
UCLA
UCLA Electronic Theses and Dissertations

Title
Clone Detection in R

Permalink
https://escholarship.org/uc/item/4dx0t9dv

Author
MALIK, VALEED

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dx0t9dv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Clone Detection in R

A thesis submi�ed in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Valeed Malik

2017



© Copyright by

Valeed Malik

2017



ABSTRACT OF THE THESIS

Clone Detection in R

by

Valeed Malik

Master of Science in Computer Science

University of California, Los Angeles, 2017

Professor Miryung Kim, Chair

Copy-and-paste code o�ers an immediate convenience in exchange for latent risk. Clones

sca�ered across a project become di�icult to modify consistently. Simple awareness can miti-

gate this condition. A clone detection tool can identify code duplicates, empowering the user to

eliminate the clone.

Despite the rise of popularity in data science, the R community has yet to see an e�ective

industrial strength clone detector. This report presents a clone detection process specialized to

R. Our tool is based on a metric-based approach with a post-processing step inspired by token-

based techniques. Adapted from Deckard [JMS07], R source code is converted to an abstract

syntax tree. Subtrees are encoded with characteristic vectors. These vectors are compared, of-

fering a scalable and e�ective similarity calculation. To be�er compare code structure, we derive

a program abstraction technique from CCFinder [KKI02]. String comparison is applied on gen-

eralized source code which has been stripped of superficial identifiers.

A systematic mutation test by Roy et al. [RCK09] is adapted to evaluate RClone’s perfor-

mance. The tool is also applied to 43K SLOC of production source code of R libraries: GGPlot,

Broom and Knitr. RClone was able to e�ectively detect useful Type-1, Type-2 and Type-3 across

the production source code. A sensitivity analysis, based on the Broom library, suggests an op-

timal threshold of vector distance at 7.5% and least common sequence at 67%. Evaluation also

reveals potential opportunities to decrease false positive rate and to prune to the most useful

results.

ii



The thesis of Valeed Malik is approved.

Guy Van den Broeck

Todd Millstein

Paul Eggert

Miryung Kim, Commi�ee Chair

University of California, Los Angeles

2017

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Similarity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Post-Process: Textual Comparison . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Pair Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Evaluation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Systematic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Manual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 GGPlot2 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Broom Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Knitr Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Broom/GGPlot2 Cross Project Clones . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



LIST OF FIGURES

1.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Characteristic Vector Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Sample.r - Raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Sample.r - Parsed & Vectorized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Sample.r - Generalized Pre�y Print . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Mutation Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Detected Pair A (GGPlot2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Detected Pair B (GGPlot2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Detected Pair C (GGPlot2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Detected Pair D (GGPlot2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Threshold Sensitivity Analysis on Broom . . . . . . . . . . . . . . . . . . . . . . . 23

vi



LIST OF TABLES

2.1 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Subject Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



CHAPTER 1

Introduction

Code clones, like any code smell, violate design principles and negatively impact code quality.

Duplicated fragments can be dispersed to di�erent lines, functions, files or codebases making

code maintenance increasingly problematic. The notion of copy-and-paste code contradicts the

principles of abstraction and single responsibility. However, there are only a few justified reasons

to use code clones such as performance.

A clone detector is a useful tool in a developer’s toolkit, enabling the developer to make

the informed decision to refactor a clone. An e�ective clone detector can identify similar code

despite any forma�ing, renaming and structural edits. The need for this fundamental tool will

become increasingly necessary as R increases in popularity and becomes a leading language for

statistical analysis & machine learning. R a�racts users from various fields and skillsets, many

with minimal programming experience. R lacks a comprehensive toolset, resulting in limited

programmer productivity.

First we establish the taxonomy of a code clone. Clones exist to a varying degree. These

classifications help identify pairs giving a relative sense of clone similarity.

Type-1: Identical code fragments except for variations in whitespace, layout and comments.

Type-2: Syntactically identical fragments except for variations in identifiers, literals, types, whites-

pace, layout and comments.

Type-3: Copied fragments with further modifications such as changed, added or removed state-

ments, in addition to variations in identifiers, literals, types, whitespace, layout and comments.

Type-4: Two or more code fragments that perform the same computation but are implemented by

di�erent syntactic variants. [RCK09].

To construct an e�ective industrial scale process tailored for R, we must consider the various

1



existing clone detection approaches. Each technique comes with tradeo�s between precision,

scalability and applicability to R. Type-4 clone detection requires a semantic analysis approach

which has shown to not scale to large programs [JMS07]. Thuswe chose to focus on Type-1, Type-

2 and Type-3 clones. With normalization/regularization techniques, generally all approaches are

able to detect Type-1 clones independent of language. There are various approaches capable of

detecting Type-2 and Type-3 clones. Many are specialized to common languages such as C, C++

and Java. Syntactic and token-based techniques abstract code to compare programs based on

their underlying structure. This has been found to an e�ective method to detect Type-1, Type-

2 and Type-3 clones however is prone to produce false positives. An e�ective approach must

operate at a low false positive rate but also detect clones at scale.

Several clone detection approaches have contributed to the formulation of RClone. Existing

text-based tools are able to support R but lack accuracy and scalability [RCK09]. Token-based

tools introduce program normalization/abstraction/regularization to strip away concrete names

and values. This method yields higher accuracy as the underlying structure is observed. Tree-

based methods o�er an alternative representative form by parse or abstract syntax tree. Tree

matching algorithms can detect similar subtrees. Although tree-matching algorithms are com-

putationally intensive, a metric can be derived from trees as an alternative lightweight represen-

tation of programs.

RClone is a hybrid of syntactic and lexical approaches. Our tool translates source code to an

AST. Each subtree within an AST is approximated to a characteristic vector. This metric is the

primary medium of a full subtree comparison [JMS07]. Moreover, RClone applies transforma-

tions to node identifiers with an encoding to strip away superficial details while also retaining

syntactic structure [KKI02]. The AST is pre�y printed with the modified identifiers to generate

an abstracted source code. RClone applies the least common subsequence algorithm to the ab-

stracted source code to generate the second similarity measure. Our approach is enumerate as

follows :

• Source code is preprocessed. Syntax not supported by the parser, is removed

• Source code is parsed into ASTs.

2



Figure 1.1: Pipeline Overview

• Nodes not relevant to overall structure or characteristic vector are eliminated.

• Parser node type is mapped to characteristic vector elements.

• Characteristic vectors are initialized. For example, [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] indicates

1 occurrence of particular syntax type node within a single subtree.

• Characteristic vectors are merged bo�om up. Now, each subtree root node node contains

a vector approximation.

• Subtrees in similar size are compared with cosine similarity.

• Like token-based techniques, parameter nodes (identifiers and literals) are encoded by

their position index among the reoccurrences in a tree.

• Since this comparison is made on vector approximations, source code pre�y printed with

replaced parameter node encodings is compared by a string comparison technique.

• Finally redundant result pairs are eliminated and aggregated into a text file.

We adapt the mutation test from Roy et al. [RCK09]. This systematic test is composed of

fi�een scenarios, each with one unique mutation. Furthermore, RClone is also applied to a R

production source code of some 43K LOC.

RClone is able to identify all fi�een scenarios from the systematic mutation test. However

the tool also identifies smaller subtrees of lesser use, indicating a need for filtering and threshold

refinement. The case studies validated the merit of each algorithms adopted. RClone identifies

several notable clone pairs, each highlighting strengths and weaknesses of the approach. Char-

acteristic vectors e�iciently identified Type-1, Type-2 and Type-3 clones while also detecting

3



many false positives. String comparison of abstracted source code supported the metric-based

approach to reduce false positives. A sensitivity analysis, based on the Broom library, indicate

the optimal threshold of distance threshold at 7.5% and least common sequence thresholds at

67%.

As of now, RClone is limited to single tree comparison and cannot detect a series of state-

ments. Comparison of forests will enable detection of larger Type-3 clones. In order to increase

precision, the vector similarity algorithm and post-processing must be refined. The e�icacy of

LSHmust be empirically evaluated against the current cluster/cosine-similarity technique. Post-

processing may be improved with a fully token-based technique instead of the current textual

comparison. Finally, we can advance our hyper-parameter tuning. More sophisticated statistical

methods can facilitate in developing a weighted scheme within the characteristic vector. This

can help tailor our approach to R.

The paper is organized as follows. Section 1.1 surveys related works that have contributed

to the formulation of our approach. In section 2 we expand on our approach. Section 3 presents

an empirical study of RClone’s performance. Section � discusses limitation observed. Section

4.1 suggests future work to advance our work and clone detection as a whole. Finally, section 4

concludes the paper.

1.1 Related Work

Most existing clone detection are implemented with a small set of languages. Majority of tools

do not support R, let alone have a tailored clone detection process for the language.

However, language independent clone detectors can generically be applied to R programs.

These tools follow a textual-approach, applying minimal transformation to the source code be-

fore the comparison stage [RCK09]. With comparison based on character strings, this approach

can generally only find Type-1 clones [SFZ10]. Simian uses a regular expression technique, but it

is a line-based technique which include comments and identifiers in comparisons [RCK09]. Nor-

malization/abstraction/transformation expands the capabilities of Simian to enable detection of

Type-2 clones. SDD on the other hand uses a n-neighbor approach to find near-miss clones.

4



This tool tolerates some gaps in similarity which can help detect near-miss clones, however this

may cause lower precision [RCK09]. In general, text-based techniques are ill-suited to detect

Type-3 clones [RCK09]. These limitations make text-based approaches undesirable as a primary

algorithm for RClone.

Source code introduces variability far too great for a string comparison. Textual comparison

is especially not suitable for a data science languages where constant values are common. Token-

based tools are usually more e�ective and e�icient but have limited language support [JMS07].

Parameter tokens (identifiers and literals) are encoded, abstracting away concrete names and

values but retaining token order. Dup [Bak07] is a seminal work in token-based clone detection.

Just as any token-based approach, Dup begins with lexing of source code into a sequence of

tokens. Parameter tokens (identifiers and literals) are encoded by their position index among

the reoccurrences in a line. Sequences are then converted into a su�ix tree form where a match-

ing algorithm extracts similar subsequences. CCFinder [KKI02] is a representative work of the

token-based technique. CCFinder extends on Dup’s normalization by defining specialized sets

of transformation rules for C++ and Java. For example, namespace/library a�ributions, initial-

ization lists and accessibility keywords are removed. Furthermore, all statements following an

i f (), do, else , f or () and while () are automatically transformed to compound blocks. Parameter

tokens are more finely encoded to express type for a constant or variable. The notion of nor-

malization which abstracts raw identifiers but retains order is a major strength of token-based

approaches. These approaches can identify Type-1 clones and scale well [RCK09] [JMS07]. Some

token-based tools however may fall victim to minor edits and code restructuring due to a lack

of normalization [JMS07].

Contrastingly, syntactic(tree-based) is amore robust approach. This technique requires source

code to be translated to a parse tree or abstract syntax tree form. This allows tree-based tools to

ignore forma�ing di�erences and comments [RCK09]. With source abstracted into a tree rep-

resentation, more sophisticated matching algorithms such as Yang et al.’s Tree Matching algo-

rithm which o�er a more accurate comparison [Yan91]. CDi� presents a dynamic programming

approach for handling syntactic di�erences between subtrees. An alternative tree-based tech-

nique by Koschke et al. [KFF06] converts AST subtrees into node sequences and identifies sub-

5



sequences with a su�ix tree technique similar to the token-based Dup. The syntactic-approach

allows source code to be expressed at a finer level than tokens but also be able to identify clones

with less time complexity. Because tree-based techniques computationally expensive, tree fin-

gerprinting and e�icient vector clustering techniques are viable alternatives [JMS07]. A metric-

based approach can are typically derived from tree-based techniques. Deckard is based on a

characterization of trees as vectors in Rn, where n is the number of di�erent syntactic types.

A characteristic vector is less sensitive to code restructuring edits [JMS07]. Deckard relies on

vector similarity by a hashing and near-neighbor querying algorithm and eliminates the tree

matching process, allowing scalability to millions of lines of code [JMS07].

We found Deckard’s approach to be favorable as it highly extensible. The characteristic met-

ric o�ers a level of generality which enables robust detection of Type-1, Type-2 and Type-3 clones.

It is also scalable and can be highly specialized for a language. Vector comparison can be limited

in e�ectiveness when comparing vectors of high dimensionality in euclidean distance. Deckard

uses locality sensitive hashing(LSH) to cluster vectors. Alternatively, RClone initially filters po-

tential clones by vector size and then applies cosine similarity. This approach is prone to false

positives as di�erent clones can yield similar metrics [RCK09]. Metric-based approaches abstract

away not only concrete identifiers and values but also order. To retain order, RClone is comple-

mented with token-based post-processing derived from CCFinder. Parameter nodes identifiers

are encoded by syntax type and their position index for their occurrence in the tree. The trans-

formation and parameter replacement process is applied to AST nodes. Pre�y printed strings

with the normalized node identifiers are used for string similarity comparison by least common

subsequence.

6



CHAPTER 2

Approach

Here we present the techniques involved in each phase of the detection process. RClone detects

clones through two steps: (1) a syntax-based technique, therefore, beginning with translation of

source code to an AST which can be fingerprinted for comparison and (2) a token-based tech-

nique by generalizing the AST node identifiers to produce abstracted source code as an alterna-

tive form of comparison. Finally, we wrap up by explaining our result pruning process.

2.1 Preprocessing

To eliminate superficial di�erences, each program must be normalized to remove extra whites-

pace and comments. Moreover, parser limitations necessitate structural transformations. Lines

containing library import statements library (...) and install .packaдes (...) are removed. Library

resolution and data frame element extraction operators, :: and $ respectively,. Lines contain-

ing the operators cannot be entirely eliminated as they may also contain single parentheses or

braces. RClone simply replaces the operators with a generic parsable name. These normaliza-

tions remove minor variations and ensures full parsable files.

2.2 Parsing

Since RClone is based on a syntactic approach, it requires a parser to convert R source code into

an abstract syntax tree. The RClone parser is derived from an open source implementation of R

named FastR [KMM14]. We utilize the Java parser from ANTLR 3.4. The code follows a visitor

design pa�ern, o�ering a couple benefits in development.

7



[ f unc t i on , i d e n t i f i e r , va lue , sequence , ass ignment , b i na ry op , unary op , i f , f o r , whi le , a r r ay ]

Figure 2.1: Characteristic Vector Structure

The design pa�ern provides an interface for extensibility and adaptability for modifications

in AST output or future R grammar support. A proprietary node class is designed to encapsu-

late data relevant to the RClone process such as characteristic vectors, file identification and

concrete identifiers. To produce an AST be�er fit for the metric-based clone detection approach,

FastR defined types are remapped to the syntax types defining the characteristic vector. RClone

nodes are mapped to one of the following types: constant, variable, vector, operator(assignment,

arithmetic), method(standard library, user defined) or control flow(if, for, while). The size of the

set of types supported are su�icient enough to characterize R code and keep dimensionality at

a minimum. The parser supports a high dimensionality of syntax types, sometimes applying an

undesirable degree of syntax type decomposition, which requires some types to be mapped to

umbrella terms.

Once a node’s type is established, the respective node’s characteristic vector is initialized.

For example, the characteristic vector [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] indicates the presence of an

identifier type note. However, vectors do not characterize their subtree until vectors are merged.

Moreover, this parser code is the mechanism driving AST traversal which can be replicated

and repurposed, serving as the template for utilities. The first classed derived is the pre�y printer.

Given a node, the pre�y printer will traverse and generate original or abstracted source code

versions of the tree. The abstracted source is utilized for string comparison in the post-processing

phase.

The second derived class traverses the AST to produce a text-based tree view. The tree is

produced in a depth first search vertical representation, as seen in figure 2.3. Each AST node lies

on a separate line. This enabled tree-outputs to display node level details such as node id, raw

and abstracted identifiers and characteristic vectors as demonstrated in figure 2.3. This human

friendly tree output provides intuition of syntactic structure of R functions. The tree printer also

served as a helpful utility during development, debugging and reporting.

8



Figure 2.2: Sample.r - Raw

conCat <− function ( n ) {

sum <− 0 . 0 #C1

x <− c ( 0 . 0 , 1 . 0 , 2 . 0 , 3 . 0 )

rawdata <− c ( 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 )

for ( i i n n ) {

sum <− sum + i

x <− c ( x , rawdata [ i ] )

foo ( sum , x )

}

}

Figure 2.3: Sample.r - Parsed & Vectorized

2.3 Extraction

RClone would be able to compare similarity between ASTs however this is a computationally

intensive approach [RCK09] .

We adapt Deckard’s method of metric extraction. RClone transforms source code to charac-

teristic vectors, a form proper for vector similarity algorithms. An n-dimensional characteristic

vector approximates a tree where n denotes the number of syntactic types. Types are mapped

to an Index as shown in figure 2.1. A node’s vector is first initialized according to the immediate

node type. Vectors are then summed to their parent node vector in a post order process. Once the

vector merging fully propagates to the top, any node can be observed as a subtree. Observable

9



in figure 2.3, characteristic vectors show a node type composition of any given subtree.

Vector similarity algorithms can fully compare all subtrees by still utilizing tree based data

without the tree-matching cost. Assuming two trees of n andm nodes, a constant time vector

similarity calculation avert theO (n ∗m) full-subtree simultaneous traversal comparison. Calcu-

lation is dependent on the number of syntax types defined within the characteristic vector. We

have commi�ed smaller vectors in this figure for readability.

Furthermore, a node-type specific weighting scheme can easily be applied, an optimization

to explore for future work.

2.4 Similarity Calculation

Vector Comparison To extract similar subtrees between two programs, RClone searches the

space for a pair of similar characteristic vectors. A similarity value of one indicates Type-1 clones

whereas a zero implies that the two fragments have no structural relation.

As we developed the characteristic vector for RClone to fit R, the dimensionality of the vector

continued to increase. Having a high dimensional metric which characterizes a R program well

requires higher complexity in the vector distance algorithm. Euclidean distance tends to per-

form poorly under high dimensionality. With the addition of each metric, the volume of space

increases rapidly and depicts a sparsity within the characteristic vectors.

Dimensionality reduction is a simple solution, however this compromises the fine grained fit

to R. Thus RClone instead compares vectors by cosine similarity, which is more resistant to the

curse of dimensionality. This measure finds the cosine of the angle between two vectors. Since

magnitude is not considered, RClone applies a constraint on size disparity between potential

vector pairs. The size of a fragment is approximated by element-wise summation.

2.4.1 Post-Process: Textual Comparison

The metric-based approach allows comparison at scale however the metrics derived from the

tree is an estimation. The characteristic vector is a composition of node types but eliminates the

10



Table 2.1: Transformation Rules

structural relationships between them. To reduce false positives, pairs detected by the vector

comparison are filtered by a token-based technique able to find structural similarities.

Structure is obtained by abstracting superficial di�erences which make detection of basic

clones di�icult. We rely on generalization techniques from CCFinder. Just like parameter tokens

in a token-based approach, parameter nodes(identifiers and values) are encoded with a general-

ized identifier. Without e�ecting code structure, concrete names and values are abstracted away.

This technique enables the pre�y printer to generate code with generalized parameter nodes.

The following abstractions are formally defined in table 2.1. First, each variable and all reas-

surances within a tree are encoded with the same identifier. All variable nodes follow the same

naming convention with v representing variable and followed by a unique numerical id . The id

is allocated based on the order of unique occurrence. All repeat occurrences within the scope of

a single file are assigned a single id .

This notation is shown in figure 2.4. $ is a denotation of an abstracted identifier. There are

five unique variables in this fragment as indicated by $v5, the highest valued variable identifier.

The first variable, n which is encoded as $v1, is a method argument. The previous explanation

11



conCat <− function ( n ) {

sum <− 0 . 0 #C1

x <− c ( 0 . 0 , 1 . 0 , 2 . 0 , 3 . 0 )

rawdata <− c ( 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 )

for ( i i n n ) {

sum <− sum + i

x <− c ( x , rawdata [ i ] )

foo ( sum , x )

}

}

$u f1 <− f u n c t i o n ( $v1 ) {

$v2 <− $cD

$v3 <− c ( $cD , $cD , $cD , $cD )

$v4 <− c ( $cD , $cD , $cD , $cD , $cD )

f o r ( $v5 in $v1 ) {

$v2 <− $v2 + $v5

$v3 <− c ( $v3 , $v4 [ $v5 ] )

$m2 ( $v2 , $v3 )

}

}

Figure 2.4: Sample.r - Generalized Pre�y Print

indicates that the method’s single parameter serves as the upper limit of the for loop and the

identifier reoccurs in line 5.

Second, unlike the characteristic vector for dimensionality limitations, this technique can

a�ord a more fine level of type classification. Constant nodes are decomposed to double, string,

logical or null. This information is extracted from the original FastR node. All const nodes follow a

naming convention with c representing const and the later le�er indicating the constant subtype.

In line two of figure 2.4, the identifier $cD is the indication of a const node of the type double .

Third, method nodes are mostly encoded in a similar fashion to variable nodes. Abstracted

method nodes follow a naming conventionwithm representingmethod and followed by a unique

numerical id. Exceptions to this convention are small set of standard methods which have a large

influence on R code. To include them for comparison, these nodes are not generalized. Standard

methods retain the raw identifier.

User defined methods, on the other hand, introduce too much variability for similarity anal-

ysis. User defined function nodes follow the naming convention with ”uf” representing user

define function, followed by a unique numerical id.

FastR grammar defines the variable assignment rule: variable ←method (). RClone discrim-

inates between user defined, standard and other methods by evaluating the raw identifier of the

method node. For example, a method identifier ‘function’ implies the l-value variable is a user

defined function and must be encoded as such.

12



Generalized Pre�y Print These node abstractions are included in the pre�y print strings, as

seen in figure 2.4, are included in the pre�y print strings. Closely resembling the original, this

code retains a syntactically equivalent structure with superficial details omi�ed. These strings

are passed into a least common subsequence algorithm which provides another similarity mea-

sure between zero and one.

2.5 Pair Pruning

Although RClone compares subtrees within a size radius, more false positives can be removed.

Full-subtree comparisons develop clusters of pairs which localize to a particular pair of nodes.

Pair clusters are identified and pruned to a single pair which yields optimal similarity. A reduced

number of repeating results yields the most useful clones but also reduces manual inspection

work.

13



CHAPTER 3

Evaluation & Results

Evaluation of clone detection techniques is challenging as there is no agreed upon evaluation

criteria or representative benchmark [RCK09]. Many evaluations are tailored to observe the

technique and its parameters [RCK09].

First we adapt themost extensive study to date, by Roy et al. [RCK09] which o�ers a universal

criterion. The evaluation consists of a systematic mutation experiment composed of a series of

hypothetical program editing scenarios representative of typical changes to copy/pasted code

[RCK09]. Secondwe conduct a case study on prevalent open source R libraries and thenmanually

inspect results.

3.1 Systematic Evaluation

We adapt the qualitative systematic mutation experiment by Roy et al. [RCK09] for R. The orig-

inal study evaluates 42 existing tools in the clone detection space. Although not a concrete

evaluation, this study provides a high level view of the potential of RClone in handling of the

scenarios enumerated. Originally based on C code, performing an adapted study provides a

relative measure against other established approaches.

The base C function is adapted for R which is embodied by sample.r(figure 2.2). This 12-line

user-defined method is expressive of a diverse set of syntactic structures.

14



Figure 3.1: Mutation Taxonomy

Mutation Description 15 mutations are applied separately to the base method. Edits cover 4

categories of edit scenarios:

1. spacing/comment edits

2. renamed identifiers

3. line edits: insertion/deletion/modifications

4. semantically equivalent edits

Each category maps to Type-1, Type-2, Type-3 and Type-4 clones respectively and consists of

several sub-scenarios.

15



Scenario Series 1 We test the tool’s ability to detect clones in spite of Type-1 edits such as

extra whitespace, styling/forma�ing and comment changes. RClone identifies all three copy/-

pasted/modified fragments as clones of the original code.

As for any tree-based technique, the parsing phase is responsible for normalizing programs

programs. Neither comments nor forma�ing changes e�ect AST production and are e�ectively

removed before comparison. In fact, all methods including the base and the three sub-scenarios

converge to the same AST.

To exclusively target scenario 1 related clones, more post-processing is needed [RCK09].

Characteristic vectors provide insu�icient data as they are unable to detect internal position-

ing changes. Exclusive detection can be achieved within the current framework by searching for

identical pre�y printed source code without generalization.

Textual and syntactic techniques both identify Type-1 clones without di�iculty. Cosine sim-

ilarity and least common subsequence both indicate similarity of 100%.

Scenario Series 2 Edits commonly seen with IDE refactoring tool usage such identifier re-

naming, type modifying and argument swapping are applied.

RClone finds each of the three pairs to be identical with a cosine similarity of 100%. LCS

notices the identifier renaming returning similarity values ranging from 91% to 98% with an

average of 95%.

The tool is resistant to these Type-2 clone mutations such as renaming, as identifiers are

abstracted away in the characteristic vector. In fact, it is due to the abstraction the metric pro-

vides, the tool cannot make a distinction between Type-1 and Type2 clone. [RCK09] Scenario-

2(a), Scenario-2(b) and Scenario-2(c) all yield identical metrics. Token-based techniques such as

Dup [Bak07] are not able to di�erentiate Scenario-1 clones from Scenario-2 due to initial nor-

malization/abstraction before comparison. The AST retains raw identifiers enabling RClone to

distinguish identifier changes through post-processing of pre�y printed source code.

Scenario-2(d) tests a techniques ability to discern identifier changes from arithmetic modi-

fications within the context of an argument. The tree-based approach is sensitive to syntactic

16



constructs. The characteristic vector aptly represents both sets of binary operation and respec-

tive additional identifiers.

Type modification detection is limited by the types observed by the parser: double, logical,

string and boolean. As exemplified by Scenario-2(c), a modification which stays within the types

expressed above will not be recognized. Here, an integer changed to a double will be identified

as a double. Another issue to note is R’s dynamic typing. This will require semantic analysis, a

challenge addressed for future work.

Scenario Series 3 This scenario introduces Type-3 clones with line(s) insertions, line(s) dele-

tions and modification of whole lines. The average cosine similarity is 99% with least common

subsequence of 96%.

When the only edit consists of an identifier being added or removed, as arguments are being

modified in scenarios A and B, similarity is not greatly e�ected. A near miss clone with a single

identifier modification will be observed within the metric for comparison. Depending on frag-

ment size, the metric may not be able to emphasize a modification. Furthermore, an addition or

removal may not be large enough to indicate a change due to calculations rounding up to 100%

This is a vulnerability of the metric-based approach also noted by Roy et al. [RCK09].

This begs the question, what kind of modification should have greater influence? The ad-

dition of five values should not be as impactful as five while loops. What would be the proper

set of weights for each syntax type? A weighting scheme that di�erentiates identifiers from

types of greater structural influence can provide more accurate similarity levels. Types such as

identifiers and values are more freely used with minimal influence on code behavior. Giving an

emphasis to types which influence overall syntactical structure and execution should be able to

sway similarity calculation more than an existence of a variable.

Currently, we mitigate this limitation of syntax-based techniques by post processing by least

common subsequence. RClone’s textual analysis performs be�er than vector comparison when

detection of near miss clones. A single line modification within a twelve line fragment will yield

a 90% similarity with least common and contrastingly 99% by metric analysis.

17



Scenario Series 4 Scenario 4 explores the rearrangements of data independent and dependent

statements and declarations. RClone yields average cosine similarity is 99% with least common

subsequence yielding 93%.

Syntax order is not retained with the metric-based approach. All rearrangement edits result

in converging characteristic vectors. A robust clone detection should identify this change.

Vector analysis is able to identify Scenario-4 clones at a high level however least common

subsequence provides a more accurate measure of similarity.

However data dependance is not addressed by our approach. This is observable in Scenario-

4(d) where control flow is substituted with a semantically equivalent modification. A f or loop

is replaced with a while along with compensations of iterator declaration and incrementation.

Our metrics di�erentiates between control statements however a subset of these changes e�ect

vector similarity calculation. Changing the f or loop to a while merely transfers the occurrence

to another element position within the vector. The value is being passed from one dimension to

another. Thus, the added identifiers are the modifications which are distinguishable by vector

comparison.

Overall Performance RClone exhibits high recall with strict thresholds. The tool is able to

cast a wide net and detect all possible clones. This however is done without a focus on particular

clone types. RClone does not provide tunable parameters to target sub-scenarios individually. A

focus on disseminating detected types would increase precision and produce more useful clones.

Roy et al. [RCK09] defines a rating between seven various levels of performance: very well,

well medium, low probably can, probably cannot and cannot Based on this criteria, the current

approach requires further tuning as it can detect at a level between medium and low proficiency.

This score is justified as each scenario is detected with high recall exceeding low criteria.

18



Table 3.1: Subject Libraries

File Count LOC Average LOC / File LOC of Largest File

GGPlot2(2.1.0) 250 25,051 100 590

Broom(0.4.2) 84 8,383 99 683

Knitr(1.15.1) 70 9,781 139 903

3.2 Manual Inspection

To get a finer grain analysis, we must manually inspect results As there doesn’t exist ground

truth by past studies of this scope, .

Condensing results to the most relevant subset of detected pairs is a necessity to enable

e�ective human inspection. Comparing every subtree pair possible through brute force produces

many similar results that are localized around a true clone pair. Clustering similar results and

finding a single optimal pair helped reduce repetitive results.

Another way we reduce results to a manageable size is to compare a subset of files to the

entire codebase as a subset-to-all relationship. To get a rough understanding of subject libraries,

we take the first 5 files and compare them to the entire codebase.

GGPlot2 We apply our tool on the prevalent ggplot2 graphics library. RClone constructed 441

ASTs and performed 97,461 pair unique comparisons. While scanning through output, single line

clones are most prevalent. Type-3 clones detected are limited.

Figure 3.3 resembles scenario 2 as the di�erence between the two fragments is a single iden-

tifier. The metric-based algorithm fails to di�erentiate between a duplicate clone and this Type-3

clone. Figure 3.3’s similarity measure suggests absolute similarity however the LCS shows 64%

similarity. This is representative pa�ern among a large number of results as they di�er in only a

couple of identifiers.

Single line pairs do not give insight since they converge because they are based on funda-

19



Figure 3.2: Detected Pair A (GGPlot2)

Figure 3.3: Detected Pair B (GGPlot2)

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 4 8 / / AvgS i ze : 12 / / LCS Pecentage : 0 . 6 4 2

( func : 2 , i d : 5 , v a l u e : 0 , seq : 0 , a s s i g n : 3 , binOp : 1 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

( func : 2 , i d : 6 , v a l u e : 0 , seq : 0 , a s s i g n : 4 , binOp : 1 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−annota t ion − l o g t i c k s −p . r

gpar ( col= a lpha ( co lou r , a lpha ) , l t y = l i n e t y p e , lwd= s i z e ∗ . pt )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−geom−curve−p . r

gpar ( col= a lpha ( t r a n s c o l o u r , t r a n s a l pha ) , lwd= t r a n s s i z e ∗ . pt , l t y = t r a n s l i n e t y p e , l i n e end =

t r a n s l i n e e n d )

mental syntactical structure. RClonemust support forest comparison to identifymulti statement

clones.

Figure 3.4 is a Type-3 clone. Here, a fragment has been duplicated in another file along with

20



S i m i l a r i t y : 0 . 9 9 / / LDMetric : 0 . 6 5 / / AvgS i ze : 52 / / LCS Pecentage : 0 . 7 7 3

( func : 1 1 , i d : 1 7 , v a l u e : 5 , seq : 1 , a s s i g n : 1 1 , binOp : 1 , unOp : 0 , i f : 3 , for : 0 , while : 0 , vec : 1 )

( func : 1 1 , i d : 2 1 , v a l u e : 3 , seq : 1 , a s s i g n : 1 3 , binOp : 1 , unOp : 0 , i f : 3 , for : 0 , while : 0 , vec : 1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−annota t ion −map−p . r

anno ta t i on map <− function (map , . . . ) {

s t o p i f n o t ( i s . data . frame (map ) )

i f ( ! i s . nul l ( maplat ) ) mapy <− maplat

i f ( ! i s . nul l ( maplong ) ) mapx <− maplong

i f ( ! i s . nul l ( mapregion ) ) mapid <− mapregion

s t o p i f n o t ( a l l ( ( c ( ” x ” , ” y ” , ” i d ” ) ) %in% (names (map ) ) ) )

l a y e r ( data=NULL , s t a t = S t a t I d e n t i t y , geom=GeomAnnotationMap , p o s i t i o n = P o s i t i o n I d e n t i t y ,

i n h e r i t . aes =FALSE , params= l i s t (map=map , . . . ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−geom−map−p . r

function ( mapping=NULL , data=NULL , s t a t = ” i d e n t i t y ” , . . . , map , na . rm=FALSE , show . legend=NA, i n h e r i t

. aes =TRUE ) {

s t o p i f n o t ( i s . data . frame (map ) )

i f ( ! i s . nul l ( maplat ) ) mapy <− maplat

i f ( ! i s . nul l ( maplong ) ) mapx <− maplong

i f ( ! i s . nul l ( mapregion ) ) mapid <− mapregion

s t o p i f n o t ( a l l ( ( c ( ” x ” , ” y ” , ” i d ” ) ) %in% (names (map ) ) ) )

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomMap , p o s i t i o n = P o s i t i o n I d e n t i t y , show .

legend=show . legend , i n h e r i t . aes = i n h e r i t . aes , params= l i s t (map=map , na . rm=na . rm , . . . ) )

}

Figure 3.4: Detected Pair C (GGPlot2)

the modification of one line. These fragments are large enough for the similarity function to

withstand the Type-3 edits whereas LCS is greatly e�ected. Clones similar to figure 3.4 one

bring into question whether utilizing LCS is helpful. We are able to eliminate false positives

however run the risk of creating false negatives.

The tool su�ers from a large proportion of false positives as seen in figure 3.5. This can be

due to the terse nature of Rwheremany statements are limited to assignment-function-identifier

node type combinations. However examples such as this one provide insight on how to improve

our approach. The later fragment contains an if and also return statement that the other lacks.

21



S i m i l a r i t y : 0 . 9 8 / / LDMetric : 0 . 3 1 / / AvgS i ze : 51 / / LCS Pecentage : 0 . 5 2 7

( func : 9 , i d : 1 9 , v a l u e : 3 , seq : 2 , a s s i g n : 1 4 , binOp : 1 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 1 )

( func : 1 0 , i d : 2 4 , v a l u e : 3 , seq : 1 , a s s i g n : 1 2 , binOp : 2 , unOp : 0 , i f : 1 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−annota t ion −map−p . r

GeomAnnotationMap <− ggpro to ( ” GeomAnnotationMap ” , GeomMap , e x t r a params= ” ” , handle na= function (

data , params ) { data } , draw panel= function ( data , panel s c a l e s , coord , map ) {

coords <− coord munch ( coord , map , panel s c a l e s )

coordsgroup <−

grob i d <− match ( coordsgroup , unique ( coordsgroup ) )

polygonGrob ( coordsx , coordsy , defaul t . u n i t s = ” n a t i v e ” , i d = grob id , gp=gpar ( col= da ta co l ou r ,

f i l l = a lpha ( d a t a f i l l , da taa lpha ) , lwd= d a t a s i z e ∗ . pt ) )

} , r e q u i r e d aes =c ( ) )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−geom−polygon−p . r

{

n <− nrow ( data )

i f ( n == 1 ) return ( zeroGrob ( ) )

munched <− coord munch ( coord , data , panel s c a l e s )

munched <− munched [ order ( munchedgroup ) , ]

f i r s t i d x <− ! duplicated ( munchedgroup )

f i r s t rows <− munched [ f i r s t idx , ]

ggname ( ”geom polygon ” , polygonGrob ( munchedx , munchedy , defaul t . u n i t s = ” n a t i v e ” , i d =munchedgroup ,

gp=gpar ( col= f i r s t rowsco lour , f i l l = a lpha ( f i r s t r o w s f i l l , f i r s t rowsa lpha ) , lwd= f i r s t r ows s i z e

∗ . pt , l t y = f i r s t r ow s l i n e t y p e ) ) )

}

Figure 3.5: Detected Pair D (GGPlot2)

3.3 Sensitivity Analysis

The threshold variables which govern the characteristics of resulting pairs must be optimized to

yield not only obscure but useful results.

VectorDistance There needs to be a distance, δ between the characteristic vectors of two trees

that crosses a threshold and should no longer be considered to be a likely code clone. Threshold

δ is tested between the bounds of one and zero. Results quickly showed that vastly di�ering

trees would be matched since vectors may have the same distance from each other and at the

same time have completely di�erent internal values.

22



(a) (b)

Figure 3.6: Threshold Sensitivity Analysis on Broom

Tree Size A minimum tree size limit is also optimized. With the limit being too small, the

majority of the results get populated by small trivial trees lacking structure within its nodes,

which are o�en lists of identifiers. For instance, with the size threshold at 3, the results contain

trees that are too simple and common to the language. The size must be large enough to detect

tree pairs based on a programmer’s larger syntactic pa�erns rather than common compound

syntactic terms defined in the language. An example of this case is shown when two trees are

matched since they are calls to functions with the same number of arguments. However with a

large minimum limit, say one hundred nodes, it is likely that many potential pairs would not be

found. The issue with comparison by a distance formula can be exacerbated by the magnitude

of size . As size gets larger the space for potential matches expands making a greater number

of trees matches more likely Larger distances increase the number of possible vector formations

that can achieve same distance. To mitigate, size must be limited to an optimal range.

LeastCommonSubsequence Similarity between trees is alternatively calculated by the longest

common subsequence algorithm. This measure also ranges from one to zero. Having a threshold

of one results in pairs that have identical code. Se�ing the threshold to zero allows any pair that

matches by similar characteristic vectors but does not have to necessarily have a single character

match between either source code.

23



CHAPTER 4

Conclusion

RClone combines techniques from the syntactic and token-based approaches. While tree-based

fingerprinting allows fragment comparison at a scalable level, it must be supplemented with a

more fine grained comparison. A token-based generalization is included tomitigate performance

limitations related to program approximation. Mutation analysis considering fi�een typical edits

indicate that RClone is not vulnerable to typical edits between clones. With a high recall, this

approach has potential however incurs low precision which must be addressed in future studies.

4.1 Future Work

The vector similarity step can be improved by further minimizing the e�ect of high dimension-

ality. Our approach must be compared to techniques such as hashing as applied in CloneDr

[BYM98] and Deckard [JMS07]. A viable technique, locality sensitive hashing hashes the input

and can map similar items to the same bucket with high probability. Improving the vector simi-

larity phase will enable the expansion of the characteristic vector express R code in more specific

syntactic types. Node types such as‘SimpleAssignVariable’, ‘UpdateVector’ and ‘UpdateExpres-

sion’ would not have to be generalized under a single term.

We also would like to improve our string analysis technique. Instead of comparing string

representation of the generalized fragments, token-based comparison would be a positive incre-

mental step.

By complementing vector similarity with abstracted source code comparison, we learned that

no single techniquewill produce perfect results. Apart from iterating on current algorithms, more

techniques must be integrated to increase diversity in results.

24



Further tailoring to R is another priority. One point of improvement with respect to R is to

achieve full language support. Currently, for source code to be parsable, the library resolution

and data frame element extraction operators(::, $, library (), library .packaдes ()) must be ex-

tracted or modified. By modifying the FastR parser and AST output, files can be parsed without

the need for such preprocessing. The other alternative is to build from scratch through ANTLR,

a parser generator. Apart from language support, weighting schemes for types within the met-

ric must be explored. Groups of identifiers can oversaturate a characteristic vector. Optimal

weighting should give the greatest importance to types which influence overall structure.

Currently, single subtree pairs are matched. Comparison by adjacent subtrees can expand

the size of detectable Type-3 clones In Deckard, a sliding window scans over adjacent subtrees.

Additional characteristic vectors are created based on the adjacent combinations. While imple-

mentation of this window is straightforward, reporting and displaying of these clones suggest a

greater rework.

25



CHAPTER 5

Appendix

5.1 GGPlot2 Clones

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 7 9 / / AvgS i ze : 20 / / LCS Pecentage : 0 . 8 3 7

f a c e t −null−p . r ( func : 4 , i d : 9 , v a l u e : 0 , seq : 2 , a s s i g n : 2 , binOp : 0 , unOp : 0 , i f : 1 , for : 0 , while : 0 , vec : 2 )

f a c e t −wrap−p . r ( func : 4 , i d : 9 , v a l u e : 0 , seq : 2 , a s s i g n : 2 , binOp : 0 , unOp : 0 , i f : 1 , for : 0 , while : 0 , vec : 2 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( themepanel . ontop ) {

panel grobs <− c ( geom grobs , l i s t ( bg ) , l i s t ( f g ) )

}

e l se {

panel grobs <− c ( l i s t ( bg ) , geom grobs , l i s t ( f g ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( themepanel . ontop ) {

panel grobs <− c ( geom grobs , l i s t ( bg ) , l i s t ( f g ) )

}

e l se {

panel grobs <− c ( l i s t ( bg ) , geom grobs , l i s t ( f g ) )

}

26



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 9 4 / / AvgS i ze : 49 / / LCS Pecentage : 0 . 9 7 0

geom−contour−p . r ( func : 5 , i d : 1 5 , v a l u e : 6 , seq : 2 , a s s i g n : 20 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

geom−dens i ty2d −p . r ( func : 5 , i d : 1 7 , v a l u e : 5 , seq : 2 , a s s i g n : 20 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

geom contour <− function ( mapping=NULL , data=NULL , s t a t = ” contour ” , p o s i t i o n = ” i d e n t i t y ” , . . . , l i n e e nd = ” bu t t ” ,

l i n e j o i n = ” round ” , l i n em i t r e =1 , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomContour , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( l i n e e nd = l i neend , l i n e j o i n = l i n e j o i n , l i n em i t r e = l i n em i t r e , na . rm=na . rm , . . . ) )

}

GeomContour <− ggpro to ( ”GeomContour ” , GeomPath , defaul t aes = aes ( weight =1 , c o l o u r = ” #3366 FF ” , s i z e = 0 . 5 , l i n e t y p e =1 , a lpha =NA ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

geom density 2d <− function ( mapping=NULL , data=NULL , s t a t = ” den s i t y 2d ” , p o s i t i o n = ” i d e n t i t y ” , . . . , l i n e e nd = ” bu t t ” ,

l i n e j o i n = ” round ” , l i n em i t r e =1 , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomDensity2d , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( l i n e e nd = l i neend , l i n e j o i n = l i n e j o i n , l i n em i t r e = l i n em i t r e , na . rm=na . rm , . . . ) )

}

geom dens i t y 2d <− geom density 2d

GeomDensity2d <− ggpro to ( ” GeomDensity2d ” , GeomPath , defaul t aes = aes ( c o l o u r = ” #3366 FF ” , s i z e = 0 . 5 , l i n e t y p e =1 , a lpha =NA ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 8 9 / / AvgS i ze : 23 / / LCS Pecentage : 0 . 9 3 9

geom−blank−p . r ( func : 3 , i d : 9 , v a l u e : 0 , seq : 1 , a s s i g n : 9 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

geom−e r r o r ba rh −p . r ( func : 3 , i d : 1 0 , v a l u e : 0 , seq : 1 , a s s i g n : 10 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

geom blank <− function ( mapping=NULL , data=NULL , s t a t = ” i d e n t i t y ” , p o s i t i o n = ” i d e n t i t y ” , . . . , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomBlank , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( . . . ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

geom e r r o r b a r h <− function ( mapping=NULL , data=NULL , s t a t = ” i d e n t i t y ” , p o s i t i o n = ” i d e n t i t y ” , . . . , na . rm=FALSE ,

show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomErrorbarh , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t (na . rm=na . rm , . . . ) )

}

27



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 7 3 / / AvgS i ze : 23 / / LCS Pecentage : 0 . 8 2 0

scale− l i n e t y p e −p . r ( func : 5 , i d : 6 , v a l u e : 4 , seq : 3 , a s s i g n : 5 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

scale−shape−p . r ( func : 5 , i d : 6 , v a l u e : 4 , seq : 3 , a s s i g n : 4 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

sca le l i n e t y p e <− function ( . . . , na . v a l u e = ” b lank ” ) {

d i s c r e t e sca le ( ” l i n e t y p e ” , ” l i n e t y p e d ” , l i n e t y p e pa l ( ) , na . v a l u e =na . va lue , . . . )

}

sca le l i n e t y p e con t inuous <− function ( . . . ) {

stop ( ”A con t inuous v a r i a b l e can not be mapped to l i n e t y p e ” , c a l l . = FALSE )

}

sca le l i n e t y p e d i s c r e t e <− sca le l i n e t y p e

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

sca le shape <− function ( . . . , s o l i d =TRUE ) {

d i s c r e t e sca le ( ” shape ” , ” shape d ” , shape pa l ( s o l i d ) , . . . )

}

sca le shape d i s c r e t e <− sca le shape

sca le shape con t inuous <− function ( . . . ) {

stop ( ”A con t inuous v a r i a b l e can not be mapped to shape ” , c a l l . = FALSE )

}

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 8 9 / / AvgS i ze : 48 / / LCS Pecentage : 0 . 9 3 4

geom−dens i ty2d −p . r ( func : 5 , i d : 1 7 , v a l u e : 5 , seq : 2 , a s s i g n : 20 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

geom−quantile−p . r ( func : 6 , i d : 1 6 , v a l u e : 4 , seq : 2 , a s s i g n : 18 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

geom density 2d <− function ( mapping=NULL , data=NULL , s t a t = ” den s i t y 2d ” , p o s i t i o n = ” i d e n t i t y ” , . . . , l i n e end = ” bu t t ” ,

l i n e j o i n = ” round ” , l i n em i t r e =1 , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomDensity2d , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( l i n e e nd = l i neend , l i n e j o i n = l i n e j o i n , l i n em i t r e = l i n em i t r e , na . rm=na . rm , . . . ) )

}

geom dens i t y 2d <− geom density 2d

GeomDensity2d <− ggpro to ( ” GeomDensity2d ” , GeomPath , defaul t aes = aes ( c o l o u r = ” #3366 FF ” , s i z e = 0 . 5 , l i n e t y p e =1 , a lpha =NA ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

geom quanti le <− function ( mapping=NULL , data=NULL , s t a t = ” q u a n t i l e ” , p o s i t i o n = ” i d e n t i t y ” , . . . , l i n e e nd = ” bu t t ” ,

l i n e j o i n = ” round ” , l i n em i t r e =1 , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = s ta t , geom=GeomQuantile , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( l i n e e nd = l i neend , l i n e j o i n = l i n e j o i n , l i n em i t r e = l i n em i t r e , na . rm=na . rm , . . . ) )

}

GeomQuantile <− ggpro to ( ” GeomQuantile ” , GeomPath ,

defaul t aes = d e f a u l t s ( aes ( weight =1 , c o l o u r = ” #3366 FF ” , s i z e = 0 . 5 ) , GeomPathdefault aes ) )

}

28



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 6 2 / / AvgS i ze : 78 / / LCS Pecentage : 0 . 7 4 4

s ta t −ecdf−p . r ( func : 12 , i d : 2 9 , v a l u e : 2 , seq : 6 , a s s i g n : 23 , binOp : 0 , unOp : 1 , i f : 2 , for : 0 , while : 0 , vec : 2 )

s ta t −function−p . r ( func : 13 , i d : 3 0 , v a l u e : 3 , seq : 5 , a s s i g n : 25 , binOp : 0 , unOp : 0 , i f : 1 , for : 0 , while : 0 , vec : 1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

s t a t e cd f <− function ( mapping=NULL , data=NULL , geom=” s t ep ” , p o s i t i o n = ” i d e n t i t y ” , . . . , n=NULL ,

pad=TRUE , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = S ta tEcd f , geom=geom , p o s i t i o n = po s i t i o n , show . legend=show . legend ,

i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( n=n , na . rm=na . rm , . . . ) )

}

S t a t E cd f <− ggpro to ( ” S t a t E c d f ” , S ta t , compute group= function ( data , s c a l e s , n=NULL , pad=TRUE ) {

i f ( i s . nul l ( n ) ) {

x <− unique ( da tax )

}

e l se {

x <− seq (min ( datax ) , max ( datax ) , length . out =n )

}

i f ( pad ) {

x <− c (− I n f , x , I n f )

}

y <−

data . frame ( x=x , y=y )

} , defaul t aes = aes ( y = . . y . . ) , r e qu i r e d aes =c ( ” x ” ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

s t a t function <− function ( mapping=NULL , data=NULL , geom=” path ” , p o s i t i o n = ” i d e n t i t y ” , . . . ,

fun , x l im =NULL , n =101 , args= l i s t ( ) , na . rm=FALSE , show . legend=NA, i n h e r i t . aes =TRUE ) {

l a y e r ( data=data , mapping=mapping , s t a t = S ta tFunc t i on , geom=geom , p o s i t i o n = po s i t i o n ,

show . legend=show . legend , i n h e r i t . aes = i n h e r i t . aes , params= l i s t ( fun=fun , n=n , args=args , na . rm=na . rm , x l im =xl im , . . . ) )

}

S t a t Fun c t i o n <− ggpro to ( ” S t a t Fun c t i o n ” , S ta t , defaul t aes = aes ( y = . . y . . ) ,

compute group= function ( data , s c a l e s , fun , x l im =NULL , n =101 , args= l i s t ( ) ) {

range <−

xseq <− seq ( range [ 1 ] , range [ 2 ] , length . out =n )

i f ( s c a l e s x i s d i s c r e t e ( ) ) {

x t r a n s <− xseq

}

e l se {

x t r a n s <− s c a l e s x t r a n s i n v e r s e ( xseq )

}

data . frame ( x=xseq , y=do . c a l l ( fun , c ( l i s t ( quote ( x t r a n s ) ) , args ) ) )

} )

}

29



5.2 Broom Clones

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 7 7 / / AvgS i ze : 26 / / LCS Pecentage : 0 . 8 5 2

kmeans t i d i e r s −p . r ( func : 10 , i d : 5 , v a l u e : 1 , seq : 5 , a s s i g n : 4 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

mc lus t t i d i e r s −p . r ( func : 10 , i d : 6 , v a l u e : 1 , seq : 5 , a s s i g n : 5 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

augment . kmeans <− function ( x , data , . . . ) {

data <− f i x data frame ( data , newcol = ” . rownames ” )

cbind ( as . data . frame ( data ) , . c l u s t e r = fac tor ( x c l u s t e r ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

augment . Mclust <− function ( x , data , . . . ) {

data <− f i x data frame ( data , newcol = ” . rownames ” )

cbind ( as . data . frame ( data ) , . c l a s s = fac tor ( x c l a s s i f i c a t i o n ) , . u n c e r t a i n t y = x un c e r t a i n t y )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 1 . 0 0 / / AvgS i ze : 34 / / LCS Pecentage : 1 . 0 0 0

augment−p . r : [ ]

g lance−p . r : [ ]

[ 7 : 1 ] ( func : 12 , i d : 4 , v a l u e : 4 , seq : 1 0 , a s s i g n : 4 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

[ 2 3 : 1 ] ( func : 12 , i d : 4 , v a l u e : 4 , seq : 1 0 , a s s i g n : 4 , binOp : 0 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

augment <− function ( x , . . . ) UseMethod ( ” augment ” )

augment . NULL <− function ( x , . . . ) NULL

augment . defaul t <− function ( x , . . . ) {

stop ( ” augment doesn ’ t know how to dea l with data o f c l a s s ” , c l a s s ( x ) , c a l l . = FALSE )

}

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{

g l ance <− function ( x , . . . ) UseMethod ( ” g l anc e ” )

g l ance . NULL <− function ( x , . . . ) NULL

g l ance . defaul t <− function ( x , . . . ) {

stop ( ” g l anc e doesn ’ t know how to dea l with data o f c l a s s ” , c l a s s ( x ) , c a l l . = FALSE )

}

}

30



5.3 Knitr Clones

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 8 1 / / AvgS i ze : 37 / / LCS Pecentage : 0 . 8 5 5

hooks−html−p . r ( func : 1 4 , i d : 9 , v a l u e : 3 , seq : 5 , a s s i g n : 2 , binOp : 0 , unOp : 0 , i f : 4 , for : 0 , while : 0 , vec : 0 )

hooks− l a t e x −p . r ( func : 14 , i d : 9 , v a l u e : 3 , seq : 5 , a s s i g n : 2 , binOp : 0 , unOp : 0 , i f : 4 , for : 0 , while : 0 , vec : 0 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( o p t i o n s s p l i t ) {

name <− f i g path ( ” . html ” , options , NULL )

i f ( ! f i l e . ex i s t s ( dirname ( name ) ) ) dir . create ( dirname ( name ) )

cat ( x , f i l e =name )

s p r i n t f ( ”< i f r ame s r c = ”%s ” c l a s s = ” k n i t r ” width= ” 100%%”></ i f rame>” , name )

}

e l se x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( o p t i o n s s p l i t ) {

name <− f i g path ( ” . t e x ” , options , NULL )

i f ( ! f i l e . ex i s t s ( dirname ( name ) ) ) dir . create ( dirname ( name ) )

cat ( x , f i l e =name )

s p r i n t f ( ” \ i npu t {%s } ” , name )

}

e l se x

31



5.4 Broom/GGPlot2 Cross Project Clones

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S i m i l a r i t y : 1 . 0 0 / / LDMetric : 0 . 9 0 / / AvgS i ze : 65 / / LCS Pecentage : 0 . 9 2 4

map t i d i e r s −p . r ( func : 20 , i d : 1 7 , v a l u e : 1 1 , seq : 5 , a s s i g n : 7 , binOp : 4 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 1 )

R/ f o r t i f y −map−p . r ( func : 20 , i d : 1 7 , v a l u e : 1 1 , seq : 5 , a s s i g n : 7 , binOp : 4 , unOp : 0 , i f : 0 , for : 0 , while : 0 , vec : 1 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t i d y . map <− function ( x , . . . ) {

df <− as . data . frame ( x [ c ( ” x ” , ” y ” ) ] )

names ( df ) <− c ( ” l ong ” , ” l a t ” )

d fgroup <− (cumsum ( ( i s . na ( d f l ong ) ) & ( i s . na ( d f l a t ) ) ) ) + 1

d f o r d e r <− 1 : (nrow ( df ) )

names <− do . c a l l ( ” r b i nd ” , lapply ( s t r s p l i t ( xnames , ” [ : , ] ” ) , ” [ ” , 1 : 2 ) )

d f r e g i o n <− names [ dfgroup , 1 ]

d f s ub r e g i on <− names [ dfgroup , 2 ]

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r t i f y . map <− function (model , data , . . . ) {

df <− as . data . frame (model [ c ( ” x ” , ” y ” ) ] )

names ( df ) <− c ( ” l ong ” , ” l a t ” )

d fgroup <− (cumsum ( ( i s . na ( d f l ong ) ) & ( i s . na ( d f l a t ) ) ) ) + 1

d f o r d e r <− 1 : (nrow ( df ) )

names <− do . c a l l ( ” r b i nd ” , lapply ( s t r s p l i t ( modelnames , ” [ : , ] ” ) , ” [ ” , 1 : 2 ) )

d f r e g i o n <− names [ dfgroup , 1 ]

d f s ub r e g i on <− names [ dfgroup , 2 ]

}

32



REFERENCES

[Bak07] Brenda S. Baker. “Finding Clones with Dup: Analysis of an Experiment.” IEEE Trans.
So�w. Eng., 33(9):608–621, September 2007.

[BYM98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Ann, and Lorraine Bier.
“Clone Detection Using tract Syntax Trees.” In Proceedings of the Inte8, pp. 368–,
Washington, DC, USA, 1998. IEEE Computer Society.

[JMS07] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
“DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones.” In
Proceedings of the 29th International Conference on So�ware Engineering, ICSE ’07,
pp. 96–105, Washington, DC, USA, 2007. IEEE Computer Society.

[KFF06] Rainer Koschke, Raimar Falke, and Pierre Frenzel. “Clone Detection Using Abstract
Syntax Su�ix Trees.” In Proceedings of the 13th Working Conference on Reverse
Engineering, WCRE ’06, pp. 253–262, Washington, DC, USA, 2006. IEEE Computer
Society.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. “CCFinder: AMultilinguistic
Token-based Code Clone Detection System for Large Scale Source Code.” IEEE Trans.
So�w. Eng., 28(7):654–670, July 2002.

[KMM14] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. “A Fast Abstract Syntax
Tree Interpreter for R.” SIGPLAN Not., 49(7):89–102, March 2014.

[RCK09] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. “Comparison and eval-
uation of code clone detection techniques and tools: A qualitative approach.” Sci.
Comput. Program., 74(7):470–495, 2009.

[SFZ10] G. M. K. Selim, K. C. Foo, and Y. Zou. “Enhancing Source-Based Clone Detection
Using Intermediate Representation.” In 2010 17th Working Conference on Reverse
Engineering, pp. 227–236, Oct 2010.

[Yan91] Wuu Yang. “Identifying Syntactic Di�erences Between Two Programs.” So�w. Pract.
Exper., 21(7):739–755, June 1991.

33


	Introduction
	Related Work

	Approach
	Preprocessing
	Parsing
	Extraction
	Similarity Calculation
	Post-Process: Textual Comparison

	Pair Pruning

	Evaluation & Results
	Systematic Evaluation
	Manual Inspection
	Sensitivity Analysis

	Conclusion
	Future Work

	Appendix
	GGPlot2 Clones
	Broom Clones
	Knitr Clones
	Broom/GGPlot2 Cross Project Clones

	References



