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ABSTRACT OF THE DISSERTATION
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Professor Eleazar Eskin, Chair

Over the past two decades, major technological innovations have transformed the

field of genetics allowing researchers to examine the relationship between genetic and

phenotypic variation at an unprecedented level of granularity. As a result, genetics has

increasingly become a data-driven science, demanding effective statistical procedures

and efficient computational methods and necessitating a new interface that some refer

to as computational genetics. In this dissertation, I focus on a few problems existing

within this interface. First, I introduce a method for calculating gene coexpression in

a way that is robust to statistical confounding introduced through expression hetero-

geneity. Heterogeneity in experimental conditions causes separate microarrays to be

more correlated than expected by chance. This additional correlation between arrays

induces correlation between gene expression measurements, in effect causing spuri-

ous gene coexpression. By formulating the problem of calculating coexpression in

a linear mixed-model framework, I show how it is possible to account for the cor-

relation between microarrays and produce coexpression values that are robust to ex-

pression heterogeneity. Second, I introduce a meta-analysis technique that allows for

genome-wide association studies to be combined across populations that are known to
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contain population structure. This development was motivated by a specific problem

in mouse genetics, the aim of which is to utilize multiple mouse association studies

jointly. I show that by combining the studies using meta-analysis, while accounting

for population structure, the proposed method achieves increased statistical power and

increased association resolution. Next, I will introduce a computational and statistical

procedure for performing genome-wide association using longitudinal measurements.

I show that by accounting for the genetic and environmental correlation between mea-

surements originating from the same individual, it is possible to increase association

power. Finally, I will introduce a statistical and computational construct called the

matrix-variate linear mixed-model (mvLMM), which is used for multiple phenotype

genome-wide association. I show how the application of this method results in in-

creased association power over single trait mapping and leads to a dramatic reduction

in computational time over classical multiple phenotype optimization procedures. For

example, where a classically-based approach takes hours to perform parameter opti-

mization for moderate sample sizes mvLMM takes minutes. This technique is both

a generalization and improvement on the previously proposed longitudinal analysis

technique and its innovation has the potential to impact many current problems in the

field of computational genetics.
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CHAPTER 1

Introduction

Over the past two decades, major technological innovations have transformed the field

of genetics allowing researchers to examine the relationship between genetic and phe-

notypic variation at an unprecedented level of granularity. As a result, genetics has

increasingly become a data-driven science, demanding effective statistical procedures

and efficient computational methods and necessitating a new interface that some refer

to as computational genetics. In this dissertation, I focus on a few problems existing

within this interface each related to the dissection and detailed understanding of the

relationship between genetic variation and complex traits.

The origin of genetics research is often attributed to the discoveries of Gregor

Mendel, due to his insightful analysis of inheritance patterns in pea plants and the for-

mulation of his three laws of inheritance. Although, his discoveries were published in

1866 they were not truly appreciated until 1900 [Stu65]. During the period from 1866

to 1900 there were many theories floating within the academic community explaining

how traits were passed from generation to generation. These theories were motivated

by many great experimental accomplishments, including the development of an under-

standing of mitosis and meiosis and the supposition that chromosomes were the bearer

of the material of heredity. However, during this period of time there was a sore lack

of quantitative research and many theories of heredity were based on the Darwinian

principles of natural selection and supported by unfounded assumptions [Stu65]. Dis-

appointed by this state, scientists such as Francis Galton and William Bateson began

1



to promote what we might now call a Mendelian approach based on a more systematic

statistical analysis of trait variation [Stu65]. The promotion of this approach along

with the re-discovery of Mendel’s 1866 paper, led to a dramatic shift in the way that

researchers thought about heredity and set genetics on the path to become what we

know of today.

The fundamental shift in the study of heredity from ad-hoc theories based on what

some might call anecdotal evidence to a more rigorous statistical framework was the

turning point that ushered in a completely different way of thinking about trait variation

between individuals. Similarly, the next fundamental shift in genetics is happening

now. Enabled by innovative technologies such as the microarray and Sanger DNA

and RNA sequencing and the children of these more developed technologies, current

researchers are able to examine the nature of natural variation with an amazing level of

granularity. These technologies have brought about a new way of conducting genetics

research based on high-throughput experimental assays and the collection of extremely

large datasets. Whereas early genetics researchers attempted to understand natural

variation using what we think of as basic statistics using tens of individuals, current

researchers are examining data sets with hundreds of thousands and soon even millions

of individuals using advanced statistical and computational procedures. This more

recent shift can be seen as a shift from small data to big data science.

Growing genetics from a low-throughput small data science to a high-throughput

big data science requires innovative statistical and computational thinking to deal with

problems driven by both the volume of experimental data as well as the complex inter-

relatedness of data derived from high-throughput experimental assays. My thesis work

focuses on four problems that are aligned with this theme. In what follows, I will

give a brief background of each problem and provide an intuitive explanation of the

contribution. These explanations assume a general knowledge of the field of genetics

2



including a familiarity with the concepts of genome-wide association studies and the

idea of measuring the expression of genes.

Chapter 2: Mixed-model Coexpression

The coexpression between two genes is quantified in order to determine how sim-

ilarly the genes are expressed. For example, if we measure gene expression using a

microarray, we may find that two genes have highly correlated expression patterns,

so that when one gene is highly expressed the other gene is highly expressed. In this

case, these two genes are said to be coexpressed. Measures of coexpression are often

used as a way to gauge how related two genes might be and to infer the presence of a

functional relationship between genes and the analysis of gene coexpression is a fairly

well established form of genetic analysis. However, the frequent use of the correlation

coefficient to quantify coexpression has the potential to result in a large number of

spurious or false coexpressions due to a problem known as expression heterogeneity,

a phenomenon that arises when expression values between separate microarray ex-

periments are more correlated than expected by chance due to the presence of shared

confounding factors. In Chapter 2, I introduce a method for calculating gene coex-

pression in such a way that is robust to EH. The basic intuition behind the method is

that EH may be quantified through the observed correlation between arrays and this

estimate of EH can be used to adjust coexpression values.

Chapter 3: Meta-analysis for Structured Populations

In meta-analysis, the results of separate studies are combined to obtain an aggre-

gate result. This type of analysis has been popular in human genome-wide association

studies due to issues of data privacy and the potential for reduced computational bur-

den and increased statistical power [BFJ08]. However, one problem that has not been

effectively addressed is how to combine multiple studies using meta-analysis when

each study has some degree of population structure, a well-known problem in associ-
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ation studies in single populations [KZW08]. For single populations, there are effec-

tive algorithms and procedures for dealing with issues related to population structure

[KZW08, LLL11, ZSZ12], but it is not clear how these methods may be adapted to

meta-analysis. Motivated by a specific problem in mouse genetics, I will introduce a

method for combing separate study populations when each study contains population

structure. The method works by correcting each study separately and then combin-

ing the studies while considering the degree of population structure in each. I show

that this method results in increased power and increased association resolution when

combining two separate mouse populations.

Chapter 4: Genome-wide Association Mapping with Longitudinal Data.

To date, most genome-wide association methodologies aim to identify genetic vari-

ations that are associated with a single measurement of a complex trait. However, most

quantitative complex traits change over time as a result of natural and environmental

variation. Therefore, it is reasonable to assume that a single measurement may not

best represent the state of a complex trait but that this state may be better represented

by considering multiple measurements taken over time. In Chapter 4, I introduce a

method for evaluating the association between genetic variations and a single complex

trait with multiple measurements taken over time. Considering that the correlation be-

tween separate time points is due to both the shared genetic component contributing

to each time point and the shared environmental components, I introduce a statistical

model for representing longitudinal data and show how it can be used for association

analysis. By considering multiple time points it is possible to increase statistical power

substantially.

Chapter 5: Efficient Multiple Trait Association Mapping with the Matrix-variate

Linear Mixed-model.

Most methods for analyzing the relationship between genetic and phenotypic vari-
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ation assume a very simplistic model for genetic systems in which one genetic vari-

ation is assumed to have an effect on a single trait. However, we know that genetic

systems are extremely complex and that a more realistic model would incorporate

multiple related phenotypes and multiple genetic variations. Therefore, conducting as-

sociation analysis under a multiple phenotype multiple genetic variation model could

intuitively increase information content and potentially statistical power to discover

associated variations. Motivated by a classic paper by Henderson [HQ76], [KVS12]

show how classical multiple phenotype artificial selection models incorporating both

multiple phenotypes and multiple genetic variations can be utilized to perform asso-

ciation analysis. They show that by considering pairs of correlated phenotypes when

performing association it is possible to increase statistical power. These results al-

though encouraging are shadowed by the fact that such approaches utilizing traditional

computational techniques for performing maximum-likelihood inference have a high

computational complexity and do not scale well when association is performed over

a large number of individuals. In Chapter 5, I introduce a mathematical and com-

putational construct that I call the matrix-variate linear mixed-model (mvLMM) that

is used to perform efficient multiple trait association mapping and results in a dra-

matic reduction in computational time when compared with traditional approaches.

The method works by applying a simple linear transformation to the phenotype data

so that a maximum-likelihood search procedure may be performed in time linear in the

size of the data.
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CHAPTER 2

Mixed-Model Coexpression

2.1 Background

The analysis of gene coexpression patterns has been of great interest in recent years due

to the widespread availability of microarray datasets measuring thousands of genes.

Gene coexpressions, evaluated by comparing the expression patterns of pairs of genes,

have been utilized in order to identify loci responsible for regulating genes [LPD06,

GDZ06], to evaluate the significance of known pathways [STM05] and to identify

functionally related genes whose relationships have been conserved through evolution

[SSK03]. Unfortunately, gene expression data can be largely affected by technical

bias such as a batch effects or plate effects [JRL07]. Such non-biological effects have

been shown to induce correlations between genes. For example, [BKB03] showed that

spacial placement of microarray probes affected the correlation between gene expres-

sion patterns, causing genes to be more or less correlated depending on the proximity

of their respective probes on the array. More generally, unobserved factors affecting

gene expression have the potential to cause correlation between genes. When these

factors are shared between gene expressions, they cause genes to have similar patterns

of overall variation. Since these effects are not directly observed they are not incor-

porated into statistical models. The shared variation between genes is attributed to

biological causes. This issue is referred to as expression heterogeneity and has been

acknowledged as a general problem when analyzing expression datasets [LS08].
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The detrimental effects of technical confounding on the results obtained from mi-

croarray analysis are well known. [QBK05], while examining the effects of stochastic

dependence between arrays on the correlation of test statistics used in determining

differential expression, noted that the correlation structure of arrays induced through

non-biological effects can lead to spurious correlation between genes. They note that

microarray normalization procedures mitigate such phenomenon, but are unable to

completely negate them. In fact, the presence of spurious correlations is a general

problem that arises when analyzing many types of noisy high dimensional biological

datasets, and has been examined in many different contexts [CRW08]. In the con-

text of gene coexpression, the cause of spurious correlations can be conceptualized by

viewing a set of n microarrays measuring m genes as a m ⇥ n matrix. In this matrix,

we expect that the microarrays represented by the columns are independent and that

some of the rows, representing the genes will be correlated, indicating biological rela-

tionships. In the presence of technical confounding effects, such as batch effects, the

columns will share characteristics that will cause the overall patterns of expression to

be similar and thus the arrays will be statistically correlated. This increased correlation

between columns induces correlation between rows, as it becomes more likely that two

randomly selected rows will be correlated, given that the overall patterns of expression

for each array are similar. In this way, the correlation between arrays, or inter-sample

correlation, has the potential to induce correlations between genes.

Many methods have been developed that aim to remove confounding effects from

gene expression data. For example, in the case of known batch effects, a method such

as ComBat [JRL07] may be employed. ComBat [JRL07] uses an empirical Bayes

approach to estimate parameters associated with batch and produces corrected gene

expression data. This corrected expression data can then be used in subsequent anal-

ysis. Unfortunately, technical confounding such as a batch effect may not be easily

observable. In this case, a method that is able to identify possible confounding effects
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without prior information is of interest. For example, surrogate variable analysis (SVA)

[LS07] is a method for correcting gene expression data in the absence of known con-

founding effects. In SVA, a set of surrogate variables are estimated and regressed out

of the expression data. These surrogate variables represent the unknown confounding

effects which cause expression heterogeneity. Expression heterogeneity is expected to

be encoded by the inter-sample correlation matrix, which is the matrix representing the

correlation between all pairs of arrays. Surrogate variables are estimated by iteratively

weighting a subset of the principal components of this matrix. The SVA method is

aimed at the general problem of correcting gene expression data and does not specifi-

cally target the problem of calculating pairwise gene correlations. Furthermore, SVA

only utilizes the principal axes of the inter-sample correlation matrix in order to cor-

rect expression. We can reason that the full inter-sample correlation matrix contains

more information than its principal components and therefore SVA is only utilizing a

subset of the available correlation information in its correction procedure. When the

patterns of confounding are complex, the estimated surrogate variables may not cap-

ture all of the structure encoded in the inter-sample correlation matrix and as a result

the corrected expression data may contain residual correlation.

In this chapter, we propose a method for calculating pairwise gene correlations

that utilizes the full inter-sample correlations matrix in order to correct for expression

heterogeneity. Our proposed method, Mixed Model Coexpression (MMC), uses a lin-

ear mixed model framework in order to adjust gene expression values and calculate

pairwise gene correlations. Linear mixed model frameworks have been successfully

used in previous studies to remove confounding effects when performing eQTL anal-

ysis [KYE08]. The MMC procedure represents confounding as a random effect in a

statistical model for coexpression. This approach allows us to more accurately calcu-

late coexpression while removing the effects due to confounding. Unlike ComBat, our

method does not require previous knowledge about the batch effects. MMC is also
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able to calculate coexpression without assuming and estimating some finite number

of confounding effects, such as with SVA. These two properties give our method the

advantage of being able to represent a wide range of unknown effects.

A caveat to our approach, as well as other approaches that utilize the inter-sample

correlation matrix as a surrogate for confounding, is the potential to remove true bi-

ological signal, as expression heterogeneity may be caused by true biological effects.

Consider one transcription factor whose activity marks the beginning of many possi-

bly unrelated pathways. When this transcription factor exhibits high activity the genes

involved in the downstream pathways will appear to be highly differentially expressed.

This high level of differential expression will cause the downstream genes to be sta-

tistically correlated. When this master regulator affects hundreds or even thousands

of downstream genes, the global patterns of array variation become similar and thus

arrays appear to be correlated. This correlation is represented in the inter-sample cor-

relation matrix and is utilized in the correction procedure. Correlations between genes

induced by such large scale biological effects are not differentiable from correlations

induced through large scale technical confounding effects and therefore our method

will “correct” for both types of induced correlations. In this way, it is possible for our

method or a method such as SVA that utilizes the inter-sample correlation matrix to

remove a true biological signal. However, this caveat can also be a useful side effect,

as the goal of many coexpression analyses is to find groups of genes that are tightly

functionally related. Large scale effects, whether true biological effects or technical

confounding, may hinder the ability to find smaller gene modules. In this sense our

method can be seen as a complementary to current coexpression methods that identify

large modules.

In order to evaluate MMC, we take advantage of the fact that microarrays contain

many more probes than measured genes and that expression patterns for probes mea-
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suring the same gene should be among the most highly correlated within the set of all

probes. We compare methods for computing coexpression by comparing their ability

to highly rank these probe pairs in terms of correlation. Our results show that MMC

is able to rank these pairs more highly when compared to SVA and a traditional Pear-

son correlation. We evaluate our method further by utilizing replicate gene expression

datasets. We utilized two yeast gene expression datasets [BYC02, SK08] produced by

the same lab, covering the same strains and same genes but produced 5 years apart

using different microarray platforms. We applied our method to both datasets and

show that it is able to produce coexpression results which are more concordant when

compared to both traditional Pearson and SVA corrected coexpressions. Finally, we

consider how coexpressions may be used in order to identify biologically meaningful

groups of genes. Under the assumption that genes working together in the same com-

plex or pathway should be highly coexpressed, we examined coexpression values for

sets of genes belonging to known functional categories. Given a set of known gene

functional modules, we evaluated the ability of MMC coexpressions to identify these

modules as biologically significant. Compared to both the traditional Pearson correla-

tion and with SVA corrected coexpressions, we show that MMC has higher power to

detect biologically meaningful gene sets.

2.2 Methods

We first highlight the relationship between a traditional Pearson’s correlation coeffi-

cient and a basic linear model. We demonstrate the mathematical connection between

the Pearson correlation and hypothesis testing under a linear model, and use this intu-

ition when developing the mixed-model coexpression (MMC).
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2.2.1 Pearson correlation as a linear model

The coexpression between two genes is often estimated by using the traditional Pear-

son correlation coefficient. The Pearson correlation gives an absolute value ranging

from 0 to 1. If the absolute value of the correlation is close to 1, then we say that the

pair of genes is significantly coexpressed. The threshold for significance is usually

domain dependent and set on a case by case basis. The Pearson correlation can be

calculated for any two genes, y1 and y2, by using Equation (2.1).

r
P

=

P
n

i=1(y1i � y1)(y2i � y2)pP
n

i=1(y1i � y1)2
pP

n

i=1(y2i � y2)2
(2.1)

In this case, y1 and y2 are both gene expression vectors of size n and the Pearson

correlation is the ratio of the their sample covariance to the product of their sample

standard deviations. Here y1 and y2 are the sample means for each gene. The Pearson

correlation can be represented concisely using matrix notation.

r
P

=
(y1 � 1

n

y1)
T (y2 � 1

n

y2)p
(y1 � 1

n

y1)T (y1 � 1
n

y1)
p
(y2 � 1

n

y2)T (y2 � 1
n

y2)
(2.2)

We use 1
n

to represent a n⇥ 1 vector of 1s.

When the elements of y1 and y2 are sampled IID from a bi-variate normal distri-

bution and are truly uncorrelated, the following relation holds [Wea49].

t = r
P

s
n� 2

1� r2
P

(2.3)

where t has a student t-distribution with n� 2 degrees of freedom. In order to test the

hypothesis that r
P

= 0, we test the equivalent hypothesis that t = 0, while evaluating

t using the observed r
P

.
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To understand how this relationship arises, let us consider the general purpose of

the correlation coefficient. The correlation coefficient gives a measure of how lin-

early related one variable is to another. Another way to evaluate the linear dependence

between two variables is by adopting a linear regression framework. Within this frame-

work, the linear dependence between two variables is tested by first defining a linear

model, in which one variable is used as a predictor of the other variable, which is

called the response. We evaluate the magnitude of the linear dependence, by testing

the hypothesis that the predictor variable has no effect on the response variable. With

this in mind we define the two following linear models, in which we assume that each

gene is a function of its mean, some random error and the observed expression value

of another gene. We use ŷ
i

to represent the observed gene expression vector for y
i

.

y1 = ŷ2�1 + µ1 + e1 (2.4)

y2 = ŷ1�2 + µ2 + e2 (2.5)

In order to evaluate the significance of the effect that gene 1 has on gene 2, we

test the hypothesis that �2 = 0 in the model in equation (2.5). Under the null hy-

pothesis that �2 = 0, we have that the computed t-statistic follows a central student

t-distribution with n � 2 degrees of freedom [MS01]. The computed t-statistic is a

function of both the estimate �̂2 and the sample variance for y1. Through a series of

algebraic manipulations we can show that the computed t-statistic has the relationship

observed in equation 2.3 with the Pearson’s correlation [Rao73]. We briefly summarize

this relationship here as follows.

t1 = t2 = r
P

s
n� 2

1� r2
P

(2.6)
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r2
P

=
t21

t21 + (n� 2)
=

t22
t22 + (n� 2)

(2.7)

t1 and t2 correspond to the t-statistics computed for the estimates of �1 and �2, re-

spectively. Equation (2.7) shows that there is a direct relationship between the Pearson

correlation and a linear model of the type in equations (2.4) and (2.5). Under the null

hypothesis, we assume that both t1 and t2 asymptotically follow the t-distribution. Im-

plicit in this assumption is the assumption that the variance of the residuals e1 and e2

is of the form �2
e

I. More specifically, we assume that both y1 and y2 are normally

distributed with means µ1 and µ2, respectively, and variances �2
1I and �2

2I, respec-

tively. When these assumptions do not hold, such as when the residuals are not in-

dependent, we might experience overdispersion of the test statistics [MS01]. In other

words, the variance of the test statistics will be greater than expected and thus our as-

sumed null distribution will be incorrect. This phenomenon has been observed in many

cases, for example, when the effects of population structure are not accounted for when

computing association statistics [DRW01]. Since overdispersion leads to inflation of

test statistics and the Pearson correlation coefficient is directly proportional to the t-

statistics for the models in equations (2.4) and (2.5), this implies that overdispersion

may lead to inflation of the Pearson correlation.

2.2.2 Coexpression as a linear mixed model

In the previous section, we illustrated the relationship between a traditional Pearson’s

correlation and a linear model. We concluded from this relationship that when the vari-

ance of the residuals is misspecified, we have the potential to observe overdispersion,

which leads to inflation of the test statistics and subsequently the Pearson’s correla-

tion. In the presence of expression heterogeneity, we expect that shared confounding

between arrays will make them correlated. When this is the case, we no longer ex-
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pect that the residuals for the models in equations (2.4) and (2.5) will be independent.

Therefore, the assumption of independent residuals is incorrect and this misspecifica-

tion might lead to overdispersion and subsequently to inflation of the Pearson’s corre-

lation.

One way to deal with overdispersion is to account for the source of overdispersion

with a random variable [MS01]. Therefore, we propose the following two linear mod-

els that have an additional random variable, which accounts for confounding effects.

y1 = ŷ2�1 + µ1 + u1 + e1 (2.8)

y2 = ŷ1�2 + µ2 + u2 + e2 (2.9)

In these models, we assume that var(e1) = var(e2) = �2
e

I, var(u1) = var(u2) =

�2
u

K and that cov(e
i

,u
j

) = 0 8 i, j, where K represents the inter-sample corre-

lation matrix. Given a set of n arrays each measuring m genes, we define the inter-

sample correlation matrix as the n⇥ n sample covariance matrix for the m⇥ n matrix

of the complete array data. In other words, the matrix K is a matrix containing all

pairwise covariances for all pairs of arrays. The key assumption here is that the addi-

tional variance due to systematic confounding effects is proportional to the correlation

between arrays.

When gene 1 and gene 2 are truly uncorrelated (�1 = �2 = 0), the Pearson’s

correlation should be zero. However, when the models in equations (2.8) and (2.9)

hold, the observed Pearson’s correlation will be inflated due to correlation between

the elements of u1 and u2. Subtracting the true values of u1 and u2 from y1 and y2,

will produce corrected vectors for which the observed Pearson’s correlation will not

be inflated. However, the true values of these variables are unknown and in order to
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obtain estimates of them, we would have to make further assumptions and restrictions

on the model. Instead, we only make an assumption about the distributions of both u1

and u2. With knowledge of these distributions, we estimate the total variance of y1

and y2.

Under the null hypothesis, �1 = �2 = 0, we have the following.

y1 ⇠ N(µ1,⌃) (2.10)

y2 ⇠ N(µ2,⌃) (2.11)

where

⌃ = var(u1) + var(e1)

= var(u2) + var(e2)

= �2
u

K+ �2
e

I

When the gene expression vectors follow the distributions in equations (2.10) and

(2.11), the traditional Pearson’s correlation will be inflated due to overdispersion. That

is, when computing the Pearson’s correlation, we assume that ⌃ = �2
c

I, for some �2
c

.

In order to remove the effects of overdispersion in each gene expression vector, we

need to transform the gene expression vectors so that they have the same variance-

covariance structure assumed when computing the Pearson’s correlation. Then using

these transformed vectors we apply the definition for a traditional correlation coef-

ficient. This is accomplished by utilizing the following rule, which is applicable to

random variables with a multivariate normal distribution with mean µ and positive

semi-definite variance-covariance matrix ⌃ [KK04].
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y ⇠ N(µ,⌃) (2.12)

Ay + b ⇠ N(Aµ+ b, A⌃A0) (2.13)

Using this rule we obtain the distribution for y⇤
1 and y⇤

2 defined as follows.

y⇤
1 = ⌃

�1/2(y1 � µ1) ⇠ N(0, I) (2.14)

y⇤
2 = ⌃

�1/2(y2 � µ2) ⇠ N(0, I) (2.15)

When the Pearson’s correlation is calculated in this transformed space (i.e.. using the

transformed vectors), we expect that the assumptions of independent residuals will

hold and thus the correlation will not be subject to inflation. Given the true ⌃ and the

observed gene expression vectors y1 and y2, we transform the observed vectors and

calculate a corrected Pearson’s correlation.

r
MMC

=
y⇤T
1 y⇤

2p
y⇤T
1 y⇤

1

p
y⇤T
2 y⇤

2

(2.16)

We expect that this adjusted correlation coefficient will have a mean of zero when gene

1 and gene 2 are uncorrelated. Simplifying we obtain the following.

=
(y1 � µ1)T⌃�1(y2 � µ2)p

(y1 � µ1)T⌃�1(y1 � µ1)
p
(y2 � µ2)T⌃�1(y2 � µ2)

(2.17)

We are not given the true values of the means µ1 and µ2 or the true value of⌃. In order

to calculate r
MMC

between two given gene expression vectors, we must estimate these

parameters from the data. Substituting the estimates for µ1, µ2 and ⌃, we arrive at the

final formula.
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r
MMC

= (y1�y1)
T ⌃̂�1(y2�y2)p

(y1�y1)
T ⌃̂�1(y1�y1)

p
(y2�y2)

T ⌃̂�1(y2�y2)
(2.18)

The t-statistics corresponding to the �s from the models in equations (2.8) and (2.9)

maintain the relationship illustrated in equation (2.6), while r
MMC

has been substituted

for r
P

.

In order to determine the value of r
MMC

, we must first determine the value of

⌃̂ = �̂
u

2K+ �̂2
e

I. This means that we need to estimate the two variance components,

�̂2
e

and �̂2
u

. When estimating only one variance component, the estimates are obtained

analytically through a maximum likelihood (ML) or restricted maximum likelihood

(REML) approach. However, there does not exist a general analytical method for esti-

mated more than one variance component. Therefore, we must incorporate a numerical

search strategy in order to obtain optimal estimates. Such solutions are computation-

ally intensive. In order to estimate these variance components, we employ a method

described by [KYE08]. This method reduces the computational complexity at each

search step from O(n3), using the basic Newton-Raphson algorithm, to O(n) by re-

formulating the problem so that the singular value decomposition of K can be reused.

The method combines grid search with the Newton-Raphson algorithm and can be

applied, in order to find the optimal variance components.

For each pair of genes, i and j, we use the numerical search method to find the

optimal estimates for the variance components
i

�2
e

,
i

�2
u

,
j

�2
e

and
j

�2
u

. We use the left

sub-script to identify the gene for which the component belongs to. For example,

i

�2
e

and
i

�2
u

are estimated using the model for gene i (refer to equations (2.8) and

(2.9)). Using the estimated variance components, we obtain
i

⌃̂ =
i

�2
u

K +
i

�2
e

I and

j

⌃̂ =
j

�2
u

K+
j

�2
e

I, the variance-covariance matrices for the models corresponding to

y
i

and y
j

. These variance-covariance matrices are used to obtain the observed MMC

coexpression values corresponding to gene i and gene j,
i

r
MMC

and
j

r
MMC

. Ideally
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these MMC coexpressions are equal. However, in practice this is not the case, so

we average them to define the final corrected correlation r
MMC

, in order to ensure the

symmetry of coexpression. It is also possible to calculate r
MMC

by using the corrected

vectors y⇤
i

=
i

⌃̂(y
i

� ȳ
i

) and y⇤
j

=
j

⌃̂(y
j

� ȳ
j

) and then applying the definition of the

Pearson’s correlation from equation (2.16). When
i

⌃̂ 6=
j

⌃̂, we found the solution to

be very concordant with that obtained by averaging
i

r
MMC

and
j

r
MMC

.

2.3 Results

2.3.1 Prioritizing probe pairs targeting the same gene

In order to evaluate the ability of MMC to prioritize true coexpressions, we leverage

the fact that microarrays typically contain many more probes than there are genes to

measure, meaning that most genes are targeted by more than one probe. We assume

that the expression levels of any two probes targeting the same gene should be highly

correlated, and thus when ranked against all other pairwise coexpressions, these probe

pairs should be among the most highly ranked. We compare the relative ranking of

coexpressions for probes targeting the same gene between different methods, in order

to determine which method is better able to prioritize strong coexpressions. It may be

noted that when certain forms of alternative splicing occur or when some genes are

simply not expressed, the results of this evaluation strategy may fail to differentiate

the methods for calculating coexpression.

We utilized a set of 732 probe pairs obtained from the Human HapMap gene ex-

pression arrays [Int03]. The gene expression data represents 60 unrelated individuals

of European descent (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE6536).

The probe set corresponds to those probes that target known RefSeq genes and that

could be coupled with at least one other probe targeting the same gene. For each probe
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pair, we calculate the MMC coexpression, the traditional Pearson correlation and an

SVA corrected Pearson correlation. Each expression value is ranked with respect to all

pairwise coexpressions for each method. Smaller ranks indicate higher coexpression.

We expect that when examining the coexpression ranks for the set of 732 probes, the

method that performs best should have an abundance of low ranks.

Figure 2.1 shows the distribution of the coexpression ranks obtained with each

method. The total number of genes considered was over 26,000, meaning that there

were over 300 million pairwise coexpressions (26,000 choose 2) to consider. Sub-

sequently, there are over 300 million possible rankings for each coexpression. Each

method places about 96% of the 732 probe pairs within the top 1 million ranks. The

figure shows that the MMC method consistently ranks these probe pairs higher than ei-

ther of the other methods. For example, MMC places 79 of the 732 probe pairs within

the top 100 ranks, while SVA and Pearson place only 63 and 76, respectively. In the

top 10,000 ranks, MMC places 216 probe pairs, while Pearson and SVA place only 177

and 191. If we assume that each of the 732 probe pairs should have a correlation of 1,

then their ranks should be in the top 732 choose 2. MMC places 415 of the 732 probe

pairs within this range, while Pearson and SVA place only 370 and 366, respectively.

These results suggest that MMC is more accurately calculating the coexpressions of

these probe pairs, which we assumed to be truly coexpressed.

2.3.2 Concordance between replicated data sets

Replicate datasets are great resources to use in order to validate experimental find-

ings. When considering coexpression, we expect that genes found to be highly co-

expressed in replicate dataset 1 would also be highly coexpressed in replicate dataset

2. However, due to confounding effects, we may observe a high level of discordance

between coexpressions found using two separate replicate datasets. Methods that re-
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Figure 2.1: The distributions of coexpression ranks for a set of 732 same probe

pairs. The coexpression values for each probe pair are ranked with respect to all other

pairwise coexpression values. Smaller ranks indicate higher coexpression. We expect

that probes targeting the same gene should be highly coexpressed and therefore should

have very low rank. The MMC method consistently ranks these coexpressions lower

when compared to the other two methods.

move confounding may alleviate this problem and cause coexpressions to be more

concordant between replicate datasets. In order to evaluate the performance of MMC

in this respect, we obtain two yeast gene expression datasets produced by the same lab

and measuring the same genes over the same strains of yeast but conducted 5 years

apart [BYC02, SK08]. For both datasets, we calculate coexpressions using MMC, tra-

ditional Pearson and SVA corrected Pearson. We then compare the concordance of

coexpression values between the two datasets.

In order to compare coexpression values between two replicate datasets, we com-

pare their relative rankings and compute the proportion that are common. We are

considering a total of 6,143 genes, so there are over 18 million gene pairs and thus

over 18 million coexpressions. We expect that the most highly coexpressed genes will

be the same within both datasets. Given this, we define a measure of concordance
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between two datasets in which we calculate the proportion of genes that are common

within the top n most highly ranked coexpressions. For example, consider the top 100

coexpressions from dataset one, we might see that of these coexpressions only half

appear in the top 100 when considering dataset two. In this case, we determine that the

proportion in common is 50% for n = 100. By calculating the proportion in common

for every n, we obtain a concordance at the top (CAT) plot, as shown in figure 2.2.

The CAT plot in Figure 2.2, illustrates the differences between concordance for

each of the methods considered. Ideally, at each point on the x-axis the y-value would

be 1, meaning that 100% of the coexpressions would be in common. Although, this

is not the case, we do see that both MMC and SVA are concordant about 30 to 40%

of the time when considering the top 200 ranks. However, when considering the ranks

ranging from 300 to 50,000, our method out performs both methods by estimating

coexpressions which are concordant 20 to 40% of the time. This result strongly sug-

gests that MMC is more effective in removing confounding effects which may cause

coexpressions to be discordant across datasets.

2.3.3 Gene module significance

One intention behind the calculation of coexpression is to quantify the strength of the

biological relatedness between genes. For example, if two genes code for signaling

proteins that act together in one particular pathway, we expect that these genes will

be expressed together and that their coexpression value will be quite high. If we as-

sume that the coexpression between two genes reflects the strength of their biological

relationship, it is possible to utilize coexpressions in order to predict how biologically

relevant a group of genes may be. Consider a group of genes that all code for proteins

that work together in a complex. It is reasonable to assume that each pair of these genes

will be coexpressed. In this case, by comparing each of the pairwise coexpressions for
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Figure 2.2: Comparison of the concordance between two yeast datasets for both

methods. Concordance between two sets of coexpressions is compared by looking at

the proportion of coexpressions in common for the top ranking coexpressions. The

x-axis represents the number of top ranked coexpressions considered, while the y-axis

represents the proportion of those coexpressions that are common between the new

and old dataset.

the genes within this group we should see an abundance of significant coexpressions.

In general, we can assume that a group of genes that are functionally related should all

be significantly coexpressed. We can then use this assumption to test the significance

of a group of genes in order to determine if it is biologically relevant. In practice, by

using such an approach we will likely find many groups of genes which will appear

to be biologically relevant, but in fact their high level of inter-coexpression is due to

confounding.

We tested our ability to detect biologically significant groups of genes using MMC

coexpressions. We define the statistic found in equation (2.19), which is simply the

sum of the logged coexpression ranks. rank
ij

represents the relative ranking of the

coexpression between gene i and gene j, with respect to all other pairwise coexpres-

sions. When genes within a group are highly coexpressed, the value of this statistic
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will be high and when they are not it will be very low. To obtain a set of gene groups

which are known to be functionally related, we chose to use yeast, as it has some of

the most well characterized genes. The MIPS comprehensive yeast genome database

contains detailed functional data for all yeast genes [MHK99]. We used this resource

in order to construct 233 gene modules ranging in size from 2 to 20. Modules were

chosen such that the number of modules was maximized while the modules in each

size category did not overlap. We chose sizes of 2 to 20, assuming that smaller mod-

ules would represent more closely functionally related gene sets and thus the overall

coexpressions within modules would be higher. For each of the 233 modules, we cal-

culated the statistic T using coexpressions estimated with MMC, traditional Pearson

and SVA corrected Pearson. We estimate the null distribution for T under each method

and each module size n, by repeatedly selecting n random coexpressions and calcu-

lating the statistic T . Each null distribution was approximated with 1 million values.

Using this null approximation we calculated p-values for each known module.

T =
n�1X

i=0

n�1X

j=i+1

log(rank
ij

) (2.19)

Figure 2.3 shows the distribution of the p-values for all modules. Module p-values

obtained when using our method tend to be smaller than the Pearson and SVA module

p-values. For example, about 40% of the tested gene modules were significant at a

level of .05 when using MMC, while about 25% and 30% were significant when using

Pearson and SVA. This result suggests that MMC is able to produce coexpression

values which were better able to predict real biological relationships.
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Figure 2.3: Distribution of gene-module p-values for Pearson, SVA and MMC.

We used a set of 233 known functional modules consisting of sets of genes of size 2

to 20. For each of these modules, a p-value representing the biological significance is

calculated. This figure plots the distributions of these p-values. Since the p-values were

calculated for gene sets known to be functionally related, we expect that there should

be an inflation of significant p-values. It can be seen that the MMC method produces

a larger number of significant p-values when compared to both the traditional Pearson

and SVA-corrected coexpressions.
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2.4 Discussion

In this chapter, we present a statistical model for the calculation of gene coexpression

called Mixed Model Coexpression (MMC). Our method calculates gene coexpressions

that are robust to confounding effects. We calculate the coexpression between two

genes by utilizing a mixed model framework. Unknown confounding effects are repre-

sented as a random variable in a mixed model formulation of coexpression. We use the

inter-sample correlation to estimate the variance of the random variable representing

unknown confounding and incorporate this variance into the model of coexpression.

We compare the coexpressions obtained with our method with those obtained using

the traditional Pearson correlation and those obtained using SVA corrected expression

data. Although, rank based correlation methods, such as the Spearman correlation,

have been used to reduce the prevalence of spurious correlations due to deviations

from assumptions of normality in expression data, we have observed in practice that

the Spearman correlation coefficient performs similarly to the Pearson when compar-

ing with MMC (data not shown). When probe pairs target the same gene, we expect

that their coexpressions will be highly ranked when compared with all other pairwise

coexpressions. For probe pairs of this type, MMC is shown to produce coexpressions

that are more highly ranked when compared with the other two methods. We also show

that MMC produces coexpressions that are more concordant across replicate datasets

generated by the same lab using the same strains but generated at different times. Op-

erating under the assumption that biologically and functionally meaningful groups of

genes will be highly coexpressed, we create a simple statistic which is used to assess

the functional significance of groups of genes. Our method shows increased power to

discover sets of genes which are known to be biologically significant.

Although our method is able to calculate coexpression while removing the effects

of confounding, it might also remove effects which are biologically meaningful. Tech-
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nical confounding effects, such as a batch effect, typically have a global effect on the

data. That is, these effects will increase the expression variation in a large number of

genes. This shared variation within genes causes them to appear to be significantly co-

expressed. Our method estimates global patterns of shared variation through the inter-

sample correlation and effectively removes the effects causing the variation from the

calculation of coexpression. A problem arises when we consider the case in which one

gene has a large biological effect on hundreds of other genes. The effect that master

regulators have on expression data as a whole is indistinguishable from the unwanted

global confounding effects. That is, the variation in gene expression caused by master

regulators quite closely resembles patterns of variation caused by confounding effects

and will therefore be removed by our method. In this case, MMC may over-correct

true biological signal and cause true coexpressions to be lost.

The drawback to our method may also be seen as a beneficial side effect. When

master regulators target many genes, traditional coexpression analyses employing clus-

tering will yield many large sized gene modules. By removing the effects of mas-

ter regulators, MMC essentially enables coexpression clustering analysis to produce

smaller gene modules conditional on the large modules. Large gene modules discov-

ered through the use of standard coexpression analysis may be seen as representative

of large scale cellular functionality. Small modules discovered through clustering with

MMC will be subsets of these large modules. By intersecting results, it may be possi-

ble to more fully understand the detailed circuitry of the cell.
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CHAPTER 3

Meta-analysis for Structured Populations

3.1 Background

Model organisms continue to play a pivotal role in the research of human diseases. The

use of mouse models in particular has been extremely effective for the the identifica-

tion of genes underlying Mendelian disorders. The traditional mode of discovery used

to identify loci underlying such disorders has been the F2 cross. In an F2 cross, two in-

bred mice are used to produce F1 progeny and then these progeny are crossed to obtain

F2 mice, each of which have a genetic structure that is a mix of the two original inbred

strains. By applying linkage analysis to F2 populations, regions harboring causal vari-

ants are identified with high statistical power. Unfortunately, these approaches have

had limited success in identifying genetic variations underlying complex, polygenic

traits due to the low resolution of the studies [FM01, BFO10b], meaning that the re-

gions found to harbor causal variants are very large.

As an alternative to F2 mapping, a number of groups have proposed the use of

GWAS methodologies to map traits in inbred populations [PMB04, Pay07]. Such ap-

proaches result in increased resolution, as inbred strains have a more diverse genetic

structure, in which only small portions of the genome are shared between any two

strains. The initial results were promising, but it was later found that the significant

population structure within inbred strains causes a large number of spurious associa-

tions and inflates the significance of true associations. Upon correction for population
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structure, most of the associations identified as significant were found to be spurious

[KYE08, MGP09]. Also, when corrected for population structure, existing panels of

classical inbred strains were under powered to detect genetic variants explaining less

than 10% of the phenotypic variation. In order to address these issues, Bennett et al.

(2010) utilized a panel of mice called the Hybrid Mouse Diversity Panel (HMDP),

which combines inbred strains with recombinant inbred (RI) strains, which resemble

an inbred version of an F2 cross [BFO10b]. The idea is that inbred strains provide

high resolution, while RI strains provide increased power. They showed that when

performing association mapping within this panel they achieved higher resolution than

when performing mapping only using RI strains and showed that they achieved higher

power than when performing mapping with only inbred strains. However, the power

to detect small effects remains quite low, a problem that is due to an inherit limitation

in the design of the HMDP: the limit on the availability of inbred strains.

Limited power and resolution are noted problems in many mapping panels and in

order to combat these issues, a number of groups have suggested methods to combine

the results from multiple studies [HDK00, HMC02, PBL07, LLW05]. The core con-

cepts behind these methods, all of which are formed on linkage-based methodologies,

may be adapted to work in association analysis. However, such approaches may not

be well-suited for studies in structured populations. For example, a shared feature of

these linkage-based methods is the attribution of equal informativeness to each study.

Such an assumption may not hold in studies with population structure, as the infor-

mativeness of a given panel will be locus-dependent. In this case, methods attributing

equal weight to each population may result in sub-optimal power.

In this chapter, we propose a method to combine studies in a locus-specific manner,

weighting each study relative to its level of informativeness, and show that our method

achieves optimal power within the proposed framework. Our method is based on the
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concept of meta-analysis. In a meta-analysis, the statistics obtained for each SNP in

two separate studies are used to obtain a meta-statistic, which combines information

across studies. The most common methods for performing meta-analysis are based on

the fixed effect weighted sum of Z-scores (WSoZ) [BFJ08], in which Z-scores from

each study are combined using a pre-defined weighting scheme. Typically, weights

are set as proportional to the number of individuals in the study. Using this basic idea,

we propose a meta-analysis method for combining the results obtained from mapping

in the HMDP with those obtained from mapping within an F2 population. Since the

best way to combine results from these two populations at a given SNP is dependent

on the strain distribution pattern in each population at that SNP, current meta-analysis

methodologies are not well suited. We introduce a method that accounts for the genetic

structure within each population when combining results. Using a mixed-model-based

approach to correct for population structure, we derive a meta-statistic based on the

WSoZ. By applying an optimal weighting scheme, our method achieves both higher

power and increased resolution over mapping performed only within one population.

We note that the HMDP is only one of several recently proposed strategies for increas-

ing the resolution of mouse genetic studies over traditional crosses. Other strategies

include the collaborative cross [AVF11], and the use of heterogeneous stocks [HSV09].

The meta-analysis method we introduce is flexible and may be used to combine studies

conducted within these panels as well.

We evaluate our method through simulation and by applying it to real phenotype

data for which previous discoveries have been made. First, we evaluate both power

and resolution through a simulation framework. We find under many different set-

tings that the meta-analysis approach results in higher power when compared to either

single panel. We also find that when applying the meta-analysis approach, resolu-

tion is increased 1.5-fold with respect to the HMDP and 3.5-fold with respect to an

F2 panel. Next, we apply the meta-analysis approach to map bone mineral density
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(BMD), which was measured from the femurs of 865 HMDP mice and 161 F2 mice,

a cross between C57BL/6 and C3H [FNG09, FBO11]. In our results, two previously

implicated loci are recovered with increased significance. We also find that our method

results in increased resolution over results obtained through linkage analysis. Finally,

we apply our method to map HDL cholesterol in 687 HMDP mice and 164 F2 mice

[NGW09] and find that a gene (Apoa2 [WHQ93]) known to be associated is identified

with increased significance.

3.2 Methods

3.2.1 Association Studies

Let us assume that we have measured a phenotype within a population i that contains

n
i

individuals. We denote the n
i

⇥ 1 column vector of phenotype measurements as

y
i

= [y
i1 y

i2 . . . yini ]
0. In order to test the association between the phenotype and a

given SNP r, we test the hypothesis � = 0 under the model in equation (3.1), where

µ is the global phenotype mean and x
i

is a vector of minor allele counts of SNP r for

individuals in population i.

y
i

= µ+ x
i

� + ✏ (3.1)

A test statistic for testing � = 0 is derived by noting the distribution of the estimate

of � under the assumption of normality. We denote the estimate of � in population i

as �̂
i

, where �̂
i

⇠ N(�, s2
i

) and s2
i

denotes the squared standard error of the estimate

in population i. The z-score statistic for SNP r in population i, Z
i

, is given in equation

(3.2) and may be used to test the hypothesis � = 0 or may be used in order to derive

other statistics, such as a chi-square or F-statistic.
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Z
i

=
�̂
i

s
i

(3.2)

3.2.2 Traditional Meta-Analysis

Most traditional methods for meta-analysis employ the weighted sum of z-scores (WSoZ)

approach [SRC09, WSL08, ZSS08]. In this method, a meta statistic for each SNP is

calculated using equation (3.3), where w
i

denotes a weight given to each Z-score for a

population i. We note that our meta statistic formulation in equation (3.3) uses a dif-

ferent notation, with respect to standard meta-analysis literature, which represents the

meta statistic as a sum over effect sizes. However, both formulations are equivalent.

Z
meta

=

P
i

w
i

Z
ipP

i

w2
i

(3.3)

The weights, w
i

, are often a function of the sample size of their respective popula-

tion, so that larger population samples obtain a higher weight [BFJ08]. This weighting

scheme make sense intuitively as we may want to attribute greater confidence to stud-

ies with more individuals. Alternatively, weights are set as the inverse of the standard

error of the estimate of the beta coefficient, so that w
i

= 1/s
i

. The resulting meta

statistic is the so-called pooled inverse variance-weighted beta coefficient [BFJ08]. As

has been done for case-control studies [ZE10], it is possible to show that this particu-

lar weighting scheme is optimal in the sense that these weights maximize the power of

detecting an effect of size �.

Given the distribution of �̂
i

, we have that when � 6= 0, Z
meta

⇠ (�, 1), where

� is a non-centrality parameter with � =
P

i

w
i

�

si
/
pP

i

w2
i

. � is maximized, when

w
i

= 1/s
i

, thus meta-statistic has optimal power to detect an effect of size of �. The

optimality of the weight ( w
i

= 1/s
i

) is shown by using the Cauchy-Schwarz inequality
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(
P

i

w
i

�

si


pP
i

w2
i

qP
( �

si
)2 ). Under the assumption that � is the same across all

populations, equality holds when w
i

= 1/s
i

3.2.3 Association Studies in Structured Populations

Although the traditional approach to association mapping is often used, there are a

number of issues that arise when performing this basic analysis. One problem is that

of population structure or cryptic relatedness [DRB01, VP05], in which genetic simi-

larities between individuals both inhibit the ability to identify true associations as well

as cause the appearance of a large number of false or spurious associations. Mixed ef-

fects models are often used in order to correct this problem [YPB06, KYE08, KSS10].

Methods employing a mixed effects correction account for the genetic similarity be-

tween individuals with the introduction of a random variable into the traditional model

from equation (3.1).

y
i

= µ+ �x
i

+ u
i

+ ✏ (3.4)

In the model in equation (3.4), the random variable u
i

represents the vector of

genetic contributions to the phenotype for individuals in population i. This random

variable is assumed to follow a normal distribution with u
i

⇠ N(0, �2
g

K
i

), where K
i

is the n
i

⇥n
i

kinship coefficient matrix for population i. With this assumption, the total

variance of y
i

is given by ⌃
i

= �2
g

K
i

+ �2
e

I. A z-score statistic is derived for the test

� = 0 by noting the distribution of the estimate of �̂
i

. In order to avoid complicated

notation, we introduce a more basic matrix form of the model in equation (3.4), shown

in equation (3.5).

y
i

= X
i

�+ u
i

+ ✏ (3.5)
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In equation (3.5), X
i

is a n
i

⇥ 2 matrix encoding the global mean and SNP vectors

and � is a 2⇥1 coefficient vector. We note that this form also easily extends to models

with multiple covariates. The maximum likelihood estimate for � in population i is

given by �̂
i

= (X0
i

⌃�1
i

X
i

)�1X0
i

⌃�1
i

y
i

which follows a normal distribution with a

mean equal to the true � and variance (X0
i

⌃�1
i

X
i

)�1. The z-score statistic for testing

� = 0 is then given in equation (3.7), where R = [0 1] is a vector used to select the

appropriate entry in the vector �̂
i

.

Z
i

= [R(X0
i

⌃�1
i

X
i

)�1R0]�1/2R�̂
i

(3.6)

= Q
�1/2
i

R�̂
i

(3.7)

Q
i

= [R(X0
i

⌃�1
i

X
i

)�1R0] (3.8)

3.2.4 Meta-Analysis in Structured Populations

In order to perform meta-analysis using multiple structured populations, we adopt the

weighted sum of z-scores approach shown in equation (3.3), where the z-score for

population i is given in equation (3.7). When � 6= 0, Z
meta

will have a normal dis-

tribution with variance 1 and mean
P

w
i

Q
�1/2
i

R� /
pP

w2
i

. Again we employ the

use of the Cauchy-Schwarz inequality, shown in equation (3.9), to show that the opti-

mal weights are given by w
i

= Q
�1/2
i

. We may also arrive at this result by noting that

Q
�1/2
i

from equation (3.7) is the mixed-model equivalent to s from section (Traditional

Meta-Analysis). However, this result is more general, allowing for a more flexible hy-

pothesis testing framework in which any linear combinations of the elements of � may

be evaluated.

X
w

i

Q
�1/2
i

R� 
pP

w2
i

qP
(Q�1/2

i

R�)2 (3.9)
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By substituting the optimal weights we arrive at the final meta statistic given in

equation (3.10) with its distribution under the alternative hypothesis given in equation

(3.11).

Z
meta

=
P

Q

�1
i R�̂ipP
Q

�1
i

(3.10)

⇠ N(�
pP

Q�1
i

, 1) (3.11)

It should be noted that when ⌃
i

is unknown, it must be estimated from the data.

In this case, Z
meta

may not follow a standard normal distribution under the null, due

to the unaccounted uncertainty in the estimation of ⌃
i

. However, we are able to side

step this issue by using a global search technique [KYE08, KSS10], in order to find an

optimal estimate of ⌃
i

for each population.

3.2.5 Simulations

Simulations were performed using a previously designed framework [KKW10, BFO10b].

For both power and resolution, phenotypes were generated by sampling a phenotype

for each strain while assuming the model from equation (3.4). The genetic variance �2
g

was determined for a given genetic background (g2) by using equation (3.12), where

S = I
n

� 1/nJ
n

(J
n

is an n⇥ n matrix of ones).

�2
g

=
g2�2

e

(n� 1)

(1� g2)Tr(SK
i

S)
(3.12)

The power and resolution for each effect size (�) was determined by first applying

the association mapping procedures to each simulated phenotype. Power was calcu-

lated as the percentage of associations for the known causal SNP that reached signifi-

cance. For resolution, association was applied to each SNP on the same chromosome

as the causal SNP. The distance between the true causal SNP and the peak associations
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were recorded. If the peak association is greater than 15Mb away from the causal SNP,

then the value is recorded as 15Mb. This procedure helps to reduce the mean shift that

occurs because of low power within a region.

3.2.6 Significance Threshold Estimation

Significance thresholds were estimated for each method using a technique utilized

previously [KKW10, BFO10b]. Ten-thousand null phenotypes were generated and

association statistics were calculated for each phenotype over all SNPs. We selected

the minimum p-value for each phenotype, resulting in a set of 10,000 minimum null

p-values. The threshold was chosen by selecting the p-value for which only 5% of the

minimum p-values were smaller. This p-value then represents our threshold controlling

for 5% FDR. Thresholds for the HMDP, F2 and Meta-analysis approach were found

as follows: 3.715⇥ 10�6, 2.4637⇥ 10�4 and 2.7⇥ 10�6.

3.2.7 Mouse Association Data

Genotypes for the F2 cross were obtained from a previous study [ECW04, WYS06,

NGW09, FBO11]. The original cross contained 311 mice, but we randomly sampled

only 300 for our simulation studies. Each mouse was genotyped at about 1200 markers

spread across the genome and it was this set of markers which was used previously to

perform linkage analysis. In order to apply the meta-analysis approach outlined in

this work, we require that the F2 mice be typed at the same markers as the HMDP.

Fortunately, since the parental strains for the F2s are part of the HMDP, genotyping is

not necessary. Instead we perform imputation in order to determine the state of each

marker which is typed in the HMDP but is not part of the markers typed in the F2 cross.

By applying the imputation algorithm described below, we obtained a set of 113,650

SNPs which were polymorphic in both the HMDP and the F2 cross. This is compared
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to the total set of markers available for the HMDP, which is of size 132,285.

We utilize a straightforward approach to imputation by noting the simple structure

of the F2 genomes. For any two adjacent markers in a given F2 mouse, the state of the

intervening markers will be determined by the state of the two adjacent markers. Let

two adjacent markers be x
i

and x
i+k

, where k is the number of intervening markers.

If both x
i

and x
i+k

are in the same state as parent one, then the markers from x
i+1 to

x
i+k�1 will be set to be the same as the corresponding markers in parent one. Likewise,

if both x
i

and x
i+k

share the same state as parent two, the intervening markers will be

set to those from parent two. If there is a switch in state between the two adjacent

markers, this indicates a recombination. In this case, we are not able to determine the

state of the intervening markers and these will be labeled as unknown. This process

assumes that the probability of a double recombination occurring between genotyped

markers is close to zero.

The genotypes and phenotypes utilized in this work have been made available on-

line at http://genetics.cs.ucla.edu/mousemeta/.

3.3 Results

3.3.1 Combining the HMDP with an F2 cross increases power

We show that by combining the mapping results obtained in the HMDP with those

obtained in an F2 cross through meta-analysis, we achieve higher power than when

mapping within only one panel. Simulations are performed with genotypes for 300

F2 mice, which were obtained from a previously generated cross [ECW04, WYS06,

NGW09]. The F2s were genotyped at about 1200 markers and imputation was per-

formed (see Methods) to obtain genotypes at all markers typed in the HMDP strains.

Power simulations were performed as described in previous studies [KKW10, BFO10b].
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We randomly selected a set of 10,000 SNPs that are polymorphic in both the F2 cross

and the HMDP. For each SNP we generated a phenotype with a 25% genetic back-

ground effect and a SNP effect of a given size. The genetic background effect can

be thought of as the heritability of the trait. Association between each SNP and its

corresponding set of generated phenotypes was tested using EMMA [KYE08] for the

F2 and HMDP panels alone. Power for each SNP effect size was calculated as the

percentage of tests that resulted in a significant p-value. Significance thresholds for

each panel were obtained through a parametric bootstrap procedure (see Methods).

Figure 3.1 shows the comparison of power between the meta-analysis approach

and mapping within the individual panels. In these simulations, we varied both the

number of F2 mice as well as the number of HMDP replicates. Power is reported on

the y-axis and the magnitude of the SNP effect is reported on the x-axis. The SNP

effect is reported in terms of � from equation (3.4) and the actual variance explained

for a given value will depend on the SNP as well as the genetic background. Therefore,

we determine the variance explained by a given effect size under a given genetic back-

ground by taking the average variance explained in the HMDP across all SNPs. The

meta-analysis method has higher power than mapping within the single populations in

all simulations. As power within each of the single populations increases, so does the

power of the meta-analysis method. For a large number of F2 mice and HMDP mice,

the power to detect small effects increases dramatically by applying meta-analysis. For

example, for a SNP effect accounting for 5% of the phenotypic variance (� = 0.5),

we find that mapping within only the HMDP with 5 replicates results in a 50% power,

while mapping within only the F2 cross results in a power of 17%. When combining

the results through meta-analysis, the power increases to 75% (Figure 3.1d).
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3.3.2 Meta-analysis leads to an increase in resolution over HMDP and F2 map-

ping

We evaluate the mapping resolution when using the HMDP, F2 and the meta-analysis

approaches through simulation. Resolution was evaluated by calculating the genetic

distance between a SNP simulated to be causal and the peak associated SNP, while

only considering the region within 15Mb of the causal SNP. Figure 3.2 compares the

distribution of these distances under each mapping method. Simulations were per-

formed assuming a 25% genetic background effect and a SNP effect accounting for

10-15% of the phenotypic variance.

Using one replicate for the HMDP, we find that the mean distance of the peak as-

sociation to the true causal SNP is 3.17Mb. This compares with a mean of 7.5Mb

obtained when mapping within the F2 panel. When combining results through the

meta-analysis approach, the mean distance is decreased to 2.21Mb. This is an almost

1.5-fold increase in resolution over the HMDP and an almost 3.5-fold increase in res-

olution over the F2 panel.

3.3.3 Application to Bone Mineral Density

We obtained a set of bone mineral density (BMD) measurements from the femurs of

865 HMDP mice and 161 male F2 mice. We applied association mapping in each

panel separately using EMMA [KYE08], and applied the meta-analysis approach as

well. Manhattan plots summarizing these results are shown in Figure (3.3). Two loci

(Chr 4 and 7) showed an increase in significance relative to the associations in either

the F2 or HMDP. The significance of the Chr. 7 meta-analysis peak was an order of

magnitude more significant (3 ⇥ 10�7) than either the HMDP (3.1 ⇥ 10�6) or the F2

(1.6 ⇥ 10�3) peaks. The original QTL on Chr. 7 (Bmd41) had a 1.5 LOD support
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interval of 80 Mb (24.9 to 104.9 Mb) [FNG09]. We approximate the associated region

obtained via meta-analysis by employing a simple approach. We define the associated

region as that surrounding the peak SNP and containing SNPs with p-values  10�6.

Thus defined, the Chr. 7 meta-analysis interval extending from 17.2 to 25.2 Mb is

much smaller than the previously obtained support interval. This result indicates an

increase in resolution for Bmd41.

The QTL on Chr. 4, previously referred to as Bmd7 [FNG09], was the strongest

locus affecting femoral BMD in the F2 (p = 7.8 ⇥ 10�4). The peak F2 SNP was

moderately significant in the HMDP (1.3 ⇥ 10�3) and highly significant in the meta-

analysis (2.8⇥ 10�6). Bmd7 was previously found to have a 1.5 LOD support interval

of 11.0 Mb (126.2 to 137.2 Mb). In the meta-analysis SNPs with P-values of  10�6

spanned 10 Mb (from 129 to 139 Mb).

3.3.4 Application to HDL cholesterol

We obtained a set of HDL measurements for 687 male mice each a member of the

HMDP and a set of 164 male F2s [NGW09]. We applied association mapping in the

HMDP and F2 panels separately using EMMA [KYE08] and then applied our meta-

analysis approach. Figure 3.4 shows the results of this experiment. As shown in the

original paper introducing the HMDP, the peak association for HDL is found on distal

chromosome one, in which a well-known association with the Apoa2 [DLW90] gene

exists. The peak association is 25kb upstream of the start site of the Apoa2 gene with a

p-value of 7.06⇥10�8, which is significant at the 1⇥10�7 level estimated from a para-

metric bootstrap procedure. The mapping results obtained from the F2 panel(Figure

3.4a) resembles a linkage peak, due to the large amount of linkage disequilibrium

within the F2 genomes. The peak association identified in the F2 population is over

2Mb downstream of the end site for the Apoa2 locus with a p-value of 2.67 ⇥ 10�09.
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Figure 3.4b shows the mapping result obtained with the meta-analysis procedure. Us-

ing the meta-analysis result, we again obtain the association which is 25kb from the

start site of the gene, however the p-value is greatly reduced to less than 1⇥ 10�15.

3.4 Discussion

In this chapter, we introduce a study design in which the Hybrid Mouse Diversity

(HMDP) inbred panel is combined with an F2 cross in order to perform association

mapping. We show that by utilizing a meta-analysis approach which accounts for

the genetic structure of the populations, both association power and resolution are in-

creased when compared with mapping within either of the individual panels. The rea-

son for increased power can be understood intuitively as, in general, increased sample

sizes lead to increases in power. However, an increase in resolution when combining

a high resolution panel with a low resolution panel is somewhat counter intuitive. One

way to understand why we achieve higher resolution is by considering that by combin-

ing panels we are increasing the number of overall unique genomic break points.

Our results have focused on the case when the HMDP panel is combined with one

F2 cross. However, by using the methodology we present any number of panels can

be combined. One obvious potential for this is that by adding additional F2 panels,

we may increase power much further. A significant amount of cross data exists in

publicly accessible databases such as MGI [BBK11]. By utilizing existing cross data

researchers will be able to use our technique, in order to increase the power of their

studies without spending money to generate F2s of their own.

Another advantage of our method is that it is general enough to be used in order to

combine the HMDP with other types of study designs such as the Collaborative Cross

[AVF11] and heterogeneous stock [HSV09]. However, one potential issue that may

41



arise when combining the HMDP with such panels is that of heterogeneity of effect

size. That is, the magnitude of main effects may vary between different mapping

panels due to the difference in the overall genetic structure. In this case, our method

may be easily extended to utilize approaches which account for such heterogeneity

between effects [HE11]. Heterogeneity between effect sizes is also known to be a

problem between sexes within the same population. Therefore, a similar approach

may be utilized in order to combine results across sexes within the same mapping

panel.

Reference to published article

Furlotte, Nicholas A, Eun Yong Kang, Atila Van Nas, Charles R Farber, Aldons J

Lusis, and Eleazar Eskin. 2012. Increasing association mapping power and resolution

in mouse genetic studies through the use of meta-analysis for structured populations.

Genetics doi:10.1534/genetics.112.140277.
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(d) 500 HMDP, 300 F2s

Figure 3.1: Mapping power is increased by combining populations using meta-

analysis. We performed simulations assuming a background genetic effect of 25%.

Power was calculated as the percentage of associations detected at a given level of

significance for SNPs simulated to be causal. The meta-analysis method is shown to

provide increased power at all effect sizes.
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Figure 3.2: The combined mapping result has higher resolution than that of the

HMDP or F2 mapping. The distribution of distances from the true causal SNP to

the most significant association are shown in units of megabases. We considered peak

associations which are within 15mb of the true causal SNP. As expected, the HMDP

has much higher resolution than the F2 cross. The combined result achieves an even

higher resolution.

44



Association for bone in the F2

Chromosome

−l
og
10
(p
−v
al
ue
)

0
2

4
6

8

1 3 5 7 9 11 13 15 17 19

Association for bone femur in the HMDP

Chromosome

−l
og
10
(p
−v
al
ue
)

0
2

4
6

8

1 3 5 7 9 11 13 15 17 19

Association for bone femur in the Meta

Chromosome

−l
og
10
(p
−v
al
ue
)

0
2

4
6

8

1 3 5 7 9 11 13 15 17 19

Figure 3.3: Meta-analysis results in increased significance and increased resolu-

tion for two loci known to be associated with BMD. Two loci, one on chr 4 and

one on chr 7, were previously found to be associated with BMD (Bmd7 and Bmd41

respectively) [FNG09]. After applying meta-analysis, we found that the peak associ-

ated SNPs for both of these loci had increased significance with respect to the F2 and

HMDP mapping panels. Thresholds for significance are indicated by the horizontal

black bars in each plot.
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Figure 3.4: Meta-analysis increases significance of known association. We compare

the association mapping results obtained from the HMDP, F2 cross and meta-analysis

for HDL cholesterol on chromosome 1. The peak association in the HMDP result

is 25kb away from the start site of Apoa2 with a p-value of 7.06 ⇥ 10�08, while the

peak association in the F2 is 2Mb downstream of the start site (p-value 2.67⇥ 10�09).

After applying the meta-analysis method, we recover the same association identified

in the HMDP with a p-value 2.36 ⇥ 10�15. The horizontal black bar is placed at

�log10(p) = 6 for reference.

46



CHAPTER 4

Genome-wide association mapping with longitudinal

data

4.1 Background

The use of genome-wide association study (GWAS) methodologies has become com-

mon practice in the analysis of complex traits. However, it is well-known that the ge-

netic variants identified for most common traits only account for a small portion of the

heritability [MCC09, EFG10], implying that there are a large number of genetic associ-

ations yet to be identified. Many GWAS have been performed in cohorts, in which mul-

tiple time points are available for each individual [KMD07, Sab08, ARL08, KMO10].

However, current association methods only utilize one time point for each individual.

This is accomplished by either selecting a single measurement [Sab08] or by comput-

ing the average over all time points [KMD07, IML07, KMO10]. It is reasonable to

assume that a method jointly considering all time points when performing association

may have increased power over single time point approaches.

In this chapter, we present a method for performing association mapping with lon-

gitudinal phenotypes and show that this method has increased power over single time

point mapping approaches. Recently, there has been an interest in the prediction of the

genetic contribution to traits using cohort data [YBM10]. These methods utilize a sin-

gle phenotype measurement for each individual and predict the genetic contribution to
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the phenotype by taking into account the relationships between individuals. We show

that when utilizing multiple measurements, this genetic contribution can be differen-

tiated from the environmental and error contribution and we show how each of these

contributing factors can be accurately predicted. Our method utilizes a mixed effects

approach to model phenotype measurements. Mixed effects models have been used

extensively for modeling correlated data and are an important tool in the analysis of

longitudinal data [Har77, LW82]. This class of models has been used in the analysis of

longitudinal data for twin studies [WGH11] as well as pedigree-based family studies

[AGV02]. We propose a model that partitions each individual’s trait measurements

into both a genetic and environmental component. We refer to the genetic component

as the “genetic influence” to the trait. Similarly, we refer to the part of the environ-

mental contribution as the “lifestyle value”.

In order to evaluate our method, we first compare power with a traditional mapping

procedure utilizing only one time point. Power is evaluated through an analytical ap-

proach similar to that introduced by [WB99]. Using a set of individuals obtained from

the Wellcome Trust Case Control Consortium (WTCCC), we show that our method

has increased power over traditional approaches. Second, we evaluate the accuracy

in calculating genetic influence and lifestyle values for individuals while varying the

number of available time points. We show that for phenotypes heavily influenced by

the environment, the accuracy in prediction of the proportion of the phenotype due

to genetics and environment has large variation. However, when ranking individuals

based on their predicted lifestyle values, we find that this ranking is highly concordant

with the ranking obtained using the true lifestyle values. This implies that individuals

may be effectively categorized by lifestyle based on these predicted values.
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4.2 Methods

4.2.1 Longitudinal Phenotypes

In experiments adopting longitudinal designs, phenotype measurements are collected

for each of n individuals at m time points. We expect that measurements acquired from

the same individual will tend to be more correlated than those obtained from different

individuals. This correlation is due to both genetic and environmental effects shared

between measurements. In order to conceptualize this, we present a generative model

for phenotype measurements, which is a model specifying the mathematical process

by which measurements may be systematically generated.

y
ij

= µ+G
i

+ E
ij

+ ✏
ij

(4.1)

The generative model in equation (4.1) states that a phenotype measurement j from

individual i is a function of the global phenotype mean µ, an individual-specific ge-

netic effect G
i

, a measurement and individual-specific environmental effect E
ij

and an

error term ✏
ij

, accounting for other unknown factors such as measurement error. The

value of G
i

is a function of the genetic variation for individual i, and is expected to

remain constant over time as an individual’s genetic make up does not change. This as-

sumption may not hold if there exist, for example, gene-by-environment interactions.

On the other hand, the value of E
ij

may vary across measurements due to changing

environmental conditions. The correlation between each pair of E
ij

s will depend on

the magnitude of environmental change between time points as well as the degree of

influence environment has over the phenotype in question. The residual terms ✏
ij

are

expected to be independent between measurements.
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4.2.2 Traditional Approach to Association Mapping

The traditional approach to association mapping considers one measurement for each

of n individuals and interrogates each genetic locus individually. The traditional model

is given as follows

y
i

= µ+ �
r

x
ir

+ ✏
i

(4.2)

x
ir

represents the state of SNP r for individual i and �
r

its coefficient [Bal06]. By

testing the hypothesis �
r

= 0, it is determined whether SNP r influences the trait or

not. We note that, with respect to the model in equation (4.1), the model in equation

(4.2) has folded many terms into the residual term ✏
i

. This model is represented using

standard vector notation as follows

y = X
r

� + ✏ (4.3)

y is a vector of all phenotype measurements and X
r

= [1
n

x
r

], where x
r

is a vector

representing the n SNP values for SNP r, � is a vector of coefficients and 1
n

is a

column vector of ones. Other fixed effects may be added to X in order to account for

additional confounding.

In order to apply this model to longitudinal data, the total set of mn measurements

must be pre-processed into a set of n independent measurements. There are two com-

mon approaches taken and we refer to these as the single approach and the average

approach. In the single approach, a single measurement from the set of m measure-

ments is chosen for each individual i. In the average approach, the m measurements

for each individual are averaged and the average value is used as the single phenotype

measurement for that individual. Under the assumption that individuals are unrelated,
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both of these procedures result in a set of n independent measurements and the stan-

dard model may be applied.

4.2.3 Mixed Effects Model for Association Mapping

The traditional method for association mapping interrogates each genetic locus indi-

vidually while using single time points. However, it is known that traits are often

influenced by many loci and ignoring this fact may have a negative impact on asso-

ciation mapping results. In particular, global genetic similarities between individuals

may be correlated with trait similarities and this global correlation may cause many

genetic loci to appear to be associated with the trait, a problem often referred to as

population structure or cryptic relatedness [DRB01, VP05]. One way to account for

this structure is through the use of a variance component model, in which the global

genetic relatedness, referred to as polygenic background, of individuals is accounted

for by the introduction of a random variable into the simple model from equation (4.2)

[Lan02, YPB06, KSS10]. This model is summarized as follows.

y
i

= µ+ �
r

x
ir

+ u
i

+ ✏
i

(4.4)

The model is equivalently described in matrix notation using

y = X
r

� + Zu+ ✏ (4.5)

The random variable u
i

is assumed to be normally distributed with mean zero and

variance �2
g

and the cov(u
i

, u
j

) = �2
g

K
ij

, where K
ij

is the kinship coefficient for indi-

vidual i and j, which is a value representing their genetic relatedness. The incidence

matrix Z maps measurements from each individual to the phenotype vector y, and

in the case when there is only one measurement for each individual Z = I
n

. This
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form is standard in the mixed model literature. With this the var(Zu) = �2
g

ZKZ0 and

var(✏) = �2
✏

I. The total variance of y is then given by

⌃ = �2
g

ZKZ0 + �2
✏

I (4.6)

In order to test the hypothesis �
r

= 0 using the model in equation (4.5), the two

variance components �2
g

and �2
✏

must be estimated. Since there is no analytical solu-

tion, this is accomplished using a numerical search algorithm implemented in the pro-

gram EMMAX [KSS10]. EMMAX combines grid search with the Newton-Raphson

algorithm, in order to find the optimal variance components �2
g

and �2
✏

in time lin-

ear in the number of measurements, given the singular value decomposition of K.

Furthermore, by assuming that each SNP only has a small to moderate effect on the

phenotype, it is reasonable to assume that variance component estimates will be the

same for each SNP. With this assumption it is only necessary to perform the variance

component search once and thus feasible to perform the hypothesis test for each SNP

within the genome.

There are many methods to compute the kinship matrix K. For a review of many

standard relatedness estimators see [OWA06]. More recently, [YBM10] proposed a

method for adjusting the relatedness matrix, to account for the fact that the true causal

SNPs may not be strongly correlated with the genotyped SNPs. Such issues are beyond

the scope of this work and thus we will only use the IBS allele sharing matrix [KYE08].

Furthermore, these issues and the choice of kinship matrix do not affect our simulation

results. In general, the methodology introduced in this chapter may be utilized as long

as the kinship matrix is positive semi-definite.
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4.2.4 Association Mapping with Longitudinal Data

The models from equations (4.2) and (4.4) do not take advantage of the availability of

multiple time points and do not directly account for both genetic and environmental

factors. We suggest a model that directly accounts for each term using all time points

by extending the model in equation (4.4) .

y
ij

= µ+ �
r

x
ir

+ u
i

+ v
ij

+ ✏
ij

(4.7)

The random variable v
ij

is introduced to represent the contribution of the environ-

ment to the phenotype measurement (E
ij

from equation (4.1)). The matrix version is

as follows.

y = X
r

� + Zu+ v + ✏ (4.8)

We assume, without loss of generality, that the mean of the random components

u and v are equal to zero and that the variance structure is as follows, where D is a

known matrix representing the covariance between environmental components.

var

2

6664

u

v

✏

3

7775
=

2

6664

�2
g

K 0 0

0 �2
v

D 0

0 0 �2
✏

I

3

7775
(4.9)

With this we define the variance of y.

var(y) = ⌃ = �2
g

ZKZ0 + �2
v

D+ �2
✏

I (4.10)

In general, the matrix D will depend on the level of correlation between indi-

vidual time points and can be determined through estimation techniques or by fitting
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parametric models, such as models of the autoregressive class [JS86]. Most com-

monly D will take the form of a block diagonal matrix, so that environmental com-

ponents between individuals will be independent. The variance of v is then given as

var(v) = D = E⌦ I, where ⌦ represents the Kronecker product of two matrices, and

E is an m⇥m matrix representing the covariance between the set of m time points for

each individual.

4.2.5 Missing Data

One complication that often arises when dealing with longitudinal data is that of un-

balanced or missing data [MS01]. When a study is unbalanced, meaning that all indi-

viduals do not have the same number of measurements, the model notation becomes

slightly more complicated. Let us consider that individual i has m
i

measurements

and define m = [m1 m2 . . .m
n

]. The incidence matrix Z will still map genetic

components to measurements and its structure will be dictated by the vector m. For

example, the first m1 rows of Z will have a 1 in the first column and the second m2

rows of Z will have a 1 in the second column and so on.

In order to avoid complicated notation, we suggest a simple scheme for defining

the model. Define the model using m = max(m), so that the assumed number of

measurements is equal to nm and the vector y has missing values. Select the mea-

surements that are missing at each individual and remove the rows and columns of

the full covariance matrices of each component (genetic, environmental and residual

error) that correspond to the indices of these entries in the vector y of size nm. The

resulting covariance matrices will then correspond to a new vector ỹ, defined as the

vector y with the missing values removed. Modeling fitting procedures are then readily

adaptable to such matrices and hypothesis testing procedures can be easily applied.
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4.2.6 Estimating Variance Components

In order to fit the models in equations (4.5) and (4.8), we must estimate a set of vari-

ance components. For the model in equation (4.5), a linear time search algorithm based

on maximum likelihood exists, which is able to identify the optimal variance compo-

nents. However, no linear time method exists to find the three variance components

required for the model in equation (4.8). Therefore, we utilize an approach suggested

by [LKS10], in which we use the EMMAX algorithm inside of a linear time search.

First we rewrite the variance of y as shown in equation (4.11), letting ⌧ 2 = �2
v

��2
g

and w = �2
g

/(�2
v

� �2
g

) Then, given a value w between zero and one, we apply the

EMMAX search algorithm to find optimal variance components ⌧ 2 and �2
✏

. If we

search q different values of w, then our approach will be q times slower than EMMAX.

More specifically, EMMAX has a one time computational cost of O(N3) followed by

a cost of O(rN) for r search iterations, where N is the total number of measurements

or the size of the vector y. In comparison, our approach will have a one time cost of

O(qN3) followed by a cost of O(qrN). This is compared to the basic Newton-Raphson

technique, which has a total computation cost of O(qrN3).

var(y) = ⌧ 2(wZKZ0 + (1� w)D) + �2
✏

I

= ⌧ 2K⇤ + �2
✏

I (4.11)

Additional cost will be incurred if D has to be estimated, such as in the case when

an auto-regressive model is utilized. For example, in the case where D is determined

through an auto-regressive model, the total computational time would be multiplied

by the size of the search space for the additional auto-regressive parameter. If the

number of iterations required to optimize this parameter were O(p), then the total

computational cost will be O(pqN3 + qrN).
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4.2.7 Predicting Lifestyle Values and Genetic Influence

The realization of u is a vector of values representing the genetic contribution to the

phenotype measurement. That is, u is a random variable and at the time the phenotype

was measured a value for u was sampled from a multivariate distribution. This is the

realized value. Just as fixed effects are estimated, the value of a random variable can be

predicted using the best linear unbiased predictors (BLUPs) introduced by Henderson

[Hen50]. The BLUP for u, denoted by ũ, is given by

ũ = �2
g

KZ0⌃�1(y �X
r

�̂) (4.12)

where ⌃ is given by equation (4.10). The realized value of u represents the overall

genetic contribution to the phenotype for each individual. By determining the value of

u
i

for each individual, we are able to determine what proportion of each phenotypic

measurement is due to genetics and what proportion is due to other factors, specifically

fixed effects and error. This enables us to compare individuals based on the magnitude

of their genetic contributions. Certain individuals may have a stronger genetic effect

than others. When this large genetic effect causes phenotypes to become harmful,

such as in high cholesterol, we may see this difference as indicator of increased risk.

When large genetic effects lead to beneficial phenotypes, this may indicate a sort of ge-

netic robustness, a phenomenon often referred to colloquially as having “good genes”.

Therefore, we refer to the realized value of u as the genetic influence.

Just as it is possible to predict u, it is also possible to predict the realized value

of v from equation (4.8). The realized value of v for each individual represents the

environmental contribution to the phenotype. By comparing realized values of v it is

possible to uncover differences in individual environment, which may be an indicator

of an individual’s lifestyle. For this reason, we refer to the realized value of v as the
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vector of lifestyle values. When calculating the realized values for u and v, we are able

to partition each phenotype measurement into genetics, environment, fixed effects and

error, and give the proportion that each factor contributes.

2

6664

�̂

ũ

ṽ

3

7775
=

2

6664

X0X X0Z X0

Z0X Z0Z+K�1↵1 Z0

X Z I+D�1↵2

3

7775

�1 2

6664

X0y

Z0y

y

3

7775
(4.13)

The BLUPs for u and v are obtained by solving the system of equations given in

equation (4.13) [Hen73, MT05], where ↵1 = �2
✏

/�2
g

and ↵2 = �2
✏

/�2
v

. These solutions

are obtained by maximizing the joint likelihood of y, u and v under the assumption

of normality. After solving the so-called mixed model equations (MME), we obtain a

prediction of the random variable v
ij

for each individual i and time point j, as well as

predictions for u
i

for each individual i.

Theoretical accuracy of the random effects may be analyzed by evaluating the vari-

ance in the difference between the true and predicted effects, which are calculated by

var(ũ� u) = �2
g

K� �2
g

KZ0PZ�2
g

K (4.14)

var(ṽ � v) = �2
v

D� �2
v

DP�2
v

D (4.15)

where P = ⌃�1 �⌃�1X(X0⌃�1X)�1X0⌃�1.

4.2.8 Analytical Power for Mixed Effects Models

One common approach to evaluate methods for performing association is through the

analysis of statistical power [BYP05]. Although power is easily calculated analytically

when assuming the model from equation (4.2), it is not well-known how to calculate

power when using a mixed effects model. For this reason, time consuming simula-
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tions are often employed in order to estimate statistical power [BFO10a]. [WB99]

introduced a likelihood-ratio based technique to compute power in variance compo-

nent models used for linkage analysis. We introduce a similar derivation based on the

F-test.

Let y be a vector of size n and assume that it has a normal distribution with mean

X� and variance ⌃, where X is an n⇥ q matrix of fixed effects, � is a q ⇥ 1 vector of

coefficients and⌃ is an n⇥n covariance matrix. In order to test a hypothesis about �,

we define a q ⇥ 1 matrix R, which defines a linear combination of the elements of �.

For example, if X only encodes global mean and SNP, then we define R = [0 1], so

that R� results in the single SNP coefficient. Given R we define the hypothesis test

R� = r. The generalized least squares (GLS) F-statistic is then given by

�
F

=
(R�̂ � r)0[R(X0⌃�1X)�1R0]�1(R�̂ � r)

q
(4.16)

We show that under the alternative hypothesis R� = r + �, �
F

follows an F-

distribution with n � q numerator and q denominator degrees of freedom and non-

centrality parameter � (see Appendix), given by

� = �0[R(X0⌃�1X)�1R0]�1� (4.17)

It is important to note that we have assumed an optimal estimate for the true co-

variance matrix ⌃. Given the non-centrality parameter in equation (4.17), power is

calculated as the area under the curve of the distribution defined by the non-centrality

parameter that is beyond the null rejection region. We expound upon the details of

these calculations in what follows.

Consider that �̂ ⇠ N(�, (X0⌃�1X)�1), from equation (4.16). Now consider that

the hypothesis test R� = r, while in truth R� = r + � (r = R� � �). In order to
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derive, a chi-square statistic, we first derive a Z-score statistic for the test R� = r.

Z = [R(X0⌃�1X)�1R0]�1/2(R�̂ � r)

= [R(X0⌃�1X)�1R0]�1/2(R�̂ �R� + �)

= [R(X0⌃�1X)�1R0]�1/2(R(�̂ � �) + �)

We know the distribution of �̂ and therefore R�̂, thus

[R(X0⌃�1X)�1R0]�1/2(R(�̂ � �)) ⇠ N(0, I)

[R(X0⌃�1X)�1R0]�1/2(R(�̂ � �) + �) ⇠ N([R(X0⌃�1X)�1R0]�1/2�, I)

Squaring Z, we obtain a �2 statistic. Let W = [R(X0⌃�1X)�1R0].

�
c

= (R(�̂ � �) + �)0W�1(R(�̂ � �) + �)

= (R�̂ � r)0W�1(R�̂ � r) ⇠ �2(q; �0W�1�) (4.18)

Thus �
c

is a �2 statistic with q degrees of freedom and a non-centrality parameter

of �0W�1�. Now consider that⌃ is actually unknown and that we will use an estimate

⌃̂, such that ⌃ = �2
c

⌃̂, where �2
c

is an unknown scalar. Given this, we know that

(n � q)�̂2
c

/�2
c

⇠ �2(n � q) and may obtain the following statistic by dividing �
c

by

this quantity.

�
F

= (R�̂�r)0[R(X0⌃̂�1X)�1R0]�1(R�̂�r)
�̂

2
cq

(4.19)

�
F

⇠ F(q, n� q, �0W�1�),

We use F(df1, df2, ncp) to represent the non-central F-distribution with numerator

degrees of freedom df1 and denominator degrees of freedom df2 and non-centrality

parameter ncp. With optimal variance component estimates, we expect that �̂2
c

= 1.
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4.2.9 Simulations

The power gain was estimated by generating random covariance matrices for the en-

vironmental components and then by averaging analytical power over 1000 randomly

selected SNPs with minor allele frequencies in the range of 1% to 5%. The expected

power gain was calculated as the average power gain over 1000 such randomly gen-

erated covariance matrices. The covariance matrices were generated by randomly se-

lecting a vector of size m� 1 from a uniform(0,1) distribution, where m is the number

of time points. The covariance between time points i and j (i > j) is then given as the

(i� j�1)th entry in this vector. We then define an m⇥m matrix E using this scheme

and define the full environmental covariance matrix D = E⌦ I.

Phenotypes with multiple time points were generated by sampling both genetic

and environmental components from their respective multivariate normal distributions,

having a mean of zero and with variance as specified in equation (4.9). This results in

both a genetic and environmental contribution value for each individual. These values

are used as the individual’s mean phenotype value to which random noise is added to

generate each time point.

Random effects were predicted by fitting the model from equation (4.8), with only a

mean effect, and then by obtaining the solution to equation (4.13). The environmental

covariance matrix was estimated by calculating the correlation between time points

using all individuals. This procedure works well, when either the genetic effect is

small or the sample has little population structure. In the case where the population

has a large amount of structure, we employ a simple iterative scheme. Starting with an

estimate of the environmental covariance matrix calculated on the raw data, we predict

the random genetic effect. This effect is regressed from the phenotype values and a

new environmental covariance matrix is computed with these new phenotype values.

This procedure is repeated until the environmental covariance matrix converges.
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4.3 Results

4.3.1 Multiple measurements provide increased power over traditional approaches

We evaluated the gain in power achieved when using the proposed method (the full

method) over using an averaging approach or single approach. In the single approach,

a single time point is selected for each individual, while in the average approach time

point values are averaged for each individual. Power gain is evaluated by comparing

the ratios of the power achieved with one method to that of the power achieved with the

single approach. Figure (1) summarizes these results. Power gain was calculated for

each effect size by averaging the power gain over 1000 iterations, in which a different

randomly selected environmental covariance matrix was used in the analytical calcula-

tion of power. This power was averaged over 1000 SNPs with minor allele frequency

in the range of 1% to 5%. All calculations assume that the environment accounts for

80% of the phenotypic variance while both the genetic background and residual error

account for 10%.

Figure (1) compares both the power curves (figures (1a) and (1c)) and power gain

(figures (1b) and (1d)) for 1000 and 2000 individuals randomly selected from the

Wellcome Trust Case Control Consortium (WTCCC). We see that on average the full

method has increased power when compared to the average and single methods. This

increased power is seen more clearly in the power gain plots, which show that the full

method has as much as an 8-fold gain in power over the single approach, compared to

a roughly 4.5-fold power gain achieved by the average approach.

4.3.2 Multiple measurements allow for the prediction of individual lifestyle

Another benefit of using the full method over approaches utilizing only one time point

is the ability to predict the phenotypic contribution due to environment. We evalu-
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ate this ability through simulation. We simulated phenotypes for 1000 individuals

in which the environment accounts for 80% of the variance, while genetic and error

each contribute 10%. These phenotypes represent those that are largely influenced

by environment. For each phenotype, we predict the environmental contribution and

the proportion of the phenotype that this value accounts for. More specifically, each

phenotype can be seen as a linear combination of mean, genetic contribution, environ-

mental contribution and error. Using random effect predictions, as summarized in the

methods, we obtain predicted values for the genetic and environmental contributions

at each time point. The prediction of random effects for each time point scales with

the cube of the number of individuals times the number of time points. In practice,

1000 individuals and 2 time points requires a running time under 5 minutes for one

phenotype, whereas the running time for 1000 individuals with 5 time points is just

under 50 minutes. However, we note that recent advances in the computational theory

behind linear mixed models can serve to decrease these running times [LLL11].

The results of this simulation are summarized in figure (2). First, we compare the

accuracy of the predictions by summarizing the difference in the true proportion of the

phenotype contributed by the environmental component with that of the predicted pro-

portion (figure (2a)) for 1000 randomly generated environmental covariance matrices.

From this plot, we see that the difference between the true and predicted proportion

hovers around 25%, while increasing the number of time points available shifts this

mean towards zero. Despite the high variation in accuracy, figure (2b), showing the

distribution of correlations between the true lifestyle values with the predicted, shows

that on average the predictions have a rank correlation of 0.94. This indicates that al-

though accuracy is not always high, the relative ranking of individuals based on their

predicted lifestyle values is highly concordant with their true ranking. This implies

that individuals may be effectively ranked based on their predicted lifestyle values.
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Figure (3) shows the accuracy and correlations for predicted genetic values. We

find that the predicted proportions behave very similarly to that of the lifestyle values,

except that the availability of additional measurements does not increase accuracy in

this case. However, the correlation between the true and predicted genetic effects is on

average very small and has a strange pattern. Although, we find that as the number of

time points increases, the average correlation increases.

4.4 Discussion

In this chapter, we introduce a mixed model based approach to perform association

mapping in GWAS, when multiple measurements are available. We show that by uti-

lizing multiple measurements, our method achieves increased power over methods that

either select a single measurement or average measurements for individuals. Further-

more, we show that when multiple measurements for each individual are available, it is

possible to differentiate the genetic contribution from the environmental contribution.

We call these quantities the genetic influence and lifestyle values, respectively.

The ability to partition a phenotype into its constituents may be useful for future

phenotype prediction and treatment selection. For example, some individuals might

gain substantially from a decrease in dietary cholesterol when the largest part of their

cholesterol is due to their intake. On the other hand, some individuals who are genet-

ically predisposed to high cholesterol, might stand to gain little from decreasing their

dietary cholesterol, but instead might require medication in order to alter their overall

cholesterol levels. With knowledge of the individual contributions to total cholesterol,

the appropriate treatment options may be put in place in order to alter the future of the

phenotype.

The previous cholesterol example extends very naturally to explain how prediction
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of genetic influence and lifestyle may be useful for risk prediction. For example, it

may be discovered through these methods that an individual has a very large lifestyle

component for cholesterol. In this case, their risk for developing cardiovascular disease

may be predicted based on the magnitude and direction of this value, such that the

resulting prediction may be different from that obtained by using the total level of

cholesterol.

Another interesting aspect of the ability to predict lifestyle values is the subsequent

ability to categorize individuals. For example, when evaluating a trait such as lung ca-

pacity, certain individuals will have decreased lung capacity due to long term smoking,

while others will have relatively normal capacity given their age and genetic makeup.

This might be easily discerned by using a series of questions, but it is well-known that

the truth is not always told when answering such questions. In this case, the lifestyle

value may help to categorize individuals based only on their phenotype measurements

and genotypes.

The model we propose is tested under a certain set of assumptions, however the

structure is very general and may work for a larger class of problems. For example,

there are cases when it is not reasonable to assume that a phenotype follows a nor-

mal distribution, and a simple transformation such as log is not sufficient to obtain a

normally distributed measure. For example, binary or categorical outcomes cannot be

expected to follow a normal distribution. In this case, the phenotype may be modeled

using a link function, such is done in logistic regression [MS01]. The models pre-

sented here may then be utilized in this space. Furthermore, there may be other factors

to include in the model, such as gene-by-environment interactions, or even more com-

plicated treatment-genetic-enviromental interactions. Perhaps some individuals have

increased variance when subjected to certain environments and certain treatments but

not with others. The model presented in this work can be used as a base to explore such
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conditions, which may require more complex models with additional random effects.

Reference to published article

Furlotte, Nicholas A, Eleazar Eskin, and Susana Eyheramendy. 2012. Genome-Wide

association mapping with longitudinal data. Genetic Epidemiology.

doi:10.1002/gepi.21640.
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Figure 4.1: Association mapping utilizing multiple measurements leads to an in-

crease in power over traditional approaches. We compare the average power gain

for the proposed full model with that of the average model (using averaged measure-

ments for each individual). Power gain is defined as the ratio of the power of a given

method to that achieved with the single approach (i.e.. mapping with only one mea-

surement for each individual) and was calculated by averaging power gain over 1000

randomly selected SNPs with MAF in the range of 1% to 5% and over 1000 randomly

selected covariance structures for the multiple measurements (m = 5). Simulations

were performed with the environmental effect accounting for 80% of the variance

while the genetic background and residual error accounted for the remaining 20%.
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(a) (b)

Figure 4.2: The accuracy in prediction of lifestyle values varies, while the ranking

remains consistent. For each of 1000 iterations, lifestyle values were predicted and

compared with their known true values, through simulation. Figure (4.2a) evaluates the

difference between the proportion accounted for by the environment as determined by

the true lifestyle effect with that of the predicted lifestyle effect. This result indicates

that the accuracy of these predictions has a high variation, but that by increasing the

number of time points it is possible to obtain more accurate predictions . Figure (4.2b)

shows the distributions of Spearman rank correlations between the true lifestyle and

predicted lifestyle values. This result indicates that the ranking of individuals based on

their predicted lifestyle is highly concordant with the true lifestyle ranking.
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(a)

(b)

Figure 4.3: The accuracy in prediction of genetic values is similar to that of

lifestyle. For each of 1000 iterations, genetic values were predicted and compared

with their known true values, through simulation. Figure (4.3a) shows a very simi-

lar result to that found in lifestyle values, where the accuracy of these predictions has

a high variation and has a relatively uniform distribution across different numbers of

time points. However, the result of figure (4.3b) is much different than that found in the

lifestyle value prediction. There is not a clear pattern, although the average correlation

does increase as the number of time points increases.

68



CHAPTER 5

Efficient Multiple Trait Association with the

Matrix-variate Linear Mixed-model

5.1 Background

Classically, genome-wide association studies have been carried out using single traits.

However, it is well-known that genes often affect multiple traits, a phenomenon known

as pleiotropy, and more recently, it has been shown that performing association map-

ping with multiple traits simultaneously may increase statistical power [KRI01, FP09,

LPL09, AHN11, KVS12]. Analysis of multiple pleiotropic phenotypes increases power

because intuitively, multiple phenotype measurements increase sample size relative to

a single phenotype. However, utilizing the additional data is not straightforward as

measurements from the same individual are not independent. This issue is analogous

to that of association analysis in cohorts of related individuals, where phenotype mea-

surements between related individuals are not independent. Variance component meth-

ods model this correlation structure by assuming that the covariance due to genetics

between related individuals is proportional to their kinship coefficient [KYE08]. This

constant of proportionality normalized by the total trait variance is related to narrow-

sense heritability of the trait (the variance accounted for by additive genetic effects)

[YBM10].

When the same genetic variants affect multiple traits, phenotype values for an indi-
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vidual will tend to be correlated. Similarly, shared environmental effects also introduce

some level of correlation between traits. A fundamental problem in understanding the

relationship between the traits is determining the proportion of the total correlation due

to genetics and the proportion due to environment. Classical approaches originating

from animal breeding and agricultural research solve this problem by modeling the sta-

tistical relationship between traits using a linear mixed-model (LMM) [Fal81, MT05].

These approaches decompose the between trait correlation into both a genetic com-

ponent and an environmental component and then use the LMM framework to obtain

estimates for these quantities. The LMMs used in these classical approaches can be

adapted for use in GWAS by utilizing them to test the association between genetic

variants and multiple traits. Multiple phenotype variance component methods closely

follow the approach utilizing kinship values to model the covariance between differ-

ent phenotypes among different individuals, such that the genetic covariance between

two individual’s phenotypes is proportional to their kinship coefficient [HQ76]. In this

case, the constant of proportionality is a function of the two trait heritabilities as well

as the genetic correlation. Similarly, multiple trait models represent the covariance

between phenotypes within an individual as a function of both genetics and shared

environment.

In order to utilize LMMs for association analysis, an iterative procedure must be

employed to identify the maximum-likelihood parameters of the statistical model used

for association. The use of LMMs for single traits has been limited by the compu-

tational complexity of traditional maximum-likelihood procedures: O(n3 · t), where

n is the number of individuals in the study and t is the number of iterations neces-

sary for the maximum-likelihood algorithm to converge. However, recently devel-

oped estimation algorithms have made LMMs computationally efficient and feasible

for large population cohorts [KYE08, KSS10, LLL11, ZSZ12], reducing the computa-

tional complexity of from O(n3 ·t) to O(n3+n ·t). These approaches have had a major
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affect in enabling association mapping for single traits using LMMs. Unfortunately,

the previous approaches [KYE08, KSS10, LLL11, ZSZ12] cannot be directly applied

to multiple trait LMMs, meaning that the same computational inefficiencies that lim-

ited the widespread use of LMMs for single trait GWAS, now hinder the scale at which

researchers can perform multiple trait GWAS. More specifically, with p traits measured

over n individuals the running time for classical multivariate LMMs is O(n3p3 · t). In

other words, even when p is small (eg. p = 2), the running time scales as the cube of

the number of individuals in the sample, meaning that the use of multiple trait LMMs

is not feasible for large sample sizes.

In this chapter, we introduce a formulation of the multiple trait linear mixed-model

for use in association mapping and show that it provides a significant speed up over the

classical approach. We define a statistical model relating multiple correlated traits to

genetic variations based on the matrix-variate normal distribution [GN00]. Using this

formulation, we show how a simple data transformation leads to a model equivalent to

the classical model while allowing maximum-likelihood inference to be performed in

computational time essentially linear in the size of the data set, given a one time cost

of O(n3) and O(n2). In a simple case, let us assume that p is much less than n (eg. 2

vs. 10, 000) and that we only have a global mean for each phenotype; this leads to a

total computational complexity of O(n3 + n2p+ (p3(n+ 1)) · t). The iterative part of

the algorithm is then essentially linear in the size of the dataset. We call our method

the matrix-variate linear mixed-model (mvLMM) and show its efficacy by analyzing

correlated phenotypes in the Northern Finland Birth Cohort [Sab08]. Comparing to a

standard approach [LYG12], we show that our method results in more than a 10-fold

time reduction for a pair of correlated traits, taking the analysis time from about 35

minutes to about 2.5 minutes for the cubic operations plus another 12 seconds for the

iterative part of the algorithm. In addition, the cubic operation can be saved so that

it does not have to be re-calculated when analyzing other traits in the same cohort.
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Finally, we demonstrate how this method can be used to analyze gene expression data.

Using a well-studied yeast dataset [SK08], we show how estimation of the genetic

and environmental components of correlation between pairs of genes allows us for to

understand the relative contribution of genetics and environment to coexpression.

5.2 Results

5.2.1 Association and genetic correlation in the Northern Finland Birth Cohort

5.2.1.1 Association

We apply our method to the Northern Finland Birth Cohort, a founder cohort consist-

ing of 5,043 individuals each of which has multiple phenotype measurements for four

different metabolic phenotypes. We analyze a total of six pairs of traits or all combina-

tions of four traits: HDL and LDL cholesterol, C-reactive protein (CRP) and triglyc-

erides (TG). Association between each SNP and each pair of phenotypes is evaluated

by assuming that under the null hypothesis the SNP does not effect either phenotype.

This same data set was analyzed by Korte et al. (2012) using a classically-based mul-

tiple trait LMM. We compare our results with their multi-trait mixed model (MTMM)

method and find that the results are highly concordant, indicating that our method is

consistent with classical approaches.

Over 99% of associations identified in marginal analysis are also identified when

respective pairs of traits are mapped (significance threshold of 1.5e-7). However, the

joint mapping uncovers more significant associations; 19 new associations are identi-

fied across all trait pairs. For example, in the analysis of TG with CRP, we identify a

SNP (rs2000571) with a p-value of 8.58e-7 and with MTMM p-value of 1.7e-6. This

SNP was not significant in the marginal analysis of TG (1.7e-5) or CRP (0.03), but
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Figure 5.1: QQ Plot comparing MTMM and mvLMM p-values obtained when

performing analysis with LDL and TG.

belongs to a region on chromosome 11 that has been shown to harbor variants con-

tributing to triglycerides [BBS12]. For all pairs of traits, we find that the genome-wide

p-values obtained using our method are highly correlated with those obtained by Korte

et al. (r =0.96 - 0.99), as shown in figure (5.1) comparing QQ-plots. In addition, we

identify 5 associations deemed as significant in the marginal analysis but that were no

longer significant in the MTMM. These results indicate that our approach is consistent

with a classical approach.
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5.2.1.2 Genetic Correlations

In multiple trait models, the total trait correlation is partitioned into a genetic and an

environmental component. The genetic component of the correlation (the genetic cor-

relation) represents the part of the total trait covariance that is attributed to genetics

normalized by the genetic variances. This quantity provides insight into the genetic

architecture of the relationships between traits. We estimate the genetic correlations

for each pair of traits analyzed in the Finland Birth Cohort and compare these esti-

mates with those obtained using a standard implementation of a bi-variate LMM as

implemented in GCTA [LYG12].

Table 5.1 compares estimates of genetic correlation obtained with GCTA and mvLMM.

The utility of the genetic correlation as a parameter providing insight into the genetic

architecture of trait correlation is illustrated in these results. For example, the pheno-

type pair HDL and TG have a total correlation of -0.19, while the estimated genetic

correlation is fairly strongly positive (0.28). This result implies that HDL and TG are

under the control of many of the same genetic loci, which is consistent with previous

studies [SOC00]. However, since HDL serves as a protective mechanism to regulate

TG, an environmental perturbation causing HDL to go down would cause an increase

in TG and thus a negative environmental correlation. When the environmental corre-

lation contributes a larger proportion to the total, this yields an overall negative corre-

lation. When we compare our results to those of GCTA we find that the two methods

yield similar results, with genetic correlation estimates falling less than one standard

deviation from one another. In addition, the running time for the classical approach

was around 35 minutes, while the running time for mvLMM was on average roughly

12 seconds, given a one time cost of 2.5 minutes shared across pairs of traits.
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5.2.2 Bi-variate analysis in yeast data

Gene coexpression, defined as the correlation between expression levels of a pair of

genes estimated in a set of individuals, is a fundamental quantity that has been uti-

lized for a variety of applications [LPD06, GDZ06, STM05, SSK03]. There are two

prevalent views about the meaning of significant coexpression. The first is that coex-

pression stems from similar environmental conditions such as disease status [HSC97].

The second comes from the systems genetics literature where it is thought that co-

expressed genes have a similar genetic regulatory program and that specific genetic

variants drive modules of coexpressed genes [LPD06, GDZ06]. However, correlation

estimates from gene expression levels measures the combined effect of both the ge-

netic and environmental components. Our methodology allows for the first time to

decompose the coexpression into a genetic and environmental component.

We utilize the major gain in efficiency of our approach to perform an analysis

that is not feasible with current methods. Using a well-studied yeast dataset [SK08]

consisting of 109 yeast strains each with 5793 gene expression measurements, we

perform a bi-variate analysis, estimating genetic correlations for all 5793 choose 2

gene expression pairs. Within this dataset several regions of the genome have been

implicated to harbor genetic variation that affects many gene expression levels.

Using a set of hotspot locations derived from [SK08], we define a set of 13,508

hotspot gene pairs by extracting all pairs of genes that lie in each known hotspot.

We then compare the phenotypic correlation to the total proportion of covariation ac-

counted for by genetics for each of these pairs. Assuming that hotspot pairs are under

the same genetic regulation, we expect that the phenotypic correlation for any given

pair should reflect this by having a high value. However, this might not be the case if

the environmental correlation between the pair contributes in such a way to lower the

overall phenotypic correlation. Therefore, an estimation of the total phenotypic co-
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variation attributed to genetics may better reflect the fact that the two genes are under

the same genetic program.

In Figure (5.2a), we plot the histogram of the absolute value of the total phenotypic

correlation for all gene pairs and for hotspot gene pairs. We see that the distribution

of phenotypic correlations for hotspot pairs is shifted towards higher correlations with

respect to all pairs, giving an indication of co-regulation. However, most of the pairs

have correlation less than 0.5. Figure (5.2b) shows the same plot generated using the

total proportion of the phenotypic covariation attributed to genetics. In the figure, we

observe that the estimated genetic covariation for hotspot pairs is dramatically skewed

towards one. In fact, most of the pairs have a genetic covariance above 0.7. This result

suggests that the estimated genetic correlations on average give a stronger indication

of co-regulation compared to the phenotypic correlation.

5.3 Discussion

In this chapter, we introduced a method for performing multi-trait genome-wide asso-

ciation analysis and for the estimation of the genetic correlation. Our method is based

in classical theory, but introduces a computational advance that makes it much faster,

reducing running time over 10-fold when compared with the classic approach. We

have shown that our method achieves similar results to that of the classical approach.

In addition, we have shown that the ability to quickly estimate genetic correlation may

be of great benefit to researchers, leading to fundamental insights into the architecture

of complex traits.

The ability to quickly optimize multiple trait linear mixed-models will have a large

impact on the the ability to dissect complex traits. For example, multiple expression

quantitative trait loci (multi-eQTL) may be discovered by mapping multiple traits to
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(a) Phenotypic

(b) Genetic

Figure 5.2: Comparison of the phenotypic correlation with the total proportion of

the correlation accounted for by genetics for all gene pairs and for gene pairs from

regulatory hotspots. We compare the phenotypic correlation with the total proportion

of correlation accounted for by genetics in order to assess the ability of the genetic

correlation to differentiate gene pairs that are co-regulated. Utilizing a set of known

hotspots, we derive a set of hotspot gene pairs, where a hotspot pair is defined as a gene

pair in which both genes lie in a given hotspot. We find that the genetic correlation

differentiates these co-regulated pairs better than the overall phenotype correlation.
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genetic variants across the genome. The ability to perform this type of research is

infeasible with current methodologies. In addition, we have shown that the genetic

correlation between gene expression measurements may be a better indicator of co-

regulation. It stands to reason that these genetic correlations may be used in coexpres-

sion analysis and lead to the discovery of gene modules that are truly co-regulated and

not in part due to environmental correlations.

5.4 Methods

5.4.1 Modeling multiple phenotypes with the matrix-variate linear mixed-model

Given a set of p phenotypes for n individuals, let y
ij

represent the value of the ith

phenotype for the jth individual. A standard statistical model for the ith phenotype

vector, denoted by y
i

, is given by the following linear mixed model (LMM), were X�
i

represents the mean term for the ith phenotype such that X is an n⇥q matrix encoding

covariates including SNP, g
i

represents the population structure or genetic background

component and e
i

represents the effect due to environment and error. We have assumed

that the covariates determining the mean will be shared among phenotypes, but this is

not a requirement.

y
i

= X�
i

+ g
i

+ e
i

(5.1)

The variance of y
i

is given by the following, assuming that cov(g
i

, e
i

) = 0.

var(y
i

) = var(g
i

) + var(e
i

) (5.2)

= �2
g(i)K+ �2

e(i)I (5.3)
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where �2
g(i) represents the genetic variance component for phenotype i, K represents

the n⇥n kinship matrix calculated using a set of m known variants and �2
e(i) represents

the environmental and error variance. Assuming the models proposed by Henderson

[HQ76, MT05], it then follows that the covariance between measurements for indi-

viduals j and k for phenotype i is given by �2
g(i)Kjk

. By letting ⇢
im

represent the

correlation between phenotypes i and m due to genetic effect and letting �
im

represent

the correlation due to environment, we know that the covariance between the pheno-

type measurements i and m for individual j is given by the following.

cov(y
ij

, y
mj

) = cov(g
ij

, g
mj

) + cov(e
ij

, e
mj

) (5.4)

= ⇢
im

�
g(i)�g(m) + �

im

�
e(i)�e(m) (5.5)

Assuming that environmental effects are independent between individuals, let the co-

variance between phenotypes i and m for individuals j and k be cov(y
ij

, y
mk

) =

K
jk

⇢
im

�
g(i)�g(m). We then model the full set of phenotype measurements using a

matrix-variate normal distribution.

The matrix-variate normal distribution is a generalization of the multivariate nor-

mal distribution to matrices [GN00]. The main idea is that a multivariate normal dis-

tribution has three elements: a vector of data of size n, a mean vector of size n and a

covariance matrix of size n⇥ n, denoted by y ⇠ N(m,R), where y is the data, m is

the mean vector and R is the covariance matrix. The mean vector simple determines

where in n-dimensional space the mean of data sampled from this distribution will lie,

while the covariance matrix encodes the correlation between individual elements of the

data vector. A matrix-variate normal can be thought of as multiple multivariate normal

vectors, in which elements between vectors are correlated. This means that when p

multivariate data vectors are stored on the columns of an n⇥ p matrix, the correlation
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between elements on the rows of the matrix, will be determined by R, while the cor-

relation between the columns of the matrix will be determined by another parameter,

which we will call C. The matrix-variate normal distribution encodes these concepts

and we denote such a distribution as Y ⇠ N
n⇥p

(M,C,R), where Y is an n⇥ p data

matrix, M is an n⇥ p mean matrix, C is an p⇥ p column covariance matrix and R is

the n⇥ n row covariance matrix.

Let Y represent the n⇥ p matrix of phenotypes such that

Y = Z+R (5.6)

where Z follows a matrix-variate normal distribution with mean X� = X[�1 . . . �p

]

and covariance matrices  and K, where  is a p ⇥ p matrix representing the corre-

lation between phenotypes due to genetics and K is the kinship matrix. R follows a

matrix variate normal distribution with mean zero and covariance matrices � and I
n

,

where � is a p⇥ p matrix representing the covariance between phenotypes due to en-

vironment and error. The ith diagonal component of  is given by �2
g(i) and the i, jth

component by ⇢
ij

�
g(i)�g(j), and similarly �

ij

= �
ij

�
e(i)�e(j). The distribution for Y is

then summarized as follows, where N
n⇥p

(M,A,B) denotes the matrix variate normal

distribution with mean matrix M and columns and row covariance matrices A and B.

Y ⇠ N
n⇥p

(X�, ,K) +N
n⇥p

(0,�, I
n

) (5.7)

5.4.2 mvLMM and Bayesian Linear Regression

The standard LMM used in GWAS has been shown to be equivalent to a Bayesian

linear regression in which a number of SNPs m are assumed to each have an effect

on the phenotype, such that each effect is sampled IID from a normal distribution
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[HVG09, LLK12]. By integrating out these effects, one may arrive at a standard LMM

using the realized relationship matrix (RRM) as the kinship matrix [GWV09, YBM10].

Here we briefly summarize this result and show how it extends to multiple trait LMMs.

Let us assume that a set of m SNPs each contribute to the background phenotypic

variation for phenotype k. Let W be a n ⇥ m matrix allocating SNP effects to in-

dividuals, such that E[W
ij

] = 0 and var(W
ij

) = 1 and assume that the phenotypic

effect attributed to SNP j for phenotype k is b
jk

, so that individual i will have a to-

tal effect due to SNP j of W
ij

b
jk

. We treat the SNP effect as random and assume

that each b
jk

is sampled IID from distribution N(0, 1
m

�2
g(k)). Let g

k

= Wb
k

, where

b
k

= [b1k b2k . . . bmk

]0. Therefore, the variance of g
k

is given by equation (5.9).

Thus, LMM-based population structure correction may be viewed as a basic linear

model, while treating the SNP effects as random effects.

var(g
k

) = WW0

m

�2
g(k) (5.8)

= K�2
g(k) (5.9)

This framework may be extended to multiple phenotypes by assuming that the

correlation between SNP effect vectors has the following form, where cor(g
ki

, g
ji

) =

⇢
ij

.

2

4bi

b
j

3

5 ⇠ N

✓
0,

1

m

2

4 �2
g(i)I ⇢

ij

�
g(i)�g(j)I

⇢
ij

�
g(i)�g(j)I �2

g(j)I

3

5
◆

(5.10)

To obtain the joint distribution of g
i

and g
j

, we apply the following linear transforma-

tion.

82



2

4gi

g
j

3

5 =

2

4Wb
i

Wb
j

3

5 =

2

4W 0

0 W

3

5

2

4bi

b
j

3

5 ⇠ (5.11)

N

✓
0,

1

m

2

4 �2
g(i)WW0 ⇢

ij

�
g(i)�g(j)WW0

⇢
ij

�
g(i)�g(j)WW0 �2

g(j)WW0

3

5
◆

(5.12)

= N

✓
0,

2

4 �2
g(i)K ⇢

ij

�
g(i)�g(j)K

⇢
ij

�
g(i)�g(j)K �2

g(j)K

3

5
◆

(5.13)

This result is consistent with the proposed model in the previous section.

The same basic logic is easily applied to derive the cov(e
i

, e
j

). By substituting W

for I as well as the appropriate variance and correlation parameters we arrive at the

equivalent result for the correlation between residuals, given in the equation below.

2

4ei

e
j

3

5 ⇠ N

✓
0,

2

4 �2
e(i)I �

ij

�
e(i)�e(j)I

�
ij

�
e(i)�e(j)I �2

e(j)I

3

5
◆

(5.14)

We note that a similar analysis may be applied when the two sets of causal SNPs

are different for each phenotype. In this case, the between phenotype genetic covari-

ance will be proportional to the W
c

W0
c

, where W
c

represents the n⇥ t SNP incidence

matrix for causal SNPs that are common between the two phenotypes. If this ma-

trix deviates significantly from the full kinship matrix K, then it is possible that the

estimated genetic correlation may be biased.

5.4.3 Efficient Maximum Likelihood Computation

In this section, we explain how to efficiently compute the log-likelihood of a matrix

of phenotypes using a straightforward transformation. This section is split into two

subsections: the first, giving a higher-level explanation that illustrates the basic idea
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while minimizing technical details and the second, giving a more detailed overview

including much technical detail. There is overlap between the two sections as a result.

A simple explanation

Likelihood evaluation for the matrix-variate distribution given by equation (5.7) is

accomplished by evaluating the equivalent multivariate normal distribution. By using

the vec() operator, which creates a vector from a matrix input by concatenating the

columns of the matrix, we are able to represent the distribution given in equation (5.7)

in the following way, where ⌦ represents the Kronecker product of two matrices.

vec(Y) ⇠ N
np

(vec(X�), ⌦K+�⌦ I
n

) (5.15)

The likelihood computation for this model takes time on the order of (np)3. This

computational time becomes prohibitive when maximizing the likelihood function

while considering a large cohort with multiple phenotypes. Previous work has shown

how similar multivariate models with kronecker product matrices can be utilized effi-

ciently when residual errors are independent [SIL11]. However, it is not known how

these models may be used efficiently when residual errors are correlated, which is the

case for our model. To remedy this problem, we introduce a transformation that results

in a reduced computational time.

Let the eigendecomposition of K = H
K

S
K

H0
K

. This decomposition is calculated

with a computational complexity of O(n3). Let L be a p ⇥ p matrix that diagonalizes

both  and �, such that L L0 = I and L�L0 = D, a diagonal matrix. This bi-

diagonalization can be accomplished in O(p3) (details are found in a later section).

We then define the matrix M = (L⌦H0
k

). The transformed data vector Y
T

is defined

as Y
T

= Mvec(Y). This transformed vector has the following distribution.
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Y
T

⇠ N(Mvec(X�), I⌦ S
k

+D⌦ I) (5.16)

The likelihood of Y
T

is then given as follows.

L(Y
T

|X�, ,K,�) = �np

2
ln(2⇡)� 1

2
ln|I⌦ S

k

+D⌦ I|

�1

2
(Mvec(Y

T

�X�))0(I⌦ S
k

+D⌦ I)�1(Mvec(Y
T

�X�)) + log(|M|) (5.17)

In order to calculate the likelihood given and �, we first obtain the transforma-

tion matrix M, which is accomplished in O(n3 + p3). Next, we compute the trans-

formed data vector Y
T

in O(n2p + p2n). Given Y
T

, we obtain an estimate of �,

denoted by �̂, which we show may be accomplished in O(np3q2 + p3q3 + np2q) and

given this we calculate the residual vector Y
T

�Mvec(X�̂) in O(np2q+np). Finally,

the likelihood is computed in O(np). Therefore, negating the one time O(n3) cost of

the decomposition of K and noting that the computation contributing the n2 term can

be cached for a given experiment, the total running time to evaluate the likelihood of

the data under a setting for  and � is given by O(p3 + np3q2 + np). Considering

that p and q are very small (ie. 2 and 1 in our experiments), this gives a final running

time of O(np3), which is essentially linear in the total size of the data. Additionally,

in human data we will often determine the ML parameters while assuming that � = 0.

In this case, the running time to perform ML scales like O(np), given the pre-cached

higher order terms.

A more detailed explanation

We are given that vec(Y) follows a multivariate distribution given by
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N
np

(vec(X�), ⌦K+�⌦ I
n

) (5.18)

We wish to diagonalize the covariance matrix of vec(Y), in order to achieve a O(np)

likelihood computation time, given  , � and the kinship matrix K. First, we define

the eigendecomposition of K as equal to H
K

S
K

H0
K

. Next, we identify a matrix L that

diagonalizes and�, as showing in the previous section. The matrix M = (L⌦H0
k

)

then diagonalizes the covariance matrix as shown in the following and we can obtain

it in O(n3 + p3) time.

cov(vec(Y)) =  ⌦K+�⌦ I
n

(5.19)

cov(Mvec(Y)) = M( ⌦K+�⌦ I
n

)M0 (5.20)

= (L⌦H0
k

)( ⌦K)(L0 ⌦H
k

) + (L⌦H0
k

)(�⌦ I
n

)(L0 ⌦H
k

)(5.21)

= (L L0 ⌦H0
k

KH
k

) + (L�L0 ⌦H0
k

IH
k

) (5.22)

= (I⌦ S
k

) + (D⌦ I) (5.23)

To apply the transformation to Y we avoid calculating the Kronecker products

directly by using the following rule.

Mvec(Y) = (L⌦H0
k

)vec(Y) (5.24)

= vec(H0
k

YL0) (5.25)

The final log-likelihood is as follows.
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L(Y
T

|X�, ,K,�) = �np

2
ln(2⇡)� 1

2
ln|I⌦ S

k

+D⌦ I|

�1

2
(vec(H0

k

YL0)� vec(H0
k

X�L0))0(I⌦ S
k

+D⌦ I)�1

(vec(H0
k

YL0)� vec(H0
k

X�L0)) + log(|M|)

Since the transformation matrix M does not result in an orthogonal transformation the

term log(|M|) must be used as a normalization constant. The determinant of the trans-

formation matrix is given by |M| = |L ⌦ H0
k

| = |L|n|H0
k

|p = |L|n = (|Q0||R|)n =

|R|n = |S�1/2
k

|n = (⇧
i

S
�1/2
k(i) )n, where S

�1/2
k(i) represents the inverse square root of the

ith diagonal element of S
k

. Thus taking the log of |M|, we obtain a sum, which can

be computed in O(p).

The final time complexity for calculating this log-likelihood is given by O(n3 +

p3 + n2p + p2n + n2q + np3q2 + p3q3 + np2q + p + np), given that it takes O(n3)

time to compute the eigendecomposition of K and O(p3) time to obtain the matrix L

and O(np3q2 + p3q3 + np2q), to compute the fixed effect estimates, given the O(n2q)

time to compute the transformed fixed effect matrix and O(n2p + p2n) time to com-

pute the transformed phenotype vector, finally taking O(np) time to compute the log-

likelihood. We may consider that this time is reduced by the fact that the decomposi-

tion of K remains constant for a given experimental setting so that it may be cached

only one time. Furthermore, the O(n2) part of the transformation can also be cached

for a set of phenotypes. With this logic, the final running time has complexity of

O(p3 + p2n + np3q2 + p3q3 + np2q + np). Given that n is much larger than p or q,

which in our experiments have been 2 and 1, respectively, this gives a running time

of O(np3). Additionally, if we only care to fit the model under the assumption that

the mean is zero, we no longer need to worry about the fixed effect estimate and can

compute the likelihood in O(np).
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5.4.4 Restricted Maximum Likelihood Computation

The restricted maximum likelihood (REML) and the maximum likelihood (ML) so-

lutions should be similar when the model contains no covariates, or only a bias term.

However, when this is not the case, parameter estimates obtained in REML analy-

sis may deviate significantly from those of ML. We obtain the REML version of the

mvLMM by extending the ML solution [WT97]. By denoting the log-likelihood ob-

tained by ML as L
ML

and similar for REML, we define the following log-likelihood

function. For a standard multivariate normal vector y with distribution N(T↵,⇥),

where T is n ⇥ q, the REML is LL
REML

= LL
ML

+ 1
2 [qln(2⇡) + ln(|T0T|) �

ln(|T0⇥�1T|)] [KYE08]. Given this standard result, we define the REML log-likelihood

for the mvLMM in the following.

LL
REML

= LL
ML

+ (5.26)

1
2 [qln(2⇡) + ln(|(L0 ⌦ (H0

k

X)0)(L⌦H0
k

X)|)� (5.27)

ln(|(L0 ⌦ (H0
k

X)0)(I⌦ S
k

+D⌦ I)�1(L⌦H0
k

X)|)] (5.28)

The computational cost of the operations required to define LL
REML

do not change

the order of the computational complexity.

5.4.5 Estimating Genetic Correlation

In order to evaluate the likelihood function in equation (5.26), we obtain estimates

for the parameters  and �. We estimate these parameters under the null model,

where SNPs are not included as covariates. This assumption has been used previously

and is valid for cases when the effect due to each SNP is small [KSS10, LLL11].

First, for each phenotype i, we fit the basic LMM from equation (5.1), in order to
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identify the optimal variance parameters �2
g(i) and �2

e(i). Holding these parameters

constant, we perform a two dimensional global grid search in order to identify the

optimal genetic and environmental correlation parameters. Given that with caching the

likelihood calculation takes time on the order of O(np3), this time will be multiplied

by a constant k2 when searching over a grid of size k for each correlation parameter.

That is, if we evaluate the likelihood for each genetic and environmental correlation

combination for a grid size of k, then we need to evaluate the likelihood k2 times. In

practice, we have found that a course grid can be used to identify the general region

where the maximum-likelihood solution lies and then a more dense grid can be used

within that region to clarify the solution. In this way, the time complexity can be

reduced dynamically. In our experiments, the later approach can be used to achieve

the same solution as the global search but reduce the running time from roughly 10

minutes to roughly 150 seconds (N = 5000).

5.4.6 Calculating sampling variance for parameter estimates

We calculate the sampling variance of the variance parameters and the correlation pa-

rameters using standard multivariate theory. Generally, the sampling variance of a

maximum likelihood (ML) parameter is given by the inverse of the Fisher’s informa-

tion (or average information) matrix evaluated at the ML parameters [SCM92]. Using

the search technique we describe, we identify the ML parameters for a given set of

phenotypes and then use these parameters to estimate the sampling variance using the

Fisher’s information matrix.

5.4.7 Assessing Association

In order to identify genetic variations that have an effect on our traits of interest, we

employ a hypothesis testing framework. We first estimate the effect that a particular
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SNP x has on each of the phenotypes using the mvLMM model, then we jointly test

m hypotheses, each testing the effect of the SNP on a given phenotype. Our null

hypothesis for this test is that the SNP has no effect on any of our phenotypes and the

alternative hypothesis is that it has an effect on one or more of the phenotypes.

To obtain estimates for the SNP effect sizes, we estimate the full � matrix from

equation (5.15). First, we obtain the maximum likelihood parameters for  and �

under the null model in which the SNP has no effect, as described in the previous

section. Then, given these two parameters, we compute an estimate of the coefficient

matrix �̂ using the following result.

In the previous section, we defined a transformation M = (L ⌦ H0
k

) and used it

to define a transformed data vector Y
T

. The mean of the transformed data is given by

Mvec(X�) = (L⌦H0
k

)vec(X�), which can be reduced as follows.

(L⌦H0
k

)vec(X�) (5.29)

= vec(H0
k

X�L0) (5.30)

= vec(X⇤�L0) (5.31)

= (L⌦X⇤)vec(�) (5.32)

Here we have let X⇤ = H0
k

X. By denoting vec(�) as �
T

, we obtain an estimate �̂ using

the following result, where unvec() represents the reversal of the vec() operation and

we have let P = (I⌦ S
k

+D⌦ I), the transformed data covariance matrix.

�̂
T

= [(L0 ⌦X⇤0)P�1(L⌦X⇤)]�1(L0 ⌦X⇤0)P�1Mvec(Y) (5.33)

�̂ = unvec(�̂
T

) (5.34)

Since P is a diagonal matrix, �̂
T

can be computed in O(np3q2 + p3q3 + np2q) given
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the one time cost of O(n2q) for computing X⇤.

The statistic for testing the proposed hypothesis is obtained by defining a trans-

formation matrix R so that R�̂
T

= [�̂1,x �̂2x . . . �̂px

]0, where �̂
ix

is the coefficient

estimate for the effect of SNP x on phenotype i. Therefore, given this matrix, we

define the F-statistic for testing association in equation (5.35), which under the null

follows an F-distribution with p numerator degrees of freedom and np � pq denom-

inator degrees of freedom, where �̂2 = ˆvar(P�1/2Y
T

) and ˆvar(. . . ) represents the

sample variance. Details on this test can be found in [MN].

f = (R�̂
T

)0(R[(L0 ⌦X⇤0)P�1(L⌦X⇤)]�1R0)�1(R�̂
T

) · 1

p�̂2
(5.35)

5.4.8 Diagonalizing two matrices

We are given two positive semi-definite matrices � and  and we wish to identify a

matrix L that diagonalizes both of these matrices. This is accomplished in the follow-

ing way. First, we obtain the eigendecomposition of  = H S H
0
 and then define

a matrix R = S
�1/2
 H0

 , so that R0R =  �1. Next, we obtain an eigendecomposition

R�R0 = QDQ0 and then define a matrix L = Q0R. With this we see that L L0 = I

and that L�L0 = D. The entire procedure has complexity O(p3).

5.4.9 Genotype and phenotype data

We apply our method to the Northern Finland Birth Cohort data [Sab08] which was

used in [KSS10] and [KVS12]. This data set consisted of 5326 individuals which

had been filtered to reduce the presence of family structure. Missing genotypes are

replaced with the MAF. Missing phenotypes are replaced with the phenotypic mean.

We use a well-studied yeast dataset [SK08] consisting of 109 yeast strains each
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with 5793 gene expression measurements. Bi-variate association mapping is per-

formed on all 2956 available SNPs. Gene expression values were normalized and

subjected to quality control by [SK08] and we utilized the same data as they.
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CHAPTER 6

Conclusions

The field of genetics has experienced revolutionary change in the past 20 or 30 years,

transforming it from a low-throughput small data science to a high-throughput big data

science. One result of this shift is the formulation of a new discipline: computational

genetics, a discipline requiring both computational expertise and statistical and bio-

logical thinking. The problems lining this field are often concerned with large scale

computations utilizing 100’s of thousands of measurements and non-standard statisti-

cal analyses. In each of the projects discussed in this thesis, I have introduced one such

problem and given my view and solution of it. However, the work I have done here is

only the beginning of something much bigger. In what follows, I would like to explain

how the work presented herein fits together in a much bigger picture with many more

implications on the future of genetics research and of human health.

There are currently two higher level trends operating simultaneously in genetics

research: discovery and prediction. Problems related to discovery, which have dom-

inated most of the past 10 years, are aimed at identifying the causal mechanisms be-

hind natural phenotypic variation. The most obvious example of this is embodied in

the genome-wide association study (GWAS), where the idea in the simplest case is to

identify genetic variations that are the cause of a particular disease or that increase the

risk of developing a disease. The results of these discovery phase studies can then be

utilized to develop a deeper understanding of the disease etiology and to potentially

develop therapeutic interventions. On the other hand, problems related to prediction
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do not necessarily have the goal of identifying causal mechanisms. Instead, these

problems are focused on the prediction of a phenotypic state given all of the genetic

information for an individual. For example, a phenotype prediction algorithm may be

used to assess the risk for a given disease without actually knowing the causal mecha-

nisms. Prediction problems have played a lesser role in the main stream computational

genetics literature over the past 10 years when compared to discovery-based problems.

However, over the past 2 or 3 years, there has been an increase in the number of pub-

lications dedicated to phenotype prediction, particularly those using so called whole

genome approaches – those considering all genetic variation information jointly to

perform prediction.

The work presented in this thesis has been primarily focused on specific problems

related to discovery. For example, the meta-analysis, longitudinal GWAS and mvLMM

chapters all focus on particular problems in the context of GWAS. However, taking a

step back, the common thread between each of these projects is the use of a linear-

mixed model (LMM) to account for the complex relationships between many pheno-

typic measurements and many genetic variations. In particular, the work presented

herein has asked first how to deal with a particular form of complex relationship using

a LMM (multiple measurement of a phenotype over time, measurements of multiple

phenotypes, phenotype measurements from separate but related populations, etc.) and

then how to do so in a computationally efficient manner. LMMs are a very powerful

and well established statistical framework that are often used in a statistical hypothesis

testing framework, as in my case. However these same statistical models can be used

to perform phenotype prediction, a direction that has been explored very recently in a

number of publications.

Moving into the future, I believe there will be a much stronger focus on phenotype

prediction, especially with respect to its relation to genetic risk, drug interaction, gene
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by environment interactions and generally many of the concepts behind personalized

medicine. The work that I have presented in this thesis when viewed in a slightly dif-

ferent light, also provides a contribution to problems in this area. That is, given that

standard mixed models used in GWAS can be used to predict phenotypes, the same

statistical models I propose can also be utilized for this reason. This means that it

may be possible to predict phenotypes over time or to predict a given phenotype based

on observations of many other phenotypes. In addition, similar predictive models can

be utilized to perform phenotype prediction under different environmental settings by

incorporating gene-by-environment interactions. If such prediction algorithms have

high accuracy, the predictive ability will have a dramatic effect on healthcare. There-

fore, the continuation of the work I have presented in this thesis may take the shape

of predictive algorithms that can be used in a personalized medicine setting to inform

individuals about their risk for a particular disease conditioned on available observable

information
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