and it matches the classification accuracy of 87 U.S. pathologists for this 

challenging test set.
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1. Introduction

Breast cancer is the most common non-skin cancer in women accounting for approximately 

25% of all cancer instances world-wide (Makki, 2015; DeSantis et al., 2019). The 

“gold standard” for diagnosis of breast biopsy specimens relies on a pathologist’s 

visual assessment of tissue sections and cognitive processing of learned cytologic and 

morphological criteria, including architectural and cellular changes in the tissue, alterations 

of the tumor microenvironment, and immune-mediated host response. Assessment of these 

morphological criteria is subjective and can be challenging for some cases, especially those 

in the middle of the breast diagnostic spectrum. Pathologists, even expert pathologists, 

cannot always reach consensus on diagnostically challenging cases; diagnostic disagreement 

occurs throughout the spectrum of benign to malignant lesions (Wells et al., 1998; Della 

Mea et al., 1997; Allison et al., 2014; Elmore et al., 2015). Diagnostic variability is a serious 

problem, as misclassifying breast cancer as benign may lead to delay and fatal progression 

of disease, while diagnosing a benign lesion as malignant may result in significant morbidity 

including overtreatment, unnecessary emotional strain, anxiety, and increased cost of care. 

Misdiagnosis of breast cancer has been a leading cause for malpractice claims for decades 

(Kern, 2001; Reisch et al., 2015). A computer-aided diagnostic system that would support 

pathologists by reducing classification uncertainties could have positive clinical impact.

This paper introduces a self-attention-based network called Holistic ATtention Net work 

(HATNet) for classifying breast biopsy images in an end-to-end manner. HATNet extends 

the self-attention network of Vaswani et al. (2017). The core principle is to factorize 

the input biopsy image into words (or patches) using a bag-of-words approach and then 

encode inter-word and inter-bag relationships in a hierarchical manner using self-attention. 

Self-attention enables interaction between inputs (bags or words), allowing the encoding of 

global information in an end-to-end fashion. This helps the network learn representations 

from clinically relevant tissue structures without any supervision, as shown in Fig. 1.

HATNet outperforms previous methods; it is 8% more accurate and about 2 × faster than 

the previous best network, Y-Net (Mehta et al., 2018b), and also matches the classification 

performance of participant pathologists on the test set. Our analysis further suggests that 

HATNet pays attention to important biomarkers (stromal tissue and ducts) in the diagnosis 

and classification of breast tissue, suggesting that there is clinical relevance to the method. 

To the best of our knowledge, this is the first work that (1) uses transformers to classify 

histopathological images in an end-to-end fashion and (2) correlates model decisions with 

clinically relevant structures. Our source code is available at https://github.com/sacmehta/

HATNet.

2. Related work

Histopathological image classification

Convolutional neural networks (CNNs) are state-of-the-art networks for image classification 

(e.g., ResNet of He et al., 2016), including histopathological image analysis (Cireşan et al., 

2013; Cruz-Roa et al., 2014; Xu et al., 2015; Hou et al., 2016; Gecer et al., 2018; Mehta 

et al., 2018b). Histopathological image classification methods often follow a bag-of-words 
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model for learning representations, wherein a whole slide image is treated as a bag, while 

image patches are treated as words (or instances).

Given the bag-of-words model, a first line of research focuses on extracting word-level 

representations using CNNs, which are then aggregated to produce image-level decisions. 

Feature selection-based aggregation methods allows identification of relevant features in 

these word representations (Cruz-Roa et al., 2014; Xu et al., 2015; Sun et al., 2019). 

However, such methods fail to capture the heterogeneity of diagnosis categories. To address 

the limitations of these methods, multi-instance learning (MIL) based methods have been 

proposed (Hou et al., 2016; Mercan et al., 2017; Gecer et al., 2018; Ilse et al., 2018; 

Wang et al., 2019b; Campanella et al., 2019; Lu et al., 2021a). In a MIL framework 

(Maron and Lozano-Pérez, 1998), a WSI is divided into words (or instances) and the same 

slide-level diagnostic label is assigned to all words within a particular slide. Because a 

slide-level label casts a weak label on all words in a given slide, these approaches are also 

categorized as weakly supervised. In general, these approaches are two pronged. They first 

generate word-level representations using a CNN and then combine these representations 

using different methods to produce a WSI-level decision. For instance, Hou et al. (2016) 

studies different approaches (e.g., thresholding, averaging, and majority voting) to combine 

word-level representations and produce a WSI-level diagnostic decision. Campanella et al. 

(2019) uses recurrent neural networks to combine word-level representations. Lu et al. 

(2021a) clusters word-level representations into positive and negative categories, and then 

weighs positive word-level representations by their relative scores to produce a WSI-level 

decision. Because some of these approaches also identify salient regions before fusion (e.g., 

Hou et al., 2016; Lu et al., 2021a), they are also known as saliency-based methods.

A second line of research considers tissue type, size, and distribution to produce image-

level decisions (Lu and Mandal, 2015; Mehta et al., 2018a; Mercan et al., 2019). These 

approaches extend MIL-based approaches to tissue-level. These approaches produce word-

level (or instance-level) segmentation masks, which are then combined to produce image-

level segmentation masks. Tissue-level structural information (e.g., size and distribution) 

extracted from these masks is then used to produce diagnosis categories.

A third line of research integrates both saliency- and segmentation-based approaches (Mehta 

et al., 2018b; Thome et al., 2019; Heker and Greenspan, 2020; Hou et al., 2020; Wang et al., 

2021). These approaches simultaneously produce saliency maps and segmentation masks, 

which are then combined to extract structural information about tissues and to produce 

image-level decisions.

Though these methods are effective in classifying histopatho-logical images, the context-

capturing ability of saliency-based methods is limited to words and are not able to encode 

spatial relationships between words. Also, some of these methods require manual threshold 

selection to identify salient regions. The latter segmentation-based methods address these 

limitations; however, acquiring tissue-level segmentation labels at a large scale is difficult, 

because experts are required for annotating images. This work introduces a transformer-

based method, HATNet, to address the limitations of existing methods. Similar to previous 

work, HATNet is based on the bag-of-words model. However, unlike existing methods, it 
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hierarchically aggregates information at different levels of the model using self-attention, 

which allows learning of spatial relationships between words and bags. HATNet outperforms 

existing methods (saliency-based or segmentation-based or their com- bination) by a 

significant margin. Moreover, this network learns representations from clinically relevant 

and variably-sized structures.

Spatial attention in vision models

The most widely studied attention mechanism in visual recognition tasks (image 

classification, segmentation and object detection) is the spatial attention mechanism (Zhou 

et al., 2016; Selvaraju et al., 2017), which weighs the activation maps (or spatial planes) to 

identify regions of interest. Initially introduced to provide explanations for CNN outputs, 

variants of this mechanism, including supervised (Yang et al., 2019; Yao and Gong, 2020) 

and unsupervised (Hu et al., 2018; Xu et al., 2018; Huang et al., 2019; Wang et al., 2020) 

methods, have been incorporated in CNNs to improve the performance across different 

visual recognition tasks (Howard et al., 2019; Woo et al., 2018), including medical imaging 

(Oktay et al., 2018; Abraham and Khan, 2019; Schlemper et al., 2019; Rundo et al., 2019; 

Tomita et al., 2019). In general, these networks introduce a spatial or channel-wise attention 

module within a CNN. For example, Attention U-Net (Oktay et al., 2018) incorporated an 

additive gating unit (similar to the squeeze-and-excitation unit of Hu et al. (2018)) between 

the encoder and the decoder blocks in the U-Net network to learn better representations. 

Identifying salient regions in histopathological images using spatial attention is difficult 

because of their large size (usually of the order of gigapixels). This paper introduces an 

end-to-end transformer-based network for classifying histopathological images.

Vision transformers

Recent work (e.g., Dosovitskiy et al., 2021; Touvron et al., 2021) has extended the 

transformers of Vaswani et al. (2017) (described in Section 3) for vision tasks. Though 

these approaches are effective in learning global representations, they exhibit sub-standard 

optimizability (i.e., they require a large amount of training data and heavy regularization). 

This is likely because vision transformers lack image-specific inductive biases (Xiao et 

al., 2021; Dai et al., 2021). Moreover, extending these approaches to histopathological 

images is challenging primarily because of their large size (e.g., images in our dataset 

are 2,000 × larger than the ImageNet dataset of Russakovsky et al. (2015)). This work 

extends transformers using bag-of-words model to classify breast biopsy images in an 

end-to-end fashion. Specifically, we introduce a bottom-up decoding method that allows 

us to hierarchically encode the information from words to bags to images and produce 

diagnostic categories. Because the spatial order of bags and words in each bag is preserved 

in HATNet’s top-down and bottom-up approach, HATNet implicitly incorporates inductive 

biases, similar to CNNs. We believe that this property, along with HATNet’s ability to 

encode global information, allows HATNet to learn representations from clinically relevant 

structures without any explicit supervision, and deliver better performance than CNN-based 

methods (Section 5.5). We note that our observation is consistent with recent parallel 

work on the ImageNet dataset (Russakovsky et al., 2015), which also shows that vision 

transformers benefit from spatial inductive biases (e.g., Xiao et al., 2021; Dai et al., 2021; 

Graham et al., 2021).
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3. Background: Transformers

Transformers (Vaswani et al., 2017) allow inputs to interact with each other, so that the 

model can automatically find important inputs on which to focus. The transformer module 

consists of two parts: (1) multi-head attention (MHA) that models relationships between 

inputs, and (2) a feed forward network (FFN) that learns wider representations. For an input 

X ∈ ℝN × d with N d-dimensional instances (words and bags in our case), transformers learn 

the representations as:

Y = Transformer X = FFN MHA XQ = X, XK = X, XV = X (1)

where XQ, XK, and XV  are the inputs to the query, key, and value branches in the multi-head 

attention, respectively. For simplicity, residual connections are not shown in Eq. (1).

Because of large spatial dimensions of histopathological images (e.g., 11k × 10k in our 

dataset), learning visual representations of WSIs with transformers is challenging. On an 

average, the vision transformer of Dosovitskiy et al. (2021) will have about N = 430k
words for a WSI in our dataset. Because of the quadratic computational cost of MHA (i.e., 

O N2d ), applying transfomers to WSIs is computationally intractable. This work extends the 

vision transformers using the bag-of-words model for learning global representations from 

very large images in an end-to-end fashion.

4. HATNet: Holistic attention network

State-of-the-art CNN-based classification networks stack convolutional layers and down-

sampling layers to learn representations at multiple scales (Simonyan and Zisserman, 2014; 

He et al., 2016). These networks are difficult to apply to histopathological images, primarily 

because the resolution of these medical images (e.g., 11k × 10k) are much larger than 

images used in standard image classification tasks (e.g., 224 × 224 in the ImageNet dataset 

Russakovsky et al., 2015). To address this resolution challenge, a standard approach is 

to learn word-wise (or patch-wise) representations using a sliding window method (Hou 

et al., 2016; Mehta et al., 2018b; Gecer et al., 2018; Iizuka et al., 2020). Though these 

approaches are effective for histopathological image analysis, the context-capturing ability 

of such approaches is still limited to word-level, and it is difficult to train such systems in an 

end-to-end manner.

This paper unifies the separate components of histopathological image analysis (i.e., first 

learn the word-wise representations independently and then fuse these local representations 

to produce image-level decisions) into a single neural network. Our network, a Holistic 

ATtention Network (HATNet), uses representations from the entire image at once to produce 

the diagnostic decision. This means that HATNet reasons globally about the entire input 

image and all variably-sized structures in the image. The HATNet design enables end-to-end 

training and inference while delivering pathologist-level performance.

HATNet extends the transformer architecture using a bag-of-words approach and is shown in 

Fig. 2 (a). We call our model a Holistic ATtention Network (HATNet) because of its ability 
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to learn inter-word and inter-bag representations in an end-to-end fashion. With attention, 

we emphasize the progressive hierarchical refining from words to bags to image to produce 

the classification output. Briefly, HATNet first encodes inter-word representations using 

self-attention (Section 4.1). These representations are then combined to produce bag-level 

representations (Section 4.2). The inter-bag rep- resentations (Section 4.3) are encoded and 

then combined to pro- duce image-level representations (Section 4.4). These representations 

are classified to produce the diagnosis category (Section 4.5). Because of the bottom-up 

decoding (words → bags → image), representations learned using HATNet are expressive 

and allow the identification of important words and bags corresponding to clinically relevant 

structures in an image. We believe that this will help us build tools to annotate clinically 

important words and explain diagnosis decisions.

4.1. Word-to-word attention

The word-to-word attention module, shown in Fig. 2(b), is comprised of a transformer unit 

(Section 3) with multi-head attention and a feed-forward network, allowing us to model the 

interactions between words and identify important words in the whole slide image.

The input image I ∈ ℝw × ℎ with width w and height ℎ is first divided into n non-overlapping 

bags I = B1, ⋯, Bn ∈ ℝ
w
n × ℎ

n , where Bi represents the ith bag. Each bag Bi is then divided 

into m non-overlapping words Bi = W1
i , ⋯, Wm

i ∈ ℝ
w
nm × ℎ

nm , where Wj
i represents the j

th word in the ith bag. Following previous works (e.g., Hou et al., 2016; Mehta et al., 

2018b; Lu et al., 2021a), the words Wj
i inside each bag Bi are fed to a CNN to produce 

word-level representations for each bag: Bcnn
i = (W1

i , ⋯, Wm
i ) ∈ ℝd. The representations from 

the CNN does not encode inter-word relationships. Inter-word relationships in each bag Bcnn
i

are encoded using the transformer unit (Section 3) to produce contextualized word encoded 

using the transformer unit (Section 3) to produce contextualized word embeddings (CWEs) 

Bw2w
i ∈ ℝm × d as:

Bw2w
i = FFN MHA(XQ = Bcnn

i , XK = Bcnn
i , XV = Bcnn

i ) (2)

The multi-head attention (MHA) enables the encoding of inter-word relationships, and the 

feed forward network (FFN) allows the system to learn wider representations.

4.2. Word-to-bag attention

The word-to-word attention produces CWEs for each bag. These word-level representations 

are aggregated to produce bag-level representations (see Fig. 2(c)) by linearly combining the 

words inside each bag Bw2w
i . Specifically, each word in Bw2w

i  is mapped from ℝd to ℝ1 using 

a projection function Ψ. Since each bag has m words, this projection function Ψ produces 

a vector of length m. A linear transformation β‾w2b ∈ ℝm × m and softmax functions are then 

applied to produce m coefficients, which are then used to linearly combine words in Bw2w
i  to 

produce bag-level representations B−w2b
i ∈ ℝd as:
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B−w2b
i = softmax Ψ Bw2w

i β−w2b Bw2w
i , 1 ≤ i ≤ n (3)

Similarly, the word-level representations obtained from the CNN for each bag Bcnn
i  are also 

combined using Ψ, linear transformation βw2b ∈ ℝm × m, and the softmax function to produce 

bag-level representations, Bw2b
i ∈ ℝd.

Bw2b
i = softmax Ψ Bcnn

i βw2b Bcnn
i , 1 ≤ i ≤ n (4)

4.3. Bag-to-bag attention

The representation in B−w2b encodes global information about all words in a bag using multi-

headed self-attention, while the representation in Bw2b encodes local information (obtained 

using the CNN) about all words in a bag to produce bag-level representations. However, 

these bag-level representations do not encode information about surrounding bags. To 

encode inter-bag relationships, bag-to-bag attention (see Fig. 2(d)) is applied. The bag-to-

bag attention module is similar to the word-to-word attention module (Section 4.1), except 

that Bw2b (Eq. (4)) is used as context to B−w2b (Eq. (3)). With this attention, we are able to 

encode local and global information in the input effectively. We note that this attention 

also mimics the typical skip-connection mechanism in neural networks (He et al., 2016; 

Ronneberger et al., 2015) and helps improve the performance.

Multi-head attention is first applied to Bw2b to encode inter-bag representations and produce 

Bb2b ∈ ℝn × d as:

Bb2b = MHA(XQ = Bw2b, XK = Bw2b, XV = Bw2b) (5)

To allow every bag Bb2b obtained from a CNN to attend over every bag B−w2b obtained after 

word-level self-attention, another multi-head attention in which Bb2b serves as a query and 

B−w2b serves as keys and values is applied to produce contextualized bag embeddings (CBEs) 

Bb2b ∈ ℝn × d. Mathematically, the bag-to-bag attention operation is defined as:

Bb2b = FFN MHA(XQ = Bb2b, XK = B−w2b, XV = B−w2b) (6)

4.4. Bag-to-image attention

The inter-bag representations encoded in Bb2b ∈ ℝn × d are aggregated to produce image-

level representations. Similar to word-to-bag attention (Section 4.2), these bag-level 

representations are combined using a function Ψ and linear transformation βb2i ∈ ℝn × n to 

produce image-level representations Ib2i ∈ ℝd.

Ib2i = softmax Ψ Bb2b βb2i Bb2b (7)
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Because of the bottom-up decoding (words to bags to image), these representations are 

expressive and allows the system to identify important words and bags in an image (Fig. 3).

4.5. Classification and loss

HATNet classifies Ib2i ∈ ℝd into C-diagnosis classes using a linear classifier with weights 

βcls ∈ ℝd × C as:

ŷ = softmax Ib2i βcls (8)

To train HATNet, the cross-entropy loss ℒ between the ground truth y and prediction ŷ is 

minimized. During evaluation, the index that has the highest confidence score in ŷ is chosen 

as the predicted class label.

5. Experimental results

5.1. Dataset and evaluation

Breast biopsy dataset and ground truth consensus reference—The breast biopsy 

dataset consists of 240 whole slide images with haematoxylin and eosin (H&E) staining 

(Elmore et al., 2015). The image dataset was designed to include a higher prevalence 

of cases from diagnostic categories that have lower prevalence in the general population, 

providing a robust and challenging image dataset. A group of three expert pathologists 

independently interpreted these cases and then met to discuss the cases using a modified 

Delphi method to provide a reference consensus label per slide (Custer et al., 1999). The 

pathologists’ assessments were grouped into 4 diagnostic categories: (1) benign without 

atypia (including non-proliferative and proliferative without atypia), (2) atypia, (3) ductal 

carcinoma in situ (DCIS), and (4) invasive car-cinoma. The consensus labels are our ground 

truth diagnoses. The expert pathologists also marked 422 regions of interest (ROIs) that 

best supported the diagnoses. Following previous studies on this dataset that aims to build 

directed computer-aided second opinion systems (Mercan et al., 2017; Mehta et al., 2018a; 

2018b; Mercan et al., 2019; Gecer et al., 2018), we use these ROIs to train and evaluate our 

method, randomly splitting the dataset into 164 training, 42 validation, and 216 test ROIs 

(see Table 1). Note that clinically, each slide can have multiple ROIs. Therefore, we ensured 

that all ROIs corresponding to a slide are in the same set (training + validation or test).

Outcome metrics—The following metrics were used to evaluate the performance of 

HATNet (Tharwat, 2018)

• Classification (or Top-1) accuracy counts the number of times the predicted label 

is the same as the ground truth label and is defined as:

Accuracy = TP
TP + FP + TN + FN

where TP, FP, TN, and FN denotes the true positive, false positive, true negative, 

and false negatives respectively.
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• F1-score is a harmonic mean of precision P  and recall R and is defined as:

F1‐score = 2PR
P + R

where P = TP
TP + FP  and R = TP

TP + FN .

• Sensitivity measures the proportion of ROls from positive cases that are correctly 

classified and is defined as:

Sensitivity = TP
TP + FN

• Specificity measures the proportion of ROIs from negative cases that are 

correctly classified and is defined as:

Specificity = TN
TN + FP

• Area under receiver operating characteristics curve (ROC-AUC) is a graph that 

is obtained by varying the threshold for diagnostic decision, illustrating the 

discrimination ability of the classifier.

The values of these metrics range between zero and one, and higher values of these metrics 

mean better performance.

Accuracy data from U.S. pathologists—To compare the results from HATNet with 

the interpretations of practicing U.S. pathologists, we used data from a prior clinical study 

of 87 pathologists who interpreted these same cases (Allison et al., 2014; Elmore et al., 

2015; Elmore et al., 2017). Each pathologist interpreted a random subset of 60 cases and 

their diagnoses were classified into the same four diagnostic categories. This resulted in 22 

independent diagnostic labels (on average) per slide and gave us a way to compare human 

pathologist results to HATNet.

Structure-level annotations for saliency-annotation agreement—The bottom-up 

decoding (word to bag to image embedding) approach is expressive and allows HATNet 

to identify important words and bags in a ROI. We rank the CWEs (Section 4.1) and 

CBEs (Section 4.3) based on their self-attention score obtained using the transformer unit to 

identify the top-k words and bags respectively, where k is a variable used in our experiments. 

To determine if these top-k words and bags are clinically relevant, we study the agreement 

between these salient regions (bags and words) and clinical biomarkers (stromal tissue and 

ductal regions) for which we have annotations from expert pathologists at the ROI-level as 

ground truth (Mehta et al., 2018a; Li et al., 2020). The Dice score is used as a quantitative 

metric to assess the agreement rate between the ground truth and the salient regions. 

Mathematically, the Dice score is equal to twice the area of overlap between the ground 

truth and salient region divided by the total number of pixels in the ground truth and the 

salient region. The value of k is varied from 10% to 60%.
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5.2. Architecture

The ROIs are split into non-overlapping bags with a spatial dimension of 1792 × 1792. Each 

bag is then split into non-overlapping words with a spatial dimension of 256 × 256, resulting 

in m = 49 non-overlapping words. These words are fed to off-the-shelf CNNs to extract 

word-level representations. In our experiments, three state-of-the-art light-weight CNNs 

pretrained on the ImageNet dataset (Russakovsky et al., 2015) were studied: (1) ESPNetv2 

(Mehta et al., 2019), (2) MobileNetv2 (Sandler et al., 2018), and (3) MNASNet (Tan et al., 

2019). ESPNetv2 follows an Inception-style design (Szegedy et al., 2015) and uses four 

simultaneous 3 × 3 depth-wise convolutions with different dilation rates, allowing to learn 

multi-scale representations. MobileNetv2 follows a ResNet-style design (He et al., 2016). 

To improve the computational efficiency, MobileNetv2 uses 3 × 3 depth-wise convolutions 

instead of 3 × 3 standard convolutions. MNASNet uses the same basic building block as 

MobileNetv2; however, it uses neural architecture search (Zoph et al., 2018) to identify the 

optimal model configuration, which provides best trade-off between different parameters. 

The proposed network is generic and any off-the-shelf heavy-weight CNNs can be used to 

extract word-level representations. Heavy-weight networks, such as VGG (Simonyan and 

Zisserman, 2014) and ResNet (He et al., 2016), were not explored because of resource 

constraints.

The dimensionality of word-level representations varies from CNN to CNN. Therefore, the 

output of a CNN is linearly projected to a 256-dimensional space d = 256 . To encode the 

inter-word and inter-bag representations, 4 heads were used in multi-head attention. The 

function Ψ was used to aggregate word-level representations into bag-level representations 

(Section 4.2) and bag-level representations into image-level representations (Section 4.4). In 

our experiments, three different functions were studied: (1) Euclidean distance (or L2 norm), 

(2) Manhattan distance (or L1 norm), and (3) mean of a vector.

5.3. Training

HATNet is trained end-to-end using the ADAM optimizer of Kingma and Ba (2014) with 

a learning rate warm-up strategy. The learning rate is first warmed up from 10−7 to 10−4 in 

600 iterations, and then the model is trained for the next 50 epochs with a learning rate of 

10−4. After that, the learning rate is decayed by half, and the model is trained for another 

50 epochs. Our model takes about 36 h for training on two NVIDIA GeForce GTX 1080 

GPUs, each with a memory of 8 GB. Gradients are accumulated for 8 iterations before the 

weights are updated, yielding an effective batch size of 8 ROIs per update. Training data 

is augmented by randomly resizing (192 × 192, 224 × 224, 256 × 256, 288 × 288, 320 × 

320), flipping, and rotating (angle: −10° to 10°) the words. For evaluation, a single model is 

obtained by averaging the best 5 validation checkpoints. Compared to the best model on the 

validation set, averaged models delivered 1 to 1.5 points higher accuracy.

5.4. Baseline networks

We compare our method with the following methods:

1. Bag-of-words model with hand-crafted features (Gecer et al., 201): This 

method follows a multi-instance learning (MIL) framework and splits an input 
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image (bag) into words. Following Basavanhally et al. (2013), LAB and LBP 

histogram features are extracted from these words. These word-level features 

are concatenated and then classified using logistic regression into diagnostic 

categories with and without saliency. Similar to a standard practice in MIL-based 

saliency approaches (Hou et al., 2016; Wang et al., 2018), the class with majority 

voting in saliency maps is selected as a diagnostic category. The results of these 

approaches are summarized in rows R2 and R3 of Table 2.

2. Bag-of-words model with deep features (Gecer et al., 2018): This method 

extends the MIL framework with CNNs. Specifically, word-level representations 

are obtained using a deep convolutional neural network, FCN (with VGG as 

a backbone) of Long et al. (2015). These representations are used to identify 

discriminative or salient regions. In addition to majority voting-based method, a 

learned fusion method of Hou et al. (2016) is also tried to model the relationships 

between words. The results of these approaches are summarized in rows R4-R7 

of Table 2.

3. Multi-resolution segmentation network (MRSegNet) (Mehta et al., 2018a): 

MRSegNet has two stages: (1) tissue-level segmentation and (2) diagnostic 

classification. The first stage is a multi-resolution encoder-decoder network 

which combines the outputs of many words (or patches) at different resolutions 

to reduce segmentation errors. In the second stage, histogram and co-occurrence 

features are extracted from tissue-level segmentation masks, which are then 

classified using a multi-layer perceptron into different diagnostic classes. The 

results of this method are given in row R8 of Table 2.

4. Structural features (Mercan et al., 2019): This method extracts structural 

features from tissue-level segmentation masks produced using MRSegNet. These 

features allows capturing structural changes in ductal regions, an important 

biomarker for cancer diagnosis in the breast (Kinne et al., 1989; Page and Jensen, 

1996; Zhang et al., 2012; Shah et al., 2016). The results are summarized in row 

R9 of Table 2.

5. Y-Net (Mehta et al., 2018b): CNNs with multi-scale field of view yield better 

performance across different vision tasks (e.g., He et al., 2015; Chen et al., 2017; 

Zhao et al., 2017; Mehta et al., 2019; Wang et al., 2019a). These methods re-

sample either the feature maps at different spatial resolutions (e.g., SPPNet He et 

al., 2015 and PSPNet Zhao et al., 2017) or the weights of a convolutional kernel 

using dilated convolutions (e.g., DeepLabv3 Chen et al., 2017 and ESPNetv2 

Mehta et al., 2019) to learn multi-scale representations. Y-Net uses these 

multi-scale view approaches to learn better representations. It also generalizes 

the U-Net architecture of Ronneberger et al. (2015) and adds a classification 

branch, which allows it to jointly predict the tissue-level segmentation mask 

and the saliecy map. The saliency map is then combined with the tissue-level 

segmentation mask to produce a discriminative segmentation mask. Similar to 

MRSegNet, Y-Net extracts histogram and co-occurrence features, which are then 
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used for classifying diagnostic classes. The results are summarized in row R10 of 

Table 2.

5.5. Main results

Comparison with existing methods—Table 2 shows that HATNet outperforms state-

of-the-art methods significantly. For example, HATNet (R13) improves the performance 

of the best saliency- (or MIL-) based models (R5, R7) by about 15%. When compared 

to approaches that use tissue-level segmentation masks (R8-R10) to capture the structural 

changes in biopsies, HATNet delivers better performance. In particular, HATNet improves 

the F1-score of the previous best segmentation-based approach (R10) by 8%. Overall, these 

results shows that HATNet is effective. We note that ensembling the three HATNet models 

(R14) further improves the accuracy and senstivity by 1%.

Furthermore, Table 3 shows that HATNet is fast. HATNet with MNASNet is about 1.8 × 

faster and 8% more accurate than the previously best reported network, i.e., Y-Net. The 

two-tailed p-value between HATNet and Y-Net is less than 0.0001, which indicates that the 

accuracy improvement of 8% is statistically significant. Also, HATNet is a stable network 

because run-to-run variation with three different random seeds (0, 100, and 1000) is low 

(about 0.2%).

Comparison with pathologists—HATNet achieves similar performance to practicing 

U.S. pathologists who interpreted these same cases in all quantitative metrics (HATNet 

(R13) vs. practicing pathologists (R1): 0.70 vs. 0.70 (accuracy), 0.70 vs. 0.71 (F1-score), 

0.70 vs. 0.70 (sensitivity) and 0.90 vs. 0.90 (specificity)). We further analyze the 

misclassifications of HATNet and pathologists. For each case i, we obtain a pathologist 

score pi, where pi is the percentage of pathologists who misdiagnosed the case. The average 

over all the pi’s for all these cases was 0.61. So, we can say that on an average if HATNet 

misdiagnoses a case, 61% of the pathologists who diagnosed the same case also got it 

wrong. Therefore, we believe that HATNet can act as a directed second opinion system. For 

more details, see our work (Lu et al., 2021b) that uses HATNet to understand the visual 

similarities between diagnosed and misdiagnosed cases.

Saliency-annotation agreement analysis—Several clinical studies have shown that 

ductal regions and stromal tissue are important bio-markers for diagnosing breast cancer 

(Kinne et al., 1989; Page and Jensen, 1996; Arendt et al., 2010; Zhang et al., 2012; Conklin 

and Keely, 2012; Mao et al., 2013; Shah et al., 2016; Plava et al., 2019; DeSantis et al., 

2019). Briefly, ducts are thin tubes in the breast and are responsible for carrying milk from 

lobules (milk glands) to the nipples. These regions are useful in identifying cancers that 

began in milk ducts, for example, DCIS (Kinne et al., 1989; Page and Jensen, 1996; Shah 

et al., 2016). On the other hand, the stroma is part of the breast tissue with a structural 

and developmental role and may be involved in tumor promotion and progression. Many 

clinical studies have underlined the importance of stroma in tumor progression along with 

its contribution to risk factors that determines tumor formation (Arendt et al., 2010; Conklin 

and Keely, 201).
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Table 2 shows that HATNet learns better representations, resulting in significant 

performance gains compared to existing methods. A closer analysis in Figs. 4 and 5 reveals 

that our model pays attention to these important bio-markers, which helps it to achieve these 

gains.

• Ductal regions: To evaluate if our model pays attention to ductal regions 

or not, we compute the overlap between ductal regions (marked by experts) 

and top-k bag predictions of our model using dice score.3 We use bags for 

saliency-annotation agreement with ductal regions because these variably-sized 

regions are large in size. Fig. 4 g shows the results. When considering top-50% 

bag predictions, HATNet achieves a dice score of 0.68. Furthermore, Fig. 4 

a–f shows that HATNet is able to differentiate between ducts of variable size 

and texture. This shows that HATNet identifies ductal regions as an important 

structure.

• Stromal tissue: We compute the overlap between pixel-level annotations of 

stromal tissue and top-k words predicted by our model to determine whether our 

model pays attention to stromal tissue. We use the dice score to measure the 

overlap and vary k from 10% to 60%. Figure 5 g shows that HATNet achieves 

a dice score of about 0.75 when the top-50% word predictions are considered. 

This indicates that HATNet also identifies stroma as an important tissue. This 

is further strengthened by visualizations in Fig. 5 b–f, which shows that the 

majority of the top-50% words lie in stromal tissue.

The ability of HATNet to learn representations at different granularities (bags and 

words) allowed us to correlate model decisions with structurally different clinical entities, 

demonstrating that HATNet is effective in modeling inter-bag and inter-word relationships. 

Though HATNet’s model decisions correlate with clinically-relevant structures, we want to 

note that it learns content-aware representations and pays attention to regions other than 

ducts and stromal tissue. For example, in Fig. 3 a, the most important identified bags and 

words do not belong to ducts or stromal tissue.

5.6. Model ablations

Effect of function Ψ—Table 4 compares the performance of three different Ψ functions 

with ESPNetv2 as a base feature extractor. Euclidean distance delivers the best performance. 

The model has 1% higher accuracy, sensitivity, and specificity values compared to the other 

two functions. In the rest of the experiments, we use Euclidean distance as a Ψ function.

HATNet with words only—Standard vision transformers (e.g., Dosovitskiy et al., 2021; 

Touvron et al., 2021) uses only words for learning visual representations. To understand the 

effectiveness of our hierarchical approach, we trained HATNet with words only. Results in 

Table 5 shows that hierarchical approach improves the performance over word-only model 

significantly. These observations are consistent with concurrent works that also shows that 

3We are interested in evaluating if our model pays attention to ductal regions or stroma region. Therefore, we only use the top-k bags 
or words inside these regions while computing the dice score.
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hierarchical approaches help vision transformers learn better representations (e.g., Liu et al., 

2021; Mehta and Rastegari, 2022). In the rest of our experiments, we use both bags and 

words.

Effect of positional encoding—Positional embeddings are used in transformer-based 

models to incorporate positional information (Vaswani et al., 2017; Dosovitskiy et al., 2021). 

We found that the HATNet is insensitive to positional embeddings (see Table 5). This is 

likely because the top-down (image to bags to words) and bottom-up (words to bags to 

image) approach in the HATNet implicitly encodes the position of words and bags. As 

a result, it does not require any explicit positional information. Therefore, we do not use 

positional embeddings in the rest of our experiments.

Effect of bag and word sizes—Table 6 compares the performance of our model with 

three different bag-word size configurations using ESPNetv2 as a base feature extractor. The 

bag size of 1792 and word size of 256 delivered slightly better performance than the others. 

In the rest of the experiments, we use this bag-word size configuration.

Effect of Bw2b—We noted in Section 4.3 that Bw2b aggregates local information and mimics 

skip-connections. To study its importance, we replaced XQ = Bb2b (which was derived from 

Bw2b in Eq. (5)) with XQ = B−w2b in Eq. (6). As a result, the accuracy of HATNet dropped by 

2% (0.67 to 0.65). This shows that information encoded via this skip-connection helps learn 

better representations. Our findings are consistent with recent (and parallel) work on vision 

transformers on the ImageNet dataset (Russakovsky et al., 2015), which also shows that 

vision transformer-based networks deliver better performance when both local and global 

information are encoded in contrast to global information only (e.g., Xiao et al., 2021; Dai et 

al., 2021). Therefore, we leave Eq. (6) as is and use XQ = Bw2b in the rest of our experiments.

Effect of different base feature extractors—Figure 6 compares the class-wise 

performance of HATNet with three different base feature extractors. HATNet with 

MNASNet delivers similar or better class-wise F1-score, sensitivity, and specificity values, 

except for the invasive case where MobileNetv2 has a higher sensitivity value.

Figure 7 plots the overall and class-wise receiver operating characteristics of HATNet with 

different base feature extractors. We observe that HATNet with MNASNet delivers the best 

performance (higher ROC-AUC) compared to the other two networks. Similarly, in Table 2 

(R11-R13), HATNet delivers the best overall performance with MNASNet across different 

evaluation metrics. HATNet with MNASNet has 6% and 5% higher F1-score than with 

ESPNetv2 and MobileNetv2, respectively.

6. Discussion

This paper introduces a novel deep learning approach, HATNet, for classifying regions of 

interest (ROIs) of breast biopsy whole slide H&E images. Our experimental results showed 

that HATNet is able to achieve a pathologists-level performance on a challenging dataset 

that includes the full spectrum of diagnostic cases. Importantly, HATNet pays attention 
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to ductal regions and stromal tissue, two important clinical biomarkers in breast cancer 

diagnosis.

Earlier studies on diagnosing breast cancer using machine learning have focused on binary 

classification tasks, i.e., benign vs. malignant or DCIS vs. non-DCIS (Spanhol et al., 2015; 

Cruz-Roa et al., 2017; Bolhasani et al., 2020). For example, Spanhol et al. (2015) introduced 

BreakHis dataset and studied the binary classification (benign vs. malignant) using CNNs. 

Each histopathological sample in the dataset has a spatial dimension of 700 × 460 pixels. 

Because the full spectrum of breast cancer diagnosis is more complex then the binary 

classification tasks and the spatial resolution of samples in clinical settings is an order of 

magnitudes larger than the ones in the BreakHis dataset, Aresta et al. (2019) introduced the 

BACH dataset that provides multi-class diagnostic annotations (benign, DCIS, and invasive) 

for 40 variably-sized whole slide images (training set: 30; validation set: 10). The dataset 

also provides the performance of two pathologists as a reference. Similar to the BACH 

dataset, we introduced a breast biopsy dataset in our previous studies that provide multi-

class diagnostic annotations (benign, atypia, DCIS, and invasive) for 240 variably-sized 

whole slide images, including an independent test set of 119 whole slide images. Unlike 

the BACH dataset, the images in our dataset were interpreted by 87 U.S. pathologists in an 

independent study; allowing us to compare the performance of HATNet with pathologists 

while accounting for the variability in diagnostic decisions among pathologists.

Most of the histopathological image classification networks for different tissue types (e.g., 

lung Hou et al., 2016 and colon Raczkowski et al., 2019 cancer) are multi-stage. Similar to 

these networks, the baseline networks in our study also have multiple stages. For example, 

Y-Net of Mehta et al. (2018b) has two stages. Such approaches are hindered in learning 

global representations. The HATNet brings these different stages under one umbrella and 

enables learning local (word-wise) and global (across words and bags) representations in a 

hierarchical and end-to-end fashion. This ability of aggregating information hierarchically 

at different levels (image, bags, and words) allows HATNet to learn representations from 

clinically relevant areas.

Previous work on this dataset used features extracted from tissue-level segmentation masks 

for diagnostic decisions. The ROI-level classification system of Mercan et al. (2019) used 

structural features extracted from tissue-level segmentation masks to predict the diagnosis. 

Using the same 4-classes as the current study, their system achieved an overall accuracy of 

0.56 (R9 in Table 2). Y-Net of Mehta et al. (2018b) allowed for simultaneous classification 

and segmentation, and achieved a 4-class accuracy of 0.62 (R10 in Table 2). HATNet 

achieves a classification accuracy of 0.70 and outperforms these prior methods by a 

significant margin. Besides performance improvement, HATNet is 1. 8 × faster than the 

previous best model, Y-Net.

Unlike previous work, HATNet identifies important duct and stromal image areas of each 

ROI. HATNet uses self-attention at different levels (bags and words) to identify the salient 

areas. We studied the agreement between these salient areas and the annotations of clinical 

biomarkers (ducts and stroma) from expert pathologists. The fact that many of the bags that 

HATNet found important belonged to ductal regions also correlates with clinical studies 
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(Kinne et al., 1989; Page and Jensen, 1996; Shah et al., 2016) as well as our previous 

analysis of the importance of ducts in breast cancer diagnosis (Mercan et al., 2016; Li 

et al., 2020). The fact that many of the words that HATNet found important belonged to 

stromal tissue also correlates with clinical studies (Arendt et al., 2010; Conklin and Keely, 

2012) and our previous analyses of stromal tissue in diagnostic classification (Mehta et 

al., 2018a; 2018b; Mercan et al., 2019). We emphasize that unlike our previous studies 

that supervised CNNs with the information about ducts and stromal tissue, HATNet figured 

out the importance of these regions (ductal architecture and stromal organization) in the 

diagnostic classification without explicit supervision about these biomarkers. How stroma 

and ducts may be architecturally important for classification is a topic for further study.

Strengths and limitations

This study introduces a novel diagnostic system using self-attention that allows the learning 

of representations in an end-to-end manner. One strength of this work is its study of the full 

clinical range of breast pathology (benign, atypia, DCIS, and Invasive) on an independent 
test set, not just a binary classification of tissue (e.g., invasive vs. non-invasive Spanhol 

et al., 2015, DCIS or non-DCIS Bolhasani et al., 2020). Another distinctive feature of our 

study is the ability to compare the classification decisions of our system with the data from 

multiple practicing U.S. pathologists who independently interpreted the same cases.

Despite the great promise of deep learning methods in pathology, we recognize the 

limitations of our study. HATNet was trained and validated on 204 ROIs (or 121 cases) 

and tested on 216 ROIs (or 119 cases). HATNet should be tested on a different independent 

set of breast biopsy cases to study its unbiased effectiveness. Also, this work only studies 

breast tissue. It should be tested on different tissue types to study its generalizability. 

Additionally, similar to previous work on this dataset and other datasets (e.g., BreakHis 

Spanhol et al., 2015 and BACH Aresta et al., 2019), HATNet was designed as a directed 
second opinion system wherein pathologists mark a region that they want to study carefully 

for final diagnosis. However, HATNet is generic and we believe that it can be extended to 

entire whole slide images either directly using a transformer-based bag-of-words approach 

(Fig. 2) or using a ROI detection system (Mercan et al., 2016; Gecer et al., 2018).

7. Conclusion

A diagnosis of cancer and pre-invasive risk lesions relies on human pathologists, and 

yet these diagnoses can be challenging, with marked intra- and inter-observer variability 

reported Elmore et al. (2015). With whole slide digital imaging now approved by the FDA, 

we will see growth in available data to develop and validate machine learning tools to help 

support pathologists in difficult cases. We introduced an end-to-end attention-based network, 

HATNet, for classifying breast biopsy images. HATNet extends bag-of-words models using 

Transformers to learn global representations. Our approach effectively aggregates inter-word 

and inter-bag representations, allowing HATNet to learn representations from clinically 

relevant areas and helping us explain its predictions. We believe that this ability to point out 

areas important to its diagnosis will facilitate improved interactions between computer-aided 

diagnostic tools and clinicians, helping to reduce classification uncertainties.
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Fig. 1. 
HATNet learns representations from clinically relevant biomarkers, allowing it to deliver 

similar performance to that of practicing pathologists. (a) HATNet for cancer diagnosis and 

interpretability, (b) performance comparison with HATNet and 87 U.S. pathologists, and (c) 
agreement rate of salient regions with clinical biomarker annotations from experts.
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Fig. 2. 
(a) HATNet: Our end-to-end holistic attention network for classifying breast biopsy 

images models the relationships between bags and words in a hierarchical manner using 

self attention. (b-d) Word-to-word, word-to-bag, and bag-to-bag attention modules are 

visualized; they allow the learning of relationships between bags and words using a 

bottom-up method. Note that the word-to-bag attention module for processing Bcnn and the 

bag-to-image attention module for processing Bb2b are similar to (c) and therefore, we do not 

visualize them here.
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Fig. 3. 
Example results of bags and words identified using HATNet across different diagnostic 

categories. HATNet aggregates information from different parts of the image and different 

textures. Here, each sub-figure of the breast biopsy image is shown on the left of each panel 

with the top-30% bags (top-4 in green, the rest in blue) identified using HATNet overlayed 

on the image. The upper right in each panel shows the top-4 bags, and the bottom right in 

each panel shows the top-4 words in each bag.
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Fig. 4. 
HATNet identifies ducts of variable size and texture as an important structure. In (a–f), 

ductal regions (marked by pathologists) are shown in red, while the top-50% bags predicted 

by HATNet are shown in blue. In (g), the dice score is plotted between ductal regions and 

top-k bag predictions (k varies from 10% to 60%) for different diagnostic classes.
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Fig. 5. 
HATNet identifies stroma as an important tissue. In (a-e), each sub-figure is organized from 

left to right as: breast biopsy image, stroma tissue labeled by pathologists, and the top-50% 

words (words that belong to stroma tissue are shown in pink while the remaining words are 

shown in blue) identified using our model. The remaining 50% words are shown in white. In 

(f), we plot the dice score between stromal tissue and top-k word predictions (k varies from 

10% to 60%) for different diagnostic classes.
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Fig. 6. 
Class-wise performance comparison of HATNet with different CNN architectures. Overall, 

the models with MNASNet as a base feature extractor performs a little better than the other 

two networks across different metrics. However, MNASNet has a low sensitivity score for 

Invasive Cancer, while MobileNetv2 does much better in this regard.
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Fig. 7. 
Receiver operating characteristic (ROC) curves of HATNet with different CNN 

architectures. The models with MNASNet as a base feature extractor has slightly higher 

area under curve (AUC) than the other two.
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Table 3
Comparison with Y-Net in terms of accuracy and inference time.

HATNet is fast and accurate compared to previous best model (Y-Net). The two-tailed p-value between 

HATNet and Y-Net is less than 0.0001. Inference time is measured on a machine with a single NVIDIA GTX 

1080 Ti GPU, and is an average across 100 trails on the validation set. The accuracy is an average of three 

models trained with different random seeds (0, 100, and 1000). The training time for HATNet and Y-Net is 

about 1.5 days. The machine used for measuring inference time has four NVIDIA GTX 1080 Ti GPU, 64 GB 

RAM, and 64 core Intel®Xeon®CPU. For inference time, we used only one GPU and disabled the other three 

GPUs by using CUDA_VISIBLE_DEVICES = 0 command.

Model Accuracy Inference time

Y-Net 0.62 ± 0.0074 3. 93 s ± 20 ms

HATNet (w/ ESPNetv2) 0.67 ± 0.0021 2. 63 s ± 19 ms

HATNet (w/ MobileNetv2) 0.66 ± 0.0032 2.17 s ± 10 ms

HATNet (w/ MNASNet) 0.70 ± 0.0024 2.13 s ± 12 ms
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