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Executive Summary 

This study analyzes socioeconomic and built environment predictors of pedestrian- and bicycle-involved crashes in the 

six-county jurisdiction of the Southern California Association of Governments (SCAG). As the nation’s largest 

metropolitan planning organization, with a per-capita pedestrian fatality rate higher than the state and national 

averages, SCAG has a unique responsibility to improve active transportation conditions. SCAG plays a direct role in 

allocating a large portion of statewide Active Transportation Program (ATP) funding, which has the potential to prevent 

injuries and deaths, reduce automobile use, and promote environmental justice more broadly. By providing clear 

evidence that high-poverty communities experience a disproportionate share of crashes, this report demonstrates the 

importance of the ATP and provides justification for its expansion. 

I developed six linear regression models to identify predictors of pedestrian- and bicycle-involved crashes at three 

geographic scales. I considered 14 possible predictors, including built environment factors such as schools and 

commercial land use, transportation variables such as transit stops and vehicle miles traveled, density variables such 

as the number of people and jobs, and socioeconomic variables such as poverty rate and Hispanic/Latino population 

share. Using geographic information systems (GIS) software, I aggregated pedestrian- and bicycle-involved crashes and 

predictor variables to all census tracts in the SCAG region, as well as ¼ mile buffers around the region’s Metrolink 

commuter rail stations and Los Angeles County’s Metro rail and busway stations. Using statistical software, I 

conducted each regression to determine the relationship between each crash type and each predictor variable while 

controlling for the remaining predictor variables. 

My regression results suggest that more vulnerable communities have less safe conditions for walking and biking, 

especially at the census tract level. The tract-level models account for 57% of the variation in pedestrian crashes and 



 

4 
 

49% of the variation in bicycle crashes, with all predictor variables statistically significant at a 95% confidence level. A 

higher poverty rate and Hispanic/Latino population share predict more bicycle and pedestrian crashes per tract, and a 

higher Black/African-American population share also predicts more pedestrian crashes per tract. The number of major 

transit stops per tract is the top predictor of pedestrian crashes and third-strongest predictor of bicycle crashes. These 

trends are less consistent in the station-level regression results, yet poverty is still one of the strongest predictors of 

both crash types near Metrolink stations and bicycle crashes near Metro stations. At the Metro station level, vehicle-

miles traveled is also one of the strongest predictors of both crash types. 

Based on my findings, I recommend expanding the required 25% allocation of ATP funds to disadvantaged communities 

as defined statewide, as well as prioritizing projects that would enhance connectivity, increase visibility, and reduce 

automobile speeds near major transit stops. I also recommend collecting additional data on bicycle and pedestrian 

activity, either by purchasing existing data or using automated counters in high-crash locations. For future research, I 

suggest using more advanced statistical techniques such as cluster analysis, incorporating bike lane and sidewalk data 

in the analysis, and conducting field audits and community workshops. 
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Introduction 

Traffic collisions are just one example of the negative externalities resulting from motorized transportation, along with 

noise, congestion, localized air pollution, and greenhouse gas emissions. Although some crashes involve only non-

motorized modes, most pedestrian and bicycle crashes involve automobiles and other large motorized vehicles (Tuckel et 

al., 2014). The large speed and mass differential between motor vehicles and non-motorized modes make pedestrian-

automobile and bicycle-automobile collisions particularly dangerous. For this reason, pedestrians, bicyclists, and other 

travelers not shielded by a heavy vehicle are “vulnerable road users”, with children, the elderly, and people with 

disabilities particularly at risk (Organization for Economic Cooperation and Development, 1998). Racial and economic 

inequality exacerbate these vulnerabilities, as low-income people and people of color tend to have limited automobile 

access and therefore rely on other modes of travel including walking and biking (Blumenberg, 2017). Additionally, low-

income people and people of color tend to have worse access to medical care (National Research Council, 2004), which 

makes survival and recovery from crashes more difficult. Therefore, unsafe conditions for active transportation worsen 

racial and economic inequality. 

While reducing pedestrian and bicycle collisions should be a priority everywhere, reducing them in Southern California 

has unique importance. In 2016, California had the 10th most pedestrian fatalities per resident in the United States. 

The counties of Los Angeles, San Diego, and Orange had the highest number of pedestrian fatalities in the state 

(Retting, 2018). The Southern California Association of Governments (SCAG), the largest Metropolitan Planning 

Organization in the US, guides planning for Los Angeles and Orange counties, along with the counties of Riverside, San 

Bernardino, and Ventura. As Figure 1 shows, Los Angeles, Riverside, and San Bernardino counties had higher 

pedestrian fatality rates than California overall, and all SCAG counties except Ventura had higher pedestrian fatality 

rates than the national average. 
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Figure 1: Pedestrian fatalities per 100,000 population in 2016 (Governors Highway Safety Association, 2018, 

California Highway Patrol, 2016, US Census Bureau, 2016) 

On the surface, the relatively low per-capita fatality rates of Orange and Ventura counties appear to be success stories, 

but they may simply reflect lower rates of walking and higher rates of driving, which California transportation policy is 

increasingly focused on changing. In accordance with federal and state requirements, SCAG prepares a Regional 

Transportation Plan and Sustainable Communities Strategy (RTP/SCS) every four years outlining a path to compliance 

with state and federal environmental goals. SCAG’s 2016 RTP/SCS allocates $12.9 billion to improve active 

transportation, anticipating a 28% increase in walking and 71% increase in biking throughout the region by 2040 
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(Southern California Association of Governments, 2016a). Achieving these lofty goals will require officials to prioritize 

the most efficient and equitable active transportation projects and build the necessary political coalitions to complete 

these projects. This study supports both objectives by identifying high-collision areas, ranking which factors predict 

crashes, and demonstrating that these areas tend to be low-income communities and communities of color. 
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Literature Review 

Using a variety of methods, researchers in public health, transportation planning, and other fields have investigated 

where, when, and how active transportation collisions occur. These studies often use collision data gathered by law 

enforcement agencies, which generally omit sensitive information such as a victim’s race, ethnicity, income, and 

residence. However, by linking collision location to various demographic and built environment characteristics, these 

studies have revealed higher pedestrian and bicycle collision rates in low income communities and communities of color, 

even when controlling for factors connected to higher pedestrian and bicycle activity levels. Although residents in these 

areas are not necessarily involved in these collisions, living in an area that is more dangerous for pedestrians and 

cyclists results in a lower quality of life. This represents a clear example of an environmental injustice, as lower income 

people and people of color are disproportionately harmed by unsafe conditions for walking and biking. 

Spatial and Socioeconomic Variation in Crash Frequency 

To determine which areas are most in need of safety improvements, numerous researchers have examined the 

relationship between pedestrian and/or bicycle collisions and characteristics of the surrounding area. Generally, these 

studies aggregate the number of bicycle and/or pedestrian-involved collisions to a defined spatial area and construct a 

multivariate regression model to determine which built environment and demographic factors most strongly predict 

collision frequency. Many of these studies use ordinary least squares (OLS) linear regression (Rivara and Barber, 1985, 

LaScala et al., 2000, Loukaitou-Sideris et al., 2007, Zhu and Lee, 2008, Weir et al., 2009, Sebert Kuhlmann et al. 2009), 

while several others use a negative binomial regression to account for the high number of census tracts with low 

numbers of collisions (Graham and Glaister, 2003, Kim et al., 2006, Chen et al., 2011, Pharr et al., 2013, Ukkusuri et 
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al., 2012, Noland et al., 2013). Other regression methods include generalized linear models (GLM) (David and Rice, 

1994, Wedegama et al., 2006), Poisson models (Cottrill and Thakuriah, 2010), and the M-Plus 6.11 model (Yu, 2014).  

Ten of these studies focus only on pedestrian collisions, while four focus on both pedestrian and bicycle collisions and 

two focus only on collisions involving child pedestrians, with the time of observations ranging from one to seven years. 

Eleven use the United States census tract as the unit of analysis, while the remaining five studies use either 

neighborhoods, census block groups, British enumeration districts, British wards, or 0.1 square-mile grids as the unit of 

analysis. Thirteen studies analyzed collisions in the United States, two studies analyzed collisions in the United 

Kingdom, and one study analyzed collisions in Montreal, Canada. 

Multiple studies revealed population, population density, employment density, traffic volume, land use, race, ethnicity, 

age, income, commute mode share, vehicle ownership, and street network design as significant predictors of the number 

of pedestrian and/or bicycle collisions in an area. A higher population often predicts a higher number of collisions 

(LaScala et al., 2000, Kim et al., 2006, Weir et al., 2009), whereas population density has a less clear relationship with 

collision frequency. Most studies examining population density have found a positive association between density and 

collision frequency (Graham and Glaister, 2003, Wedegama et al., 2006, Sebert Kuhlmann et al., 2006, Loukaitou-

Sideris et al., 2007, Ukkusuri et al., 2012, Yu, 2014), although some have found the opposite (Pharr et al., 2013, Noland 

et al., 2013).This suggests a non-linear relationship between population density and collision frequency, in which 

moderate densities result in more pedestrian and bicycle activity and in turn more collisions, but higher densities are 

associated with slower automobile speeds and more safety measures. The latter trend is consistent with research 

demonstrating that there is “safety in numbers” when walking or biking, meaning more pedestrians and cyclists 

enhance driver awareness and safety (Jacobsen, 2003). Additionally, higher densities may predict fewer collisions 

because drivers in high-density areas drive slower and less often than drivers in low-density suburbs (Ewing and 

Kreutzer, 2006). This also underscores the difficulty of analyzing collision predictors when activity levels are not known. 
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Other characteristics that imply more pedestrian and bicycle activity have a more consistent positive relationship with 

collision frequency based on previous research. Higher employment density, measured as the number of jobs in a given 

area, frequently predicts higher collision rates (Graham and Glaister, 2003, Loukaitou-Sideris et al., 2007, Weir et al., 

2009, Noland et al., 2013). The percentage of land use classified as commercial, representing locations where customers 

would be expected to walk and bike in addition to workers, also predicts higher collision frequency (David and Rice, 

1994, Kim et al., 2006, Wedegama et al., 2006, Loukaitou-Sideris et al., 2007, Weir et al., 2009, Ukkusuri et al., 2012). 

Other land use characteristics are predictors of higher pedestrian and bicycle collision rates, including the number of 

transit stops (Ukkusuri et al., 2012, Pharr et al., 2013, Yu 2014) and the number of schools (Cottrill and Thakuriah, 

2010, Pharr et al., 2013). Road network characteristics also play an important role, as a higher number of intersections 

predicts more collisions (Graham and Glaister, 2003, Wedegama et al., 2006, Yu, 2014), as does a higher proportion of 

streets that are one-way (David and Rice, 1994, Pharr et al., 2013). Automobile traffic volume, generally measured as 

average annual daily traffic (AADT), predicts more collisions according to several studies (LaScala et al., 2000, 

Loukaitou-Sideris et al., 2007, Weir et al., 2009, Cottrill and Thakuriah, 2010). Transportation habits also play a role, 

with a higher walking commute mode share predicting more collisions (Sebert Kuhlmann et al., 2009, Cottrill and 

Thakuriah, 2010) and a higher vehicle ownership rate predicting fewer collisions (Cottrill and Thakuriah, 2010, Noland 

et al., 2013). 

Although many built environment characteristics influence spatial variation in pedestrian and bicycle collisions, they 

have not overshadowed the role of socioeconomic characteristics in the literature. The most commonly reported social 

predictor of pedestrian and bicycle collisions is the poverty rate, which tends to be higher in areas with more collisions 

(Rivara and Barber, 1985, Zhu and Lee, 2008, Weir et al., 2009, Yu, 2014). Similarly, a higher median household income 

predicts lower collision frequency (Rivara and Barber, 1985, Pharr et al., 2013). Age is also an important factor - a 

higher proportion of residents above age 65 predicts fewer collisions (Weir et al., 2009, Chen et al., 2011, Ukkusuri et 
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al., 2012), while a higher proportion of children predicts fewer collisions in two studies (LaScala et al., 2000, Pharr et 

al., 2013) but more collisions in one study (Ukkusuri et al, 2012). Race and ethnicity also predict collisions, as a higher 

percentage of residents identifying as white predicts fewer collisions (Rivara and Barber, 1985, Yu, 2014), while a 

higher percentage of residents identifying as Hispanic or Latino predicts more collisions (Loukaitou-Sideris et al., 2007, 

Zhu and Lee, 2008, Pharr et al., 2013). The significance of demographic factors in predicting collisions shows that 

collision risk extends beyond physical factors and that disadvantaged populations are generally more vulnerable to 

collisions. 

Possibilities and Limitations of Crash Reduction Measures 

To address spatial variation in collisions, researchers have emphasized the role of travel patterns, land use, and 

infrastructure, and variations in these characteristics across space may explain inequity in collision risk. Litman (2011) 

estimates that a 1% reduction in vehicle-miles traveled should reduce the total number of crashes (including those only 

involving automobiles) by roughly 1.7%. Automobile speed is also a risk factor, as higher speeds result in more 

pedestrian injuries and fatalities (Ewing and Kreutzer, 2006). In addition to reducing posted speed limits, planners can 

lower vehicle speeds and reduce traffic collisions by changing the street environment. Narrowing lanes can reduce 

traffic collisions by forcing drivers to behave less aggressively, while reducing the number of lanes allows slower drivers 

to establish prevailing speeds (Ewing and Kreutzer, 2006). Infrastructure such as stop signs, roundabouts, and other 

traffic calming measures can also limit collisions by reducing vehicle speeds, with single-lane roundabouts representing 

the most effective upgrade (Retting et al., 2003).  

Measures that separate pedestrians from automobiles are also important, with sidewalks, pedestrian-only signal 

phases, and pedestrian refuge islands most effective in reducing collisions (Retting et al., 2003). Researchers have also 

demonstrated that bicycle facilities such as dedicated lanes and physically-separated “cycletracks” also reduce bicycle 
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collisions substantially (Reynolds et al. 2009). Better lighting and signage also reduces accidents by increasing 

pedestrian and cyclist visibility (Retting et al. 2003, Reynolds et al. 2009). Redesigning streets and installing 

infrastructure is expensive, and studies have shown lower income neighborhoods often have less complete 

infrastructure than higher income neighborhoods (Lowe, 2016). 

Although investing in sidewalks, bike lanes, and other infrastructure in communities could prevent injuries and deaths, 

some researchers have been critical of the implementation of traffic safety infrastructure. Li and Joh (2017) find that 

investments in both mass transit and bicycle infrastructure contribute to rising property values, which they argue 

represents a benefit for cities investing in enhanced infrastructure. Yet McClintock (2017) calls the unintended 

consequences of similar investments in sustainability “ecogentrification”, describing bike lanes, urban gardens, and 

similar public amenities as “cultural capital that a sustainable city's growth coalition in turn valorizes as symbolic 

sustainability capital used to extract rent and burnish the city's brand at larger scales.” Conversely, Flanagan et al. 

(2016) raises the concern that rising incomes and property values cause, rather than result from, bicycle infrastructure 

investment. Comparing infrastructure and demographics across Chicago and Portland, they find that non-gentrifying 

neighborhoods receive less bicycle infrastructure than gentrifying neighborhoods with similar characteristics (Flanagan 

et al. 2016). 

Other researchers have described similar dynamics at a local scale. Focusing specifically on a bikeway project in a 

gentrifying neighborhood in Portland, Lubitow and Miller (2013) demonstrate that many transportation officials view 

infrastructure in value-neutral terms, and that this emphasis on expertise encourages top-down planning and fosters 

resentment among some residents. While some research has offered further community engagement as a solution 

(Lubitow et al. 2016), other scholars have shown that the disconnect between active transportation advocates and their 

supposed beneficiaries reflects a much deeper problem in transportation advocacy of ignorance and perpetuation of 

racism (Lugo 2016). Additionally, bicycle advocates in the San Francisco Bay Area argued in the 1990s that 
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infrastructure would promote economic growth, which Stehlin (2015) claims foreshadowed gentrification in the region. 

Together, these studies show that improving equity in active transportation requires more than infrastructure. Active 

transportation planners must ensure robust community participation in any project and must support measures to curb 

displacement near new infrastructure. 
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Research Design 

Project Overview 

I used a quantitative approach to investigate active transportation safety disparities in the SCAG region. Using Esri’s 

ArcGIS software, I assembled collision, built environment, and socioeconomic data for the SCAG region’s 3,913 census 

tracts, 108 Los Angeles County Metro rail and busway station areas, and 54 Metrolink commuter rail station areas. To 

determine how strongly these built environment and socioeconomic factors predict pedestrian and bicycle-involved 

crashes at each geographic scale (census tract, Metro station area, and Metrolink station area), I created six ordinary 

least squares (OLS) linear regression models. This also allowed me to control for factors that predict pedestrian and 

bicycle activity while comparing the relationship between crash frequency, poverty, race, and ethnicity. I focus on 

census tracts as well as station areas to determine if there are specific risk factors near rail stations, which are 

expanding in number across the region. 

Dependent Variables 

This study analyzes six dependent variables, corresponding to each of the six regression models - pedestrian-involved 

crashes per census tract, bicycle-involved crashes per census tract, pedestrian-involved crashes within ¼ mile of a Metro 

rail or busway station, bicycle-involved crashes within ¼ mile of a Metro station, pedestrian-involved crashes within ½ 

mile of a Metrolink commuter rail station, and bicycle-involved crashes within ½ mile of a Metrolink station. These 

point data were obtained from the California Highway Patrol (CHP)-maintained Statewide Integrated Traffic Records 

System (SWITRS) and geocoded UC Berkeley’s Transportation Injury Mapping System (TIMS) for the years 2005 to 

2014. All pedestrian or bicycle-involved crashes in the SCAG region during this period were included in the census tract 
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models. All six dependent variables had a unimodal distribution and a positive skew, which I addressed by performing a 

log transformation of each dependent variable before conducting the regressions. As many tracts and station areas 

experienced zero collisions during the study period, and the logarithm of zero is undefined, I took the natural log of the 

number of crashes plus one. 

Although there were 3,956 census tracts in the SCAG region in 2012, I deemed 43 tracts unsuitable for the regression 

models, leaving a total of 3,913 tracts. These include 32 tracts with less than 100 residents, 7 tracts for which poverty 

rate could not be determined by the Census Bureau and 3 tracts with no residents classified as workers. I also removed 

the census tract containing Los Angeles City Hall, as the LEHD data mistakenly classified all employees of the City of 

Los Angeles as working at City Hall. 

In the Metro and Metrolink station-level models, I restricted the data to the years 2013-2014, as no new stations were 

opened during those years. I removed all Metro Orange and Silver Line stops that were not located along the separated 

busway, including Orange Line stops in Warner Center and Silver Line stops in San Pedro and Downtown Los Angeles. 

I also removed the Civic Center / Grand Park station, as it contains Los Angeles City Hall and thus distorts 

employment data as mentioned in the previous paragraph. For Metrolink, I removed all stations without weekday 

service from the analysis, excluding those with service only on weekends or during special events. 

Independent Variables 

I examined 15 independent variables as described in Table 1 and included 14 of them in each tract-level model and 13 

in each station-level model. I excluded the percent of workers commuting by bicycle from the three pedestrian crash 

models and I excluded the percentage of workers commuting by walking or public transit from the three bicycle crash 

models. At the station area level, population and population density are redundant as each observation is a circle, with 
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a radius of ¼ mile (for Metro stations) or ½ mile (for Metrolink stations). Therefore, I excluded total population from the 

four station area models. 

Table 1: Independent variables in analysis 

Independent 

Variable 
Source Geography Category 

Number of 

intersections 

SCAG 2012 RTP/SCS Point Exposure 

Number of K-12 

schools 

California School Campus 

Database (2016) 

Point Exposure 

Percent of land use 

classified as 

commercial 

SCAG 2012 RTP/SCS Polygon (Parcel) Exposure 

Number of major 

transit stops 

SCAG 2012 RTP/SCS Point Exposure 

Vehicle-miles 

traveled 

Internal SCAG travel 

model (2016) 

Polyline (Road 

Segment) 

Exposure 

Number of jobs Longitudinal Employer - 

Household Dynamics 

(2012) 

Point Exposure 

Total population* American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 
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Population density American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 

Percent of 

households with 

child under 18 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 

Percent of residents 

over 65 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 

Percent of workers 

commuting by 

walking or public 

transit** 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 

Percent of workers 

commuting by 

bicycle*** 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Exposure 

Percent of residents 

identifying as Black 

or African-American 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Environmental 

Justice 

Percent of residents 

identifying as 

Hispanic or Latino 

American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Environmental 

Justice 

Poverty rate American Community 

Survey 2012 5-Year 

Estimates 

Polygon 

(Census Tract) 

Environmental 

Justice 

*tract-level models only   **pedestrian crash models only  ***bicycle crash models only 
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Although my crash data spans 2005 to 2014, SCAG data is generally available in 4-year increments corresponding with 

the RTP/SCS cycle. For that reason, 2008 and 2012 are the only years in which data is available within the crash data 

timespan. Although 2008 is closer to the center of the crash data timespan, I chose to use 2012 data wherever possible, 

as 2008 represents an outlier due to the impact of the Great Recession, especially on the number of jobs. I used 2016 

data for schools and vehicle-miles traveled as 2012 data for these variables was not readily available. 

I used the ArcGIS spatial join feature to link these variables to each census tract and station-area buffer. This was 

straightforward for point data, but more complicated for other data types. For vehicle-miles traveled polyline data, I 

used the “Feature to Point” tool to convert each road segment into its midpoint before joining each midpoint to the 

corresponding geographic unit. For percent of land use classified as commercial, I filtered out non-commercial land uses 

from SCAG’s 2012 existing land use parcel-level dataset. After intersecting these parcels with the census tracts or 

station buffers, I divided the total area of commercial land use by the total area of the tract or buffer to obtain the 

proportion of commercial land use. 

As American Community Survey data exist at the census tract level, I allocated these data to station buffers 

proportionally according to the area of overlapping census tracts. To estimate the population within each station buffer, 

I multiplied the population of each overlapping census tract by the proportion of the tract inside the buffer and added 

the resulting populations. To estimate ratio data such as population density and commute mode, I multiplied each 

census tract’s ratio by the proportion of the buffer covered by the census tract. These proportional allocation methods 

assume that the population within each census tract is uniform and thus may differ from the actual station-area 

characteristics. 

Many of the independent variables are positively skewed, and as a result I took the natural logarithm of these data 

(plus one, as the logarithm of zero is undefined) before conducting the regression. At the census tract level, all variables 
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are positively skewed except four socioeconomic characteristics: under 18 population share, over 65 population share, 

Hispanic/Latino population share, and poverty rate. At the Metro and Metrolink station levels, the same variables were 

positively skewed except the number of intersections. However, I only used log transformations for my non-percent 

variables to facilitate interpretation of the regression results. 

Limitations 

My project has several limitations, including issues with data availability, data accuracy, and GIS analysis. The 

“‘Exposure” variables identified in Table 1 are rough proxies for pedestrian and bicycle activity, and more accurate data 

on pedestrians and bicycles would allow me to differentiate between activity levels and safety levels. In addition, the 

SWITRS data only includes injuries which were reported to the authorities. Therefore, injuries affecting people fearful 

of the police, such as undocumented immigrants, may be missing from the SWITRS data. As I mentioned previously, I 

used 2016 data on the vehicle-miles traveled and the number of schools in each unit of analysis, unlike other 

independent variables which use 2012 data. Although traffic patterns and school locations were likely similar four years 

earlier, using 2016 data may underestimate the influence of these two variables on crash frequency. 
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Findings and Analysis 

Crashes by Census Tract 

Dependent Variables 

Table 2 shows descriptive statistics for pedestrian-involved and bicycle-involved collisions at the census tract level 

between 2005 and 2014. While more pedestrian collisions occurred than bicycle collisions during that period, their 

totals, medians, means, and standard deviations were similar. For both crash types, the mean number of crashes per 

census tract exceeded the median, suggesting a positively-skewed distribution. 

 

 

Table 2: Descriptive statistics for crashes by census tract 

Variable Total Minimum Maximum Median Mean 

Standard 

Deviation 

Pedestrian-involved 

crashes 64,692 0 294 12 17 17 

Bicycle-involved crashes 55,897 0 256 10 14 15 

 

  



 

23 
 

Figures 2 and 3 show the distribution of pedestrian-involved crashes and bicycle-involved crashes, respectively, at the 

census tract level. These graphs confirm the positive skew suggested by each distribution’s mean and median, and also 

reveal unimodal distributions, as the majority of the 3,913 census tracts experienced between 1 and 20 collisions across 

the 10-year period.  

 

 

 

 

Figure 2: Histogram of pedestrian-involved crashes 

by census tract, 2005-2014 

 

 

 

Figure 3: Histogram of bicycle-involved crashes by 

census tract, 2005-2014 



 

 

Figures 4 and 5 show the distribution across the region of pedestrian- and bicycle-involved crashes, respectively. Census 

tracts are classified by quintile, with nearly all top 20% collision tracts in the most urban portions of the six SCAG 

counties for both crash types. Bicycle-involved crashes are somewhat more concentrated in urban areas than 

pedestrian-involved crashes. 

 

 

 

Figure 4: Map of pedestrian-involved crashes by 

census tract, 2005-2014 

 

 

Figure 5: Map of bicycle-involved crashes by census 

tract, 2005-2014 

 

 



 

 

Independent Variables 

Table 3 includes descriptive statistics for the 12 independent variables. Most variables fluctuate greatly between tracts 

and appear to have a positive skew, as indicated by the standard deviation and mean exceeding the median. 
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Table 3: Descriptive statistics for independent variables by census tract 

Variable Total Minimum Maximum Median Mean Standard Deviation 

Intersections 461,792 0 2230 90 118 127 

Schools 4,204 0 11 1 1 1 

Commercial land use 

share N/A 0% 72% 6% 8% 8% 

Stops 157,608 0 1,308 23 40 64 

Vehicle-miles traveled 175,000,000 0 677,676 31,597 44,628 49,502 

Jobs 6,711,608 1 77,047 722 1,715 3,686 

Population 18,000,000 101 22,123 4,403 4,613 1,875 

Population per square 

mile N/A 0.34 112,691 7,892 10,160 9,763 

Under 18 population 

share N/A 0 64% 18% 18% 6% 

Over 65 population share N/A 0 85% 10% 12% 8% 

Black/African-American 

population share N/A 0 93% 3% 6% 11% 

Hispanic/Latino 

population share N/A 0 100% 40% 44% 28% 

Poverty rate N/A 0 92% 13% 16% 12% 

Combined walking and 

transit commute mode 

share N/A 0 89% 5% 8% 10% 

Bicycle commute mode 

share N/A 0 20% 0% 1% 1% 
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Regionwide Crash Predictors 

Pedestrian-Involved Crash Predictors 

Table 4 displays the results of the linear regression model for pedestrian collisions at the census tract level. As the R2 of 

0.5673 indicates, approximately 57% of the variation in collision frequency across census tracts can be explained by the 

independent variables. All independent variables were statistically significant crash predictors at a 0.05 significance 

level. All independent variables predicted an increase in collision frequency except for the percent of residents below age 

18 and above age 65, which is consistent with past research (LaScala et al., 2000, Weir et al., 2009, Chen et al., 2011, 

Ukkusuri et al., 2012, Pharr et al., 2013). 

Whereas the unstandardized coefficients show how a 1-unit increase in the independent variable would change the 

number of crashes per tract, the standardized (beta) coefficients show how many standard deviations (SD) in crashes 

per tract a 1-SD increase in the independent variable would cause. Therefore, the standardized coefficients allow for 

comparison between independent variables. Based on this, the top three pedestrian collision predictors at the census 

tract level are the number of transit stops, the population per square mile, and the poverty rate. The predictive power of 

transit stops may simply result from high transit availability in areas with more walking, but it also suggests that 

motorists are colliding with transit riders on their way to the stop. Population density had a stronger impact on crash 

frequency than total population, which likely reflects conventional wisdom that denser areas have more pedestrian 

activity. The strong relationship between poverty and pedestrian crash frequency underscores that low income 

communities are disproportionately harmed by unsafe traffic conditions. This relationship’s persistence despite so many 

control variables implies high-poverty communities are more likely to have higher rates of pedestrian activity for non-

work trips, and/or unsafe behavior and infrastructure is more prevalent in high-poverty communities. 
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Table 4: Regression results for pedestrian-involved crashes by census tract 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections (natural log) 0.0700 0.0257 2.73 0.006 0.0599 

Number of schools (natural log) 0.1066 0.0207 5.14 0.000 0.0601 

Commercial land use share  0.0122 0.0016 7.54 0.000 0.1074 

Major transit stops (natural log) 0.1676 0.0085 19.67 0.000 0.2637 

Vehicle-miles traveled (natural log) 0.0657 0.0080 8.17 0.000 0.1026 

Jobs (natural log) 0.1260 0.0119 10.56 0.000 0.1641 

Population (natural log) 0.1217 0.0323 3.76 0.000 0.0595 

Population per square mile (natural log) 0.1603 0.0135 11.88 0.000 0.2400 

Under 18 population share -0.0196 0.0023 -8.34 0.000 -0.1258 

Over 65 population share -0.0033 0.0016 -2.05 0.040 -0.0273 

Combined walking and transit commute 

mode share 0.0091 0.0015 6.24 0.000 0.0942 

Black/African-American population share  0.0070 0.0010 7.36 0.000 0.0835 

Hispanic/Latino population share 0.0045 0.0005 8.50 0.000 0.1361 

Poverty rate 0.0139 0.0012 11.42 0.000 0.1787 

Number of observations 3,913 R-squared 0.5673 

Adjusted 

R-squared 0.5658 
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Bicycle-Involved Crash Predictors 

Table 5 displays the results of the linear regression model for bicycle collisions at the census tract level. As the R2 of 

0.4853 indicates, approximately 49% of the variation in collision frequency across census tracts can be explained by the 

independent variables. All independent variables were statistically significant crash predictors at a 0.01 significance 

level. All independent variables predicted an increase in collision frequency except for the percent of residents below age 

18, the percent of residents above age 65, the percent of Black or African-American residents, and total population. The 

negative association between bicycle crash frequency and young or old age is consistent with aforementioned findings on 

pedestrian-involved crashes, likely reflecting the tendency for young and old people to ride bikes less. According to the 

standardized coefficients, the top 3 crash predictors are population density, number of intersections, and number of 

transit stops. The predictive power of population density and the number of transit stops is consistent with pedestrian-

involved collisions, but the number of intersections stands out as influencing bicycle crashes far more than pedestrian 

crashes. This may suggest that Southern California drivers check for pedestrians more often than cyclists when turning 

at intersections. 
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Table 5: Regression results for bicycle-involved crashes by census tract 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections 

(natural log) 0.2803 0.0275 10.19 0.000 0.2411 

Number of schools (natural log) 0.0713 0.0225 3.17 0.002 0.0404 

Commercial land use share  0.0096 0.0018 5.45 0.000 0.0846 

Major transit stops (natural log) 0.1386 0.0092 15.01 0.000 0.2189 

Vehicle-miles traveled (natural 

log) 0.0992 0.0087 11.35 0.000 0.1555 

Jobs (natural log) 0.1522 0.0130 11.72 0.000 0.1991 

Population (natural log) -0.1396 0.0351 -3.98 0.000 -0.0685 

Population per square mile 

(natural log) 0.2968 0.0148 20.11 0.000 0.4461 

Under 18 population share -0.0110 0.0025 -4.38 0.000 -0.0709 

Over 65 population share -0.0059 0.0017 -3.42 0.001 -0.0499 

Bicycle commute mode share 0.0739 0.0084 8.81 0.000 0.1077 

Black/African-American 

population share  -0.0040 0.0010 -3.82 0.000 -0.0475 

Hispanic/Latino population 

share 0.0015 0.0006 2.56 0.010 0.0448 

Poverty rate 0.0086 0.0012 7.20 0.000 0.1112 

Number of observations 3,913 R-squared 0.4853 

Adjusted 

R-squared 0.4835 
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Crashes by Metro Rail/Busway Station 

Dependent Variables 

Table 6 shows descriptive statistics for crashes within ¼ mile of Metro rail and busway stations from 2013 to 2014. As 

the median is less than the mean and standard deviation for both crash types, the distribution appears to be positively 

skewed. 

 

 

 

Table 6: Descriptive statistics of crashes by Metro station, 2013-2014 

Variable Total Minimum Maximum Median Mean Standard Deviation 

Pedestrian-involved crashes 696 0 33 4 6 7 

Bicycle-involved crashes 672 0 25 4 6 6 
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Figures 6 and 7 are histograms of pedestrian- and bicycle-involved crashes, respectively, by Metro station area. They 

each confirm the positive skew implied by the descriptive statistics and reveal a unimodal distribution in which most 

stations experienced between 1 and 10 crashes during the two-year period. 

 

 

 

 

Figure 6: Histogram of pedestrian-involved crashes 

per Metro station, 2013-2014 

 

 

Figure 7: Histogram of bicycle-involved crashes per 

Metro station, 2013-2014 



 

 

Figures 8 and 9 show the geographic distribution of pedestrian- and bicycle-involved crashes, respectively, by Metro 

station. The highest crash rates were in Central Los Angeles, with stations in Long Beach and South Los Angeles also 

exhibiting high crash frequency. 

 

 

 

Figure 8: Map of pedestrian-involved crashes 

within ¼ mile of Metro stations, 2013-2014 

 

 

Figure 9: Map of bicycle-involved crashes within ¼ 

mile of Metro stations, 2013-2014 

 



 

 

Independent Variables 

Table 7 shows descriptive statistics for each independent variable within ¼ mile of a Metro station. Compared to the 

median census tract in the entire SCAG region, the median Metro station area has fewer intersections, fewer schools, a 

higher share of commercial land use, more transit stops, fewer vehicle-miles traveled, more jobs, more people per square 

mile, a lower percentage of people under 18 and over 65, and a higher percentage of people commuting by walking or 

transit, commuting by bicycle, identifying as Black or African-American, identifying as Hispanic or Latino, and living 

below the poverty line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

Table 7: Descriptive statistics of independent variables by Metro station area 

Variable Total Minimum Maximum Median Mean 

Standard 

Deviation 

Intersections 4,578 9 96 40 42 18 

Schools 60 0 8 0 1 1 

Commercial land use share N/A 0% 82% 16% 20% 17% 

Stops 13,522 4 1268 72 124 183 

Vehicle-miles traveled 3,238,795 4381 80,359 23,738 29,714 17,263 

Jobs 485,183 0 130,597 1,204 4,451 13,470 

Population per square mile N/A 0.00 50,156 11,549 13,150 8,651 

Under 18 population share N/A 0% 32% 15% 15% 7% 

Over 65 population share N/A 0% 29% 9% 10% 5% 

Combined walking and transit 

commute mode share N/A 0% 71% 15% 18% 13% 

Bicycle commute mode share N/A 0% 8% 1% 1% 1% 

Black/African-American population 

share N/A 0% 50% 6% 11% 12% 

Hispanic/Latino population share N/A 0% 99% 44% 49% 26% 

Poverty rate N/A 0% 66% 24% 24% 14% 
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Metro Station Crash Predictors 

Pedestrian-Involved Crash Predictors 

Table 8 displays the results of the linear regression model for pedestrian collisions within ¼ mile of Metro rail and 

busway stations in 2013 and 2014. As the R2 of 0.6324 indicates, approximately 63% of the variation in collision 

frequency across census tracts can be explained by this model. Unlike the tract-level model, most of the independent 

variables in this model are not statistically significant, even at a 0.1 significance level. Only vehicle-miles traveled and 

combined walking and transit commute mode share are significant at a 0.01 significance level. The number of jobs is a 

significant predictor at the 0.05 level, while the percent of residents below age 18 and the population per square mile 

are both significant at the 0.1 level. 

According to the standardized coefficients, the most influential predictors are the combined walking and transit 

commute mode share, vehicle-miles traveled, and the under 18 population share. The influence of commute mode is 

unsurprising yet intriguing, as it suggests that pedestrian crash victims near Metro stations are more likely to be on 

their way to work than victims in the region overall. Vehicle-miles traveled is also a much stronger predictor at the 

station level than at the tract level, implying that station-level traffic calming and even diversion of traffic onto 

alternate routes may reduce crashes. Finally, the influence of the under 18 population is surprising, especially as it 

predicts more crashes at the station level despite predicting fewer crashes at the tract level. This may be related to the 

demographics or habits of the station areas - either more youth live near the highest crash stations in Central and 

South LA, youth are more likely to walk near Metro stations than in other areas, or young pedestrians near Metro 

stations are less safe due to lacking infrastructure or education. Finally, although its positive association has a slightly 

more than 16% chance of being a result of random error, a higher Black or African-American population share predicts 
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more crashes near Metro stations, suggesting that station areas with high Black or African-American populations may 

have worse infrastructure compared to areas with other demographic characteristics. 

Table 8: Regression results for pedestrian-involved crashes by Metro station area 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections 0.0024 0.0034 0.68 0.496 0.0489 

Number of schools (natural 

log) 0.0620 0.1260 0.49 0.624 0.0347 

Commercial land use share  0.0068 0.0046 1.48 0.142 0.1278 

Major transit stops (natural 

log) -0.0033 0.0758 -0.04 0.966 

-

0.0036 

Vehicle-miles traveled 

(natural log) 0.4738 0.1259 3.76 0.000 0.3156 

Jobs (natural log) 0.1093 0.0528 2.07 0.041 0.1990 

Population per square mile 

(natural log) 0.0870 0.0513 1.70 0.093 0.1460 

Under 18 population share 0.0326 0.0179 1.83 0.071 0.2612 

Over 65 population share -0.0007 0.0140 -0.05 0.963 

-

0.0038 

Combined walking and 

transit commute mode share 0.0327 0.0091 3.59 0.001 0.4816 

Black/African-American 

population share 0.0078 0.0056 1.39 0.167 0.1095 

Hispanic/Latino population 

share -0.0056 0.0048 -1.18 0.242 

-

0.1616 
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Poverty rate -0.0084 0.0079 -1.06 0.293 

-

0.1293 

Number of observations 108 R-squared 0.6324 

Adjusted 

R-squared 0.5816 

 

Bicycle-Involved Crash Predictors 

Table 9 displays the results of the linear regression model for bike crashes near Metro stations. As the R2 of 0.6217 

indicates, approximately 62% of the variation in collision frequency across census tracts can be explained by the 

independent variables. Similar to the Metro station level pedestrian crash model, less than half of the independent 

variables were statistically significant at the 0.1 level. Vehicle-miles traveled was significant at the 0.01 level, while 

population density, commercial land use share, and poverty rate were significant at the 0.05 level. Additionally, the 

number of jobs was a statistically significant predictor at the 0.1 level. According to the standardized coefficients, the 

three most influential predictors were vehicle-miles traveled, population density, and the poverty rate. The impact of 

vehicle-miles traveled suggests that traffic calming or diverting as mentioned in the previous section would also help 

prevent bicycle crashes. The influence of the poverty rate also underscores the inequitable impact of bicycle safety in the 

region, and shows that this disparity exists even at the station level. 
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Table 9: Regression results for bicycle-involved crashes by Metro station area 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections -0.0024 0.0031 -0.77 0.445 -0.0558 

Number of schools (natural 

log) 0.1594 0.1174 1.36 0.178 0.0984 

Commercial land use share  0.9107 0.4234 2.15 0.034 0.1875 

Major transit stops 

(natural log) 0.1123 0.0715 1.57 0.119 0.1366 

Vehicle-miles traveled 

(natural log) 0.3481 0.1134 3.07 0.003 0.2555 

Jobs (natural log) 0.0883 0.0477 1.85 0.068 0.1772 

Population per square mile 

(natural log) 0.1215 0.0464 2.62 0.010 0.2247 

Under 18 population share -0.0005 0.0161 -0.04 0.971 -0.0051 

Over 65 population share -0.0044 0.0129 -0.34 0.733 -0.0283 

Bicycle commute mode 

share 0.0542 0.0464 2.62 0.010 0.2247 

Black/African-American 

population share 0.0002 0.0052 0.04 0.969 0.0031 

Hispanic/Latino population 

share 0.0002 0.0042 0.04 0.967 0.0056 

Poverty rate 0.0135 0.0062 2.17 0.032 0.2295 

Number of observations 108 R-squared 0.6217 

Adjusted R-

squared 0.5694 
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Crashes by Metrolink Station 

Dependent Variables 

Table 9 shows descriptive statistics for crashes within ½ mile of Metrolink stations in the SCAG region. As is true at the 

census tract and Metro station levels, the median is less than the mean and the standard deviation, implying a 

positively skewed distribution for both crash types. 

 

 

 

 

 

Table 10: Descriptive statistics for crashes by Metrolink station 

Variable Total 

Mini - 

mum 

Maxi - 

mum Median Mean 

Standard 

Deviation 

Pedestrian-involved crashes 325 0 35 4 6 7 

Bicycle-involved crashes 311 0 22 3 6 6 
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Figures 10 and 11 are histograms of pedestrian- and bicycle-involved crashes, respectively, near Metrolink stations. 

They confirm the positive skew of both distributions while revealing unimodal distributions in which most stations have 

had 0-10 of each collision type. 

 

 

 

Figure 10: Histogram of pedestrian-involved 

crashes per Metrolink station, 2013-2014 

 

 

 

Figure 11: Histogram of bicycle-involved crashes 

per Metrolink station, 2013-2014



 

 

Figures 12 and 13 show the geographic distribution of pedestrian- and bicycle-involved crashes, respectively, by Metro 

station. The highest crash rates were in Central Los Angeles, with stations in Long Beach and South Los Angeles also 

exhibiting high crash frequency. 

 

 

 

Figure 12: Map of pedestrian-involved crashes 

within ½ mile of Metrolink stations, 2013-2014 

 

 

Figure 13: Map of bicycle-involved crashes within ½ 

mile of Metrolink stations, 2013-2014 
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Independent Variables 

Table 10 shows descriptive statistics for each independent variable within ½ mile of a Metrolink station. Compared to 

the median census tract in the entire SCAG region, the median Metrolink station area has more intersections, fewer 

schools, a higher share of commercial land use, fewer transit stops, more vehicle-miles traveled, more jobs, fewer people 

per square mile, a similar percentage of people under 18, over 65, identifying as Black or African-American, and 

commuting by bicycle, and a higher percentage of people commuting by walking or transit, identifying as Hispanic or 

Latino, and living below the poverty line. 
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Table 11: Descriptive statistics of independent variables by Metrolink station area 

Variable Total Minimum Maximum Median Mean 

Standard 

Deviation 

Intersections 6,202 16 208 119 115 50 

Schools 42 0 3 0 1 1 

Commercial land use share N/A 1% 41% 12% 13% 8% 

Stops 7,427 2 1772 84 138 247 

Vehicle-miles traveled 3,225,414 4,413 174,434 54,960 59,730 30,868 

Jobs 286,143 2 61,550 2,936 5,299 9,647 

Population per square mile 306,104 87 14,717 5,385 5,669 3,570 

Under 18 population share N/A 4% 27% 18% 18% 5% 

Over 65 population share N/A 2% 26% 10% 10% 4% 

Combined walking and transit 

commute mode share N/A 0% 26% 6% 7% 5% 

Bicycle commute mode share N/A 0% 3% 0% 1% 1% 

Black/African-American 

population share N/A 0% 31% 3% 4% 5% 

Hispanic/Latino population share N/A 9% 93% 48% 51% 23% 

Poverty rate N/A 2% 44% 16% 17% 10% 
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Metrolink Station Crash Predictors 

Table 11 displays the results of the linear regression model for pedestrian collisions within ½ mile of Metrolink stations 

between 2013 and 2014. As the R2 of 0.7342 indicates, approximately 73% of the variation in collision frequency across 

census tracts can be explained by the independent variables. However, similar to the Metro station model, only a few of 

the independent variables are statistically significant at the 0.1 level. The number of schools and people per square mile 

are significant at the 0.05 level, while the poverty rate is significant at the 0.1 level. Population density is the most 

influential predictor according to the standardized coefficients, while the poverty rate and the number of schools are 

also influential. As seen in the other models, the influence of the poverty rate suggests that high-poverty station areas 

have more people walking out of necessity, less safe infrastructure, and less safe behavior on the part of drivers. The 

influence of schools is more surprising, but schools may be one of the few pedestrian-generating land uses near 

Metrolink stations, which tend to be in relatively low-density suburban areas. 
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Table 12: Regression results for pedestrian-involved crashes by Metrolink station 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections 0.0054 0.0033 1.66 0.104 0.2540 

Number of schools (natural 

log) 0.5440 0.2295 2.37 0.023 0.2572 

Commercial land use share  0.0123 0.0139 0.88 0.383 0.0919 

Major transit stops 

(natural log) 0.1444 0.1275 1.13 0.264 0.1510 

Vehicle-miles traveled 

(natural log) -0.0252 0.1982 -0.13 0.900 -0.0148 

Jobs (natural log) -0.1537 0.1101 -1.40 0.170 -0.1912 

Population per square mile 

(natural log) 0.3795 0.1667 2.28 0.028 0.3541 

Under 18 population share -0.0424 0.0333 -1.27 0.210 -0.1821 

Over 65 population share 0.0041 0.0262 0.16 0.875 0.0154 

Combined walking and 

transit commute mode 

share 0.0117 0.0248 0.47 0.640 0.0506 

Black/African-American 

population share -0.0154 0.0262 -0.59 0.560 -0.0733 

Hispanic/Latino population 

share -0.0081 0.0081 -0.99 0.328 -0.1714 

Poverty rate 0.0301 0.0171 1.76 0.087 0.2918 

Number of observations 54 R-squared 0.7342 

Adjusted R-

squared 0.6478 
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Bicycle-Involved Crash Predictors 

Table 12 displays the results of the linear regression model for bicycle-involved crashes within ½ mile of Metrolink 

stations. As the R2 of 0.6704 indicates, approximately 67% of the variation between stations can be explained by this 

model. Similar to the pedestrian-involved crash model for Metrolink stations, few independent variables are 

statistically significant, with population per square mile the only variable significant at the 0.01 and 0.05 levels. The 

under 18 population share, which is negatively associated with bicycle crashes, is the only remaining significant 

predictor at the 0.1 level, although the poverty rate is close to that threshold with a P-value of 0.103. The standardized 

coefficients imply that population density, under 18 population share, and poverty rate are the most influential 

predictors of bicycle-involved crashes near Metrolink stations. The influence of population density is not surprising, but 

the crash-reduction influence of the under 18 population share suggests that young people and their families are less 

likely to bike or less likely to be injured while biking in areas near Metrolink stations. Additionally, the influence of 

poverty rate demonstrates that even when controlling for bicycle activity predictors, high-poverty communities are more 

likely to experience disproportionate collision rates.  

 

 

 

 

 



 

46 
 

Table 13: Regression results for bicycle-involved crashes by Metrolink station 

Independent Variable 

Unstandardized 

(b) Coefficient Standard Error t P > |t| Beta 

Number of intersections  0.0019 0.0031 0.63 0.532 0.1071 

Number of schools (natural 

log) -0.0585 0.2164 -0.27 0.788 -0.0325 

Commercial land use share  0.0068 0.0130 0.53 0.602 0.0602 

Major transit stops 

(natural log) -0.0072 0.1214 -0.06 0.953 -0.0089 

Vehicle-miles traveled 

(natural log) 0.2645 0.1887 1.40 0.169 0.1830 

Jobs (natural log) -0.0719 0.1048 -0.69 0.496 -0.1052 

Population per square mile 

(natural log) 0.5278 0.1614 3.27 0.002 0.5788 

Under 18 population share -0.0541 0.0314 -1.72 0.093 -0.2729 

Over 65 population share -0.0166 0.0248 -0.67 0.508 -0.0728 

Bicycle commute mode 

share  0.2208 0.1479 1.49 0.143 0.1630 

Black/African-American 

population share -0.0165 0.0252 -0.66 0.515 -0.0924 

Hispanic/Latino population 

share -0.0014 0.0079 -0.18 0.858 -0.0355 

Poverty rate 0.0268 0.0161 1.67 0.103 0.3056 

Number of observations 54 R-squared 0.6704 

Adjusted R-

squared 0.5633 
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Policy Recommendations 

Although this study does not explicitly test a policy or planning intervention, it has several implications for more 

equitable bicycle and pedestrian planning. At the tract level, the analysis clearly demonstrates an injustice in the SCAG 

region’s transportation system, as high-poverty census tracts and predominately Hispanic or Latino tracts have 

endured a disproportionate share of the region’s pedestrian- and bicycle-involved crashes between 2005 and 2014. 

Additionally, I found the number of major transit stops to be the strongest predictor of pedestrian-involved crashes and 

the third strongest predictor of bicycle-involved crashes by census tract. Additionally, at the Metro station level, I found 

vehicle-miles traveled to be a strong predictor of both crash types. My recommendations therefore suggest prioritizing 

the most vulnerable communities in the funding process and incentivizing safety enhancements near bus stops and rail 

stations. I also propose ways to strengthen and expand this study in the future. 

California’s Active Transportation Program (ATP) provides the bulk of pedestrian and bicycle safety funding statewide. 

Created in 2013 through the passage of Senate Bill 99 and Assembly Bill 101, ATP consolidated the existing 

Transportation Alternatives Program, Bicycle Transportation Account, and statewide Safe Routes to School programs to 

fund infrastructure, education, enforcement, and planning to encourage active transportation (Caltrans, 2018). Figure 

14 shows the purpose and goals of ATP as illustrated by Caltrans (2015). 
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Figure 14: California Active Transportation Program purpose and goals. Source: Caltrans (2015) 
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Although the state government directs ATP fund allocation, metropolitan planning organizations (MPOs) including 

SCAG play an important role in the process. To obtain funds, public agencies must describe one or more projects in an 

application to the California Transportation Commission (CTC). The CTC scores each project and awards funds to those 

ranking highest until 50% of the ATP budget is used, with the caveat that 25% of program funds benefit disadvantaged 

communities (DACs) identified based on their median household income, exposure to pollution, and other factors 

(California Transportation Commission, 2018). Table 13 displays the CTC’s scoring criteria. 

Table 14: Statewide ATP scoring criteria. Source: California Transportation Commission (2018) 

Scoring Topic Plan 

Application 

Non-

infrastructure 

only application 

Infrastructure or Infrastructure/Non-infrastructure 

Applications 

Small Medium Large 

Benefit to 

Disadvantaged 

Communities 

(DAC) 

30 10 10 10 10 

Need 20 40 53 43 38 

Safety N/A 10 25 25 20 

Public 

Participation and 

Planning 

25 15 10 10 10 

Scope and Plan 

Consistency 

N/A 10 2 2 2 
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Implementation 

and Plan 

Development 

25 N/A N/A N/A N/A 

Context 

Sensitivity and 

Innovation 

N/A 5 N/A 5 5 

Transformative 

Projects 

N/A  N/A N/A 5 

Evaluation and 

Sustainability 

N/A 10 N/A N/A N/A 

Cost Effective N/A N/A N/A N/A 5 

Leveraging N/A N/A N/A 5 5 

Corps (0 or -5) N/A 0 0 0 0 

Past Performance 

(0 or -10) 

0 0 0 0 0 

 

The remaining projects are scored at the local or regional level, with 40% of ATP funds allocated to large MPOs 

including SCAG and 10% to jurisdictions outside of MPO territory. MPOs have the option to use the statewide 

evaluation criteria or develop their own application and scoring criteria, provided that 25% of the regional program’s 

funds benefit DACs. Senate Bill 99, which created the ATP, also has unique requirements for SCAG, most notably that 

each county’s transportation commissions must approve the final project list. For this reason, SCAG’s regional 

guidelines for the 2017 ATP (the most recent year available) use the statewide scoring criteria, but with an additional 
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10 points available to each project, allocated at the discretion of the county transportation commissions. The resulting 

list is then modified, if necessary, to include the highest scoring projects benefitting DACs if the 25% threshold is not 

met in the original project list (Southern California Association of Governments, 2016b). 

Prioritize Funding for Vulnerable Communities 

This study reinforces the importance of the required 25% allocation to DACs and provides justification for expanding 

this requirement. As Lowe et al. (2015) demonstrate, a community’s “equity advocacy capacity” often determines their 

likelihood of receiving public assistance for transportation projects. The 25% requirement acknowledges that DACs need 

additional support, particularly in the historically car-oriented SCAG region. Decades of overinvestment in high-speed 

automobile infrastructure are likely responsible for the unsafe walking and biking conditions in DACs, with the 

freeway-scarred Boyle Heights neighborhood as a particularly illustrative example (Breidenbach and Herrera, 2013). 

Environmental justice advocates emphasize the importance of rectifying these injustices by facilitating travel that is 

affordable and healthy, and this framework tends to favor active transportation investments (Creger et al., 2018). 

Unfortunately, according to local advocates, SCAG’s largest county missed an opportunity to prioritize active 

transportation in the Measure M expenditure plan by dedicating less than 5% of funds to these improvements (IIP and 

LACBC, 2016).  

Given the extent of active transportation needs in DACs, I recommend SCAG adopt stricter DAC funding requirements, 

ideally as part of the county-level supplemental project selection process. There are at least three ways SCAG could 

achieve this goal. One option would simply increase the required ratio of DAC to non-DAC projects from 25% to 35% or 

even 50%. Another option would maintain the existing 25% requirement but offer additional points to projects 

benefitting DACs. Finally, SCAG could maintain the 25% threshold while also requiring that 10% of the regional 

allocation go to the most disadvantaged communities as ranked by CalEnviroScreen. Finally, while it is important to 
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make funds available to the lowest-income communities, it is equally important to ensure that the funding and 

implementation process is led by the community itself. Residents may be concerned about traffic impacts, higher 

property values leading to displacement, and facilities designed to serve higher-income newcomers in and around a 

neighborhood. Therefore, I recommend preserving or enhancing the points awarded for projects demonstrating thorough 

public participation and planning. 

Enhance Safety near Major Transit Stops 

As the number of major transit stops is a strong predictor of pedestrian- and bicycle-involved crashes at the census tract 

level, I recommend enhancing the ATP guidelines with language and scoring criteria pertaining to first-and-last mile 

connections to bus stops and rail stations. Transit riders are pedestrians for at least a small portion of their trip, and 

given the sprawling urban form of the SCAG region, most transit-dependent riders likely walk a substantial distance to 

the nearest stop. Transit stops therefore generate pedestrians and force them to walk on unsafe roads throughout the 

region. Furthermore, unreliable and infrequent service pressures riders to run to bus stops if they fear being late, 

encouraging unsafe behavior at intersections and driveways. SCAG should therefore award extra points to projects that 

facilitate safe access to transit stops, especially by enhancing visibility at crosswalks. As vehicle-miles traveled is a key 

indicator of crash risk near Metro rail stations, I also recommend awarding extra points for projects that would reduce 

average vehicle speeds near stations, which would mitigate risks posed by high VMT near major arterials. 

Invest in Pedestrian and Bicycle Data Collection 

A major limitation in this study is the lack of clear pedestrian and bicycle data for the SCAG region, and therefore I 

recommend that SCAG obtain existing data or invest in automatic counters. Although publicly available pedestrian and 

bicycle count data exists for some neighborhoods, it is sparse, covers very limited time periods, and difficult to compare 
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to other count data. Automatic pedestrian and bicycle counters could provide a much more robust data source compared 

to what currently exists. Additionally, while the level of detail in the SWITRS data made this study possible, more 

detail on the survivors and victims of collisions, such as income, race, ethnicity, home location, and work location would 

allow researchers to study the impact of pedestrian and bicycle hazards on vulnerable communities more directly, 

rather than analyzing the demographics of the surrounding area. Therefore, I recommend advocating for the addition of 

standardized methods for collecting these data at crash locations. 

Incorporate New Data in Future Research 

In addition to bicycle and pedestrian activity data, other quantitative and qualitative data would enhance the impact of 

this project. Using the existing data, other statistical approaches such as negative-binomial regression could help verify 

the results of this study. Cluster analysis could also use the existing dataset to determine if certain combinations of 

predictor variables result in distinct crash rates. As my models already account for much of the spatial variation in 

crash frequency, incorporating data on sidewalk, bicycle facility, and pavement conditions could help determine the 

effectiveness of infrastructure improvements. Most importantly, researchers including Loukaitou-Sideris (2007) have 

emphasized the importance of “groundtruthing” quantitative studies with community-level input. Conducting field 

audits and participatory workshops with pedestrians and cyclists in the most vulnerable communities would provide a 

vital understanding of active transportation conditions in the region. 
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Appendix 

Appendix A: Tests of Multicollinearity  

Multicollinearity by Census Tract 

For my regression results to be valid, my independent variables must not exhibit a high amount of multicollinearity. As 

Table A1 shows, many of my independent variables are correlated with one another. The most correlated variable pairs 

at the census tract level are: population per square mile and combined walking and transit commute mode share (0.64) 

and poverty rate and combined walking and transit commute mode share (0.60). These correlations suggest some level 

of multicollinearity, yet a more systematic way to measure multicollinearity, known as the Variance Inflation Factor, 

reveals little cause for concern. 

Table A1: Correlation matrix of independent variables at census tract level 

 

Inter - 

sections Schools 

Commer 

- cial 

land use 

share 

Major 

transi

t stops 

Vehicle 

- miles 

travele

d Jobs 

Popul - 

ation 

Popul - 

ation 

per 

square 

mile 

Under 

18 popul 

- ation 

share 

Over 65 

popul - 

ation 

share 

Black / 

African - 

America

n popul - 

ation 

share 

Hispanic 

/ Latino 

popul - 

ation 

share 

Pov - 

erty 

rate 

Combined 

walking 

and 

transit 

commute 

mode 

share 

Bicycle 

commute 

mode 

share 

Inter - 

sections 1.00               

Schools 0.21 1.00              

Commer - 

cial land 

use share -0.19 -0.09 1.00             
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Transit 

stops 0.00 0.09 0.29 1.00            

Vehicle - 

miles 

traveled 0.57 0.16 -0.01 0.21 1.00           

Jobs 0.21 0.08 0.34 0.48 0.43 1.00          

Population 0.30 0.32 -0.09 0.02 0.21 0.10 1.00         

Population 

per square 

mile -0.41 -0.16 0.36 0.03 -0.32 -0.14 -0.05 1.00        

Under 18 

population 

share -0.03 0.20 -0.18 -0.13 -0.04 -0.15 0.26 -0.01 1.00       

Over 65 

population 

share 0.17 -0.09 -0.07 0.01 0.07 0.04 -0.21 -0.28 -0.49 1.00      

Black/ 

African - 

American 

population 

share -0.08 0.02 0.01 0.11 -0.02 -0.04 0.00 0.08 0.09 -0.10 1.00     

Hispanic / 

Latino 

population 

share -0.23 0.11 0.11 0.03 -0.11 -0.08 0.07 0.34 0.54 -0.48 -0.02 1.00    

Poverty 

rate -0.16 0.03 0.27 0.14 -0.11 -0.02 -0.04 0.47 0.25 -0.32 0.21 0.56 1.00   

Combined 

walking 

and 

transit 

commute 

mode 

share -0.26 -0.06 0.38 0.22 -0.15 0.03 -0.16 0.64 -0.08 -0.20 0.12 0.32 0.60 1.00  

Bicycle 

commute 

mode 

share -0.11 -0.03 0.12 0.07 -0.07 0.03 -0.01 0.19 -0.11 -0.11 -0.04 0.08 0.20 0.26 1.00 

 

The Variance Inflation Factor (VIF) measures the ratio of each variable’s variance alone to its variance in the regression 

model, and thus measures how multicollinearity impacts variance. Generally, a VIF greater than 5 suggests 
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multicollinearity as a cause for concern. As Table A2 shows, VIF is less than 5 for all independent variables, with a 

mean VIF of 2.16. This suggests multicollinearity is not a problem in this analysis. 

Table A2: Variance inflation factors of tract-level pedestrian crash regression model  

Variable VIF 1/VIF 

lnint 4.34 0.23 

lnpopdens 3.74 0.27 

pctlatino 2.35 0.42 

lnpctwalk 2.27 0.44 

lntotalpop 2.25 0.44 

lnjobs 2.22 0.45 

pctbelowpov 2.06 0.49 

pctunder18 2.05 0.49 

lnpctcomm 1.89 0.53 

pctover65 1.64 0.61 

lnstops 1.63 0.61 

lnvmt 1.42 0.70 

lnschools 1.23 0.81 

lnpctblack 1.18 0.84 

Mean VIF 2.16  
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Table A3: Variance inflation factors of tract-level bicycle crash regression model  

Variable VIF 1/VIF 

Lnint 4.26 0.23 

lnpopdens 3.81 0.26 

pctlatino 2.37 0,42 

lnpctbike 2.23 0.45 

lntotalpop 2.29 0.44 

lnjobs 2.03 0.49 

pctbelowpov 2.17 0.46 

pctunder18 2.09 0.48 

lnpctcomm 1.74 0.57 

pctover65 1.68 0.60 

lnstops 1.85 0.54 

lnvmt 1.38 0.72 

lnschools 1.34 0.75 

lnpctblack 1.29 0.78 

Mean VIF 2.18  
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Multicollinearity by Metro Station 

Table A3 shows the correlation matrix for the variables included in the Metro station level analysis. It shows that 

pedestrian crash rates and bicycle crash rates are highly correlated (0.75). Relationships between independent variables 

are less strong, although the number of jobs is correlated closely with the number of transit stops (0.75) and commercial 

land use share (0.62). The poverty rate is also strongly correlated with the combined walking and transit commute mode 

share (0.77). 

Table A4: Correlation matrix of independent variables at Metro station level 

 

Inter - 

sections Schools 

Commer 

- cial 

land use 

share 

Major 

transit 

stops 

Vehicle 

- miles 

traveled Jobs 

Popul - 

ation 

per 

square 

mile 

Under 

18 popul 

- ation 

share 

Over 65 

popul - 

ation 

share 

Combined 

walking 

and 

transit 

commute 

mode 

share 

Bicycle 

commut

e mode 

share 

Black / 

African - 

American 

popul - 

ation 

share 

Hispa

nic / 

Latino 

popul 

- ation 

share 

Poverty 

rate 

Inter - 

sections 1.00              

Schools 0.09 1.00             

Commer - 

cial land 

use share 0.15 -0.04 1.00            

Transit 

stops 0.28 0.18 0.40 1.00           

Vehicle - 

miles 

traveled 0.04 0.26 0.12 0.43 1.00          

Jobs 0.21 0.12 0.62 0.75 0.41 1.00         

Population 

per square 

mile 0.11 0.13 0.26 0.10 0.24 0.16 1.00        
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Under 18 

population 

share 0.10 0.11 -0.43 -0.36 -0.26 -0.49 0.11 1.00       

Over 65 

population 

share -0.19 -0.17 -0.00 0.21 0.17 0.23 -0.13 -0.18 1.00      

Combined 

walking 

and 

transit 

commute 

mode 

share 0.24 0.40 0.16 0.29 0.43 0.26 0.59 0.03 -0.22 1.00     

Bicycle 

commute 

mode 

share 0.01 -0.04 0.12 0.02 0.22 0.07 0.09 -0.14 -0.14 0.41 1.00    

Black / 

African – 

American 

population 

share 0.18 -0.05 -0.04 0.07 0.10 -0.07 -0.05 0.25 -0.01 -0.13 -0.18 1.00   

Hispanic / 

Latino 

population 

share 0.17 0.28 -0.33 -0.17 -0.07 -0.31 0.27 0.77 -0.34 0.39 0.06 -0.02 1.00  

Poverty 

rate 0.27 0.33 -0.05 0.14 0.24 0.01 0.36 0.35 -0.36 0.76 0.42 0.11 0.56 1.00 

 

Despite these strong correlations, the VIF tests suggest that the Metro-level bicycle and pedestrian regression models 

are both valid. Figure A4 shows the VIF from the pedestrian crash regression model, revealing a maximum VIF of 5.23 

and a mean VIF of 2.62. The VIFs for the bicycle regression model are generally lower, with a maximum of 4.99 and a 

mean of 2.26. 
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Table A5: Variance inflation factors of Metro station-level pedestrian crash regression model  

Variable VIF 1/VIF 

intersections 1.31 0.76 

lnpopdens 1.90 0.53 

pctlatino 4.83 0.21 

pctwalk 4.61 0.22 

lnjobs 2.37 0.42 

pctbelowpov 3.82 0.26 

pctunder18 5.23 0.19 

pctcomm 1.91 0.52 

pctover65 1.69 0.59 

lnstops 1.79 0.56 

lnvmt 1.80 0.56 

lnschools 1.28 0.78 

pctblack 1.59 0.63 

Mean VIF 2.62  
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Table A6: Variance inflation factors of Metro station-level bicycle crash regression model  

Variable VIF 1/VIF 

intersections 1.32 0.76 

lnpopdens 1.83 0.55 

pctlatino 4.52 0.22 

Pctbike 1.65 0.61 

lnjobs 2.28 0.44 

pctbelowpov 2.77 0.36 

pctunder18 4.99 0.20 

pctcomm 1.89 0.53 

pctover65 1.70 0.59 

lnstops 1.88 0.53 

lnvmt 1.72 0.58 

lnschools 1.31 0.77 

pctblack 1.57 0.64 

Mean VIF 2.26  
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Metrolink Station 

Table A5 shows the correlation matrix for the variables included in the Metrolink station level analysis. Among 

independent variables, population density is strongly correlated with the number of intersections (0.71), while the 

Hispanic/Latino population share is strongly correlated with the under 18 population share (0.72) and the poverty rate 

(0.66). 

Table A7: Correlation matrix of independent variables at Metrolink station level 

 

Inter - 

sections Schools 

Commer 

- cial 

land use 

share 

Major 

transi

t stops 

Vehicle 

- miles 

travele

d Jobs 

Popul - 

ation 

per 

square 

mile 

Under 

18 

popul - 

ation 

share 

Over 65 

popul - 

ation 

share 

Combin

ed 

walking 

and 

transit 

commu

te mode 

share 

Bicycle 

commu

te 

mode 

share 

Black / 

African 

- 

Americ

an 

popul - 

ation 

share 

Hispanic 

/ Latino 

popul - 

ation 

share 

Pov - 

erty rate 

Inter - 

sections 1.00          
  

  

Schools 0.45 1.00         
  

  

Commer - 

cial land 

use share 0.05 -0.03 1.00        
  

  

Transit 

stops 0.39 0.20 0.05 1.00       
  

  

Vehicle - 

miles 

traveled 0.36 0.04 0.30 0.60 1.00      
  

  

Jobs 0.48 0.20 0.43 0.47 0.47 1.00     
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Population 

per square 

mile 0.71 0.53 0.06 0.44 0.29 0.36 1.00    
  

  

Under 18 

population 

share 0.13 0.22 -0.09 -0.39 -0.20 -0.20 0.11 1.00   
  

  

Over 65 

population 

share 0.16 -0.02 -0.10 0.13 0.01 -0.05 0.12 -0.31 1.00  
  

  

Combined 

walking 

and 

transit 

commute 

mode 

share 0.48 0.38 -0.03 0.47 0.38 0.42 0.46 -0.11 0.05 1.00 

  

  

Bicycle 

commute 

mode 

share 0.34 0.39 0.40 0.27 -0.02 0.09 0.10 0.28 0.46 0.02 1.00    

Black/ 

African - 

American 

population 

share 0.12 -0.18 -0.00 0.14 0.11 0.17 0.01 -0.07 0.17 0.10 -0.07 1.00   

Hispanic / 

Latino 

population 

share 0.24 0.27 -0.01 0.09 0.13 0.11 0.26 -0.07 0.72 -0.33 0.13 -0.10 1.00  

Poverty 

rate 0.40 0.35 -0.05 0.13 0.12 0.12 0.34 0.53 -0.18 0.28 0.04 0.37 0.66 1.00 

 

These correlations suggest that the Metrolink-level variables exhibit more multicollinearity than the tract- and Metro-

level variables, and the VIF tests confirm that. Nonetheless, the maximum VIFs of 4.52 for the pedestrian crash 

regression and 4.72 for the bicycle crash regression shown in Table A6 do not exceed the threshold of 10, implying that 

both models are valid. 
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Table A8: Variance inflation factors of Metrolink station-level pedestrian crash regression model  

 

Variable VIF 1/VIF 

intersections 3.51 0.28 

lnpopdens 3.64 0.27 

pctlatino 4.52 0.22 

pctwalktrans 1.74 0.58 

lnjobs 2.82 0.35 

pctbelowpov 4.16 0.24 

pctunder18 3.08 0.32 

pctcomm 1.63 0.61 

pctover65 1.44 0.70 

lnstops 2.68 0.37 

lnvmt 2.05 0.49 

lnschools 1.77 0.56 

pctblack 2.34 0.43 

Mean VIF 2.72  
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Table A9: Variance inflation factors of Metrolink station-level bicycle crash regression model  

 

Variable VIF 1/VIF 

Intersections 3.50 0.29 

lnpopdens 3.80 0.26 

pctlatino 4.72 0.21 

pctbike 1.45 0.69 

lnjobs 2.85 0.35 

pctbelowpov 4.06 0.25 

pctunder18 3.04 0.33 

pctcomm 1.59 0.63 

pctover65 1.44 0.70 

lnstops 2.70 0.37 

lnvmt 2.07 0.48 

lnschools 1.75 0.57 

lnpctblack 2.41 0.42 

Mean VIF 2.72  
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Appendix B: Crashes by Station 

Pedestrian Crashes by Metro Station 

 

 

 

Figure B1: Pedestrian-involved crashes within ¼ mile of Metro station, 2013-2014
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Bicycle-Involved Crashes by Metro Station

 

Figure B2: Bicycle-involved crashes within ¼ mile of Metro station, 2013-2014 
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Pedestrian-Involved Crashes by Metrolink Station 

 

Figure B3: Pedestrian-involved crashes within ½ mile of Metrolink station, 2013-2014 
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Bicycle-Involved Crashes by Metrolink Station 

 

Figure B4: Bicycle-involved crashes within ½ mile of Metrolink station, 2013-2014 




