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Abstract

The near-surface air temperature lapse rate is the predominant source of spa-

tial temperature variability in mountains and controls snowfall and snowmelt

regimes, glacier mass balance, and species distributions. Lapse rates are often

estimated from observational data, however there is little guidance on best

practices for estimating lapse rates. We use observational and synthetic

datasets to evaluate the error and uncertainty in lapse rate estimates stemming

from sample size, dataset noise, covariate collinearity, domain selection, and

estimation methods. We find that lapse rates estimated from small sample

sizes (<5) or datasets with high noise or collinearity can have errors of

several �C km−1. Uncertainty in lapse rates due to non-elevation related large-

scale temperature variability was reduced by correcting for spatial temperature

gradients and restricting domains based on spatial clusters of stations. We gen-

erally found simple linear regression to be more robust than multiple linear

regression for lapse rate estimation. Finally, lapse rates had lower error and

uncertainty when estimated from a sample of topoclimatically self-similar sta-

tions. Motivated by these results, we outline a set of best practices for lapse rate

estimation that include using quality controlled temperature observations from

as many locations as possible within the study domain, accounting for and

minimizing non-elevational sources of climatic gradients, and calculating lapse

rates using simple linear regression across topoclimatically self-similar samples

of stations which are roughly 80% of the station population size.

KEYWORD S

climate, elevation-dependent warming, error, lapse rate, linear regression, temperature,

uncertainty

INTRODUCTION
Accurate estimates of air temperature are essential for
understanding and modelling environmental processes in
mountain regions. The predominant source of mesoscale
to microscale spatial temperature variability in moun-
tains is associated with elevation through the near-
surface air temperature lapse rate. In contrast to the free-
air lapse rate that represents temperature changes along
a vertical profile through the boundary layer and into the

free atmosphere, the near-surface air temperature lapse
rate (hereafter, lapse rate) represents temperature vari-
ability within the surface layer (McCutchan, 1983). The
lapse rate is therefore a key parameter for resolving local
conditions in many environmental models that consider
topoclimate variability in montane regions. However,
guidance on estimating lapse rates is lacking, despite the
fact that hydrological and ecological modelling efforts
can be highly sensitive to the choice of lapse rate
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parameter used to infer fine-scale spatial temperature
fields (Sekercioglu et al., 2008; Gardner and Sharp, 2009;
Immerzeel et al., 2014). For example, Minder et al. (2010)
showed that the application of contrasting lapse rates (−4
and −6.5�C km−1) to a snow model resulted in a 1-month
difference in snowmelt commencement in the
Washington Cascades, United States. Accurate lapse rate
estimates are also needed to detect and project future ele-
vation dependent warming (Pepin et al., 2015).

In practice, the lapse rate is often assumed to equal
the mean environmental lapse rate (MELR) of −6.5�C
km−1. Yet, observations show large variability of lapse
rates geographically, seasonally, diurnally, and with ele-
vation (Rolland, 2003; Lundquist and Cayan, 2007; Shen
et al., 2016; Navarro-Serrano et al., 2018). The latter
results in nonlinear lapse rates, although this is rarely

acknowledged in modelling contexts. Mechanistic expla-
nations for lapse rate variability include radiative pro-
cesses, thermodynamics, and atmospheric dynamics
(Harding, 1979; Blandford et al., 2008; Kattel et al., 2013;
Navarro-Serrano et al., 2018).

Despite basic understanding of these processes, it
remains difficult to constrain lapse rate estimates with
observational data. Figure 1 illustrates this challenge
showing summer temperatures across a longitudinal
transect of the Oregon Cascades, United States. Station
observations are a sample of the spatial temperature field.
The default assumption that the full population of station
observations is optimal for estimating the lapse rate has
not been evaluated. Lapse rate estimates can be con-
founded by varied topoclimatic controls across a region
of interest, which may help explain the diversity of lapse

FIGURE 1 (a) Black line shows mean elevation across longitude over the study domain of the Oregon Cascades, United States

(42.8–44�N, 120.5–123�W). Coloured points show mean summer maximum temperature from 30 weather stations with symbols indicating

the originating network. Vertical grey dashed line marks the maximum elevation of the transect and divides the stations into west and east

groups. (b) Examples of lapse rates calculated from these stations, including using only sites from the US Cooperative Observer Program

(COOP), the US Interagency Remote Automatic Weather Stations (RAWS) network, the US Natural Resources Conservation Service

Snowpack Telemetry (SNOTEL) network, only sites east or west of the divide, the mean environmental lapse rate (MELR, −6.5 �C km−1), or

all stations (n = 30). (c) Distribution of lapse rates estimated from 15,000 samples of 10 stations from the full population shown in (a).

Colours and symbols in (c) indicate lapse rates shown in (b). Vertical jitter has been added to points in (c)

LUTE AND ABATZOGLOU E111



rates estimated using varied sample configurations
(e.g., Figure 1b,c). Hence, while it is conceptually easy to
calculate a lapse rate, the statistical approach and station
characteristics merit more careful consideration than typ-
ically given.

Lapse rates are typically estimated via either simple
linear regression (SLR) of temperature on elevation or
multiple linear regression (MLR) of temperature on ele-
vation and other covariates using a local population of
observations (e.g., Pepin et al., 1999; Rolland, 2003; Kattel
et al., 2013); it remains unclear whether SLR or MLR is
more appropriate. Additionally, these approaches may be
confounded by factors exogenous to elevation but collin-
ear with elevation, including topographic position, land
cover, soil moisture, and snow cover (Rolland, 2003;
Dobrowski et al., 2009; Kattel et al., 2013; Navarro-
Serrano et al., 2018). Collinearity is common among
empirical approaches designed to isolate a single phe-
nomenon and contributes to biased and unstable parame-
ter estimates in SLR and MLR (e.g., Graham, 2003;
Dormann et al., 2013). Another key consideration in cal-
culating lapse rates is sample size. Studies have used as
few as two up to tens of stations (Kirchner et al., 2013; Li
et al., 2013). A further question is which stations should
be used. Recognizing the role of topoclimatic factors in
both determining and, in the context of collinearity, con-
founding lapse rates it may be appropriate to estimate
lapse rates from stations with similar topoclimatic
characteristics.

Given the importance of accurate lapse rates to envi-
ronmental understanding and modelling, efforts to
improve lapse rate estimation methods offer cascading
benefits. This study quantifies the uncertainty and error
in lapse rate estimates stemming from dataset character-
istics and methodological choices by complementing
observational data with synthetic data. In addition to
standard SLR and MLR methods for lapse rate estimation
we introduce a novel method that identifies samples of
stations that are topoclimatically self-similar. Finally, we
provide recommendations on best practices for lapse rate
estimation that are applicable in any geographic or tem-
poral context.

1 | DATA

A collection of stations traversing the Cascade Mountains
of Oregon, United States (42.8–44�N, 120.5–123�W) was
selected to exemplify complex terrain and land surfaces
typical of mountain regions (Figure 2). The western, mar-
itime portion of the domain is largely mesic and forested
whereas the eastern portion in the rain shadow of the
Cascade Mountains is largely semi-arid with mixed forest

and shrubland. Observational data were complemented
by a suite of synthetic datasets with prescribed lapse
rates. The following sections provide details of the syn-
thetic, observational, and covariate datasets.

1.1 | Synthetic datasets

The true lapse rate in a given observational setting is
rarely known, impeding efforts to formally evaluate
empirical lapse rate approaches. As an alternative, we
developed synthetic temperature datasets with a pre-
scribed lapse rate and fully quantified covariates. Nine
synthetic datasets were developed that considered differ-
ent levels of dataset noise and topoclimatic collinearity
with elevation. Synthetic datasets had the same number
of ‘stations’ (n = 20) at the same elevations with a pre-
scribed lapse rate of −6.5�C km−1. Dataset noise
(e.g., sensor error, data transcription errors, temperature
variations not explained by other covariates) was quanti-
fied as the standard deviation of the random error term
and was prescribed at three levels: 0.1, 1, and 2�C.
Dataset collinearity was quantified as the correlation (r)
between elevation and a prescribed covariate, solar radia-
tion, at three levels: 0.00, 0.30, and 0.60.

Station temperatures were calculated as the sum of
the temperature effects of three conceptual covariates
and the random error term:

Ts,ds=Televs,ds +Tsrads,ds +Tcoasts,ds +Tεs,ds ð1Þ

where T is the temperature at station s in dataset ds, and
Telev, Tsrad, Tcoast, and Tε are the temperature effects of
elevation, solar radiation, distance from coast, and ran-
dom error, respectively. Further details can be found in
Supplementary information S1.

FIGURE 2 Oregon Cascades study area. Red box in inset map

shows location of Oregon Cascades study area in Western North

America. The 30 meteorological stations used in this study are

indicated by markers according to the observation network. Light

blue polygons are waterbodies
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1.2 | Observational datasets

Daily minimum (Tmin) and maximum temperature
(Tmax) during September 1, 2005–August 31, 2015 for
stations in Oregon were acquired from the Global Histor-
ical Climatology Network – Daily dataset (GHCND v3;
Menne et al., 2012). We discarded values that were
flagged for quality control. The remaining data were sub-
ject to completeness requirements such that stations were
included if all years reported ≥85% of daily values (Daly
et al., 2008). Seasonal (DJF, MAM, JJA, SON) average
temperatures were computed for seasons with ≥85% of
daily values reported, years with seasonal values
reporting <85% of daily values were set to missing, and
annual and seasonal averages at each station were com-
puted from at least 7 (out of a possible 10) data points.
This resulted in 30 stations with Tmax and Tmin records
covering the Oregon Cascades region of interest and
spanning elevations from 217 to 1974 m (Figures 1 and
2). The dataset includes stations from the
U.S. Cooperative Observer Program (COOP) network
(n = 5), the U.S. Natural Resources Conservation Service
Snowpack Telemetry (SNOTEL) network (n = 13), and
the U.S. Interagency Remote Automatic Weather Station
(RAWS) network (n = 12).

We selected covariates representative of known
sources of non-elevational temperature variability in
mountains (Table 1). Details of covariate data sources
and calculations are provided in Supplementary informa-
tion S1. Covariates were estimated for each station, and
in the case of time varying metrics, for seasonal and
annual averages.

2 | METHODS

2.1 | Regression approaches

We employ two common approaches to estimate temper-
ature lapse rates: simple linear regression (SLR) and mul-
tiple linear regression (MLR). In SLR, temperature is
regressed on elevation, such that

T=β0+β1×elev+ε ð2Þ

where T is the temperature at a given place and time, β0
is the temperature at reference sea level, β1 is the lapse
rate, elev is the elevation, and ε is the error. This
approach assumes that temperature varies only as a func-
tion of elevation, disregarding additional topoclimatic
factors known to affect temperature. Non-elevational fac-
tors that influence temperature but are not correlated
with elevation will be subsumed within the error term.

However, if these other factors are correlated with eleva-
tion, then SLR will alias these factors, making the lapse
rate a derivative of temperature with respect to elevation,
instead of a partial derivative.

In MLR, temperature is regressed on elevation and
other variables, such that

T=β0+β1×elev+β2×X2+…+βn×Xn+ε ð3Þ

where the additional n − 1 terms β2 through βn are coeffi-
cients for the additional n − 1 predictor variables X2

through Xn. The present study uses covariates of eleva-
tion, solar radiation, and distance from coast, which
explain a large portion of temperature variability across
the domain (Figure S1). The number of covariates was
limited to three and MLR lapse rates were not calculated
for samples of <4 stations for this example in order to
avoid overfitting. A potential hazard in the MLR
approach is the assumption of noncollinearity of
covariates; collinearity between elevation and other pre-
dictor variables can produce large uncertainties in esti-
mated lapse rates (Dormann et al., 2013).

We further evaluated the effect of sample size on the
robustness of lapse rates by running calculations for
every combination of stations from two to the population

TABLE 1 Covariates used to account for non-elevational

effects on temperature

Covariate Relevant process Data source

Solar radiation Surface energy
budget

WRF

Topographic
convergence
index (TCI)

Cold air pooling,
coupling to free
atmosphere

SRTM

Cloud cover Shading during
daytime, enhanced
longwave
radiation

MODIS

Orographic
upslope wind
index (windex)

Cloud cover, latent
heating due to
upslope
condensation

ERA-Interim
Reanalysis,
SRTM

Distance from
coast

Moisture availability,
cloud cover,
Bowen ratio

Waterbody index Surface energy
budget

NHDPlus V2

Free-air
temperature

Broad scale
atmospheric
conditions

ERA-Interim
Reanalysis

Free-air lapse rate Atmospheric
stability

ERA-Interim
Reanalysis
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size. Due to computational limitations, we restricted the
number of station combinations (i.e., samples) for a given
sample size to 15,000.

2.2 | Domain selection

Spatial variability of lapse rates has been documented for
many regions (Wolfe, 1992; Rolland, 2003; Li et al., 2013),
motivating a domain selection process for grouping sta-
tions based on climatic and physiographic factors. We
used an empirical clustering approach based on known
regional climate gradients and previous work docu-
menting windward-leeward contrasts in lapse rates
(Minder et al., 2010). Regionalizing climate stations is
commonly done to isolate stations in terms of certain cli-
mate phenomenon (Abatzoglou et al., 2009). Clustering
was based on covariates that capture large scale climatic
and moisture gradients: the upslope flow index (hereaf-
ter, windex) and the free-air lapse rate. The windex pro-
vides an indication of linear orographic flow (product of
the lower tropospheric flow and local terrain gradient,
see Supplementary information S1) and the free-air lapse
rate provides an indication of broad scale atmospheric
stability calculated directly from pressure level reanalysis
or radiosonde data (Minder et al., 2010). Clusters based
on seasonal values of the 40 km windex and free-air lapse
rates were assessed using a k-means approach with k = 2
and 10 random starting clusters. Lapse rates estimated
from the resulting clusters were compared with one
another and with lapse rates estimated from the full
population.

2.3 | Accounting for regional climate

Ideally lapse rates are estimated over small domains with
little contrast in regional climate, however the paucity of
observational stations in mountains often necessitates the
use of larger domains (>100 km). Large domains may
have significant spatial climatic gradients not directly tied
to elevation (e.g., solar radiation, circulation patterns,
continentality), making it difficult to isolate elevation-
temperature relationships. In these contexts, it is useful
to consider near-surface temperatures as a function of
regional climate and topoclimatic siting (Lundquist et al.,
2008; Dobrowski et al., 2009; Sadoti et al., 2018). This
framing contrasts with traditional SLR and MLR methods
which do not recognize the effect of regional climate on
near-surface temperature.

We use free-air temperatures collocated with stations
and at a fixed elevation (2,500 m was used in this analy-
sis, the approximate height of the Cascade crest) derived

from ERA-Interim (Supplementary information S1) as a
proxy for spatially varying temperatures that do not
entrain elevational controls. Spatially corrected station
temperatures (Tsc) are calculated as the difference
between station temperatures and free-air temperatures.
While previous studies have used free-air temperatures to
account for temporal temperature variability
(e.g., Dobrowski et al., 2009), here we use free-air temper-
atures to account for spatial temperature variability. We
evaluate lapse rates estimated from SLR in which Tsc is
substituted for station temperature as the dependent
variable.

2.4 | Identifying influential stations

Data points with high leverage and an anomalous
predictor-response value combination can strongly influ-
ence linear regression coefficients (Altman and
Krzywinski, 2016). In the context of lapse rates, the
highest and lowest elevation stations can exert outsized
influence on the lapse rate estimate if their temperatures
are poorly predicted by a model based on the other sta-
tions. We quantify the influence of each station using
Cook’s Distance (Cook, 1977). Stations with Cook’s Dis-
tances exceeding four divided by the population size in
all seasons are considered influential and are considered
for exclusion from lapse rate calculations (Altman and
Krzywinski, 2016). For brevity, we only evaluate station
influence for a subset of the Oregon Cascades stations.

2.5 | Topoclimatic dissimilarity
approach (TDA)

To improve lapse rate estimates in the context of collinear
covariates, one can minimize the temperature variance
explained by non-elevational factors. One way to accom-
plish this is to a priori develop lapse rates based on stations
that occupy similar topoclimatic siting for covariates
except elevation. For example, solar radiation will be a less
important predictor of inter-station variability in Tmax for
a sample where all sites have similar radiational loading
than in a sample with large differences in solar radiation.
These arguments form the basis for a new lapse rate esti-
mation method, termed the Topoclimatic Dissimilarity
Approach (TDA). The TDA is conceptually similar to the
Parameter-elevation Relationships on Independent Slopes
Model (PRISM; Daly et al., 2002), in that stations are
selected or weighted based on topoclimatic characteristics,
however the specific methods and goals differ.

The TDA is a sample selection algorithm which prefer-
entially minimizes the range of values of non-elevational
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factors according to the amount of temperature variabil-
ity the factor explains. The correlations (rv) between each
covariate (v) and temperature across the full population
of stations are used to weight each covariate. Weightings
are applied as the square root of the absolute values of rv.
Using the full population, each covariate is then
converted to standardized anomalies so that covariates
can be compared. We calculate the range of standardized
anomalies (Rv) for each covariate across each sample. Ele-
vation ranges are subtracted from the maximum eleva-
tion range of all the samples to allow the algorithm to
maximize the range of elevation while minimizing the
ranges of all other covariates. A topoclimatic dissimilarity
metric (TD) is then computed as the weighted maximum
distance for each sample:

TD=
Xp

v=1

ffiffiffiffiffiffiffi
rvj j

p
×Rv ð4Þ

where p is the number of covariates evaluated. TD quan-
tifies the topoclimatic dissimilarity of each sample, with
lower values representing more topoclimatically self-
similar samples. In subsequent analyses, TDA results are
presented grouped in deciles of TD to elucidate the poten-
tial value of self-similar samples. Covariates included in
the TDA algorithm as used in this study are elevation,
TCI, cloud cover, windex, distance from coast, and the
waterbody index for the observational data and elevation,
solar radiation, and distance from coast for the synthetic
datasets. This algorithm is available as an R script at
https://github.com/abbylute/lapse_rate_TDA.

In addition to comparing lapse rates from TDA to lapse
rates from randomly sampled stations, we evaluated
potential advantages of using TDA compared to using SLR
with an entire population to determine whether the bene-
fits of TDA outweighed the benefits of a larger sample. For
each synthetic dataset, we drew all possible subpopula-
tions of each size (Nsub) from 4 to 19. For Nsub with >100
subpopulations, we randomly selected 100 from the list of
all possible subpopulations. From each subpopulation, we
similarly drew up to 100 random samples of each size from
2 to Nsub − 1. We applied the TDA to each of these
subpopulation-sample size combinations. Finally, we com-
pared the error of the median lapse rates from the samples
with TD in the lowest decile to the lapse rate error from
SLR applied to the subpopulations.

2.6 | Assessment metrics

Lapse rate error was quantified as the difference between
the specified lapse rate (−6.5�C km−1 for the synthetic
datasets) and the estimated lapse rate. We use mean

absolute error (MAE) to quantify the average lapse rate
error and mean error to quantify lapse rate bias. Error
was not quantified for the observational dataset because
the true lapse rate is unknown.

Lapse rate uncertainty for both the observational and
synthetic datasets was quantified as the interquartile
range (IQR) of the lapse rate estimates. Differences in
uncertainty are used to assess improvements in observa-
tional lapse rate accuracy.

Initial results for both datasets are presented for a
sample size of 5 since this is representative of sample
sizes used in the literature (e.g., Blandford et al., 2008;
Gardner et al., 2009; Kirchner et al., 2013; Li et al., 2013).
Later results are presented for multiple sample sizes or
for sample sizes determined to be more appropriate based
on intermediate results.

3 | RESULTS AND DISCUSSION

3.1 | Synthetic datasets

3.1.1 | Lapse rate sensitivity to
collinearity, dataset noise, sample size, and
method

Lapse rate uncertainty and error were typically greater
for datasets with high dataset noise, high collinearity,
small sample sizes, or when MLR was used (Figures 3
and 4). For samples of 5 stations, we found that increased
dataset noise increased the uncertainty and MAE of SLR
and MLR lapse rate estimates (Figure 3). Secondly,
increased collinearity increased the bias of SLR lapse rate
estimates (Figure 3a). The bias was positive in this case
due to the way the collinearity was prescribed in the syn-
thetic datasets (i.e., a positive correlation between eleva-
tion and solar radiation aliases the lapse rate to other
processes). Thirdly, the response of MLR estimates to col-
linearity was less consistent than for SLR, likely due to
interactions with noise which affected the collinearity
structure; dataset noise can be aliased by other covariates
and contribute to additional collinearity and therefore
additional error. Except for cases with low noise (0.1�C),
SLR generally outperformed MLR.

We next compared the sensitivity of lapse rate MAE
to sample size across the matrix of estimation method,
collinearity, and dataset noise. MAE increased with
increased collinearity, increased dataset noise, or
decreased sample size in almost every case (Figure 4).
Firstly, MAE increased exponentially with decreasing
sample size and was typically <1�C km−1 for sample sizes
of at least 5 stations. Small samples were more likely to
span a small elevation range (<500 m) than larger
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samples, which amplified the effect of non-elevational
factors on the lapse rate (not shown) and increased
uncertainty. Secondly, SLR lapse rate estimates had lower
error than MLR estimates for small sample sizes (5 or
less), greater collinearity, and greater dataset noise. Small
samples can have greater collinearity (both from latent
covariates and aliased from dataset noise) than the popu-
lation as a whole, resulting in larger MAE, particularly
for MLR. MLR slightly outperformed SLR for cases with
low to moderate dataset noise and collinearity and sam-
ple sizes >5. These results mirror conclusions of other

statistical efforts that consider the interacting effects of
noise, collinearity, sample size, and regression method on
the bias and uncertainty of regression coefficients in
other disciplines (Mason and Perreault Jr., 1991).

3.1.2 | Application of topoclimatic
dissimilarity approach to synthetic datasets

Compared to all samples, the most self-similar samples
generally had lower lapse rate MAE and uncertainty

FIGURE 3 Lapse rate mean error

(x-axis) and interquartile range (y-axis)

estimated via (a) SLR and (b) MLR for

datasets with varying levels of dataset

noise (size) and collinearity (colour,

shape). Lapse rates are estimated from

samples of five stations drawn from each

synthetic dataset

FIGURE 4 MAE of lapse rates

(log scale on y-axis) estimated from

synthetic datasets using SLR (left

column) and MLR (right column).

MAE is calculated across all possible

samples of the sample size indicated

on the x-axis. In the upper plots each

line represents a synthetic dataset

with a different collinearity level and

with dataset noise of 1�C, in the

lower plots each line represents a

dataset with a different level of

dataset noise and with collinearity

of 0.6
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(Figure 5). The TDA was effective at reducing error and
uncertainty for small samples, since small samples from
a finite population provide more diversity to choose from
than larger samples which have many stations in com-
mon and offer limited flexibility. The TDA also reduced
error and uncertainty for large samples, which had low
error initially (Figure 4), suggesting that omission of just
one to a few outlier stations can greatly reduce lapse rate
error. Low uncertainty does not necessarily equate to bet-
ter lapse rates with lower error; it is possible to have low
lapse rate uncertainty but large lapse rate error. However,
across the synthetic datasets lower IQR typically cor-
responded to lower MAE (e.g., Figure 5), suggesting that
this definition of uncertainty may be a proxy for error in
the observational datasets.

The median lapse rate from the most similar decile of
samples, evaluated for all sample sizes, dataset noise, and
collinearity levels, had absolute error < 0.5�C in 84% of
cases, compared to 67% of cases for all possible samples.
The median lapse rate from the most similar decile provides
a good best guess at the actual lapse rate and the minimum
and maximum lapse rates from the most similar decile may
be useful as a measure of lapse rate uncertainty.

Median lapse rates from the most similar decile of
samples had lower MAE than lapse rates estimated
from subpopulation-based SLR in some cases

(Figure 6), with MAE being an average of 12% lower
(−0.04�C km−1) for subpopulation size >5 and sample
size ≥80% of the subpopulation size. Given the larger
uncertainty of the observational data (3.5�C km−1 on
average for the SLR results shown in Figure 7) com-
pared to the synthetic data (1�C km−1 for sample size
of 5 for datasets with 1�C noise), we expect larger
absolute error reduction for the TDA applied to the
observational data. In many cases, lapse rates esti-
mated from the TDA using a sample size of 2 had
lower error than the full subpopulation, illustrating
that it is possible to calculate an accurate lapse rate
from only two stations. However, error reduction was
more consistent for samples sizes that were roughly
≥80% of the subpopulation size. For the middle range
of sample sizes, the TDA was not beneficial; middle
range sample sizes had neither the flexibility of small
samples to choose the best stations nor the robustness
of the larger samples. Finally, for subpopulation sizes
roughly ≤5, the TDA was not consistently beneficial.
In these cases, the median of lapse rates estimated
from all possible station combinations of size 2 to the
subpopulation size − 1 typically was as accurate or
more accurate than the full subpopulation lapse rate
(not shown).

FIGURE 5 Percent change in (a) MAE and (b) IQR between

the most similar decile of samples selected using TDA and all

samples. Results are shown for lapse rates estimated via SLR from

samples of varying sample size (x-axis) drawn from datasets with

collinearity of 0.3 and varying dataset noise (y-axis). Negative

values indicate that the most similar decile had lower MAE or IQR

than the average sample. Positive values (grey) indicate increased

MAE or IQR

FIGURE 6 Percent difference in MAE between lapse rates of

varying sample size (x-axis) selected by the TDA (i.e., the median

lapse rate from the most similar decile of samples) and lapse rates

calculated from the full subpopulations using SLR (subpopulation

size shown on y-axis). Blue, outlined points indicate reduced MAE.

Data is from the synthetic dataset with noise of 1�C and collinearity

of 0.6
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3.2 | Oregon Cascades station dataset

3.2.1 | Lapse rate estimation method and
sample size

Seasonal lapse rates estimated via MLR from samples of
5 stations from the Oregon Cascades had uncertainty
>5�C km−1 (Figure 7). Tmax lapse rates estimated via
SLR were generally weaker than those estimated via
MLR, while the opposite was found for Tmin. The
uncertainty of SLR estimates was generally smaller than
for MLR, which is expected since SLR regression coeffi-
cient variance is a function of sample size and noise,
whereas MLR coefficient variance is additionally a func-
tion of collinearity (Mason and Perreault Jr., 1991;
Montgomery et al., 2012). Uncertainty increased dramat-
ically for samples smaller than 10 stations (not shown).
Combined with the results for the synthetic datasets,
these results confirm the hypothesis of Rolland (2003)
that small sample sizes can be a source of error in lapse
rate estimates.

Free-air lapse rates showed limited seasonality and
typically fell between the SLR and MLR estimates for
Tmax but were steeper than most SLR and MLR estimates
for Tmin. The steeper free-air lapse rates relative to near-
surface Tmin lapse rates is likely related to night-time

atmospheric decoupling and cold air drainage (Lundquist
et al., 2008; Daly et al., 2010).

3.2.2 | Collinearity

One might expect that the predictor variables in the MLR
(elevation, solar radiation, and distance from coast) would
capture the key processes controlling spatial variability in
temperature and provide more refined lapse rate estimates
than SLR. However, MLR increased lapse rate uncertainty
due to collinearity between elevation and additional pre-
dictor variables (e.g., the correlation between elevation
and distance from coast was 0.57; Figure S1). Recognizing
this collinearity and the large uncertainty in MLR lapse
rates (Figure 7), we focus on SLR lapse rates for the
remainder of the paper. For brevity, we only present
results for Tmax to illustrate our methods.

3.2.3 | Accounting for spatial variability
of lapse rates through domain selection
and spatial temperature correction

We evaluated two methods of accounting for spatial vari-
ability of lapse rates: a spatial clustering approach and a

FIGURE 7 Lapse rates

calculated from samples of five

stations from the 30 stations in the

Oregon Cascades dataset for Tmax

(top) and Tmin (bottom). Yellow

boxes indicate lapse rates calculated

via SLR. Red boxes correspond to

lapse rates calculated via MLR using

elevation, solar radiation, and

distance from coast as predictors.

Green boxes indicate free-air lapse

rates calculated from ERA-Interim

reanalysis collocated with stations

(see Supplementary information S1

for details) and are the same for

Tmax and Tmin
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spatial temperature correction. Spatial clustering aims to
identify contrasting regional climates which may merit
separate lapse rates whereas the spatial temperature cor-
rection is designed to address gradual climatic gradients
not related to elevational differences. Therefore, we rec-
ommend assessing the potential for clustering first, and
then spatial correction. Spatial correction can be applied
with or without clustering.

The clustering analysis identified two clusters roughly
corresponding to stations west and east of the Cascade
crest, hereafter referred to as a windward ‘west’ cluster
(n = 17) and a leeward ‘east’ cluster (n = 13) (Figure 8a).
Tmax lapse rates from these clusters contrasted with
lapse rates from the full population of stations
(Figure 8b). ‘East’ cluster lapse rates were steeper than
full population or ‘west’ cluster lapse rates, except in win-
ter. The ‘east’ cluster had the greatest seasonality, with
steeper lapse rates during summer and weaker lapse rates
in winter when inversions are more common (Whiteman
et al., 2001). The large uncertainty in the ‘east’ cluster
may be partly due to the small elevation range of these
stations (645 m) relative to those in the ‘west’ cluster
(1,615 m), since small elevation ranges amplify the effects
of non-elevational factors on the lapse rate. In contrast,
‘west’ cluster lapse rates were around −5�C km−1 with
minimal seasonality. The east–west contrasts in lapse

rates and in lapse rate seasonality are similar to the
results of Minder et al., (2010) for the Washington Cas-
cades. Coherent spatial patterns of lapse rates and lapse
rate seasonality have also been identified in other regions
including Spain and Northern Italy (Rolland, 2003;
Navarro-Serrano et al., 2018).

In all seasons except winter, the median Tmax lapse
rate from the full population was weaker than the
median lapse rate from either of the clusters. This was
most evident in summer, when ‘east’ stations were signif-
icantly warmer than ‘west’ stations at the same elevation
due to greater Bowen ratio and downward surface short-
wave flux. The fact that the full population lapse rates do
not represent the lapse rates in these subregions (similar
to Rolland, 2003), and the strong and physically reason-
able contrasts between ‘east’ and ‘west’ lapse rates moti-
vate regionalization efforts when calculating lapse rates
over large geographic areas.

Spatial correction of Tmax (Tsc) steepened lapse rates
in the ‘east’ cluster, particularly in summer and generally
reduced the uncertainty compared to lapse rates based on
raw station temperatures and increased the correlation
between elevation and temperature (Figure 8b). An
exception was the ‘east’ cluster in winter, likely because
of the prevalence of persistent winter cold pool events in
this region (Whiteman et al., 2001) which decouple near-

FIGURE 8 (a) Oregon

Cascades domain with stations

coloured according to cluster, as

indicated by boxplot legend.

(b) Tmax lapse rates estimated via

SLR from samples of five stations

from the full dataset (‘all’, n = 30),

the ‘west’ cluster (n = 17), and the

‘east’ cluster (n = 13). Tsc indicates

lapse rates estimated for the ‘east’
and ‘west’ clusters using spatially
corrected station temperatures. Tsc*

indicates lapse rates estimated from

spatially corrected temperatures

from the ‘east’ cluster with
influential stations removed (n = 12)
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surface temperatures from free-air temperatures. Consid-
ering all combinations of region, season, and sample size,
Tsc reduced the lapse rate uncertainty in >75% of cases.
The uncertainty reduction was typically on the order of
tenths of �C km−1, but in some cases exceeded 1�C km−1.
The uncertainty reduction was greater for small samples
and in summer as free-air temperatures in summer
exhibit a longitudinal gradient across the study region.
Similarly, we expect that the uncertainty reduction would
be greater if applied to regions with larger differences in
free-air temperature (e.g., larger geographic regions).

While clustering was most appropriate for this exam-
ple, we also assessed the benefit of applying the spatial
correction without clustering. Lapse rates estimated from
spatially corrected temperatures from samples of 5 sta-
tions from the full dataset were generally steeper and had
lower uncertainty than those estimated from uncorrected
station temperatures (not shown). The largest improve-
ments were seen in summer; the median lapse rate was
0.9�C km−1 steeper and the IQR was 0.3�C km−1 smaller.
These results were similar to the clustering results, but
the improvements were smaller.

3.2.4 | Influential stations in the Oregon
Cascades dataset

Application of Cook’s Distance to the ‘east’ cluster identi-
fied the highest elevation station, Crater Lake COOP sta-
tion (GHCND ID: USC00351946), as influential. This
station was colder in every season than would be
expected based on lapse rates estimated from the other
stations and would be excluded by the TDA if the TDA
did not try to maximize sample elevation range. It is pos-
sible that this station could be indicative of a steeper
lapse rate across high elevation portions of the domain,
however this would require additional data to evaluate.
We excluded this station from further analysis, which
resulted in lapse rates that were 1.5–3�C km−1 weaker
than lapse rates based on the full cluster (Figure 8b). We
reapplied Cook’s Distance after removing this station and
no additional influential stations were identified. Hereaf-
ter, the ‘east’ cluster refers to the ‘east’ cluster with this
influential station removed.

3.2.5 | Application of topoclimatic
dissimilarity approach to the Oregon
Cascades dataset

Application of the TDA to the Oregon Cascades dataset,
using spatially corrected station temperatures and sample
sizes roughly 80% of the population size (13 and 10 for

‘west’ and ‘east’, respectively), resulted in contrasting
lapse rate distributions across dissimilarity quantiles
(Figure 9). The distributions of lapse rates in the most
similar quantile were tightly clustered relative to distribu-
tions for less similar quantiles, suggesting that account-
ing for topoclimatic variability in station siting can
improve temperature estimates (Lookingbill and Urban,
2003). In general, we expect the TDA to exclude dissimi-
lar stations and reduce lapse rate error and uncertainty,
however the specifics of which stations are excluded
based on which covariates will depend on the dataset.

For the ‘west’ cluster in summer, cloud cover was the
strongest predictor of temperature after elevation. In the
most similar decile of samples, the TDA preferentially
excluded the stations with the lowest and highest cloud
cover values which were much warmer and cooler,
respectively, than expected, resulting in a weaker lapse
rate. The most important non-elevation predictor of win-
ter temperature in the ‘west’ cluster was distance from
coast, however this variable was strongly correlated with
elevation (r = 0.78) limiting the TDA from excluding this
covariate in station selection for the most similar decile.
Instead, stations with extreme values in the next most
important predictors of temperature (the waterbody
index and the 40 km windex) were excluded from the
most similar decile.

The ‘east’ cluster lapse rates based on the TDA had
greater seasonality than the ‘west’ cluster. Summer lapse
rates for the ‘east’ cluster were steep, with a median of
−9.0�C km−1 for the most similar decile. This was
slightly weaker than the summer lapse rate calculated
across all ‘east’ cluster stations (−9.2�C km−1) but is
slightly steeper than the summer lapse rates found by
Minder et al., (2010) for the lee side of the Washington
Cascades. In the most self-similar decile of samples, the
TDA excluded a site that was an outlier in terms of the
40 km windex, which was the covariate most strongly
correlated with summer temperature (r = −0.56) after
elevation (r = −0.80). Winter temperatures were as
strongly correlated with the TCI as they were with ele-
vation (r � 0.41), corroborating the importance of inver-
sions and cold-air drainage effects in the ‘east’ cluster in
winter. The TDA preferentially excluded the station
with the highest TCI value from the most similar decile
of samples.

4 | DISCUSSION

Our results document latent uncertainties in near-
surface temperature lapse rate estimates. Standard
approaches for calculating lapse rates using our example
of stations in the Oregon Cascades showed uncertainty
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of >5�C km−1 in some cases (Figure 7). Given this
uncertainty, it is unsurprising that the mean environ-
mental lapse rate of −6.5�C km−1 is often used. How-
ever, the sensitivity of environmental models to lapse
rate estimates (e.g., Gardner and Sharp, 2009) indicates
that a one size fits all lapse rate parameter is not suffi-
cient and that better lapse rate estimation methods are
needed (e.g., Minder et al., 2010). The analyses pres-
ented above of observational and synthetic datasets
point to a handful of best practices for lapse rate estima-
tion (Figure 10) applicable to any timescale or geo-
graphic context, and to station data or gridded data
(Cannon et al., 2012).

1 Estimation method: SLR provides more accurate and
robust lapse rate estimates than MLR in situations
with high collinearity and data noise or small sample
sizes (Figure 4). MLR can provide extreme lapse rate
estimates when collinearity exists, which is common
in observational data (Figures 7 and S1). Therefore, we
recommend the use of SLR.

2 Sample size: Small samples are more sensitive than
large samples to deviations in station temperature
stemming from non-elevational factors. Evaluation of
the TDA found that sample sizes that were roughly
80% of the population size struck a balance between
the benefits of more data points and the benefits of
being able to exclude dissimilar stations (Figure 6). We
recommend using more than 5 stations and using sam-
ple sizes of about 80% of the population size when
applying the TDA.

3 Elevation Range: Theory and exploratory data analysis
indicate that lapse rate error increases dramatically as
the sample elevation range decreases (Figure 8).
Efforts should be made to collect data from a wide
range of elevations, or barring this, a large number of
stations, and the greater lapse rate uncertainty stem-
ming from small elevation ranges should be taken into
account in broader modelling efforts.

4 Dataset Noise: Analysis of the synthetic datasets
illustrated that dataset noise increases lapse rate
uncertainty and can increase bias (Figure 3). Efforts

FIGURE 9 Cumulative distributions of spatially corrected Tmax lapse rates estimated from samples of stations from the ‘west’ (left
column) and ‘east’ (right column) clusters of the Oregon Cascades dataset for summer and winter (rows). Sample sizes of 13 and 10 were

used for the ‘west’ and ‘east’ clusters, respectively. Results are grouped by decile of the dissimilarity metric. Only deciles 1, 3, 8, and 10 are

shown
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to quality control and correct for known sources of
temperature bias, including removing influential
stations, can reduce the uncertainty in lapse rate
estimates.

5 Collinearity: Collinearity of elevation with non-
elevational factors influencing temperature is common
in observational data and affects lapse rate estimates
(Figures 3 and 4). Selection of self-similar samples
(e.g., using the TDA) can reduce the effects of collin-
earity and improve lapse rate estimates (Figures 5 and
6). Topoclimatic variables used to assess collinearity
and sample self-similarity should be tailored to reflect
processes relevant to the region and time period of
interest.

6 Domain selection: Lapse rates estimated from wind-
ward and leeward clusters of stations showed distinct
values and seasonality compared to those using sta-
tions from the full domain (Figure 8). This suggests
that lapse rates should be estimated over regions with-
out strong climatic discontinuities or should be esti-
mated from spatially corrected temperatures.

7 Uncertainty: Given the large uncertainty in lapse rates
documented here, we argue that lapse rate uncertainty
should be incorporated in model uncertainty and sen-
sitivity analyses when possible.

Using the best practices outlined above we estimated
seasonal lapse rates and lapse rate uncertainty for the

FIGURE 10 Decision tree

outlining best practices for estimating

near-surface temperature lapse rates.

N is the total number of stations

available (i.e., the population size)
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‘west’ and ‘east’ clusters of the Oregon Cascades station
data (Figure 11). Our results indicate lapse rates close to
2�C km−1 different, on average, from those estimated
from the full dataset without using best practices or from
the commonly used MELR (similar to Navarro-Serrano
et al., 2018; Shen et al., 2016).

5 | CONCLUSIONS

Temperature fields in environmental models dictate a
wide range of processes including phenology, growing
degree days, precipitation phase, snowmelt, and glacier
mass balance, thereby exerting outsized influence on
modelling outcomes. Yet these temperature fields are
often governed by a single lapse rate parameter selected
from the literature or calculated from a handful of sta-
tions within the modelling domain with little consider-
ation of error or uncertainty. Contrasting but physically
reasonable lapse rates (−4 and -6.5�C km−1) applied to an
elevational range of 1 km can result in differences in

model outcomes that are of similar magnitude to the dif-
ference between modelling outcomes based on historical
and +2�C climate scenarios (Minder et al., 2010), empha-
sizing the importance of carefully choosing a lapse rate.
We show that lapse rate uncertainty can easily exceed the
range evaluated by Minder et al., (2010), suggesting that
the effects of lapse rate uncertainty may exceed the
effects of climate change in some modelling contexts.

The best practices presented here reduce lapse rate
uncertainty and error, but further research is needed to
refine lapse rate estimation methods. In particular, night-
time temperature lapse rates in complex terrain remain
difficult to determine due to localized atmospheric
decoupling, and thermal belts at topographic elevations
near the inversion top may lead to multiple lapse rates
(Lundquist and Cayan, 2007). Building on the clustering
analysis presented here, additional work is needed to
understand the relevant spatial scales over which lapse
rates should be defined. Development of carefully
designed observational temperature networks may help
to further evaluate methodological choices. Improvement
in lapse rate estimates will enhance the accuracy of envi-
ronmental models and downscaling routines, enabling
better understanding of biophysical processes and how
they will change in a warming climate.
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