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Abstract

The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical
shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating
jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell
geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder
that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas
multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter
and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow
in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in
the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward
increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of
zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Jupiter; Saturn; Atmospheres, dynamics; Interiors
1. Introduction

From spacecraft and ground-based observations of cloud
motions in the upper atmospheres of the jovian planets (Jupiter,
Saturn, Uranus and Neptune), it is known that their surface
winds are dominated by zonal (i.e., longitudinally directed) mo-
tions. Detailed information on the wind patterns of Jupiter and
Saturn, including time variability, has been provided by the
Voyager missions, the Cassini spacecraft (which is currently
in orbit about Saturn), and the Hubble space telescope (Porco
et al., 2003, 2005; Sanchez-Lavega et al., 2004; Vasavada and
Showman, 2005). Each of the four jovian planets exhibits a
system of jets with latitudinally varying winds that alternate be-
tween prograde and retrograde flow with respect to the apparent
mean planetary rotation (e.g., Giampieri and Dougherty, 2004;
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Russell et al., 2001). Jupiter and Saturn both feature strong pro-
grade (eastward) equatorial jets and a system of smaller-scale,
higher latitude jets that flow in alternating relative directions
(Fig. 1). In Jupiter’s equatorial region, which includes lati-
tudes within roughly ±25◦, a strong prograde equatorial jet is
flanked by a similarly powerful prograde jet to the north and
a strong asymmetrically retrograde jet to the south. The undu-
lating zonal flow that defines the higher latitude jets has lower
amplitude and shorter wavelength than the equatorial flow. Sat-
urn’s zonal latitudinal flow profile features a single equatorial
jet extending to roughly ±35◦ in latitude, with three higher-
latitude prograde jets in each hemisphere.

Equatorial wind speeds on Jupiter exceed 100 m/s, and Sat-
urn’s equatorial jet reaches speeds of over 400 m/s. These rep-
resent some of the highest sustained wind speeds in the Solar
System. However, the large size and rapid rotation of Jupiter
and Saturn means that these flow speeds are small relative to
the surface velocity of planetary rotation. The Rossby number,

http://www.elsevier.com/locate/icarus
mailto:mheimpel@phys.ualberta.ca
http://dx.doi.org/10.1016/j.icarus.2006.10.023


Turbulent convection in rapidly rotating spherical shells 541
Fig. 1. Surface wind profiles from observations of (a) Jupiter and (b) Saturn. Conversion between wind velocities u (in m/s) and the non-dimensional Rossby
number is given by Ro = u/(Ωro), where Ω is the planetary rotation rate and ro is the planetary radius to the upper cloud deck. Cassini Jupiter data [black curve,
panel (a)] and Saturn data [black curve, panel (b)] kindly provided by Ashwin Vasavada. Voyager 1 & 2 Saturn data [blue curve in (b)] from Sanchez-Lavega et al.
(2000). (For interpretation of the references to color in this figure ledend, the reader is referred to the web version of this article.)
which gives a non-dimensional measure of the relative impor-
tance of flow inertia to planetary rotation, is defined by Ro =
U/(Ωro), where U scales the flow speed, Ω and ro are the plan-
etary angular velocity and radius, respectively. The peak ob-
servable Rossby numbers for Jupiter (Ro � 0.012) and Saturn
(Ro � 0.045) imply that the flow dynamics on both planets are
strongly dominated by the effects of planetary rotation. The sur-
face winds on Saturn seem to be shifted strongly toward the pro-
grade direction. However, we note that an apparent change in
the period of Saturn’s kilometric radio (SKR) emissions (which
are used to estimate planetary rotation rate), suggests that the
planetary rotation rate is uncertain. An increase of roughly
1% in the period of SKR emissions is observed between the
Voyager and Cassini space missions (Sanchez-Lavega, 2005;
Porco et al., 2005). Since surface velocity measurements are
taken with respect to the estimated rotation rate, and consider-
ing that surface flow velocities are low compared to the rota-
tional velocity, a 1% uncertainty in rotation rate leads to a very
substantial (roughly 20%) uncertainty in the surface zonal wind
speed.

In contrast to the prograde equatorial winds of Jupiter
and Saturn, Uranus and Neptune each have a strong retro-
grade equatorial jet, with a single high-latitude prograde jet in
each hemisphere (Hammel et al., 2005; Sanchez-Lavega et al.,
2004). The magnitude of the equatorial wind speed of Neptune
is comparable to that of Saturn. However, because the “Ice Gi-
ants” are smaller and have a slower rotation rate, their Rossby
numbers, though still low compared to unity, are significantly
higher than for Jupiter and Saturn, with Neptune’s equatorial
jet exceeding Ro � 0.1. In this paper we will focus mainly on
the dynamics of Jupiter and Saturn.

Measurements of Jupiter’s atmosphere from the Galileo
probe in 1995 represent the only direct observations of at-
mospheric wind speed below the upper cloud deck. Those
Doppler velocity measurements determined an increase in the
wind speed from 80 to 160 m/s with depth in the interval 1–
4 bar. The wind speed then remained constant with depth to a
pressure of 22 bar (Atkinson et al., 1998), which corresponds to
several atmospheric scale heights and roughly 150 km beneath
the cloud deck. This implies that the winds of Jupiter extend
well below the tropospheric weather layer, which is based at 5–
10 bars. However, because the probe entered an equatorial “hot
spot,” which may represent anomalous atmospheric flow, it is
questionable whether these measurements are representative of
the global wind profile (Ingersoll et al., 2004).

Additional evidence relating to the origin of atmospheric
flow on the jovian planets comes from thermal emission data
and models for the deep planetary interiors. The emitted heat
flux of Jupiter and Saturn is relatively constant with latitude.
The outward heat from each planet accounts for roughly 1.7
times the absorbed solar heat (Ingersoll, 1976; Pirraglia, 1984).
This suggests that the zonal winds may be driven by deep con-
vection, since there are comparable amounts of solar and in-
ternal energy available to drive large-scale flow (Ingersoll and
Pollard, 1982).
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The outer fluid layers of Jupiter and Saturn undergo a phase
transition with depth from molecular to metallic hydrogen. The
sharpness of this transition is highly uncertain. Jupiter may still
be undergoing active differentiation so that the transition is
gradual, whereas Saturn, which is colder and further along in
its differentiation history, may have a sharp phase boundary at
greater depth (Guillot et al., 2004). Although the details of the
phase relations in the molecular H2–He envelope may have a
rich and complicated structure we will refer to this layer simply
as the “deep atmosphere.” The liquid metal interior is thought to
be the generating region of the strong magnetic fields of Jupiter
and Saturn. The metalization transition has been estimated to
occur at 0.80 to 0.85 of Jupiter’s radius. These bounding esti-
mates represent the maximum depth of the fast zonal flow layer
because zonal motions are thought to be relatively slow within
the metallic core.

It is likely that fast zonal flow would be attenuated by elec-
tromagnetic torque resulting from a strong electrical conductiv-
ity gradient at depths shallower than the metalization transition
(Kirk and Stevenson, 1987; Guillot et al., 2004). The strong
magnetic fields of Jupiter and Saturn affect the weakly con-
ducting lower regions of the deep atmosphere. Zonal flows
in this region would tend to shear out the magnetic field.
This shearing will be resisted by Lorentz forces. Such a mag-
netic braking effect has been documented in a number of geo-
dynamo simulations (Christensen et al., 1999; Busse, 2002;
Wicht, 2002). Non-magnetic numerical simulations (such as
those presented here) feature relatively large percentages of
zonal kinetic energy (Aurnou and Olson, 2001; Christensen,
2001, 2002). In magnetoconvection and dynamo cases, how-
ever, the zonal energy is vastly reduced even when the poloidal
convective motions are facilitated by the presence of the mag-
netic field (Christensen et al., 1999). The depth at which mag-
netic braking would be significant is unknown, but has been
estimated at 0.85–0.95 of Jupiter’s radius (Guillot et al., 2004).
Thus we assume a reasonable range of depth estimates of fast
zonal flow to be 0.85–0.95 of Jupiter’s radius. For Saturn, lesser
gravity means that the deep atmospheric layer depth is greater.
It follows that corresponding estimates for the level to which
fast zonal flow extends in Saturn are 0.6–0.85 of its radius.

Another possible mechanism for decreasing the zonal flow
with depth is the strongly increasing density due to compres-
sion and phase changes at depth. It has been suggested that,
taking into account fluid compression, the mass flux ρu would
be a conserved quantity on axial cylinders (Christensen, 2002).
This is in contrast to the Boussinesq case, where the Taylor–
Proudman theorem ensures that the velocity u is conserved in
the axial direction. It is noted that anelastic numerical models
of the solar dynamo, in which strong compression (but no vari-
ability in conductivity) is taken into account, have yielded some
cases in which u is conserved on zonal flow cylinders, and other
cases in which the flow velocity varies in the axial direction
at depth (Brun and Toomre, 2002). In quasigeostrophic flows,
viscous or turbulent shear tends to limit velocity gradients, fa-
voring conservation of u on axial cylinders.

Previous investigations of the planetary dynamics can be
broadly categorized as being of two types; shallow layer mod-
els, in which motion is restricted to the two horizontal dimen-
sions on the spherical outer surface, and deep layer models,
in which rapid rotation causes deep flows to be more or less
two-dimensional, varying little in the direction of the rota-
tion axis (quasigeostrophic approximation). Numerical shallow
layer models have reproduced several generic features observed
on Jupiter and Saturn, including multiple zonal jets of alter-
nating direction, and strong equatorial flow (Williams, 1978;
Cho and Polvani, 1996). However, in these models equatorial
flow is retrograde (westward)—opposite in direction to the pro-
grade (eastward) equatorial flow on Jupiter and Saturn. More
recent shallow layer models have obtained prograde equatorial
flow—but not without the application of ad hoc forcing func-
tions (Williams, 2003). Indeed, the theory of geostrophic tur-
bulence predicts retrograde zonal flow for a shallow 2D layer,
depending on the sign of the shallow layer β-parameter (Yano
et al., 2003, 2005).

In a pioneering study, Busse (1976) proposed that the jov-
ian surface zonal flows could be a manifestation of deep con-
vection. He suggested that the banded flow is an expression
of deep geostrophic convection outside of the tangent cylin-
der (Fig. 2a). More recently, Christensen (2001, 2002) demon-
strated that deep convection can produce jets of realistic am-
plitudes. However, his model produced only three jets outside
the tangent cylinder and a pair of jets in each hemisphere inside
the tangent cylinder, implying that deep rooted convection in a
moderately thick fluid shell (χ = 0.60) cannot account for the
multiple high latitude jets of Jupiter and Saturn (Christensen,
2001).

Obtaining quasigeostrophic turbulence in fully 3D numeri-
cal models is computationally expensive. However, computa-
tional cost for rotating convection models can be substantially
reduced by using a quasigeostrophic 2D approximation that
takes into account spherical geometry and potential vorticity
conservation (the topographic β-effect) while solving for flow
in the equatorial plane. This 2D geostrophic approximation has
been shown to agree qualitatively with results from laboratory
experiments and 3D numerical models (Aubert et al., 2003),
and can allow exploration of a greater range in parameter space
(Gillet and Jones, 2006). Those models utilized a rigid (dissi-
pative) outer boundary condition, which is applicable to flow in
the Earth’s core. However, the rigid outer boundary tends to in-
hibit jet formation, and those results are not clearly applicable
to the giant planets, which lack a rigid outer surface.

Yano et al. (2003, 2005) constructed 2D non-convective
geostrophic turbulence models with a free slip outer boundary
and no inner boundary to approximate deep convection in a full
sphere (without an inner boundary) and obtained results that re-
semble those of Christensen (2001).

Laboratory experiments of rotating convection in deep
spherical shells necessarily feature rigid mechanical boundary
conditions and replace central gravity with the rotation-driven
centrifugal force. Nevertheless, using rapidly rotating spherical
shell of radius ratios of χ = 0.35 and 0.70, Manneville and Ol-
son (1996) obtained zonal flow patterns that are broadly compa-
rable to the results of spherical numerical models (Christensen,
2001; Aurnou and Olson, 2001). Multiple jets have been pro-
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Fig. 2. Illustration of deep convection models. (a) In the model of Busse (1976) high latitude jets are the surface expression of deep flows that span the northern
and southern hemispheres. Jets do not occur inside the tangent cylinder. (b) In the present model of deep turbulent convection in a relatively thin spherical shell,
the tangent cylinder marks a discontinuity in the axial height of flow structures. Turbulent jets at high latitudes (inside the tangent cylinder) are underlain by flows
that are effectively attenuated near the inner spherical boundary of radius ri . Only the equatorial flows (outside the tangent cylinder) axially span the northern and
southern hemispheres.
duced by idealized numerical (Jones et al., 2003) and experi-
mental models with a cylindrical geometry, a free top surface,
and a sloping, rigid bottom surface (Read et al., 2004). In those
local models, as well as our present global model, the jets are
produced by the topographic β-effect and follow Rhines scal-
ing.

Several previous models of geostrophic or quasigeostrophic
deep convection have explicitly or implicitly assumed that the
high latitude jets observed on Jupiter and Saturn are the sur-
face expression of flow structures outside the tangent cylinder
(Busse, 1976; Sun et al., 1993; Yano et al., 2003, 2005). How-
ever, Christensen (2001) pointed out that the number alternating
zonal bands increases with increasing radius ratio. Our model
is based on the hypothesis that, while the equatorial jets of
Jupiter and Saturn are underlain by deep flows outside the tan-
gent cylinder, the higher latitude jets are underlain by bottom
bounded zonal flows inside the tangent cylinder. In this model,
quasigeostrophic, turbulent flow must develop inside the tan-
gent cylinder in order for alternating high latitude jets to form.
Fig. 2 illustrates these two different hypotheses for the deep
source of surface zonal flows on Jupiter and Saturn.

This paper expands upon an earlier paper on the origin of
Jupiter’s high latitude jets (Heimpel et al., 2005), and is or-
ganized as follows. Numerical models of rotating convection
are presented in Section 2. In Section 3 Rhines’ scaling theory,
which has previously been applied to deep geostrophic turbu-
lence in a full sphere (Yano et al., 2003, 2005), is extended to a
spherical shell geometry. In Sections 3, 4 and 5 spherical shell
Rhines scaling is shown to be consistent with the zonal jet struc-
tures in our numerical model, as well as with those of Jupiter
and Saturn. Lastly, in Section 6 we discuss implications of the
spherical shell hypothesis. A list of symbols is given as Table 1.

2. Numerical modeling

Numerical simulations are employed to study thermal con-
vection in spherical shells. A detailed description of the numer-
ical model is given by Wicht (2002). The governing equations
are

(1)
∂u
∂t

+ u · ∇u + 2 ẑ × u + ∇P = E∇2u + Ra∗T r̂,

(2)
∂T

∂t
+ u · ∇T = EPr−1∇2T ,

(3)∇ · u = 0,

which are solved simultaneously to determine the fluid velocity
vector u and the temperature field T .

The calculations are performed subject to a constant temper-
ature difference, �T , that is maintained between isothermal,
impermeable, mechanically stress free, inner and outer bound-
aries, ri and ro, respectively. Initial conditions are solid body
rotation with angular velocity Ωẑ, and a small, random ini-
tial temperature perturbation, from which convection develops.
Total angular momentum of the rotating, convecting system is
conserved. The fluid is Boussinesq and its physical properties
are characterized by α, the thermal expansion coefficient, ν, the
kinematic viscosity, and κ , the thermal diffusivity.
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Table 1
List of symbols

Notation Description Units

C(χ) Geostrophic jet scaling parameter –a

C∗(θχ ) β-plane jet scaling parameter –
D Dimensionless spherical shell thickness –
E Ekman number –
P Dimensionless pressure –
Pr Prandtl number –
Ra Rayleigh number –
Ra∗ Modified Rayleigh number –
Re Reynolds number –
Ro Rossby number –
T Dimensionless temperature –
U Scaling velocity m s−1

f Coriolis parameter s−1

g Gravitational acceleration m s−2

h Axial spherical shell height m
k Wavevector m−1

ri Inner spherical shell radius mb

ro Planetary radius or outer spherical shell radius mb

s Cylindrical radial coordinate m
u Azimuthal velocity m s−1

u Dimensionless velocity vector –
β Vorticity gradient parameter m−1 s−1

χ Ratio of inner & outer spherical boundaries –
Ω Planetary rotation rate s−1

κ Thermal diffusivity m2 s−1

λ,λ/2 Jet wavelength & jet width rad
λJ /2 Measured jet width rad
λg Geostrophic Rhines wavelength rad
λβ β-plane Rhines wavelength rad
ν Kinematic viscosity m2 s−1

θ Latitude rad
θTC Latitude at intersection of tangent cylinder with outer boundary rad
ξ, ξ(θ) Jet scaling parameter & function –

a Dimensionless.
b Or dimensionless, depending on context.
Equations (1)–(3) have been non-dimensionalized using the
spherical shell thickness D = ro − ri for length, Ω−1 for
time, ΩD for velocity, ρΩ2D2 for pressure and �T for tem-
perature. The controlling non-dimensional parameters for this
system are: the Ekman number, E = ν/(ΩD2), which is the
ratio of the viscous to Coriolis forces; the Prandtl number,
Pr = ν/κ , which is the ratio of the viscous and the thermal
diffusivities of the working fluid; and the modified Rayleigh
number Ra∗ = αg�T/(Ω2D), which is the ratio of buoyancy
to the Coriolis force, where g is the gravitational accelera-
tion on the outer boundary. The modified Rayleigh number
may be written in terms of the conventional Rayleigh number
Ra = αg�T D3/(κν), as Ra∗ = RaE2/Pr (Christensen, 2002).
It should also be noted that

√
Ra∗ is known as the convective

Rossby number (e.g., Vorobieff and Ecke, 2002). In the calcu-
lations presented here, the Ekman number is E = 3 × 10−6, the
Prandtl number is Pr = 0.1, and the modified Rayleigh number
is Ra∗ = 0.05.

The spherical shell geometry is defined by the radius ratio
χ = ri/ro, where ri is the inner boundary radius and ro is the
outer boundary radius. Simulations are performed for two val-
ues of the radius ratio; χ = 0.85 and χ = 0.9 (see Fig. 2).
The shells with χ = 0.85 and χ = 0.9 are substantially thin-
ner than in previous models of rotating convection that have
been applied to the zonal winds of Jupiter and Saturn (Aurnou
and Olson, 2001; Christensen, 2001, 2002; Aurnou and Heim-
pel, 2004). The radius ratio χ = 0.9 lies roughly in the middle
of current estimates for the depth of fast zonal flow in Jupiter
(Guillot et al., 2004).

The pseudo-spectral numerical code was originally devel-
oped to model the solar dynamo (Glatzmaier, 1984) and has
been since modified (Glatzmaier and Roberts, 1995; Christensen
et al., 1999; Wicht, 2002). The code implemented here has
been benchmarked and uses mixed implicit/explicit time step-
ping (Wicht, 2002). To save computational resources, the gov-
erning equations are solved on azimuthally truncated spheres
with eight-fold symmetry (Al-Shamali et al., 2004), with peri-
odic boundary conditions on the bounding meridional planes.
Each of the numerical grids for the two different radius ra-
tios (χ = 0.85 and χ = 0.9) has 65 radial grid-points. For the
χ = 0.85 case the spherical section has 512 points in latitude
and 128 points in longitude. The χ = 0.9 case has 768 points
in latitude and 192 longitudinal points on the truncated sec-
tion. The imposed eight-fold symmetry can make the solutions
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Table 2
Definitions and values of the numerical model’s non-dimensional control parameters (χ , E, Ra, Pr) and output parameters (Re, Ro), along with estimates of those
parameters for Jupiter and Saturn

Parameter Numerical model Jupiter Saturn

χ = ri/ro 0.85 & 0.9 0.80–0.95 0.50–0.85
E = ν/Ωr2

o (1 − χ)2 3 × 10−6 10−15–10−20 10−15–10−20

Ra = αgo�T r3
o (1 − χ)3/κν 5.56 × 108 1025–1030 1025–1030

Pr = ν/κ 0.1 ∼0.1 ∼0.1
Re = U(ro − ri )/ν 5 × 104 1015 2 × 1015

Ro = U/(Ωro) 0.012–0.025 0.01 0.04

Notes. The Reynolds and Rossby numbers given here are based upon the approximate peak zonal flow velocities. It is noted the numerical model with χ = 0.9 was
previously presented in Heimpel et al. (2005). In that paper, Ra was given, in error, as 1.67 × 1010. The value given here is correct for this paper and for the previous
work.

Fig. 3. Results from numerical models with Ra∗ = 0.05, E = 3 × 10−6 and Pr = 0.1. Outer surface azimuthally-averaged azimuthal flow velocity profiles for two
different values of the radius ratio χ = ri/ro . (a) χ = 0.85; (b) χ = 0.9. The dashed lines show the latitude θTC at which the tangent cylinder intersects the outer
surface. Both velocity profiles are averaged in time over about 100 rotations. The flow velocities are scaled by the Rossby number Ro = u/(Ωro) (bottom axis) and
the Reynolds number Re = uD/ν = Ro/[E(1 − χ)] (top axis).
more axially symmetric. However, the simulations are charac-
terized by strong rotation and vigorous convection, such that the
flow has strong cylindrical symmetry and several plume struc-
tures occur in the equatorial region of a truncated section (see
Fig. 4d). This indicates that the eight-fold truncation should not
have a strong effect on the solution.

The use of hyperdiffusion allows us to resolve these models
with relatively high Ra and low E. A potential pitfall of using
hyperdiffusion is that it may introduce anisotropy between ra-
dial and azimuthal modes of flow. In addition, hyperdiffusivity
yields a viscosity that increases with decreasing scale so that,
on average, the effective Rayleigh number decreases and the
effective Ekman number increases with the strength of hyper-
diffusion. However, we have used relatively weak hyperdiffu-
sion which seems to act mainly as a low-pass filter. Thus the
medium and long wavelength structure that we are interested in
(the azimuthal jets) seem not to be significantly affected. Runs
were calculated with hyperdiffusivity of the same functional
form as previous dynamo models (Stanley and Bloxham, 2004;
Kuang and Bloxham, 1999). For the χ = 0.9 case, the ini-
tial hyperdiffusion amplitude was reduced as the calculation
became steadier in time. The final amplitude of the hyperdiffu-
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Fig. 4. Results from χ = 0.85 numerical simulation. (a and c) Snapshot of the azimuthal velocity field. Red and blue represent prograde (eastward) and retrograde
(westward) flow, respectively. In (a) the velocity field is displayed on the inner and outer spherical surface, and on a meridional slice, which shows the columnar
(quasigeostrophic) structure of the flow field. In (c) a latitudinal slice (at 10◦ latitude) of the azimuthal velocity field is displayed. (b and d) Snapshot of temperature
field. Red and blue represent cold and warm temperatures, respectively. In (d) the latitudinal slice reveals six individual hot plume structures. (For interpretation of
the references to color in this figure ledend, the reader is referred to the web version of this article.)
sivity was smaller than that of the previous dynamo models by
1/10 (Kuang and Bloxham, 1999). Similarly, the Ekman num-
ber was lowered in stages. After E was reduced from 3 × 10−5

to 3×10−6 the model was run for over 1600 planetary rotations
and the convective motions approached a statistically-steady
state. For the case of χ = 0.85, the hyperdiffusion and Ekman
number were constant throughout the calculation and equal to
the final values of the χ = 0.9 case.

The model parameters were selected to reflect (within tech-
nical limitations) our current understanding of the jovian and
saturnian dynamics. Table 2 summarizes our parameter choices
as well as estimates of relevant parameters for Jupiter and Sat-
urn. The model values of Ra∗ and E are based on recent numer-
ical and experimental scaling analyses for convection driven
zonal flows in thicker spherical shells (Aubert et al., 2001;
Christensen, 2002). The Ekman number was chosen to be as
low as is technically feasible. Then, Ra∗ was chosen to obtain
an a zonal flow with velocity (or Rossby number Ro) that ap-
proximates the jovian planets. Thus, while Ra and E−1 for our
simulations are several orders of magnitude less than planetary
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values, the simulation values of Ro are representative of the gi-
ant planets.

An essential ingredient in our numerical simulations is that
the convection drives the system to fully developed inertial tur-
bulence that is quasigeostrophic and close to the asymptotic
regime of rapid rotation, where viscosity and thermal diffusiv-
ity play a negligible role in the dynamics. The existence of such
a regime is supported by the asymptotic scaling relationships of
Christensen (2002). Thus, the large discrepancies between the
simulation parameters and those estimated for Jupiter may not
strongly affect the character of the solution.

We do not model the jovian troposphere nor the effects of
latitudinally varying insolation (Williams, 1978, 2003). Fur-
thermore, we model convection only within the region where
large-scale zonal flows are predicted to occur and we neglect
the deeper regions where convection may be vigorous but zonal
flows are expected to be weak. Although density increases by
several orders of magnitude with depth below Jupiter’s tro-
posphere, our model neglects fluid compression (Boussinesq
approximation). This is clearly a drastic simplification since
fluid compressibility effects are certainly important to the dy-
namics of convection in the Gas Giants (Evonuk and Glatz-
maier, 2004; Glatzmaier, 2005a). While the Boussinesq model
is inadequate to describe convection within the Gas Giants, it
can provide insight into the large-scale dynamics (Yano et al.,
2003, 2005). The relevance and shortcomings of Boussinesq
models can be qualitatively appreciated by comparing them
with models that include density changes through the anelastic
approximation. Such models, which have been applied to Sat-
urn (Glatzmaier, 2005b), and solar convection (e.g., Brun and
Toomre, 2002), typically produce quasigeostrophic, counter-
rotating, cylindrical flows, with deep velocity fields that are
comparable to Boussinesq flows.

Surface zonal flow profiles for the two calculations (χ =
0.85, and χ = 0.9 with E = 3 × 10−6), which are plotted in
Fig. 3, show that the number of high latitude jets increases in
proportion to the radius ratio χ . It is apparent from Fig. 3 that
the thinner shell results in lower Rossby number (which scales
the zonal flow velocity) and a smaller latitudinal wave length
of zonal flow undulations inside and outside the tangent cylin-
der. Thus thinner shells favor the formation of multiple high
latitude jets not only because the range of latitudes inside the
tangent cylinder increases with χ , but also because the zonal
jet wave length scales with velocity. Turbulent flow is essential
for the development of multiple jets at higher latitudes, inside
the tangent cylinder. The Reynolds number Re = uD/ν for our
simulations (shown along with Ro in Fig. 3) has peak values of
10,000–15,000 and 40,000–47,000 inside and outside the tan-
gent cylinder, respectively. These values of Re are sufficiently
high at all latitudes for the development of strong inertial tur-
bulence.

Fig. 4 shows the zonal flow field and the thermal field for
the case with χ = 0.85. Both images show strongly anisotropic
flow structures associated with rapid rotation. The flow and
thermal fields vary little in the axial direction, and turbulent
flow structures are suppressed on planes parallel to the rota-
tion axis. (Note that turbulent flow is apparent on all surfaces
except the meridional planes, where they appear to be strongly
aligned with the axial direction.) Furthermore Fig. 4a shows
that the zonal flow is strongly columnar throughout the fluid,
with nested cylindrical flows of alternating direction outside
and inside the tangent cylinder (as shown schematically in
Fig. 2b).

3. Scaling of turbulent planetary zonal flow

3.1. Rhines wavelength for the β-plane approximation

Energy in turbulent flow typically passes from larger to
smaller scales. However, the interaction of two-dimensional
turbulence with the combined effect of planetary rotation and
spherical boundary curvature can give rise to an energy transfer
from smaller eddies to larger, zonally extended eddies (Rhines,
1975). In the β-plane approximation (which assumes that plan-
etary flows are shallow, such that radial motion is neglected)
this inverse cascade ceases approximately at a wavenumber

(4)kβ = √
β/2U,

where U is a velocity scale and β = (1/ro)df/dθ is the gradi-
ent of the Coriolis parameter (f = 2Ω sin θ ) on a 2D spherical
surface of radius ro that rotates with angular velocity Ω , and
θ is the latitude (−π/2 � θ � π/2). Equation (4) is Rhines
(1975) original expression. In the subsequent literature, to em-
phasize the approximate nature of the expression, the factor of 2
in the denominator has often been omitted, and the length scale
Lβ � π/kβ is known as Rhines scale (Vasavada and Showman,
2005). Here, we choose to retain the factor of 2 and write, for
the β-plane approximation, the angular form of Rhines wave-
length (given in radians) as

(5)λβ = 2π

rokβ

= 2π

√
U

roΩ cos θ
,

which is expected to characterize the latitudinal scale of zonal
jets.

3.2. Rhines wavelength for a spherical shell

For approximately geostrophic flow in a rapidly rotating 3D
spherical shell, zonally extended eddies evolve into jets of al-
ternating prograde and retrograde velocity, which obtain the
form of nested cylinders aligned with the rotation axis. This
system can be thought of as a fluid layer in which the depth
h is measured in the axial direction (Fig. 5), with a constant
Coriolis parameter f = 2Ω . It follows that the Rhines length
can be formulated in terms of the topographic β-parameter,
β = −2Ω(dh/ds)/h (Pedlosky, 1979; Yano et al., 2005). Due
to geostrophy the velocity structure has cylindrical symme-
try and varies dominantly in the direction normal to the rota-
tion axis. Thus, the generalization of Rhines scaling for flow
in a 3D spherical shell is represented by the wavevector k =√|β|/2U ŝ, where ŝ = r̂ cos θ + θ̂ sin θ is the cylindrical radius
unit vector, decomposed into latitudinal and radial component
vectors. We note that the absolute value of β appears here since
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Fig. 5. Schematics illustrating (a) height, h, of a fluid column located in
the equatorial region outside the tangent cylinder (i.e., at latitudes θ � θTC);
(b) height of a fluid column in the high latitude region located inside the tangent
cylinder (i.e., at latitudes θ � θTC). The radii of the outer and inner boundaries
are, respectively, ri and ro , and the cylindrical radius is s.

β changes sign for a deep spherical shell. For planetary observa-
tions, we are interested in the magnitude of k in the θ direction,
so the Rhines wavenumber on the spherical outer boundary
becomes k = sin θ

√|β|/2U . Thus, for the geostrophic approx-
imation, the Rhines wavelength on the outer spherical surface
is

(6)λg = 2π

ro

1

k
= 2π

ro sin θ

√
Uh

Ω|dh/ds| .

By evaluating h for the spherical shell geometry, we can pro-
ceed to obtain the Rhines wavelength as a function of latitude.
Fig. 5 illustrates the relevant geometric features for a spherical
shell of inner radius ri and outer radius ro. For rapidly rotat-
ing systems, the tangent cylinder represents a boundary that
separates planetary flows into three relatively independent vol-
umetric regions (Aurnou et al., 2003); the equatorial region out-
side the tangent cylinder, the northern region inside the tangent
cylinder, and the southern region inside the tangent cylinder.
Here it is significant that, for a spherical shell of radius ratio
χ = ri/ro, the value of h doubles discontinuously while dh/ds

changes sign equatorward across the latitude θTC = cos−1 χ ,
which represents the intersection of the tangent cylinder with
the outer surface. Axially aligned flow structures of height h

may be considered to correspond to Taylor columns (Schoff
and Colin de Verdiere, 1997). For Boussinesq or adiabatically
mixed (Ingersoll and Pollard, 1982), fully developed, quasi-
geostrophic turbulence, large-scale flow structures tend to be
cylindrical and are aligned with the planetary rotation axis.

Fig. 5a shows the geometry in the region outside the tangent
cylinder (s � ri ). The height of an axial fluid column is

(7)h = 2
(
r2
o − s2)1/2

.

The variation of column height with cylindrical radius is

(8)
1

h

∣∣∣∣dh

ds

∣∣∣∣ = s

r2
o − s2

= 1

ro

(
cos θ

sin2 θ

)
.

Outside the tangent cylinder, the Rhines length in radians on the
outer spherical surface is

(9)λg = 2π

√
U

roΩ cos θ
; |θ | � cos−1 χ.
Comparing (5) and (9) shows that the Rhines wavelength for
the β-plane approximation is identical to that of the equatorial
region outside the tangent cylinder for the geostrophic approx-
imation. Furthermore, the geostrophic Rhines length for a full
sphere geometry (χ → 0), in which all the fluid is effectively
outside of the tangent cylinder (θTC → ±90◦ latitude), has the
same formulation, at all latitudes, as the β-plane Rhines length.

Fig. 5b shows the geometry of an axial fluid column of
height h located inside the tangent cylinder (s � ri ). The col-
umn height is

(10)h = (
r2
o − s2)1/2 − (

r2
i − s2)1/2

.

Following the same procedure as above, it is found that

(11)
1

h

dh

ds
= s

(r2
o − s2)1/2(r2

i − s2)1/2

which can be cast into the form

(12)
1

h

∣∣∣∣dh

ds

∣∣∣∣ = 1

ro

∣∣∣∣ cot θ√
χ2 − cos2 θ

∣∣∣∣.
Combining (12) and (6), the Rhines wavelength in radians on
the outer sphere becomes

(13)λg = 2π

√
U

roΩ

∣∣∣∣ (χ2 − cos2 θ)1/2

sin θ cos θ

∣∣∣∣; |θ | � cos−1 χ.

We note that in the limiting case of an arbitrarily thin shell,
χ = 1, Eq. (13) reduces again to (5) and (9). Thus the three
limiting cases of a 2D shallow layer (β-plane approximation),
a 3D deep layer (geostrophic approximation) with χ = 0 and a
3D shallow layer with χ → 1 all have identical Rhines scaling.
However, this analysis only pertains to the characteristic length-
scale of the zonal flows; the flow directions of individual zonal
jets need not be the same (Yano et al., 2005).

3.3. Comparison of Rhines scale and measured jet widths

Using (9) and (13) we may test the applicability of Rhines
scaling to our numerical results and to the giant planets. Using
the surface wind profile provided by A. Vasavada (see Fig. 1)
we measure Jupiter’s jet widths. Similarly we measure the jet
widths for the surface flow fields of our two numerical simu-
lations (with radius ratios χ = 0.85 and χ = 0.9). We did not
quantitatively consider Saturn’s jet widths since the present un-
certainty in the planetary rotation rate (Sanchez-Lavega, 2005)
complicates the measurement.

The jet width, defined here to be equal to half a wavelength
λ/2 of latitudinal velocity variations, is measured as the lat-
itudinal distance between minima in |u|, where u is the az-
imuthally averaged zonal surface flow velocity for Jupiter or
the numerical model. From this definition of jet width it fol-
lows that a jet boundary can occur where u crosses zero, or
where u is finite but |u| is a minimum. The graphical basis for
measurement is shown in Fig. 6.

To obtain jet widths predicted by Rhines scaling we calculate
the mean values for the right-hand side of (9) and (13), where
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Fig. 6. Velocities and jet boundaries for (a) Jupiter and (b) the numerical model. It is noted that the horizontal scale is different in (a) and (b). Observed profiles of
the absolute value of the surface velocity |u| are shown as black curves. The actual velocity profiles (showing the retrograde jets in gray) are plotted for reference.
The jet boundaries are plotted as light solid lines of latitude. The dashed lines of latitude are at the peaks of the jets nearest the equator. The jet width associated
with those peaks is twice the latitude distance from the dashed line to the next jet boundary at higher latitude. The scaling velocity U(θ) (red for Jupiter and blue for
the numerical model) is calculated from (23), which is based on the assumption of constant Rhines length in each of the three regions; north, south and equatorial.
(For interpretation of the references to color in this figure ledend, the reader is referred to the web version of this article.)
the velocity scale U is taken to be 〈|u|〉J , which represents lati-
tudinal mean of the azimuthally averaged zonal surface velocity
for each jet.

Figs. 7–10 show the applicability of Rhines scaling to the
zonal flow on Jupiter and for our numerical simulations. Fig. 7
compares the observed and simulated jet widths against the
jet widths predicted by Rhines scaling. For the simulations,
the correspondence between measured and predicted jet widths
is seen to be close outside the tangent cylinder, although, for
the χ = 0.9 case the highest latitude simulated jets are signifi-
cantly narrower than predicted by Rhines scaling. For both the
χ = 0.85 and χ = 0.9 cases the simulated equatorial jets are
much broader than predicted. For Jupiter the predicted jet width
values are calculated using χ = 0.9 in (9) and (13). Although
there is clearly some misfit between the measured and predicted
jet widths, it is remarkable that Jupiter’s measured jet widths
correspond well to the values calculated using Rhines scaling,
except at the highest latitudes, where, similar to the simulated
cases, Rhines scaling overestimates the jet widths.

Fig. 8 shows the measured jet widths for Jupiter against the
predicted jet widths for several values of the radius ratio χ .
Fig. 9 shows the magnitude of the difference between the mea-
sured and predicted jovian jet widths (the misfit) with the same
set of χ—values as in Fig. 7. These two figures show that, while
it is plausible to fit Jupiter’s jet widths with those predicted
by Rhines scaling for any spherical shell layer depth (or ra-
dius ratio χ ), the best fits occur for radius ratios between about
0.85 and 0.95. This is graphically quantified in Fig. 10, which
shows the misfit between measured and predicted values, av-
eraged over all measured jovian jets, as a function of χ . Here
we see that, compared to what Rhines scaling predicts for full
sphere (χ = 0) or an extremely shallow layer (χ � 1) the mini-
mum misfit (at χ = 0.86) is improved by roughly 33%.

3.4. A geometrical jet scaling function

The geostrophic Rhines wavelength, in radians of latitude
on the surface of a rapidly rotating spherical shell, is speci-
fied by (9) and (13) outside and inside the tangent cylinder,
respectively. In this formulation λg depends on the spherical
geometry, the velocity scale U , the angular rotation rate Ω and
the characteristic length-scales of the system, ro and D. We
may isolate the purely geometrical part of the Rhines scaling
relationship by writing

(14)ξ = λg

2π

√
roΩ

U

which we refer to as the jet scaling parameter. Combining (9),
(13) and (14) we see that, outside the tangent cylinder,

(15)ξ(θ) =
√

1

cos θ
; |θ | � cos−1 χ,
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Fig. 7. Comparison of measured and predicted jet widths for two numerical simulations (with radius ratios χ = 0.85 and χ = 0.9), and for Jupiter, where the
predicted values are obtained by assuming χ = 0.9. The predicted values are obtained from (9) and (13), which are derived from Rhines scaling theory for turbulent
flow in spherical shells of radius ratio χ . The method of jet measurement is shown in Fig. 6.
and inside the tangent cylinder,

(16)ξ(θ) =
√∣∣∣∣ (χ2 − cos2 θ)1/2

sin θ cos θ

∣∣∣∣; |θ | � cos−1 χ.

The functional form of the jet scaling parameter ξ(θ), given
by (15) and (16), will be referred to as the jet scaling function,
and is plotted for several values of χ in Fig. 11. It should be
noted that Eq. (15), which is valid outside the tangent cylinder,
is independent of χ .

4. Jet scaling for the numerical model and Jupiter

4.1. Rhines scale for each jet

Here we compare the jet scaling function ξ(θ), given by (15)
and (16), to the observed or measured values of the jet scaling
parameter ξ , given by (14), so that for each jet

(17)ξJ = λJ

2π

√
roΩ

〈|u|〉J .
Equation (17) has the same form as (14), but with the Rhines
wavelength λg replaced by the measured jet wavelength, λJ ,
and the velocity scale U replaced by the latitudinally and az-
imuthally averaged jet velocity 〈|u|〉J , which was introduced in
Section 3.3.

In Fig. 12, ξ(θ) given by (15) and (16) with χ = 0.9 is plot-
ted against the measured ξJ values, for the numerical model
and Jupiter, using the mean velocity 〈|u|〉J and measured width
λJ /2 for each jet. In addition ξ = √

1/ cos θ , which represents
χ = 0, χ → 1, and the β-plane approximation, is plotted for
reference.

4.2. Global and regional jet scaling

In Section 3.3 we directly compared measured jet widths
with those predicted by Rhines scaling. To eliminate the de-
pendence of the jet width on the local velocity U we use,
in Section 4.1, the jet scaling function ξ(θ) to compare ob-
served to predicted jet scaling. Since ξ(θ) is purely geomet-
rical (depending only on the latitude), no assumptions are re-
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Fig. 8. Measured and predicted values of Jupiter’s jet widths for several values of the radius ratio χ . See text and Fig. 7 caption for explanation of predicted values.
quired about the latitudinal relationship between λg and U .
However, inspection of the zonal velocity profiles of Jupiter
and Saturn shows that, outside the equatorial region, the lat-
itudinal jet wavelength is approximately constant. This sug-
gests a different approach in which λg is set to be constant
over some range of latitudes, which implies a latitudinally vari-
able velocity scale U . Furthermore, latitudinal variation of the
velocity scale seems appropriate since quasigeostrophic flow
is strongly anisotropic with weak, scale dependent mixing in
latitude (Yano et al., 2005). Thus, we interpret U(θ) to be
an azimuthally averaged velocity scale that may vary in lati-
tude θ .

In a rapidly rotating spherical shell geostrophy inhibits flow
across the inner shell tangent cylinder. This suggests that zonal
flow scaling be analyzed separately inside and outside the tan-
gent cylinder. Following this line of reasoning, we will, in this
section, assume that the Rhines length is constant in each of the
three regions bounded by the tangent cylinder: (1) the north-
ern region, inside the tangent cylinder; (2) the southern region
inside the tangent cylinder; (3) and the equatorial region, out-
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Fig. 9. Misfit (i.e., magnitude of the difference) between predicted and measured values of Jupter’s jet widths for several values of the radius ratio χ (see Fig. 8).
side the tangent cylinder. We shall see that the assumption of
regionally constant Rhines length seems to be well justified by
the results.

With the Rhines wavelength λg taken to be regionally con-
stant (but as yet undetermined), the scaling velocity is now a
function of latitude. Thus Eq. (14) implies

(18)U(θ) = roΩλ2
g

4π2

1

ξ2(θ)
.

The latitude dependence of U(θ) is given by 1/ξ2(θ), which
is singular on the inside part of the tangent cylinder boundary
[see Eq. (16)]. This singularity may be thought of as being due
to discontinuous vortex stretching implied by the two-fold jump
in fluid column height h across the tangent cylinder.

With λg assumed to be constant for each of the three regions,
northern, southern, and equatorial (or over any latitudinal re-
gion of interest), we take the regional latitudinal mean of both
sides of (18):

(19)〈U〉 = roΩλ2
g

4π2

〈
1

ξ2(θ)

〉
.

Now, solving for λg yields an expression that allows us to calcu-
late the Rhines wavelength based upon a regional, latitudinally
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Fig. 10. Mean jet misfit for Jupiter (see Fig. 9) as a function of the radius ratio χ .
The minimum misfit at χ = 0.86 corresponds to the best estimate of the depth
of fast zonal flow in Jupiter, according to Rhines scaling theory applied to a
spherical shell of Boussinesq fluid. It is noted that the misfit is flat for χ � 0.4
since the highest latitude measured jet is at cos−1(0.4) = 66◦ .

Fig. 11. The function ξ(θ) for a spherical shell, plotted for several values of
the radius ratio χ = ri/ro . Curves inside the tangent cylinder are calculated
from (16) and labeled with χ -values in the northern hemisphere. The heavier
solid curve, calculated from (15), is valid outside the tangent cylinder for all
χ -values, as well as for the shallow layer (β-plane) approximation.

averaged azimuthal velocity profile 〈U〉,

(20)λg = 2π

√
〈U〉

roΩ C(χ)
,

where we have defined the purely geometrical parameter
C(χ) ≡ 〈1/ξ2(θ)〉, with the mean taken over the latitudinal
region of interest. We note that, although 1/ξ2(θ) (and thus
U(θ)) is singular on the inside boundary of the tangent cylin-
der, C(χ) is finite, as can be seen by computing the mean inside
Fig. 12. Measured values of ξJ , given by (17), for the zonal jets of Jupiter
(red) and the numerical model (blue). The values of ξJ are obtained from the
mean azimuthal jet velocities 〈|u|〉, with the mean taken over all longitudes and
the latitude range corresponding to the measured width λJ /2 of each jet. See
text and Fig. 7 for explanation of jet measurement. The solid black curve is
the function ξ(θ), given by (15) and (16), with χ = 0.9. The tangent cylinder
is seen to correspond to a discontinuity in ξ(θ), and thus to a discontinuity in
the jet scaling. The dashed curve shows ξ(θ), given by (15), for the β-plane
approximation, which is equivalent, outside the tangent cylinder, to ξ(θ) for
χ = 0.9, or any value of χ (see also Fig. 6). (For interpretation of the references
to color in this figure ledend, the reader is referred to the web version of this
article.)

and outside the tangent cylinder:

C(χ) = 1

π/2 − cos−1 χ

π/2∫
cos−1 χ

sin θ cos θ√
χ2 − cos2 θ

dθ

(21)= χ

π/2 − cos−1 χ
; |θ | � cos−1 χ,

C(χ) = 1

cos−1 χ

cos−1 χ∫
0

cos θ dθ

(22)= sin(cos−1 χ)

cos−1 χ
; |θ | � cos−1 χ.

Here we see that C(χ) has different values inside and out-
side the tangent cylinder. Equation (20), with C(χ) calcu-
lated exactly by (21) and (22), gives us a direct mapping from
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Table 3
Comparison of regionally averaged values of measured jet widths 〈λJ /2〉 (the brackets indicate regional averaging) to the geostrophic Rhines width λg/2 and the
β-plane Rhines width λβ/2

Region Latitude range Jupiter Numerical model (χ = 0.9)

〈U〉 (m/s) 〈λ/2〉 λg/2 λβ/2 〈U〉 (m/s) 〈λ/2〉 λg/2 λβ/2

North 25.8◦–90.0◦ 7.5 4.3◦ 5.0◦ 6.3◦ 20.2 7.6◦ 8.2◦ 10.4◦
Equatorial −25.8◦–25.8◦ 57.7 9.3◦ 12.6◦ 12.6◦ 105.3 19.7◦ 17.0◦ 17.0◦
South −90◦–25.8◦ 9.7 4.4◦ 5.7◦ 7.2◦ 26.7 8.6◦ 9.4◦ 11.9◦

Global −90.0◦–90.0◦ 22.7 5.5◦ 9.7◦ 9.7◦ 46.9 10.7◦ 14.0◦ 14.0◦

Notes. The North and South regions represent latitudes inside the tangent cylinder, while the Equatorial region lies outside the tangent cylinder. The zonal scaling
velocity U for each of three regions is used to obtain the corresponding Rhines widths λg/2 and λβ/2, which are plotted in Fig. 13. The Rhines width λg/2 for each
region is calculated from (20) using the regional scaling velocity U . For χ = 0.9 (the value used in our numerical simulation), (21) and (22) yield C = 0.804 inside
the tangent cylinder and C = 0.966 outside the tangent cylinder. The values of λβ in the North and South regions correspond to the three limiting cases: (1) β-plane
approximation or (2) χ = 0 or (3) χ = 1. The value C(θχ ) = 0.504 is derived for these limiting cases using the equivalent spherical shell radius ratio χ = 0.9 [see
text and Eq. (22)]. The global Rhines scaling has the single geometric parameter value C = 2/π .
the regionally averaged scaling velocities to the correspond-
ing regional Rhines wavelengths. Having obtained the regional
Rhines wavelengths, they can be substituted back into (18) to
obtain U(θ). Fig. 6 shows, in addition to the raw velocity pro-
file and jet boundaries, the scaling velocity profiles

(23)U(θ) = 〈U〉
C(χ)

1

ξ2(θ)
= 〈U〉 1/ξ2(θ)

〈1/ξ2(θ)〉 ,
that use the mean velocities 〈U〉 = 〈|u|〉 of each region (north,
equatorial, and south) for the χ = 0.9 numerical model results
and for Jupiter.

As discussed above, geostrophic flow in a spherical shell
effectively segregates into the three regions (north, south and
equatorial) bounded by the tangent cylinder. Because the limit-
ing cases (full sphere and shallow layer) lack a tangent cylinder,
there is no physical basis for regionally segregating the flow
fields in the β-plane approximation. It follows that the lim-
iting cases are consistent with a single Rhines length, which
is obtained using the global scaling velocity and the limiting
value C = 2/π [obtained either from (21) with χ = 1 or, al-
ternatively, from (22) with χ = 0]. However, models based on
these limiting cases (Yano et al., 2003, 2005; Williams, 1978;
Cho and Polvani, 1996), obtain relatively fast equatorial flow,
compared to that at higher latitudes. Thus, because the Rhines
scale depends upon the scaling velocity, it seems appropriate to
calculate the Rhines scaling in the β-plane approximation based
on regionally (rather than globally) averaged scaling velocities.
In this case we separate the full sphere or shallow layer into re-
gions (north, equatoria and south) as for the case of a spherical
shell. The latitude θχ = cos−1 χ bounds the equatorial region
of a full sphere or shallow layer, which corresponds to the in-
tersection of the tangent cylinder with the outer surface for an
“equivalent” spherical shell of radius ratio χ . Because β-plane
and geostrophic Rhines scaling are equivalent outside the tan-
gent cylinder, the β-plane C-value for latitudes less than θχ is
the same as that for the equivalent spherical shell. The β-plane
value for latitudes greater than θχ is denoted C∗(θχ ) and has a
possible range 0 < C∗(θχ ) < 2/π . Its value is given by

C∗(θχ ) = 1

π/2 − θχ

π/2∫
θ

cos θ dθ
χ

(24)= 1 − sin(θχ )

π/2 − θχ

; |θ | � θχ .

Thus, the β-plane approximation, applied to a spherical surface
zonal flow at latitudes θχ � 25.8◦, yields the value C∗(θχ ) =
0.504, where χ = 0.9 refers to the radius ratio of an “equiva-
lent” spherical shell. Fig. 13 compares the measured jet widths
against the theoretical Rhines widths based on regionally and
globally averaged zonal velocities for Jupiter and for the χ =
0.9 numerical model. Table 3 also gives the regional and global
Rhines widths based on the β-plane approximation.

5. Jet scaling on Saturn

Saturn has a strong prograde (eastward) equatorial jet and
features three prograde high latitude jets in each hemisphere.
Thus its jet pattern is comparable, but with faster and broader
jets, to that of Jupiter. However, contrary to the jovian jets,
some of which are strongly retrograde, saturnian jets seem to
be almost purely prograde, with a minimum retrograde ve-
locity of −15 m/s compared with the maximum equatorial
jet velocity of 470 m/s and the maximum higher latitude jet
velocity of 145 m/s (for the jet centered on 42 ◦N). Further-
more, a decrease in the rotational period the Saturn’s kilomet-
ric radio (SKR) emissions measured by the Cassini mission
relative to that measured by Voyager (Sanchez-Lavega, 2005;
Porco et al., 2005), which has been interpreted as a decrease
in the planetary rotation rate, shifts the jet velocities even more
prograde. The measured increase of 1% in the SKR emissions
period implies that Saturn’s jets are entirely prograde. This vari-
ability throws into question the use of SKR emissions as an
estimate of the planetary rotation rate. The uncertainty in the
rotation rate also propagates uncertainty into the measurement
of jet width (since the jet width is typically estimated in rela-
tion to zero relative velocity) and the calculation of saturnian
Rhines scaling (since the scaling velocity U depends on the rel-
ative velocity and factors into the Rhines scale).

Despite these uncertainties, we can estimate the regional
Rhines lengths for Saturn using the latitudinal velocity profiles
based on Voyager and Cassini data (Fig. 1) and using the stan-
dard planetary rotation rate based on Voyager radio emissions.
We assume that the breadth of Saturn’s equatorial jet reflects
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Fig. 13. Measured jet widths compared to Rhines widths for (a) Jupiter and (b) the numerical model. The circle and triangle symbols each represent a jet measure-
ment. The equatorial jet width is estimated on both sides of the equator (see Fig. 7). Geostrophic Rhines widths λg/2 (solid black lines) are obtained from (20),
using the observed zonal scaling velocities for each of the three regions bounded by the tangent cylinder (north, equatorial and south). The dashed black (gray) lines
represent the β-plane Rhines widths λβ/2 from the global (regional) mean of the zonal velocity magnitude. Outside the tangent cylinder (i.e., the equatorial region)
the geostrophic and β-plane approximations are equivalent such that λg = λβ .

Table 4
Estimated jet widths compared to Rhines widths assuming a radius ratio χ = 0.8 for deep saturnian zonal flow

Region on Saturn Latitude range 〈U〉 (m/s) 〈λ/2〉 λg/2 λβ/2

North 37◦–90.0◦ 64.7 8–15◦ 15.7◦ 22.3◦
Equatorial −37◦–37◦ 244.7 50–70◦ 29.5◦ 29.5◦
South −90◦–37◦ 65.2 8–15◦ 15.8◦ 22.4◦

Global −90.0◦–90.0◦ 177.0 – 30.4◦ 30.4◦
Note. Notation is similar to that in Table 3.
the location of the tangent cylinder. Taking this approach, a ra-
dius ratio of χ = 0.8 results from placing the boundary between
equatorial and high latitude jets at 37◦ latitude. Table 4 com-
pares estimates of the saturnian jet widths with those predicted
by geostrophic and β-plane Rhines scaling. The scaling veloc-
ities in the northern and southern hemispheres (above 37◦ lati-
tude) are 64.7 and 65.2 m/s, respectively—highly symmetrical.
Using (20) the resulting Rhines widths are roughly λg = 16◦
in each hemisphere (15.7◦ and 15.8◦ in the north and south,
respectively). The jet width estimate of 16◦ is consistent the ob-
served three prograde jets between latitudes of roughly 37◦–77◦
in each hemisphere. In the equatorial region the scaling veloc-
ity for latitudes less than 37◦ is 245 m/s. Again using (20), this
results in a Rhines width of λg = 29.5◦.

6. Discussion

The numerical experiments presented here show that the co-
existence of a prograde equatorial jet and multiple higher lat-
itude jets can arise from deep convection in a spherical shell.
Furthermore, our scaling analysis predicts that zonal flow in a
spherical shell contains a strong increase in the width of zonal
jets across a scaling discontinuity that corresponds to the inter-
section of the tangent cylinder with the outer surface. The fact
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that this theoretical scaling discontinuity is reproduced in the
numerical models, as well as observed on Jupiter and Saturn,
represents strong evidence that the surface zonal flow extends
deeply into the molecular envelope (or deep atmosphere) but
not throughout the interiors of the gas giants. The termination
of deep zonal flow structures likely results from increasing fluid
density and electrical conductivity with depth. However, the na-
ture of the layering in the interior of Jupiter and Saturn is far
from certain, as is the precise depth of fast zonal flow.

Our results suggest that the depth of fast zonal flow can be
estimated by analyzing the latitudinal variation of jet widths.
We have shown that for Jupiter, a zonal flow depth of one tenth
of Jupiter’s radius, which represents a radius ratio χ = 0.9,
seems plausible (see Figs. 10, 12, 13). However, the range of
plausible radius ratios is perhaps 0.85 < χ < 0.95, which cor-
responds to a range of latitudes 31.8◦ < θTC < 18.2◦, where
θTC represents the position of the tangent cylinder (and the
scaling discontinuity) at the planetary surface. Comparing the
zonal flow profiles produced by our numerical models with that
of Jupiter we see that our models all feature a single strong
prograde jet with two flanking retrograde jets in the equatorial
region (Fig. 3) while Jupiter’s equatorial wind profile is richer
in complexity, with a strong dimple at the equator, a higher
latitude prograde jet of similar maximum velocity to that of
the equatorial jet, and an asymmetric and strong retrograde jet
flanking the equatorial jet to the South (Fig. 1a). In addition,
recent Cassini fly-by measurements revealed small-scale az-
imuthal flows above ±70◦ latitude. Similar small-scale flows
do not develop in our models.

In our numerical models we do not obtain multiple jets at
equatorial latitudes outside the tangent cylinder. For the χ = 0.9
case, the equatorial jet has an estimated latitudinal width of
over 30◦—roughly twice the predicted Rhines width. Thus, the
equatorial region does not seem to follow Rhines scaling the-
ory. Rather, the jet width seems to be controlled by the size of
the equatorial region. Multiple jets tend to form inside the tan-
gent cylinder because the lower flow velocity at higher latitudes
translates into a smaller Rhines scale there. In addition, larger
radius ratios decrease the Rossby number, which is proportional
to the zonal flow velocity, thus further decreasing the Rhines
scale (Fig. 3). Finally, thinner shells provide a larger latitudinal
extent within the tangent cylinder for multiple jets to form.

Based on our theory for Rhines scaling in a spherical fluid
shell, equatorial jets are expected to be broader than high lat-
itude jets. However, the tendency for equatorial jets in our
simulations (and perhaps on Jupiter and Saturn) to be broader
than the predicted equatorial Rhines width may have to do
with a fundamental difference between flow dynamics inside
and outside the tangent cylinder. Rhines scaling theory relies
on an asymptotic expansion of the Navier–Stokes equation un-
der the assumption of geostrophy. However, such an expan-
sion is not strictly justified where the boundary slope becomes
large relative to equatorial plane (Busse, 1970; Yano, 1992;
Yano et al., 2005). Such is the case near the equator, where the
surface boundary is perpendicular to the equatorial plane. Fur-
thermore, Christensen (2002) pointed out that it is not clear how
multiple jets can form outside the tangent cylinder, since even
multiple turbulent convection cells there produce Reynolds
stress in the same prograde direction. The theoretical and nu-
merical difficulties presented by multiple prograde jets outside
the tangent cylinder are obviated if the effective radius ratio of
Jupiter is 0.95. In that case, only the equatorial jet along with
the flanking retrograde jets exist outside the tangent cylinder.

We have chosen to focus mainly on comparing our numerical
and theoretical results to the wind profile of Jupiter, rather than
that of Saturn. The reason for this is that we chose our input pa-
rameters to obtain a Rossby number close to that of the surface
winds of Jupiter in the χ = 0.9 case. Also, Jupiter has enough
jets to make feasible a detailed analysis of the latitudinal vari-
ation of its zonal flow, and its zonal flow pattern is remarkably
stable, having varied little between the missions of Voyager and
Cassini. Analysis of Saturn’s zonal flow pattern is complicated
by uncertainty in the planetary rotation rate (see discussion in
Section 5). Nevertheless, the saturnian zonal wind profile bears
a strong resemblance to the flow patterns resulting from our
simulations with χ = 0.85 and χ = 0.9. Saturn’s equatorial jet
has a relatively simple structure compared to the equatorial re-
gion of Jupiter. Disregarding the difficulties presented by the
uncertainty in planetary rotation rate, it seems plausible to es-
timate the effective radius ratio for saturnian zonal flow to be
roughly in the range 0.8 � χ � 0.9, based on the width of the
equatorial jet. It is also noted that Rhines scaling, which we
have used to explain jet scaling, is in qualitative agreement with
the proportional increase in the zonal wind velocity and roughly
two-fold broadening of jets between Jupiter and Saturn.

While our models seem to capture the main features of the
zonal flow patterns of Jupiter and Saturn, we can only speculate
as to what our results can tell us about the significant differ-
ences between the two planets. For example, what accounts for
the observation that Saturn’s zonal flow is more strongly pro-
grade than that of Jupiter? This has been attributed to stronger
basal coupling on Saturn (Aurnou and Heimpel, 2004). In that
numerical modeling study, cases with a rigid bottom boundary
yielded a strong prograde equatorial jet with weak and mainly
prograde high latitude jets, such that the mean zonal flow was
strongly prograde. However, to produce relatively strong high
latitude jets with those boundary conditions will require a lower
Ekman number than is implemented here. What is the nature
of the coupling between zonal flow in the deep atmosphere
and flow in the metallic, dynamo source region? Implicit in
our spherical shell model is the assumption that there exists
a transition from fast zonal flow to more sluggish flow in the
deep interior. It is thought that such a transition is likely to be
sharper for Saturn than for Jupiter, for which there is evidence
of present-day active differentiation (Hubbard et al., 1999;
Guillot et al., 2004). Progress on this question may be criti-
cal to explain the differences between the two planets as well as
the apparent change in the rotation rate of Saturn.
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