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The 40Ar(d,p)41Ar cross section between 3-7 MeV
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the safety of using argon as a deuteron beam stopping material, the 40Ar(d,p)41Ar cross sec
average deuteron energies of 3.6 MeV, 5.5 MeV, and 7.0 MeV using an activation method. A
m produced by Lawrence Berkeley National Laboratory’s 88-Inch Cyclotron was degraded to eac
s and the front wall of an aluminum gas chamber. The reduced-energy deuterons were used to
natAr gas. After each irradiation, the gas chamber’s 41Ar activation was measured with a hig
etector. The cross sections measured were larger than a previous measurement by ∼40%.

rgon cross section γ ray activation

tion

tensity neutron source, depicted in Fig. 1
dowless gas target (Johnson et al., 2017),
structed at Lawrence Livermore National
LLNL) to perform neutron imaging (NI).
tors capable of delivering a beam of 4 MeV
euterons to a deuterium-filled, windowless
ll produce quasi-monoenergetic beams of,
7 MeV or 10 MeV in the forward direction
on. The high instantaneous beam current
00 µA average) and narrow spatial focus
he windowless gas design, as the beam would
or ablate solid materials. A beam of narrow
d (∼250 keV) can be achieved by a thin
(∼0.72 mg/cm2) chamber of deuterium gas
beam-stopping volume of another gas with

r online) Schematic of LLNL’s neutron imaging facil-
eV (top) and 7 MeV (bottom) accelerators, (B) gas

imaging station.

Deuteron beam(a)(b)

Figure 2: (Color online) Schematic of LLNL’s neutron im
cility gas cell design, in which a 4 MeV or 7 MeV deute
traverses (a) a deuterium gas volume, a mixing volume bet
(b) a beam-stopping volume of argon or another gas. Red
arrows indicate gas flow.

low neutron production, shown in Fig. 2. The
point design for the beam-stopping volume wa
However, it was estimated that the use of argo
produce a significant radiation hazard from the
of 41Ar via the 40Ar(d,p)41Ar reaction. As only
measurement (Engle et al., 2012) had previou
made at energies below 7 MeV and in an expe
configuration optimized for a different measurem
38Cl production), we measured the 40Ar(d,p)41

section using an activation technique.

tted to Applied Radiation and Isotopes Augus
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nts were performed at Lawrence Berkeley
oratory’s 88-Inch Cyclotron. A previous
(Engle et al., 2012) suggests that the

r reaction cross section does not change
over a large range of deuteron energies below
thermore, there is a significant (∼1-2%)
n the beam energy supplied by the 88-Inch
hus the experiment was optimized for accu-
section measurement but not in deuteron

gas containers, similar to those used at the
tion Facility (Ratkiewicz et al., 2016), shown
re evacuated, weighed four times on a high-
le, then filled with ∼1 atm of natural argon
ed an additional four times. The abundance

tural argon is 99.6035(25)% (Nuclear Wallet
mber 2019). The mass of argon in each cell
ed both by the weight difference as well as
m the measured pressure, temperature, and
e cell, assuming the ideal gas law. Each

etermining these masses, shown in Tab. 1,
1σ of their uncertainties.

20.02(14) mm

Aluminum housing
Argon chamber

Steel 
stopper

Fill tube

or online) Schematic of capsule containing natural
beam angular spread and fill tube diameter are not

nsiderably exaggerated.

s of natural argon in two gas capsules as determined
efore and after filling and calculated from gas prop-

d), assuming the ideal gas law (IGL).

Capsule A Capsule B

h vacuum 95.5009(2) g 94.7952(2) g
h argon 95.5341(2) g 94.8280(3) g
e 766.82 torr 767.55 torr
ature 22.00 C 22.05 C

lume 19.81(11) cm3 19.81(11) cm3

on in cell 33.2(3) mg 32.8(4) mg
ted mass 33.0(3) mg 33.0(3) mg

capsule was mounted at the end of a 2 m
xtension off the end of a beam box in the
imental end station at the 88-Inch Cyclotron.

from the deuteron beam could be monitored. A pe
magnet was installed between this long, isolated
the upstream beam box to deflect delta electrons, l
from the beam striking the capsule, to minimiz
charge.

Before irradiation of each capsule, Gafchromic
exposed to the focused deuteron beam at three lo
equivalent to the front face of the gas, the end o
chamber, and the back of the beam pipe. This en
each experiment that the beam spot radius was l
0.5 cm, thus avoiding striking the small fill tube
offset from the beam axis by 1 cm. Equally-sized
sitioned beam profiles on each of the three films i
the beam was parallel.

Nickel foils, indicated in Fig. 3, were mounte
front face of the gas chambers in three of four m
ments, both to degrade the beam energy and
fluence monitor. The four measurements were pe
in two sessions, separated significantly enough
(14.5 h) to allow for decay of 99.6% of the 41Ar g
from the previous measurement. The current
increased in the second session by a factor of
that the subtraction of this residual activation w
∼0.1%. In both sessions, however, the beam cur
kept low enough to avoid heating or columnar io
of the gas, which could reduce the areal density t
by the beam. A common energy (corresponding t
dation by a single nickel foil in addition to the al
window) was measured between the two sessio
consistency check. The two different beam curre
in this consistency check confirmed no current-de
heating or ionization occurred. These parame
summarized in Tab. 2. The systematic unc
in the average deuteron energy through the ar
due to both the original beam energy uncerta
uncertainty in the aluminum front face thickness
separately from the distribution around the mea
following attenuation through the nickel, alumin
argon. The details of how these parameters are ca
are discussed in the following sections.

Following each irradiation, the activation of
capsules and nickel attenuators were each measu
distance of 12.2 cm from the same upwards-faci
purity germanium (HPGe) detector. The gas
were oriented with the front face (left side of Fig.
the HPGe detector. This HPGe detector and sam
enclosed in a lead box 20 cm thick to reduce enviro
background.

3. Methods

3.1. Energy uncertainties and angular spread

The experiment was dominated by two major s
systematic energy uncertainty, originating from th
tainty in deuteron beam energy provided by the c

2
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Table 2: Configuration details from four measurements.

Qua

Beam
Gas
Num
Time
Char
Char
Char
Avg.
Eavg
Ener

and the sign
gas capsule.
broadens sign
the gas itself.
arately from
mean value o

3.1.1. Energy

The beam
gling, as well
lated using th
stopping-pow
simulations w
gular spread
would not ca
tube.

Twenty T
inal 16.0 Me
tenuators, a 0
increasing th
19.5 mm in 0
each of these
produce a re
out the entire
the contribut
which contrib
for each expe
front of the a
are listed in
are one stand
Gaussian dis

For the
(Exp. 2), th
entering the
deflection exi
to the averag
each experim
were 0.36% f

3.1.2. Beam

A substan
delivered by t

8

ators

) through
ors and a
tributions
ange) cell
n in dark

tainty in
, TRIM
hree ge-
16 MeV

nergy, is
eal den-
ated as
cell and

n Fig. 4,
.05% as
hile the
certain-
ich only
l twenty
e of the

is proce-
Jo
ur

na
l P

re
-p

ro
of

ntity Exp. 1 Exp. 2 Exp. 3 Exp. 4

energy (MeV) 16.00(16) 16.00(16) 16.00(16) 16.00(16)
Capsule A B B A
ber of Ni foils 1 2 1 0
(s) 600(1) 600(1) 600(1) 600(1)

ge measured on target (µC) 4.32(2) 4.24(2) 13.44(6) 13.68(6)
ge calculated from 283 keV nickel activation (µC) 4.60 4.36 13.76 –
ge calculated from 656 keV nickel activation (µC) 4.49 4.30 14.05 –
current (nA) 7.20(4) 7.07(4) 22.4(1) 22.8(1)
in argon (MeV) 5.5(5) 3.6(7) 5.5(5) 7.0(5)
gy spread (MeV) 0.25 0.33 0.25 0.20

ificant aluminum front wall thickness of the
Furthermore, the beam energy distribution
ificantly through this aluminum layer and in
This energy broadening was considered sep-

the systematic uncertainties, which affect the
f the distribution.

and angular straggle

energy spread from charged particle strag-
as the distribution in path lengths, was calcu-
e Monte Carlo code TRIM, part of the SRIM
er code package (Ziegler et al., 2010). These
ere also used to ensure that the expected an-
(depicted in Fig. 3) of a 1 cm diameter beam
use deuterons to enter the offset argon fill

RIM geometries were simulated for a nom-
V deuteron beam with 0, 1 or 2 nickel at-
.635 mm aluminum gas capsule surface, and
icknesses of argon gas volumes from 0.5 to
.1 mm intervals. The energy spectra exiting
twenty volumes was then added together to

presentation of the average energy through-
volume. This average spectrum, along with

ion from the first and last simulation (each of
ute 1/20th to the average), is shown in Fig. 4
riment with 0, 1, or 2 nickel attenuators in
luminum. The means of these distributions
Tab. 2 along with the energy spread, which
ard deviation of each of these approximately-
tributions.
experiment with two nickel attenuators
e average deflection off axis of deuterons
gas cell is only 0.05 mm. The average radial
ting the gas cell is 1.5 mm, adding 0.11 mm
e path length, or 0.57%. Areal densities in
ent were adjusted by these factors, which

or Exp. 1 and 3 and 0.26% for Exp. 4.

Energy Uncertainty

tial uncertainty in the deuteron beam energy
he cyclotron was estimated (Ninemire, 2016)
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Figure 4: (Color online) Deuteron energy spectra (black
20 mm argon gas volume after 0, 1, or 2 nickel attenuat
0.635 mm aluminum surface, from the average of twenty dis
in 0.1 mm thick volumes. The first (blue) and last (or
energy distributions are also shown, with the overlap regio
red.

as 1σ=1%, or ±160 keV. To determine the uncer
the final mean deuteron energy in the argon gas
simulations were also performed for each of the t
ometries with an incident particle energy of 16.
and 15.84 MeV.

The stopping power, and therefore the mean e
mostly linear through the relatively-thin argon ar
sity. With this assumption, the mean can be estim
simply the average of the mean energy of the first
the last cell. In fact, for the three cases shown i
the means calculated in this fashion are within 0
that calculated from averaging twenty volumes, w
standard deviation differs by 4% or less. For un
ties calculated in this section and Sec. 3.1.3, in wh
the change in mean energy is considered, the ful
volumes were not simulated. Instead, the averag
argon entrance and exit mean energies was used.

The energy uncertainties for Exp. 1-4 from th
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dure were, respectively, 450, 470, 450, and 300 keV (natu-
rally, Exp. 1 and 3 are identical). These values did not
vary significa
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ntly (generally less than 5%) between the
wer bounds and, given the large magnitude
assumptions made in their generation, the
negative uncertainties were simply averaged
eported separately.

Uncertainty from Aluminum Thickness

ported manufacturing tolerance in the thick-
luminum gas cell wall led to a considerable
n the energy loss through this layer. It was
t this tolerance represents a 3σ uncertainty
an 0.3% of manufactured parts fall outside
interval) and for uncertainty analysis, the 1σ

n thickness was set at 2.7%, or ±0.017 mm.
the beam energy uncertainty calculations

Sec. 3.1.2, TRIM simulations were performed
mm aluminum thickness for each configura-
foils and the effect on the mean energy was

rom the average of the entrance and exit dis-
he energy uncertainties for Exp. 1-4 from
e were, respectively, 400, 530, 400, and 340

minum thickness and beam energy uncertain-
orrelated and dominated all other contribu-

gy uncertainties, they were added in quadra-
n the total systematic energy uncertainty in
is reported separately from the energy spread
Sec. 3.1.1, which was found to be largely in-
each of these perturbations.

Calibration

-dependent calibration of the HPGe detector
using a well-characterized 0.71 µCi sealed

, shown in Fig. 5 for one particular distance
m the detector. Measurements of a 0.37 µCi
re also shown for corroboration, though not
ration to avoid systematic activity uncertain-
entially introducing fit fluctuations.
eaks (Fitzpeaks, 2016) code was used for all
eak fitting, while a custom python routine
inear least squares fit function was written to
hotopeak detection efficiency, ε(Eγ), between
est measured γ-ray emissions of 152Eu, using
Knoll, 1989),

ln ε(Eγ) =
4∑

i=0

ai ln(Eγ)i, (1)

fit parameters and Eγ is the γ-ray energy.
rtainties associated with this functional fit
re calculated. Calculation of a systematic

n error” of 1.24%, from the accuracy of in-
ith Eq. 1, is fully described in Bleuel et al.
itionally, a “fit variability” uncertainty, due
ical uncertainties of the measured 152Eu and
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Figure 5: HPGe detector energy-dependent calibration 12.
the detector, including measured efficiencies from seale
(closed datapoints) and interpolated efficiencies of chara
rays from products of argon and nickel reactions with
(open datapoints). Error bars are smaller than the datapo
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Figure 6: (Color online) Histogram of the 1293.65 keV
tection efficiency as determined using Monte Carlo sampl
statistical uncertainty using 100,000 trials.

60Co γ rays, was calculated by a Monte Carlo
refitting 100,000 perturbed efficiency curves. Ea
activity for the calibration source was sampled
normal distribution about its measured value wi
characterized by its peak integral uncertainty. Th
bution of the interpolated efficiencies of the 1293
γ-ray emission from 41Ar decay from these pertu
is shown in Fig. 6. The standard deviation fro
interpolated efficiencies was 1.01%.

In addition, an uncertainty of 1.16%, provide
manufacturer, was ascribed to the absolute activi
calibration source. These three uncertainties we
in quadature to determine a total calibration unc
at 1293.64 keV of 1.88%, for a centered poin
12.2 cm from the detector.

However, the argon gas constituted a volume
distributed source: a cylinder 3.594(5) cm in diam
2.002(14) cm tall. To calculate the average efficie
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Center (Shelf 10-18)
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Shelf 14 (L to R)
Shelf 13 (L to R)
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y = 1.60E-05x2 - 2.40E-04x + 1.82E-03

-2 -1 0 1 2 3 4 5 6 7

Height above argon front face (cm)

olor online) Efficiency of the HPGe detector at
a function of the offset from center (top) for dif-

heights and the horizontal axes (Front to Back or
and at the center as a function of height (bottom).

he 152Eu source was measured at a number of
e positions and heights from the detector, as
. 7. Each shelf indicated is 2 mm higher than
ber in centimeters (e.g. Shelf 12 is at 12.2 cm
ector). The center of Shelf 12 was measured
different days to confirm repeatability.
d quadratic functions, shown as dotted lines,
o fit the data well, within ∼1% of all mea-
espectively as a function of radial distance
The radial measurements also showed ex-

stent symmetry across both orthogonal hori-
ndicated as (F to B) for “front to back,” and
left to right.” From all these measurements,
tion could be fit to determine the efficiency
in the argon gas volume,

ε(R, z) = c0R+ c1z
2 + c2z + c3, (2)

parameters, ci are given in Tab. 3, R is the
s, and z is the height relative to the bottom
volume (which is 0.635 mm higher than Shelf

aluminum container).

Table 3: Fit parameters to Eq. 2.

Value

−2.687 × 10−5

1.598 × 10−5

−2.400 × 10−4

1.819 × 10−3

maximum deviation of any measured point
on was 1.2% (which is partially encompassed
ability uncertainty), the assumed uncertainty
completeness of characterization of the entire
a limited number of measurements was con-

gon chamber, H, and radius, R0, gives the total e
εV :

εV =
2π

πR2
0H

∫ R0

0

∫ H

0

ε(R, z)RdzdR

=
2

3
c0R0 +

1

3
c1H

2 +
1

2
c2H + c3.

Using the parameters in Tab. 3, a radius of 1.80
a height of 2.002 cm, this equates to 0.00157.

Furthermore, the front face of the 0.635(5) m
aluminum capsule attenuated γ rays. To determ
reduction in efficiency due to this attenuation,
thick sheet of aluminum was placed underneath
point source and measured. This reduced the effic
1.2%. Assuming exponential attenuation with th
the effect of 0.635 mm of aluminum was calculat
a 0.77% reduction, to εV =0.00156.

A summary of the uncertainties and their qu
sum is listed in Tab. 4.

Table 4: Uncertainties (all 1σ) in εV (1293.64 keV) dete
from point calibration sources.

Uncertainty Relative value

Interpolation error 1.24%
Fit variability 1.01%
Sealed source activity 1.16%
Volumetric integral 2.%
Aluminum Attenuation <0.1%
Total 3.4%

3.3. Nickel attenuators and beam monitors

Thin, natural-abundance nickel foils were
beam degraders as well as integrated current mon
a consistency check on the integrated charge co
The natNi(d,x)61Cu is an IAEA-standard monit
tion for medical and industrial applications (H
et al., 2018). This reaction was considered bes
for this experiment as the cross section, shown i
was both thought to be well known and does no
dramatically as a function of energy around 16 M
incident beam energy.

Exp. 1 and 3 included a single nickel attenuat
Exp. 2 included two. After each irradiation, a
of the beam-facing nickel foil was measured in a
detector. The two primary γ rays emitted from t
of 61Cu are 283 keV and 656 keV, with intensit
respectively, of 12.2% and 10.8% according to the
Data Sheets (Zuber and Singh, 2015). The activat
foils, counted 12.2 cm from the detector front fa
assumed to be point sources, and the efficiencie
emitted γ rays from 61Cu were interpolated using t
fit shown in Fig. 5.
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, (4)

e decay constant of 61Cu, ANi is the atomic
tural nickel, qd is the charge per deuteron
19 C), ∆ti is the irradiation time, ρNi is the
of the nickel foil in g/cm2, NA is Avogadro’s
the cross section of the natNi(d,x)61Cu re-
average deuteron energy (15.6 MeV) in each

nickel foil, ε(Eγ) is the efficiency of the HPGe
etect the characteristic γ ray of energy Eγ ,
ctor live time fraction, ∆tc is the time over

ls were counted, and ∆tdk is the time elapsed
end of the experiment and the start of the
eam current was relatively constant over the
ute) irradiation times, making second-order
y corrections negligible.
ns of the charge varied significantly and con-

ach foil depending on which characteristic γ-
was measured. This led to a comprehen-
tion (Bleuel et al., 2021) of the published
61Cu γ-ray emissions, in which it was dis-

the ratio of the 656 keV intensity to that at
e Nuclear Data Sheets was incorrect by 11%.
ly ratios of intensities, not absolute values,
ed, consistency amongst eleven other γ-ray
over a hundred measurements strongly indi-
e 656 keV γ-ray intensity was in error, with
rate value of 9.7% recommended. A recent
ry (ENSDF, June 2020) published just prior
recommends values of 12.7% and 10.4% for

and 656 keV γ-ray intensities respectively.
ated cross section in Fig. 8 was primarily
erimental data from Takács et al. (Takács
2001, 2007). Communication with the au-

, 2020) indicated that the 656 keV γ ray was
measurements to avoid room background in-

factor of 11%.
Therefore, to calculate integrated beam curr

ing Eq. 4, we used the revised 656 keV intensity
(Bleuel et al., 2021) and correspondingly incre
natNi(d,x)61Cu cross section by the ratio of the
evaluated intensity to the revised value, from 23
24.9 mb interpolated at 15.6 MeV. These are com
the charge collected from the target for each exp
in Tab. 2. Of course, a comparison could not
for Exp. 4, in which no nickel attenuation foils w
In each case, the charge calculated in this way fr
γ rays agreed within 3-6%, with that of the ch
lected from the electrically-isolated target.

Due to the potential error in the p
natNi(d,x)61Cu cross section and for consisten
Exp. 4, which lacked a nickel monitor, the natAr(
cross sections were calculated only from the m
charge collected from the electrically-isolated bea
with the 61Cu production used only for confirmat

3.4. Calculation of Cross Section

Applying a more generalized version of Eq. 4 a
ranging terms, the cross section, σ, for the 40Ar(
reaction is calculated,

σ =
CλAArqd∆tie

λ∆tdk

ρArf40NAQεf`Iγ(1 − e−λ∆tc)(1 − e−λ∆ti

where λ is the decay constant of 41Ar, AAr is th
weight of natAr, qd is the charge per deuteron
10−19 C), ∆ti is the irradiation time, ρAr is the a
sity of the argon gas in g/cm2, f40 is the weight
of 40Ar in natural argon, 0.99035(25), NA is Av
number, Q is the charge collected from the targe
bly for each experiment, ε is the efficiency calcu
Sec. 3.2 of the HPGe detector to detect the 1293
characteristic γ ray of 41Ar decay emitted from t
metric gas source, f` is the detector live time frac
is the intensity (0.9916) (Nesaraja and McCutcha
of the 1293.64 keV γ ray per decay of 41Ar, ∆tc is
over which the gas canister was counted, and ∆t
time elapsed between the end of the experiment
start of the count.

4. Results

The cross sections for the 40Ar(d,p)41Ar
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the two experiments (Exp. 1 and 3) which prod
same average deuteron energy (5.5 MeV) were ve
well within 1σ uncertainty, lending confidence
repeatability of the experiments. These cross
are shown, along with those of Engle et al. (20
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n

feature of Fig. 9 is the large difference be-
oss section measurements obtained in this
t of Engle et al. (2012). While both sets of

showed a relatively minor dependence on the
with energy (between 3-8 MeV), we observed
overall higher magnitude. The explanation

rked difference is not known, but may be due
f factors. The previous experiment was op-
easurement of chlorine isotopes rather than

, 2017) and it is possible that the geometric
argon detection was not adequately known.
as volume was a long cylinder irradiated and

rpendicular to the axis through a thin alu-
w. They assumed that chlorine would adhere
surface and be easily characterized as a point
argon diffused into various cell components in

and time-dependent manner. Furthermore,
wledged that the higher beam current (200-
e Engle et al. (2012) measurement would lead
ting, effectively thinning the gas volume and
r measured cross section, though this was es-
e a less than 6% effect. Due to the marked
results, another independent measurement is

ble.
erimental datasets are significant factors of
her than that of the TENDL library at en-
∼5 MeV and orders of magnitude higher at

to generate the TENDL library. Parameters wer
from the defaults through available optical, level
and photon strength models. The generated cros
at its maximum value (5-6 MeV) never exceeded
vastly lower than the differences in both measure
For this reason, we do not recommend use of the
library or any TALYS calculation for deuteron r
in this mass region. Engle et al. (2012) produced
absolute magnitude comparison with theoretica
using the ALICE-ASH code, though with less su
relative shape.

As previously noted, our measurements were o
for accuracy and precision of the cross section m
ment over the determination of deuteron energy,
in the large horizontal error bars in Fig. 9. Th
energy-independent cross section over the energy
3 to 7 MeV facilitates the primary motivation of th
the determination of the potential activation an
ated radiation hazard of a deuteron beam stopping
of argon gas circulated into an unshielded storage
the roof of a building. For a facility safety assessm
derson, 2016), a 7.5 MeV beam of 400 µA average
was assumed, with the entire beam stopping in
argon target. This conservatively exceeds the
operating conditions of a 300 µA, 7.07 MeV bea
ping in argon after slowing through 4 cm of 3 atm
Using interpolated energy loss data from SRIM t
a pathlength-weighted energy spectrum over the a
volume, along with TENDL cross section data, it
mated that activities of 3.4×109 and 1.05×1011 B
be produced, respectively for a 5 min or 8 hour irr
time. These correspond to respective dose rates
ing all the gas is collected at a point source, of
18 rem/hr at 30 cm from the source.

As seen in Fig. 9, our measurements exc
TENDL prediction by a factor of approxima
above 5 MeV and over an order of magnitude at l
ergy. Using the same method, substituting our m
cross sections over the range of 7.5 MeV down to
(where TENDL predicts an order of magnitude
cross section), activities of 2.5×1010 and 7.7×
were obtained, respectively for a 5 min or 8 h
diation time. At 30 cm from a conservatively-
point source, this corresponded to 4.3 and 132
respectively. Following an 8-hour irradiation,
radiation area (>100 mrem/hr) exists within a
of about 11 m of an unshielded gas storage tan
radiation area (>5 mrem/hr) exists within 49 m.

Obviously, this would produce a markedly si
radiation hazard, requiring an unreasonable restric
for an unshielded gas storage tank. For this rea
nificant shielding beyond that at the current fa
necessary. Otherwise, an alternative stopping
as krypton (which would require similar assessme
high-Z solid target (presuming heating challenge
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addressed) like tungsten or tantalum, is recommended.
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Takács, S., Tárkányi, F., Király, B., Hermanne, A., Sonck,
Evaluated activation cross sections of longer-lived rad
produced by deuteron induced reactions on natural nicke
Instruments and Methods in Physics Research Section
Interactions with Materials and Atoms 260 (2), 495–50

Ziegler, J. F., Ziegler, M. D., Biersack, J. P., 2010. SR
stopping and range of ions in matter (2010). Nuclear In
and Methods in Physics Research Section B: Beam In
with Materials and Atoms 268 (11), 1818–1823.
URL http://www.srim.org

Zuber, K., Singh, B., 2015. Nuclear data sheets for A = 6
Data Sheets 125, 1–200.

8



Journal Pre-proof

 oo 

  

 g 

Jo

ur
na

l P
re

-p
ro

of

We measured the 41Ar(d,p)40Ar cross sectoo at 3.6, 5.5 aod 7.0 MeV usiog ao actiat
method.
Our measured cross sectoo  as aaout 40% higher thao a preiious measuremeot aod
oearly ao order of magoitude higher thao the TENDL liarary.
Without sigoifcaot shieldiog, argoo is oot recommeoded as a deuteroo aeam stoppio
medium.
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