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A detailed numerical simulation to understand the turbulent state of the decaying two-dimensional
electron magnetohydrodynamics is presented. It is observed that the evolved spectrum is comprised
of a collection of random eddies and a gas of whistler waves, the latter constituting the normal
oscillatory modes of such a model. The whistlerization of the turbulent spectra has been quantified
by novel diagnostics. In this work, results are presented only in the regime where the spatial
excitation scales are longer than the electron skin depth. Simulations suggest that spectra at short
scales are comparatively more whistlerized. The long scale field merely acts as the ambient field
along which whistler waves propagate. It is also observed that, in the presence of an external
magnetic field, the power spectrum acquires a distinct directional dependence. This anisotropy is
dominant at short scales. It is shown that such an anisotropy at short scales results from a cascade
mechanism governed by the interacting whistlers waves. © 2000 American Institute of Physics.
#S1070-664X!00"04602-4$

I. INTRODUCTION

The problem of turbulence has been studied both in the
context of ordinary as well as magnetofluids. Progress in the
study of the problem of turbulence in the magnetofluids !e.g.,
plasma" is comparatively recent and indicates interesting
similarities and differences vis a vis ordinary fluids. One of
the most important distinctions from the neutral, noncon-
ducting fluids stems from the fact that magnetofluids, like
plasmas can support a variety of waves. Turbulence in the
magnetohydrodynamic !MHD" model, which supports dis-
persionless Alfvén waves as normal modes, has been ex-
plored in considerable detail. It is observed that in the case of
MHD, the existence of these waves leads to subtle effects in
turbulence. There are suggestions that there may be a modi-
fication in the power spectral index from that predicted on
the basis of Kolmogorov’s dimensional arguments. This is
termed the Alfvén effect.1 The interactions amongst the
Alfvén waves are fairly restrictive, with only oppositely trav-
eling waves interacting with each other. This results in
strong anisotropy of the spectrum in the presence of external
magnetic fields. The magnetohydrodynamics !MHD" model
for plasma applies for the description of phenomena where
the time scales are reasonably slow and the dynamics is
mainly governed by the ion species. There exists another
model which depicts MHD phenomena occurring at faster
time scales; in this case ions do not have time to respond

because of their heavy mass and merely provide a neutraliz-
ing background, and the dynamics is entirely governed by
the lighter electron species. Such a model is known as the
electron magnetohydrodynamics !EMHD" model.2 In con-
trast to MHD, this particular model supports dispersive
waves known as whistlers. This model was more or less
unexplored so far and has attracted interest lately due to its
potential applications in fast switches, Z pinches, solar phys-
ics, magnetospheric reconnection, and ionospheric
phenomena.2,3 A recent numerical work by Biskamp et al.4,5
on decaying EMHD turbulence has shown agreement with
Kolmogorov’s dimensional argument6 for the scaling of
power spectrum with wave number. On the basis of this re-
sult, they indicate that the whistler effect may not play any
significant role in EMHD turbulence.

We define the concept of whistlerization of the turbu-
lence viz. how closely the whistler mode relationship bk
!k%k !physically an equipartition between the axial and po-
loidal magnetic energies" is obeyed in the turbulent state. As
stated previously, the power spectral index in EMHD turbu-
lence does not seem to be significantly influenced by the
whistler effect. However, whistlerization does take place, as
evidenced by the simulations of Biskamp et al.,4,5 who have
shown that at longer scales than the skin depth (kde"1)
there is significant equipartition between the axial and poloi-
dal magnetic energies. One of the objectives of the present
work is to understand the degree of whistlerization of the
turbulent state in EMHD in quantitative detail. For this pur-a"Permanent address: Institute for Plasma Research, Gandhinagar, India.
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pose, we seek to address the following issues in the subse-
quent sections; !i" quantification of the extent of whistleriza-
tion of the spectra, !ii" scale dependence of whistlerization,
!iii" dependence of whistlerization on the strength of external
field, and !iv" time evolution of a random initial spectra to-
ward a whistlerized state. Another objective is to study the
influence of an external magnetic field on the spectrum, and
the reasons thereof. For this we would largely explore !i" the
characteristic difference in the spectrum in directions parallel
and perpendicular to the external field !e.g., anisotropy in the
spectrum" and !ii" scale dependence of anisotropy, etc.

The paper is organized as follows. In Sec. II we discuss
briefly the EMHD model and the numerical results on whis-
tlerization. We conclude that the turbulence evolves toward a
state comprised of a mixture of a gas of whistler waves !in-
teracting randomly with each other" and a collection of ran-
dom eddies. The tendency for whistlerization seems to be
stronger at shorter scales in the inertial range. Basically, the
long scale field acts as an ambient magnetic field along
which the short scale whistler perturbations propagate. Nu-
merical studies of the spectrum in the presence of external
magnetic field are presented in Sec. III. In the presence of an
external magnetic field, we observe that the spectrum ac-
quires directional dependence. It is observed that the perpen-
dicular scales are predominantly shorter in comparison to
parallel scales. Furthermore, this disparity in parallel and
perpendicular scales is stronger at shorter scale lengths. It
seems quite likely that the observed anisotropy arises as a
result of interactions amongst whistler waves, which prima-
rily propagate parallel to the magnetic field. In Sec. IV we
provide a theoretical understanding of observed anisotropy in
the power spectrum on the basis of whistler wave interac-
tions. Section V contains the conclusion.

II. WHISTLERIZATION IN EMHD TURBULENCE

Electron magnetohydrodynamics !EMHD" is the de-
scription of electromagnetic phenomena in a magnetized
plasma at fast time scales where only electron dynamics is
important. Ions merely provide a stationary neutralizing
background. The EMHD model has been discussed in con-
siderable detail in some of the earlier works.2,4,5,7,8 Here, we
concentrate on the case when the electromagnetic perturba-
tions vary only in two dimensions, e.g., the x– y plane. The
EMHD model is then represented by the following set of
coupled equations in the two fields b and % .

&

&t !%#'2%"$ ẑ!“b•'!%#'2%"!('2% , !1"

&

&t !b#'2b "# ẑ!'b–““2b$ ẑ!'%–“'2%!('2b . !2"

The total magnetic field can be expressed in terms of these
fields as B! ẑ!“%$bẑ . The two evolution equations have
been written in normalized variables. The length scales are
normalized by the electron skin depth de!c/)pe , magnetic
field by a typical amplitude B0 and time by the correspond-
ing electron gyrofrequency. The dispersion relation for whis-

tlers, the normal mode of oscillation in the EMHD frequency
regime, can be obtained by linearizing Eqs. !1" and !2" in the
presence of uniform magnetic field B0y pointing in the y
direction as

)!*
kkyB0y
!1$k2"

.

Here *!% and indicates the direction of propagation. The
whistler wave excitation leads to a coupling of the form bk
!*k%k between the two perturbed fields. It is interesting to
note that the above-mentioned relation leads to an equiparti-
tion between the poloidal and the axial components of the
magnetic/kinetic energies. This should be contrasted with
MHD where the Alfvén wave excitation leads to an equipar-
tition between magnetic and kinetic energies. There can be
no equipartition between magnetic and kinetic energies as a
result of whistlerization of the spectrum. The dominance of
magnetic or kinetic energy is dependent on whether the typi-
cal turbulent scales of excitation are longer or shorter than
the electron skin depth. Also, unlike Alfvén waves, these
waves are dispersive. They propagate obliquely to the exter-
nal magnetic field with a group velocity

Vg!
*B0ykykx!1#k2"

k!1$k2"2
x̂

$
*B0y#k2!1$k2"$ky

2!1#k2"$

k!1$k2"2
ŷ .

We now carry out numerical investigations to under-
stand the turbulent state in EMHD. For this purpose we
evolve the two fields b and % numerically using Eqs. !1" and
!2", respectively, with the help of a fully de-aliased pseu-
dospectral scheme. In this scheme the fields b and % are
Fourier decomposed. Each of the Fourier modes are then
evolved, the linear part exactly, whereas the nonlinear terms
are calculated in real space and then Fourier transformed in k
space. This requires going back and forth in real and k space
at each time step. The fast Fourier transform !FFT" routines
are used to go back and forth in the real and k space at each
time integration. The time stepping is done using a predictor
corrector with the midpoint leap frog scheme. Some test
simulations were carried out at a lower resolution of 128
&128. However, most results that we present here corre-
spond to the resolution of 256&256 and 512&512 modes.
For numerical studies the dissipation operator of Eqs. !1" and
!2" were replaced by higher powers of Laplacian !cubic" in
order to restrict dissipative effects at shorter scales. The typi-
cal values of the dissipation parameter ( were chosen to lie
between 5&10#1 to 5&10#2 in the various runs. The initial
spectrum of the two fields b and % is chosen to be concen-
trated on a band of scales and their phases are taken to be
random. The Fourier modes of the two fields are chosen to
be entirely uncorrelated to begin with. Furthermore, in the
present work we have chosen to restrict our studies to scales
kde'1 where wave propagation effects are comparatively
stronger.
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The initial energy is distributed unequally in the poloidal
% and axial b fields. In Figs. 1 and 2 we show the evolution
of total energy !dashed line", and the energy in the fields b
and % , which has been termed as axial and poloidal energies,
respectively. The plots in Fig. 1 are for the case where the
initial axial energy is chosen to be greater than the poloidal
energy. We observe that the axial energy decays and the
poloidal energy grows so as to achieve equal distribution of
energies, in the two fields, ultimately. Figure 2 depicts the
other scenario wherein the initial poloidal energy is larger
than that in the axial field. In this case, the poloidal energy
reduces and the axial energy increases with time, so that

finally both acquire similar values. This shows that the ener-
gies associated with the two fields strive to achieve equipar-
tition.

A complete whistlerization of the turbulent spectra, i.e.,
when the spectrum is comprised of a collection of randomly
phased whistlers interacting with each other, will automati-
cally lead to an equal distribution of energy in the axial and
poloidal fields. This is so because the relationship, bk
!%k%k , is satisfied for whistler modes. However, one can-
not infer the opposite, i.e., from the observed equality of
poloidal and axial energies it cannot be concluded with cer-
tainty that the spectrum is completely whistlerized. This is so
because the axial and poloidal energies represent integral
quantities, where contribution from each mode has been
summed. Thus to ensure the extent to which the relationship
bk!%k%k is satisfied for each of the individual modes, we
introduce a set of new diagnostics, which are monitored dur-
ing the course of numerical simulations. We define

+1! t "!
1

,kx ,ky
,
kx ,ky

abs! !bk!2#k2!%k!2"

! !bk!2$k2!%k!2"

to represent the extent of whistlerization of the spectrum. It
is clear that for a completely whistlerized state +1 will van-
ish. The more the state is whistlerized, the lower the value of
+1(t). In the definition of +1 we have summed suitably
normalized nonwhistlerized contribution of power from each
mode. The contribution from each mode is normalized by its
own spectral content. This treats all the modes on an equal
footing. However, an alternative definition of the kind

+2! t "!
,kx ,kyabs! !bk!2#k2!%k!2"

,kx ,ky! !bk!2$k2!%k!2"

can also be employed, where contribution from each mode is
normalized by the average power. This definition selectively
gives importance to modes having higher spectral power.

The evolutions of +1 and +2 are shown in Figs. 3 and 4,
respectively, for various values of the external field B0 . The
following points are clearly evident from the plot of +1 . !i"
+1 rapidly decreases from its initial value and attains a sta-
tistically steady value, which is relatively small. This con-
firms the tendency for whistlerization of the spectrum, which
happens even when the external field is absent. !ii" The
asymptotic value of +1 decreases with increasing magnetic
field. Thus, the extent up to which a spectrum is whistlerized
is dependent on the strength of magnetic field. !iii" The rate
of whistlerization increases with magnetic field, the initial
drop to the asymptotic value can be seen to be steepest for
B0!4, and gets shallower with decreasing value of B0 . It is
also apparent that the asymptotic value of +1(t) shows fluc-
tuations in time. These fluctuations are more rapid with in-
creasing external fields. It appears that the time scale for the
spectrum to get whistlerized, as well as its statistical behav-
ior, are linked with a typical whistler time scale defined by
the magnetic field strength and a suitably averaged spatial
scale #e.g., -whistler.1/(kavkav•B)].

A comparison of the two plots of +1 and +2 draws
attention to another interesting feature. It is clear that +2 is

FIG. 1. The evolution of total energy !dashed line", axial !b" field energy
!dotted line", and the poloidal (%) field energy !solid line" when the initial
axial energy was greater than the poloidal energy.

FIG. 2. Similar to Fig. 1, however, for this case the initial poloidal energy
was chosen to be larger than the axial energy.
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always larger than +1 . Since +2 represents modes having
higher spectral power, a comparative higher value of +2
indicates that modes having higher spectral powers are less
whistlerized. Since the power spectrum decays as k#7/3, this
also suggests that the large scale regime of the spectrum is
less whistlerized. This clearly suggests that whistlerization
occurs predominantly at short scales. We provide further evi-
dence of the short scale part of the spectrum being more
whistlerized in Fig. 5. The various plots of Fig. 5 show the
evolution of a function similar to +1 in which only certain
scales in the summation have been included. Results have
been shown both at the resolution of 256&256 #Figs. 5!a"
and 5!b"$ and at 512&512 #Figs. 5!c" and 5!d"$. In Figs. 5!a"
and 5!c" and Figs. 5!b" and 5!d" we have chosen to plot the

evolution of +1 containing contributions typically from long
and short scales alone, respectively. As can be seen the typi-
cal values in Figs. 5!a" and 5!c" are closer to unity when
compared with Figs. 5!b" and 5!d". It is also evident from the
plots that as one successively incorporates contributions
from shorter scales the value of the function +1 keeps reduc-
ing. Furthermore, this inference holds consistently even as
we increase the resolution from 2562 to 5122. Thus it can be
stated that the extent of whistlerization is greater at short
scales. This is reasonable as the large scale fields merely act
as an effective ambient magnetic field along which the whis-
tlers propagate. We would, however, like to point out that the
short scales for which we are drawing inferences here are
typically longer than the electron skin depth.

It should be noted here that the linear whistler frequency
) lin!kk–B is larger at short scales. Hence, the conditions for
applicability of weak turbulence theory viz. ) lin(/)NL
!where /)NL represents the nonlinear broadening of the
modes" are more likely to be satisfied at short scales. Thus at
short scales linear wave physics dominate and the small scale
modes may be viewed as whistler wavepackets, whereas
long scales are effectively magnetic eddies.

III. SPECTRAL ANISOTROPY IN THE PRESENCE OF
EXTERNAL MAGNETIC FIELD

In this section we study the evolution of the spectral
properties of decaying EMHD turbulence in the presence of
an external magnetic field. It is well known that the presence

FIG. 3. Evolution of +1 for B0!0 !dotted line", B0!1 !dashed line", and
B0!4 !continuous".

FIG. 4. Similar to Fig. 3, but showing evolution of +2 .

FIG. 5. Evolution of +1 with contributions in the summation only from
certain regions of scales. !a" and !b" Results for a resolution of 2562. !c" and
!d" Results at 5122. For the dotted, dashed, and solid lines of !a" the scale
lengths !k! included in the sum lie in the range 00!k!"2k1 , 00!k!"4k1
and 00!k!"8k1 respectively, where k1!0.0125. The scale lengths in the
thick solid, dotted, and dashed lines of !c" lie in the range 00!k!"2k2 , 0
0!k!"4k2 and 00!k!"8k2 , respectively, where k2!0.006 25. The solid
lines of !b" and !d" represent the case when all the scales have been
summed, however, the dashed lines of both !c" and !d" are when the scale
lengths lie in the regime 1/3kmax0!k!"2/3kmax . Here kmax!1.6 and 2/3kmax
basically is the shortest scale available after aliasing.
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of a uniform magnetic field in the context of MHD gives rise
to an anisotropic spectrum.9,10 The power spectrum of the
various variables in the case of MHD are known to show
distinct directional dependence. This is clear from the MHD
simulations carried out by Shebalin et al.9 and most recently
by Oughton et al.10 It is believed that this happens primarily
due to the excitation of Alfvén waves which preferentially
propagate parallel to the external magnetic field, and hinder
the process of spectral cascade parallel to the external field.
This results in the anisotropy of the spectrum. Thus the ori-
gin of anisotropy is basically the restrictive interactions of
the Alfvén waves for which only oppositely traveling waves
interact. In the absence of external magnetic field, Alfvénic
excitations are generated along the long scale turbulent field
!which has a random orientation, and hence is isotropic".
These Alfvénic excitations restrict the cascade mechanism
and are also responsible for the deviation of power spectrum
index from the Kolmogorov value of #5/3 to a value
#3/2.1,11

In the context of EMHD turbulence, it has been noted
that the whistler effect on spectral index is negligible.4,5 The
numerically observed spectral index can be explained purely
on the basis of Kolmogorov’s dimensional arguments, with-
out invoking any role, whatsoever, for the whistler waves. A
natural question then arises whether in EMHD turbulence the
spectrum is maintained isotropic even in the presence of a
strong external magnetic field. This is what we intend to
study in this section. We have seen in Sec. II that in the
turbulent EMHD state both whistlers and random eddies co-
exist. We have also seen indications that in the presence of
external magnetic field the spectrum becomes more whistler-
ized, and that the short scale part of the spectrum shows
stronger tendencies toward whistlerization. The intriguing
question in this regard is whether these whistlers have any

role to play in the cascade mechanism. For this purpose we
would like to investigate the spectral properties of the two
fields b and % in the presence of varying external magnetic
field. We would also like to investigate a possible distinction
between short and long scales with regard to the anisotro-
pization of the spectrum.

The numerical scheme has already been outlined in Sec.
II. We have chosen the external magnetic field B0 to be
along the y axis in our numerical studies. We then define the
following ratio:

RQ! t "!
,kx,kyky

2!Q!kx ,ky ,t "!2

,kx,kykx
2!Q!kx ,ky ,t "!2

. !3"

Here, Q stands for any one of the following variables b, % ,
'2b , and '2% . It is clear that if the spectrum of Q is isotro-

FIG. 6. Evolution of R, the anisotropy factor for the variables b, % , '2b ,
and '2% . The upper curve hovers around unity for the case when there is no
imposed external field B0!0; the lower curve represents the case when
B0!7.5.

FIG. 7. Contour plots for the variable b in the evolved state for B0!0 and
B0!7.5.
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pic then the ratio RQ will be close to unity. Any deviation
from unity is an indication of anisotropy in the spectrum.

The evolution of RQ for the variables b, % , '2b , and
'2% is shown in the four plots of Fig. 6. The upper curve in
all these plots, which hovers around unity, is for B0!0. As
expected, it testifies to the fact that the spectrum of all the
variables remains isotropic in the absence of any external
magnetic field. The lower curve is for the case when the
external magnetic field has been chosen to be B0!7.5. It can
be seen that the value of R corresponding to all the four
variables drops off from unity and saturates at a low value.
The plots also show that R'2b and R'2% saturate at a much
lower value than compared with Rb and R% , respectively.
This clearly implies that the spectral anisotropy in the vari-
ables b and % is dominant at shorter scales. Furthermore, it is
also evident that finally R%)Rb , suggesting that the spec-
trum of b is more anisotropic compared to that of % . Since

the magnetic scalar potential % is known to cascade toward
longer scales, the weak anisotropy observed in its spectrum
can be attributed to the dominance of long scales in it.

The definition of R involves a numerator which is
weighted by ky

2 , corresponding to the wave vector parallel to
the direction of external magnetic field, whereas the denomi-
nator contains kx

2 , the perpendicular wave vector, as the fac-
tor inside the summation. Since R asymptotes toward a value
lower than unity, it is obvious that the spectrum is evolving
so as to have comparatively shorter scales perpendicular to
the magnetic field. The contour plot of the variable b in the
x– y plane depicted in Fig. 7 clearly exemplifies the domi-
nance of short scales perpendicular to the external magnetic
field in the spectra of b. For, % , which exhibits compara-
tively weak anisotropy, the dominance of short scales per-
pendicular to the magnetic field cannot be gauged directly
from its contour plot !e.g., Fig. 8".

We also observe that by reducing the value of ( , the
dissipation parameter results in an increased anisotropy of
the spectrum. Figure 9 shows the evolution of R for the vari-
able b for varying values of ( . This can be understood by
realizing that decreasing ( is tantamount to pushing the dis-
sipation scale toward shorter scales. Thus the short perpen-
dicular scales generated in the cascade continue to survive in
a larger domain of scales, as ( is reduced, thereby R reduces
further.

We define the average perpendicular and parallel scales
as

1k "
22!

,kx ,kyky
2Q!kx ,ky ,t "2

,kx ,kyQ!kx ,ky ,t "2
,

1k!
2 2!

,kx ,kykx
2Q!kx ,ky ,t "2

,kx ,kyQ!kx ,ky ,t "2
.

FIG. 8. Contour plots for the variable % in the evolved state for B0!0 and
B0!7.5.

FIG. 9. Evolution of Rb for varying ( , the dissipation parameter, (!0.05
for the dotted line, (!0.005 for the solid line, and (!0.0005 for the dotted
solid line.
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Figures 10 and 11 show the evolution of the average perpen-
dicular and the parallel scales for b and % , respectively. It is
clear from the plots that average scale lengths for b are
smaller in comparison to those of % . When B0 is finite there
is a greater disparity between the perpendicular and parallel
scales of b in comparison to % , with perpendicular scale
lengths being shorter compared to parallel scales. Figure 10
shows that in the presence of finite external magnetic field
B0, 1k!

2 2 for b shows steady rise initially. This tendency,
however, does not continue forever. Rather, the curve subse-
quently flattens out and later exhibits the same slowly decay-
ing tendency as that of the parallel scales. However, a dis-
tinct disparity between the perpendicular and parallel scales
persists.

IV. THEORETICAL DISCUSSION

We would now like to understand what causes the an-
isotropy in the spectrum in the presence of external magnetic
field, and why it is that it leads to a generation of short scales
preferentially in the perpendicular direction. It should be
mentioned at the outset, that unlike MHD, where the expla-
nation for anisotropy is premised on an outright absence of
certain kind of interactions amongst the Alfvén waves, here
one can at best hope to provide an argument based on no-
tions of more/less likelihood of certain interactions amongst
whistlers. This is primarily because the whistlers, unlike
Alfvén waves, are dispersive in nature.

It is clearly evident from the numerical results of Secs. II
and III that the observed anisotropy and the whistlerization
of the spectrum are related issues. Both occur preferentially
at short scales. In this section we describe how whistleriza-
tion could possibly be responsible for the ensuing anisotropy
in the spectrum in the presence of an external magnetic field.

For this purpose we first try to understand the nonlinear

interaction amongst the whistler waves. The EMHD equa-
tions in the kde*1 limit can be written as

&B
&t $ve–'B!B–'ve . !4"

Here ve!#'!B is the electron velocity. Linearization of
Eq. !4" in the presence of an external magnetic field in the y
direction leads to the usual dispersion relation for whistlers,
e.g., )k!*kkkyB0 , along with the relationship vek
!#*kkBk . Here *k!%1 and refers to the direction of
propagation of the kth mode. Now, Fourier analyzing Eq. !4"
leads to

&Bk
&t $,

k1
!vek#k1

–ik1Bk1#Bk#k1–ik1vek1"!0.

Substituting the linearized expression for vek#k1
we obtain

&Bk
&t !,

k1
ik1–Bk#k1Bk1!*k#k1!k#k1!#*k1!k1!".

According to Kolmogorov’s theory for fluid turbulence the
triad of wave vectors forming the sides of an equilateral tri-
angle are best suited for efficient power cascade. Assuming
that this holds even for the case of EMHD turbulence, the
cascade mechanism would entail interactions between neigh-
boring scales. Thus the spectrum will be altered only by
those interactions which have !k#k1!3!k1!. When !k#k1!
3!k1! holds, the strength of the nonlinear interaction is weak
if both *k#k1 and *k1 are of the same sign, i.e., either both
are positive or both are negative. Thus, for copropagating
waves, the nonlinearity is weak. It should be noted here, that
unlike Alfvén waves, for whistlers the interaction between
copropagating waves does not vanish identically, it is merely
weak, in comparison to counterpropagating waves !i.e., when
the two *’s correspond to opposite signs". Thus the phenom-

FIG. 11. Evolution of the average perpendicular !solid line" and parallel
scales !dotted line" for the variable % .

FIG. 10. Evolution of the average perpendicular !solid line" and parallel
scales !dotted line" for the variable b.
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enon of spectral wave cascade would be governed primarily
by nonlinear interactions amongst counterpropagating whis-
tlers.

The matching conditions for the frequency and the wave
vectors for such kind of interaction can be written as

%)3!)1#)2 ,

k3!k1$k2 .

Here the suffix 1 and 2 refer to the two interacting whistler
waves which generates a third whistler wave referred by in-
dex 3. Selecting positive sign before )3 and using the dis-
persion relation for whistlers we obtain

k3k3y!k1k1y#k2k2y .

Now, we eliminate k3y by using k3y!k1y$k2y , which gives

k1y
k2y

!
k3$k2
k1#k3

.

Now since k13k23k3 , the above-mentioned equation
shows that k1y(k2y !choosing a negative sign before )3
would merely have resulted in the opposite inequality. This
does not matter since 1 and 2 are merely dummy suffixes".
Thus, instead of having k2y→0 as in Alfvén turbulence we
have here k2y*k1y , which implies that there is very little
cascade to small scales in the y direction. Cascade to small
scales thus can occur only along the perpendicular direction.
This explains the initial increase of 1kperp

2 2.
The disparity in the average parallel and perpendicular

scales in the asymptotic state can be understood by the fol-
lowing reasoning. Squaring the frequency matching condi-
tion and elimination of the vector k3 leads to

k2
2k1y
2 $k1

2k2y
2 $4k1y

2 k2y
2

!#2k1yk2y#!k1$k2"2$!k1y
2 $k2y

2 "$

#2k1xk2x!k1$k2"2. !5"

The positivity of the left-hand side of the Eq. !5" requires
that the two wave vectors k1 and k2 have either both or one
of the components of opposite sign. However, the natural
tendency of power cascade in 2d EMHD turbulence is to-
ward short scales. Furthermore, both whistlerization and
anisotropization of the spectrum are short scale phenomena.
This, thus excludes the possibility of having both compo-
nents of the interacting wave vectors of opposite signs. The
comparison of the coefficients of 2k1yk2y and 2k1xk2x ap-
pearing in Eq. !5", then suggests that during the initial stages,
when the spectrum is isotropic, the permissible interactions
will predominantly have y components of the two interacting
wave vectors as antialigned and x component as aligned.
This results in preferential shortening of scales along the x
direction !direction perpendicular to the applied magnetic
field", and hence explains the dynamic development of an-
isotropy in the spectra. However, clearly this process is self
defeating. Once a certain disparity between the average par-
allel and perpendicular scales are developed, Eq. !5" can be
satisfied by interactions amidst the wave vectors which lead
to either the generation of short scales along parallel or per-
pendicular directions with equal likelihood. It can then be

expected that there will be no preferential shortening of per-
pendicular scales. The initial increase of 1kx

22 , which later
stops growing, bears testimony to this scenario.

It is thus clear that the turbulent spectrum develops an-
isotropy in the presence of an external magnetic field basi-
cally due to a cascade mechanism mediated by whistler wave
interactions.

V. CONCLUSION

The role of normal modes of the system in determining
the turbulent state and influencing the turbulent transport
properties are now increasingly recognized. For this purpose,
we have taken the specific case of the electron magnetohy-
drodynamics !EMHD" turbulence and investigated various
aspects of whistlerization !whistlers being the normal mode
of EMHD" of its spectrum.

We have introduced novel numerical diagnostics to
quantify the extent of the whistlerization of the spectrum,
and conclude that whistlerization is only partial. This has a
direct bearing on the turbulent diffusivity of long scale mag-
netic fields. Recent works on quasilinear estimates of diffu-
sivity have shown that the turbulent diffusivity would iden-
tically vanish if turbulent state is comprised solely of
randomly interacting normal modes.8,12 Our studies suggest
that the short scale part of the spectrum tends to be more
whistlerized, the long scales merely serving the purpose of
providing an ambient magnetic field along which these nor-
mal modes propagate. It will indeed be a worthwhile exer-
cise to carry out such studies at higher resolutions than what
has been done here to draw conclusive and quantitative evi-
dence of the phenomena of whistlerization at short scales, its
Reynold’s number dependence, etc. We also observe that the
spectrum gets quantitatively more whistlerized with increas-
ing strength of the external magnetic field. This is expected
and is largely a consequence of reduced nonlinearity of the
system in the presence of higher B0 .

There have been some recent attempts to invoke EMHD
time scales to provide an explanation of the fast reconnection
processes in the solar and astrophysical context.3 Observa-
tional data on MHD scale fluctuations in solar wind indicates
significant anisotropy.13 Spectral anisotropy in the presence
of long scale magnetic field in MHD has also been observed
numerically and is being understood on the basis of a cas-
cade mechanism governed by Alfvén wave interactions.9,10 It
is thus of interest to see whether, in the context of EMHD
also, there is any dynamically generated spectral anisotropy
in the presence of a mean magnetic field. Our numerical
simulation clearly shows that the spectrum develops anisot-
ropy in the presence of a uniform field along a particular
direction. This can happen only if there is an asymmetry in
the nonlinear spectral transfer process relative to the mean
magnetic field. The only way nonlinear spectral transfer pro-
cess could be asymmetric is if it is mediated by whistlers !as
the dispersion relation, phase, and group velocities of these
waves depend on the direction of the mean magnetic field".
We have provided a theoretical explanation of the observed
anisotropy on the basis of whistler wave interactions. This
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confirms that whistler waves, the normal modes of EMHD
model, play a crucial role in power cascade mechanism in a
turbulent state.

Thus, to conclude we feel that ‘‘whistler effect’’ !whis-
tler wave interactions influencing the power cascade mecha-
nism" is present in EMHD turbulence. However, the mani-
festations of this effect is reflected largely in the subtle
properties of cascade like anisotropy, etc., rather than on
gross property like spectral index !where the effect seems to
be either small or negligible". In this context it is worthwhile
to point out that a recent numerical work on MHD turbu-
lence also seems to rule out any modification of the spectral
index due to the ‘‘Alfvén effect,’’ which was erstwhile
widely believed to exist.14 However, the dynamical develop-
ment of spectral anisotropy, mediated by Alfvén waves in-
teraction, in the presence of external magnetic field is well
established. Thus, it is apparent that though the normal
modes do indeed play a crucial role in power cascade mecha-
nism, the ramification of this is not seen on gross properties
like the power spectral index.
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