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ABSTRACT 

The steady, incompressible, isothermal, developing flow in a square-

section curved duct with smooth walls has been investigated. The 

40 mm x 40 niii duct had a radius ratio of 2.3 with long upstream and down-

stream straight ducts attached. Measurements of the longitudinal and 

radial components of mean velocity, and corresponding components of the 

Reynolds-stress tensor, were obtained with a laser-Doppler anemometer 

at a Reynolds number of 4 x 10 4  and in various cross-stream planes. The 

secondary mean velocities, driven mainly by the pressure field, attain 

values up to 28% of the bulk velocity and are largely responsible for the 

convection of Reynolds stresses in the cross-stream plane. Production of 

turbulent kinetic energy predominates close to the outer-radius wall and 

regions with negative contributions to the production exist. Thus, at 

a bend angle of 90 degrees and near the inner-radius wall, uOur aU0/ris 

positive and represents a negative contribution to the generation of 

turbulent kinetic energy. 

In spite of the complex mean-flow and Reynolds stress distributions, 

the cross-stream flow is controlled mainly by the centrifugal-force, 

radial pressure gradient imbalance. As a consequence, calculated 

mean velocity results obtained from the solution of elliptic differential 

equations in 	finite-difference form and incorporating a two-equation 

turbulence model are not strongly dependent on the model; numerical errors 

are of greater importance. 

The calculation procedure used in this work, and a semi-elliptic version, 

are presently the bases for predicting turbulent' heat transfer and two- 

phase flow phenomena in curved ducts and related geometries. Modeling of 



the appropriate turbulence correlations, especially fluid-particle 

interactions, is underway at the University of California (Berkeley) to 

account for the influence of these effects in dilute solid-liquid systems. 

The latter study is part of a research effort, including experiments, aimed 

at predicting the erosive wear caused by slurry flow through the various 
4 	

conduits, connections and components typical of coal liquefaction process 

eq ui pmen t. 
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1. 	Introduction 

Flow in a curved ductis characterized by a stress field with 

stabilizing effects near to the inner-radius wall and destabilizing effects 

close to the outer radius wall. Theseeffects, and the related turbulence 

features, have been considered byBradshaw (1973) for two-dimensional, 

boundary-layer type flows but as indicated by Johnston (1976), little work 

has been directed to confined curved-duct flow. This lack of information 

exists in spite of the relevance of confined curved flows to bends, headers, 

alternator cooling ducts and the blade passages of compressors and turbines. 

A review of engineering design information of relevance to bends has been 

provided by Ward-Smith (1971) but does not offer substantial contributions 

to the understanding of flow mechanisms. More recently Mori et al. (1971) 

and Pràtap and Spalding (1975) have made experimental contributions but, 

in common with many previous investigations of three-dimensional curved-duct 

flows, these are limited mainly to Pitot-tube measurements and, therefore, 

substantially to the determination of longitudinal mean velocity. Pierce 

and Duerson (1975) using hot wire anemometry techniques have measured 

components of the Reynolds stress tensor in an end wall three dimensional 

channel boundary layer but these are of limited extent. 

A major reason for the lack of detailed information of curved-duct 

flow stems from measurement difficulties which have been partly removed 

by the development of laser-Doppler anemometry. Humphrey, Taylor and 

Whitelaw (1977'), in a previous investigation of a imainar flow in the 

present bend, made use of a laser-Doppler anemometer to measure the 

longitudinal component of mean velocity. This study followed an earlier 

investigation of developing turbulent flow in a square duct by Mailing 

and Whitelaw (1976) and provides the basis for the precise measurement of 
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two components of mean velocity and the corresponding normal and Reynolds 

stresses in the same rectangular curved duct at a Reynolds number correspond- 

ing to turbulent flow. 

Significant contributions to the understanding of curved-duct flows 

have been made through the solution of reduced forms of the Navier-Stokes 

equations. Solutions of the ideal, rotational-flow equations have been 

obtained, for example, by Rowe (1970) and Stuart and Hetherington (1970) 

• 	and exhibit relatively strong oscillatory secondary flows of the type 

investigated earlier by Squire and Winters (1951) and Hawthorne (1951). 

• 	The laminar flow solutions of the steady, three-dimensional, Navier-StOkes 

equations of Ghia and Sokhey (1977) and of Humphrey, Taylor and Whitelaw 

(1977) for rectangular cross-sections and of Humphrey (1978-a) for circular 

and annular cross-sections also demonstrate strong secondary flows. The 

latter two studies are based on elliptic forms of the transport equations 

and reveal, for a range of Reynolds numbers, that recirculation in the main 

flow direction can be present. Turbulent flow results have been obtained, 

for example, by Patankar, et al. (1975) and Pratap and Spalding (1975), 

by solving parabolic forms of the transport equations. Thus, these authors 

presumed that recirculation in the planes parallel to the symmetry 

plane does not exist and that the flow can be represented by a two-equation 

turbulence model. In all cases, there is a need for experimental information 

to test the appropriateness of the assumptions and to help remove the 

ofu.ne.rstanding of the physical processes, especially in 

ducts of strong curvature. 

In an earlier communication, Humphrey and Whitelaw (1977) presented 

preliminary results and brief discussion related to flows over curved 

surfaces and in bends. The purpose of the present contribution is to 
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provide detailed measurements, of quantified and good precision, which 

will increase present understanding of the physical processes governing 

curved duct flows. This is partly achieved here by comparison of 

experimental results with elliptic calculations based on a two-equation 

(k-c) model of turbulence. Although, as will be shown, the numerical 

uncertainties are significant and probably greater than those introduced 

by the turbulence model. 

The following section describes the flow configuration and the 

instrumentation used to obtain the measurements. The results, including 

those obtained from the calculation method outlined in Appendix A and 

previously described, in relation to laminar-flow equations, by Humphrey, 

Taylor and Whitelaw (1977), are presented in the third section and 

discussed in the fourth. The paper ends with brief concluding remarks. 

2. 	Flow Configuration,InStrUrnefltatibfl and Procedures 

The flow configuration is identical to that used by Humphrey, Taylor 

and Whitelaw (1977). It comprises a 90 degree perspex bend of mean radius 

R = 92 mm, see Fig. 1, attached to the end of a rectangular channel 

previously described by Melling and Whitelaw (1976). The cross section 

was D2  = 40 ± 0.1 x 40 ± 0.1 mm2  and the bend was located in the vertical 

plane with a 1.2 m length of straight ductof the same cross section 

attached to its downstream end. The present results were obtained with 

a water flow of 1.42 kg/s corresponding to a Reynolds number of 4.0 x 10 

and a Dean number of De 	Re(½ D/R) 1  = 2.6 x 104 . 

The anemometer was similar to that described in the two previous 

papers. It was aligned perpendicularly to the side walls, of the bend and 

comprised a 5 mW helium-neon laser, an optical unit of the type described 

by Durst and Whitelaw (1971) but modified to allow rotation of the measuring 
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5. 

volume through 90 degrees without the need to adjust the position of the' 

laser, a light collection arrangement, an EMI 9558B photomultiplier and a 

frequency-tracking demodulator (DISA 55L20). The mean velocity, after true 

integration (DISA 55B30), and corresponding normal stress were obtained 

from a Solartron digital voltmeter and true rms meter (DISA 55D35), 

respectively. The control-volume dimensions were determined by the 15 0  

angle between the transmitted light beams and the light-collection 

arrangement and were calculated to correspond to a length of 2.0 mm and 

a diameter of 0.26 mm; the discrimination level of the frequency-tracking 

demodulator reduced these dimensions, according to a count of fringes 

reproduced by scattering particles on an oscilloscope, by approximately 20%. 

Measurements of the longitudinal and radial components of mean 

velocity and the corresponding normal and Reynolds stresses were obtained 

with the single channel anemometer in the manner described by Humphrey 

(1977) and Durst, Melling and Whitelaw (1976). On average 12 traverses 

of 25 points each were made in planes corresponding to -11.1, -6.25 and 

-2.5 hydraulic diameters in the straight duct and at 0, 45, 71 and 90 

degrees in the bend. The cross-stream velocity and corresponding stresses 

were also measured in the 0 and 90 degree planes. 

The influence of transit-time, gradient and noise broadening were 

I 
	 examined and, as far as possible, quantified. The estimated maximum 

systematic and rms of the random errors are indicated below: 



Maximum error% 

Variable 	 Systematic 	 Random 

UQ/UB UX/UB 	 0.8 	 1.0 

Ur/UB 	 1.0 	 2.0 

iio/UB 9  aXIUB 	 1.0 	 2.0 

Urh'UB 	 1.7 	 2.8 

UoUr/U 	 2.2 	 5.0 

The large number of measured points allowed them to be conveniently fitted 

to a least-squares polynomial of the form: 

U or i = A0  + A 1 y + A2z + A3y2  + A4yz + A5 z 2  + A6y3  

+ Ayz + A8yz 2  + A 9 z 3 + 

The theory underlying this approach has been reported, for example, by 

Hininelblau (1 .970). The maximum deviations of measured points from the 

fits used to plot the figures of the following section, were 2% for mean 

velocities and 3% for Reynolds stresses and arose in the flow regions 

close to the walls. The results on both sides of the bend symmetry 

plane were compared at all measurement stations and indicated random 

asymmetries only slightly larger than the uncertainty introduced by the 

fitting procedure; as a consequence, the data on the two sides were 

averaged and the regression applied to a symmetrical half. 

RI 
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3. 	Results and Comparisons 

A typical set of measurements is shown on Fig. 2 and represents 

values of the mean voltage and rms of the corresponding fluctuations in the 

45 degree plane. Contours of mean velocity and Reynolds stress were 

obtained from a knowledge of the relationship between the measured voltage 

and velocity and the fitting procedure described in the previous section; 

they are presented in Figs. 3-11 for five of the seven measurement stations. 

Figures 3 to 7 relate to the longitudinal velocity component, Figs. 	and 

9 to the radial component and Figs. 10 and 11 to the shear stress. For 

comparison and discussion calculated contours of mean flow properties, 

where appropriate, have been included in the figures. 

3.1 Mean Velocities 

The measurements of longitudinal mean velocity obtained at -11.1, 

-6.25 and -2.5 hydraulic diameters from the entrance plane of the bend 

are within 5% of the results previously reported by Melling and Whitelaw 

(1976) for Re = 4.2 x 104  and at 36.8 hydraulic diameters from the inlet 

to the present straight duct. The measurements at XH = -2.5, shown on 

Fig. 3, correspond to a location 42.5 hydraulic diameters from the duct 

inlet and have the general features of developed square-duct flow with no 

influence of the downstream bend. This is in contrast to the laminar-flow 

results of Humphrey, Taylor and Whitelaw (1977) which were slightly 

influenced by the bend at XH=  -2.5. The bulging of the present contours 

towards the corners of the duct is caused by the normal-stress driven 

cross-stream flow (< 002tjB 
 previously discussed, for example, by Gessner 

(1973) and Melling and Whitelaw (1976). This weak cross-stream flow is in 

the form of symmetric counter-rotating vortices in the duct corners and 

directed along the angle bisector towards the corner; it will be overcome 



by the much stronger pressure-driven secondary flow in the bend which takes 

the form of two counter-rotating longitudinal (main) vortices with a 

forward stagnation region at the centre line of the outer wall. 

At the inlet plane of the bend, Fig. 4a, the mean longitudinal velocity 

contours (UG/UB)  display an acceleration of the fluid moving near the 

inner-radius wall (r i ) in accordance with the initially favorable longi-

tudinal pressure gradient there. Simultaneously, the fluid moving near 

the outer-radius wall (r0 ),. responding to an initially unfavourable 

longitudinal pressure gradient, is decelerated. The longitudinal pressure 

gradient influencing the flow entering the bend is a consequence of the 

centrifugal force, radial pressure-gradient balance set up by the flow in 

the bend. Bulging of the U 0  contours towards the duct corners persists at 

the 0 degree plane but has been substantially reduced at the outer-radius 

wall, in accordance with the negative values of Ur  over almost the entire 

cross-section as shown in Fig. 8a. The effect of Ur  is, therefore, to 

oppose normal stress-driven motion at the outer-wall corners of the bend 

and to favour it at the inner-wall corners. 

Acceleration of the fluid near r displaces the maximum U 0  velocity 

contours towards the inner-radius wall and the effect is still noticeable 

at the 45 degree station shown in Fig. 5a with steep gradients of U 0  

appearing near r 1 . The distorted contours for Ue/UB = 1.20 and 1 .25, which 

arise in both laminar and turbulent bend flows as a result of the pressure 

gradient in the secondary flow plane induced by lateral curvature of the 

main flow are evidence of developing pressure-driven secondary motion. 

At 71 and 90 degrees, Figs. 6a and 7a, the strong secondary motion (up to 

0.28 x UB  at the 90 degree plane) produced by the lateral curvature, 

causes a substantial deformation of the U 0  contours. The steep gradients 
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in U 0  shift from r  to r0  with lower gradients appearing at the inner-radius 

wall. The results also show that high speed flow has been increasingly 

displaced towards the outer-radius and side walls, whereas fluid with low 

velocity accumulates at the inner-radius wall of the bend. 

The contours of radial velocity obtained in the inlet plane to the 

bend are shown on Fig. 8a and reveal secondary velocities up to 0.075 U 8 . 

These values are significantly larger than those associated with normal-

stress-driven secondary flows and confirm the influence of the bend on the 

flow at the inlet. The vortex pattern, associated with normal-stress-driven 

secondary flows is no longer apparent although the sign changes, near to 

the inner and outer walls, indicate that it has not been completely overcome 

by the pressure forces. At 90 degrees, Fig. 9a, large secondary flows 

are present and the pattern conforms to a strong rotational movement in 

each symmetrical half of the bend with values of Ur  as large as + 0.28 UB 

along the symmetry line and -0.15 U8  along the side walls. 

The velocity contours, calculated at the three downstream stations 

display the, same general characteristics as the measurements but 

quantitative differences which are large. The contours of the longitudinal 

velocity component indicate a shift of maximum velocity which, like the 

measurements, is displaced slightly towards the inner wall at 45 degrees 

and moves towards the outer wall for larger values of angular position. 

The movement is rather more rapid than the measurements and there is a 

general tendency for the velocity gradients to beless-except--in -the - 

imediate vicinity of the walls where the logarithmic wall functions control 

the calculations. It would appear, therefore and consistent with the 

distribution of grid nodes in the cross stream plane as shown in Fig. 5, 

that there has been some smearing in the numerical results. 
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It is also noticeable, at the 45 degree position that the secondary 

flow has been slower to develop in the calculations than in the measurements. 

The tendency for the contours to bend into the corners, shown by the 

measurements, is not revealed by the calculations until the 71 degree 

station. The main features of the radial component of mean velocity, shown 

in Fig. 9, are represented by the calculation although the location of the 

zero-velocity line dividing the regions of positive and negative velocity is 

further from the side wall, the magnitude of the negative values is high 

and of the kinetic values too low. 

3.2 Reynolds Stresses 

Turbulence intensities and shear stress measurements (normalized by 

U) are presented in contoured form in Figs. 3b to 9b and Figs. 10 and 11, 

respectively. As for the mean longitudinal velocity component, the pattern 

in the distribution of U did not change significantly between XH 

and -2.5 and the values for U are in good agreement with the measurements 

of Melling and Whitelaw (1976) at their furthest downstream position. 

In general, the resuitsat the three upstream tangent stations (see 

Fig. 3b) show high values of U near the duct walls, diminishing towards 

the core region of the flow. Distortions by the normal stress driven 

secondary motions are evidenced (as for U)  by bulging of the contours 

towards the duct corners. At 0 degrees, 9 0  has been affected little by 

the pressure gradients affecting the longitudinal and transverse mean 

velocities although a slight diminution in the U,contours near ro ll 

relative to those at r, can be observed and is caused by the same 

mechanism which reduced bulging in the U 0  contours. 

At 45 degrees, Fig. 5b shows a dramatic alteration in the pattern for 

0 . Relatively high levels of turbulence intensity (12% to 15%) arise 
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near r0  and the side walls with lower values (6% to 9%) appearing near 

except nearer to the inner-radius wall. At 710,  the pattern is modified 

further with t returning to lower values (10% to 12%) near to r 0  and the 

side walls but increasing (8% to 11%) near to r 1 . At 90°, a complete 

reversal of the situation observed at 45 0  has emerged; values of 	are 

relatively large (12% to 15%) at the inner-radius wall, whereas they are 

lower (10% to 13%) near r 0  and the side walls. The general patterns for 

at 450,  71 0  and 900  are seen to be inconformity with the sense of 

circulation in the secondary motion of the first kind which increases in 

magnitude along the bend. This appears to suggest that convection of the 

Reynolds stresses by the cross-stream flow becomes increasingly significant 

with distance through the bend. 

Contour plots of tr  at 0 and 90 degrees are presented in Figs. 8b and 

9b and although the trends at 0 degrees are in agreement with those of 

Melling and Whitelaw (1976) at the furthest downstream position of their 

square duct flow, differences can be observed. In the present case, two 

islands of relatively high turbulence intensity (8.5%) have been formed t' 

at the side wall (near r) and near the bend symmetry plane (near r 0 ) 

respectively. These peaks are joined by a 7.5% ridge separating two 

regions of lower turbulence intensity with strong gradients appearing 

towards the walls. At 90 degrees, the tr 
 profiles indicate a distortion 

which appears to stern from the strong secondary motion there. 

- 	Figures 10 and 11 present_the_sher stress contours uOur.at  qand 90 

degrees, respectively. At 0 degrees, the contours in the upper half of 

the figure (towards r) present features strongly reminiscent of the 

developed turbulent duct flow results of Melling and Whitelaw (1976). The 

bottom half of the figure, however, is very different and shows a region 

of negative UOUr3 near the side wall, contained between positive values: 
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since this region coincides with negative values of DU0/r, the result is 

a negative contribution to the generation of kinetic energy of turbulence. 

At 90 degrees, the UOUr  contours display distortions, caused by the 

secondary motion. Relatively high and positive values of UOUr  are dis- 

placed towards r 0  and the side wall. Lower values of U0Ur  but still mainly 

positive, appear over a large region near r coinciding with positive 

values of U0/r; As above, this represents ,a negative contribution to the 

generation of kinetic energy of turbulence and is in agreement with tne 

stabilizing effects of the inner-radius wall on the flow. 

The calculated values of turbulence energy in the exit plane are not 

shown for reasons of space but reflect the deficiencies of the mean-flow 

calculations and of the assumed turbulence model. Comparison of the 

calculations and the measurements of Figs. 7b and 9b indicates that the 

former are generally lower and more uniform in the central region.' The 

calculated values of the Reynolds shear stresses are also poorly rep-

resented in detail although major features, such as the central zero 

contour of u e u 	 are reproduced. 

4. 	Discussion 

Comparisons between the present turbulent flow and the previous 

laminar flow of Humphrey, Taylor and Whitelaw indicate that the normalized 

velocity fields are similar in magnitude although the small region of 

longitudinal recirculation observed in the laminar flow does not appear in 
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the turbulent flow. A second difference relates to the locus of 

maximum-velocity locations which, in the turbulent flow case, are close 

to the centre of curvature for the first 71 degrees. Secondary motion, 

arising through an imbalance between centrifugal force and radial pressure 

gradient at the side walls of the bend, displaces high-speed fluid towards 

the outer-radius wall, along the region containing the symmetry plane, and 

low-speed fluid towards the inner-radius wall, i.e., along the side walls: 

this effect is much larger in the turbulent-flow results due to the higher 

Dean number. The secondary motion in the turbulent case is responsible 

for strong cross-stream convection of Reynolds stresses and for high 

turbulence-energy fluid to be driven from the outer-radius wall, where 

turbulence is generated strongly, towards the inner-radius wall, where it 

can be suppressed. In turn, stabilized flow with lower level turbulence 

energy at the inner-radius wall is convected, by the secondary motion, 

along the symmetry plane into the core region of the flow and towards the 

outer-radius wall. Between 45° and 90°, the characteristics of the 

turbulent bend flow near to the symmetry plane are similar to those ob-

served in two-dimensional channels with curvature. The similarity 

diminishes, however, at larger bend angles where the secondary 

motion reaches values between 20% and 30% of the bulk average velocity. 

Comparison between present results and two-dimensional channel flow also 

shows that the former are more isotropic than the latter at the 

-outer-radius wall. Seco.n.dary--motiofl, d.rive•n• by .normaistreSSeS_and_imP0r-tant- 

in straight non-circular-duct flow, is negligible compared to the pressure-

driven secondary flbws. 

Stabilizing curvature, occurring on convex walls, i.e., the 

inner-radius wall of the bend, has the effect of lowering Reynolds shear 
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stresses and turbulence energy levels in comparison to otherwise equivalent 

straight shear-layer flows. The results for ti 0  at 450 and tir  and  uOur 

at 900 show this effect clearly as do previous results for two-dimensional 

curved flows. The decrease in turbulence is associated with a corresponding 

decrease in static pressure in the flow direction and hence acceleration 

of the flow. This is in agreement with the larger levels for U 0  measured 

near the inner-radius wall at 0° and 450• Destabilizing curvature appears 

at concave walls, i.e., the outer-radius wall of the bend, and results in 

unusually high levels of Reynolds shear stresses and turbulence kinetic 

energy. This accounts for the relatively large values of the stresses at 

the outer-radius wall of the bend. 

The comparison between the better known behavior of curved two-

dimensional channel flow and present experimental results helps to 

explain some of the characteristics of bend flow. In the three-dimensional 

flow, however, the cross-stream vortical motion is responsible for the 

transport of energy containing eddies along the side walls of the bend 

from the concave (destabilizing) to the convex (stabilizing) surface, 

and is partly the cause of the high levels of Reynolds stresses which 

appear at the side walls. In turn, fluid elements in which the turbulence 

has been suppressed are displaced along the bend syrrurietry plane from the 

inner-radius wall into the core region of the flow by the secondary motion. 

At the same time, pressure strain redistribution between normal stress 

components, turbulent diffi isbn and dissipation, all affect the distribution 

of the stresses throughout the floW. 'A result is for regions of relatively 

strong anisotropy to occur in the bend. For example, at 00 and near the 

side walls, 1 < 
	

4 and -0.2 < ueu r  /u r 
 < 0.4. At 90° and near 

14. 
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whereas at the outer-radius wall, 0.5 <u/u 	< 1.4 and 

0.3 < UOUr/ 	< 0.4: these results at 
90,  indicate that the flow at 

the outer-radius wall is more isotropic than that at the inner-radius wall. 

This observation is in agreement with the results of Eskinazi and Yeh (1956) 

who found 4 < u/u 	< 5.8 at the inner-radius wall and 3 < u/ 	< 4.4 

at the outer-radius wall for fully-developed curved two-dimensional channel 

flow. The comparison also shows that a higher degree of isotropy is 

attained at the outer-radius wall of,a fully three-dimensional bend flow 

than at the corresponding wall of a two-dimensional curved channel flow. 

Analysis of , the Reynolds stress equations, which include effects due 

to convection, pressure strain, turbulent diffusion and dissipation, would 

benefit understanding of the present anisotropic flow but is hampered by 

the incompleteness of the measurements and their precision. A simplified 

analysis of the generation terms in the normal stress equations based on 

the assumption of local equilibrium conditions near walls and provided 

in detailed form by Humphrey (1977) is in close accord with the measured 

distribution of 1r 
 at 00  and 900 , but not with that of U 	at 900  due, 

in part, to the neglect of 9U 0/0 in the analysis. The experimental 

results indicate that convective transport of u into the inner-wall region 

of the bend flow (from the outer and side wall locations) increases the 
Ilk 

level of(at the inner wall region) at a faster rate than its . suppressed 

or dissipated. In regions where U
r
and u are suppressed, the Reynolds 

stresses act on the mean momentum gradients to return energy to the mean 

flow and accounts for the displacement between positions of maximum velocity 

and zero shear stress. 
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The complexity of the turbulence characteristics of the flowimplies 

that the eddy-viscosity hypothesis will give rise to errors. Detailed 

features, such as negative production and the influence of the individual 

normal stresses are clearly not represented although, for example, the 

calculated gradual displacement of the peak value of a from the outer to 

inner wall is in accord with measurement. The mean flow is very strongly 

influenced by the pressure forces and is unlikely to be strongly in-

fluenced by the turbulence model. In addition, the representation of the 

flow by less than 3200 discrete nodes is bound to give rise to numerical 

errors which may be large, in comparison with those caused by the 

turbulence model. The storage requirement of the computer limited the 

number of nodes which could be used with the present program and precluded 

calculations with a more refined grid. Similarly, the extensive run times 

and related costs allowed only a small number of tests with different 

distributions of nodes. 

The calculations for U9  along the bend symmetryplane (especially near 

the inner-radius wall) do not show the strong influence that secondary 

motion has on the corresponding experimental variables. This discrepancy 

is certainly related to the finite numbers of nodes which result in 

numerical diffusion in the calculations. An estimate of the magnitude of 

the numerical diffusion, relative to turbulent diffusion, may be obtained 

from the expression 

num "'eff 	
0.36 R 	

e; 	
2a 

where Rc = Vph/ii is the cell Reynolds number based upon the distance 

between nodes, h, and c is the angle that the velocity vector makes with the 
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coordinate system. Calculated values for 'num A"lIeff show that, contrary to 

the case for the cross-stream flow, longitudinal numerical diffusion was 

10 

	

	 probably significant in the bend. Thus, in the main flow direction, values 

'num "'eff of up to 6 were obtained near the side and inner-radius walls 

and along the symmetry plane in the bend. These are precisely the locations 

where U 0  and Ur  disagree most with the measurements. Adjustment of the grid 

nodes to lower the value of cell Reynolds number in this region inevitably 

increased itelsewhere and significant improvements could not be obtained 

with the total number of nodes available. Calculations, with the same 

initial conditions and a turbulent viscosity of zero, gave rise to much 

larger values of the ratio pnum "eff and to a similar pattern of results 

near the inner radius; this suggests that, in this region, the numerical 

diffusion strongly affects the present flow. 

The numerical deficiencies associated with regions of the present flow, 

the limited availability of grid nodes and the elliptic differential 

equations raise the question of the relative advantages of parabolic 

equations or partially elliptic equations [P = P(0,r,z] but 2,o2 = 01. 

The reduced equation forms have reduced storage requirements and the 

number of nodes can be increased significantly with consequent decrease in 

numerical error. Their use implies, however, that longitudinal diffusion 

is unimportant and this cannot always be known a priori. In the 

laminar-flow results of Humphrey, Taylor and Whitelaw (1977), for 

exainple, théF woufd have ruled out the possibility of the recirculation 

region observed experimentally. In the present case, the magnitude of 

longitudinal diffusion could not be adequately assessed from the experimental 

results at the 45, 71 and 90 degree locations in the bend although low 

values of U 0  near the inner-radius wall suggested that it could be signi-

ficant. Subsequently, the turbulent flow calculations indicated that, even 



though P/O is large, longitudinal diffusion is not larger than 2% of 

longitudinal cànvection in the present geometry. It would appear, therefore, 

that a semi-elliptic procedure accounting for strong pressure variations 

could provide more precise results through increased grid refinement. 

However, this probability will certainly decrease with increasing Dean 

numbers. 

6. 	Concluding Remarks 

The main effect of the bend on the flow passing through it is to 

induce strong cross-stream' motions which develop into a pair of counter- 

rotating vortices in the longitudinal direction. The driving force for this 

secondary motion is the.centrifugal force-radial pressure gradient im-

balance which acts upon the slowly moving fluid along the side walls of 

the bend, and displaces it along the side walls from the outer to inner 

curvature wall. Continuity requires that a corresponding motion displace 

fluid along the bend symetry plane from the inner to the outer curvature 

wall. The cross-stream flow is weak at first ( 0.07 U B 
 ) but progressively 

gains momentum until it attains values < 0.28 UB  at the 90 degree plane. 

As a result of the strong cross-stream motion, high speed flow accumulates 

at the Outer wal.l of the bend and low speed flow at the inner wall. Like-

wise, the secondary motion is responsible for cross-stream convection of 

the stresses. This pressure driven cross-stream flow is more than an 

order of magnitude larger than the cross-stream flow which arises due to 

the normal stress imbalances. 

Secondary motion driven by the normal stresses does exist and is responsible 

for bulging of the velocity contours towards the duct corners in the up-

stream section connected to the bend. Its effects  are, however, over-

whelmed by the pressure-driven secondary flow before the 45 degree station 

has been reached. 



The results may be compared with the previous laminar-flow data 

obtained in the same bend at a lower. Dean number. In the present case, 

there is no region of longitudinal flow recirculation although the velocity 

gradients do indiçate a region of low wall-shear stress at the inner-radius 

wall and in the latter part of the bend. This is consistent with the locus 

of maximum velocity positions which corresponds to the mean radius until 

the 71 degree station where it begins to move towards the outer wall. In 

the laminar-flow case, the lOcus of maximum velocity positions moves 

rapidly toward the outer wall from the beginning of the bend and tends to 

stay there. It may be expected that large differences may exist in the 

geometric configuration for other changes in the initial conditions. For 

example, the use of a shorter region of the straight inlet duct, with 

corresponding thin boundary layers and a core region of potential flow, can 

be expected to behave in a manner consistent with potential flow solutions 

for a significant region of the bend. Thus, in such a case, the locus 

of maximum-velocity-positions will move rapidly to the inner wall and will 

move out again at a downstream location where the boundary layers have 

thickened and provided slower moving fluid which can be more rapidly driven 

into a secondary flow pattern. 

In general, the stress measurements show high values near the walls, 

where shearing is greatest, diminishing towards the core of the flow. 

Stabilizing effects due to convex curvature at the inner wall of the bend 

are responsible for lowering the turbulence intensity there whereas de- 

-- 	stabilizing concave curvature effects at the outer wall raises it. A 

consequence of the secondary motion is an interchange of turbulence energy 

between the inner and outer wall; this serves to counteract the stabilizing 

and destabilizing effects of these walls, respectively. The result is a 

highly anisotropic complex pattern of stresses. In agreement with two-

dimensional channel flows, the measurements indicate a higher level of 
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anisotropy at the destabilizing outer wall than at the stabilizing inner 

wall. However, the present bend flow is more isotropic at the outer-radius 

wall than the channel flow. Regions of negative contribution to the 

kinetic energy of turbulence arise at both the 0 and 90 degree planes and 

are responsible for returning energy from the turbulent motion to the mean 

flow. As a consequence, displacements between positions of maximum velocity 

and zero shear stress can arise. 

Eddy viscosity models of turbulence are unable to represent netive 

contributions to the generation of kinetic energy of turbulence. However, 

because changes in the bend flow are governed primarily by pressure 

gradient effects, an eddy viscosity formulation, preferably which allbws 

for transport of turbulence properties, may adequately allow the 

description of the bulk features of this flow. Accurate representation of 

the stress.distributions will require modelling based on solutions of the 

Reynolds stress equations and the present data will assist evaluation of 

this approach. 

It should be emphasized that the choice of equation form is important 

in flows of the present type. Although longitudinal diffusion is probably 

small enough to be neglected in the present geometry and, hence, allow 

the use of semi-elliptic calculation schemes, its effects will become in-

creasingly important as the mean radius of curvature is decreased or the 

Dean number increases. 	The three-dimensional Navier-Stokes equations are 

appropriate to the present flow but, as shown here, their solution is 

subject to numerical inaccuracy which limits the complexity of turbulence 

model which can be justified. A discussion of the relative merits of 

possible turbulence models is probably academic in view of the degree of 

pressure gradient control and numerical uncertainty associated with the 

finite number of discrete nodes. 
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The calculation procedure used in this work, and a semi-elliptic 

version, are presently the bases for predicting turbulent heat transfer 

and two-phase flow phenomena in curved ducts and related geometries. 

Modeling of the appropriate turbulence correlations, especially fluid-

particle interactions, is underway at the University of California 

(Berkeley) to account for the influence of these effects in dilute 

solid-liquid systems. The latter study is part of a research effort, 

including experiments, aimed at predicting the erosive wear caused by 

slurry flow through the various conduits, connections and components 

typical of coal liquefaction process equipment. 

Acknowledgment 

The authors arepleased to acknowledge helpful discussions held with 

Dr. A. Melling during the course of the experimental work. 

Financial support from the Science Research Council and Imperial 

Chemical Industries, Ltd. made the experimental study possible. Financial 

support for the numerical calculations was provided by the Division of 

Materials Sciences, Office of Basic Energy Sciences, U.S. Department of 

Energy under contract number W-7405-ENG-48. The authors welcome the 

opportunity to express their appreciation for this support. 

21 



PafarcbnrAc 

P. Bradshaw (1973) Effects of streamline curvature on turbulent flow. 
AGARDograph 169. 

D. Bryant and J.A.C. Humphrey, (1976) Conservation equations for 
laminar and turbulent flows in general three-dimensional curvilinear 
coordinates, Imperial College, Mechanical Engineering Report No. 
CHT/76/6. 

F. Durst and J.H. Whitelaw (1971) Integrated optical units for laser 
anemometry. J. Phys. E4, 804. 

F. Durst, A. Melling and J.H. Whitelaw (1976) Principles and Practice 
of Laser-Doppler Anemornetry. Academic Press. 

S. Esinazi and H. Yeh (1956) An investigation on fully-developed 
turbulent flows in a curved channel. J. Aeronaut. Sci., 23, 23. 

F.B. Gessner (1973) The origin of secondary flow in turbulent flow 
along a corner. J. Fluid Mech. 58, 1. 

K. N. Ghia and J. S. Sokhey, (1977) Laminar incompressible viscous 
flow in curved ducts of regular cross sections, J. Fluids Engrg., 
Trans. ASME, 99, 640. 

W.R. Hawthorne (1951) Secondary circulation in fluid flow. Proc. R. 
Soc., A206, 374. 

D.M. HinEielblau (1970) Process Analysis byStatistical Methods. 
Wiley. 

J.A.C. Humphre$' (1977) Flow in ducts with curvature and roughness, 
Ph.D. Thesis, University of London; 

J.A.C. Humphrey (1978a) Numerical calculation of developing laminar 
flow in pipes of arbitrary curvature radius. Can. J. Chem. Eng. 56, 
151. 

J.A.C. Humphrey, (1978b) Numerical calculation of variable property 
flows in curvilinear orthogonal coordinates, Can. J. Chem. Eng., 
56, 624. 

J.A.C. Humphrey, A.M.K. Taylor and J.H. Whitelaw (1977) Laminar flow 
in a square duct of strong curvature. J. Fluid Mech. 83, 509. 

J.A.C. Humphrey and J. H. Whitelaw, (1977) Measurements in curved 
flows, Turbulence in internal flows (edited by S.N.B. Murthy), 
Hemisphere Publishing Corp., Washington, 407. 

J.P. Johnston (1976) Internal flows. Topics in Applied Physics, 
Vol. 19, Turbulence. Springer-Verlag, Edited by P. Bradshaw. 

22. 



23. 

A. Melling and J.H. Whitelaw (1976) Turbulent flow in a rectangular 
duct. J. Fluid Mech. 78, 289. 

V. Mori, V. Uchida and J. Ukon (1971) Forced convective heat transfer 
in a curved channel with a square cross-section. mt. J. Heat and 
Mass Transfer 14, 1787. 

S.V. Patankar, V.S. Pratap and D.B. Spalding (1975) Prediction of 
turbulent flow in curved pipes 	J. Fluid Mech. 67, 583. 

F.J. Pierce and S.H. Duerson, (1975) Reynolds stress tensors in an 
end wall three-dimensional channel boundary layer, J. Fluids Engrg., 
Trans. ASME, 97 2  618. 

V.S. Pratap and D.B. Spalding (1975) Numerical computations of the 
flow in curved ducts. Aero. Quarterly 26, 219. 

M. Rowe (1970) Measurements and computations of flow in pipe bends. 

J. Fluid Mech. 43, 771. 

H.B. Squire and K.G. Winter (1951) The secondary flow in a cascade 
of airfoils in a non-uniform stream. J. Aeronaut. Sci., 18, 271. 

A.R. Stuart and R. Hetherington (1970) The solution of three-variable 
duct flow equations. Proc. mt. Symp. on Fluid Mechanics for the 
Design of Turbomachinery. Penn. State University. 

A.J. Ward-Smith (1971) Pressure losses in ducted flows. ButterworthS. 



Appendix A 

Equations, Boundary Conditions and Calculation Method 

Numerical calculations of the curved duct flow are based on the 

elliptic form of the time averaged Navier-Stokes equations in cylindrical 

coordinates. Thus, for steady, incompressible, isothermal flow, the 

differential equations for continuity and momentum, with an eddy-viscosity 

assumption, are given by: 

Continuity 

	

= 0 	 (1) 
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where 

neff = Ii + Pt 

and 

	

2 - a2 	i a 	i a? 	32 

	

ar 	rr 
	

rae 	az 

The turbulent viscosity, p 	is assumed to be determined uniquely by 

the local values of density p, turbulent kinetic energy k, and a turbulent 

length scale Z. At high Reynolds numbers 2. is proportional to k 3"2/c, 

where e is the rate of dissipation of turbulent kinetic energy and thus 

Pt= Cpk2/e 

where C has the constant value given below. The spatial variation of
11 

Ilt  is determined by solving transport equations for k and c in cylindrical 

coordinates, readily derived from the general tensor equations given by 

Bryant and Humphrey (1976): 

i.e., 

U 	+ 	+ u 	= 	k + G - Pe 
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and 
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The constants in these equations were taken as C 31 
 = 0.09, C 	= 1.47 9  

C 
62 

= 1.92, ak = 1.0 and  a 
6 

= 1.3, in accordance with the recommendations 

of Patakar, et al. (1975). 

It is required to solve equations 1-7 together with appropriate 

boundary conditions. At the inlet plane (0 = 00 ), U 0  and Ur  velocity 

components were specified from measurements of this work. In the absence 

of experimental information, U was set to zero and is a good approximation 

since the cross-stream flow in the bend is initially weak. The entrance 

distribution of k was also estimated from the measurements of u and u 

and c was taken proportional to k 3'2/, with Z a fraction of the duct 

hydraulic diameter. At the exit plane (0 = 90 0 ), fully developed flow 

conditions were imposed by setting /0 = 0 for all variables; this 

approximation has been discussed by Humphrey (1978a) in relation to laminar 

flow and, for the flow of interest here, is adequate since calculations 

with this condition applied at 0 = 90° and 1100  showed negligible 

differences in the mean velocity results at 0 = 90 0 . Along the bend 

symetry plane, the condition a/az = 0 was imposed for all variables 

except U which was set equal to zero. 
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Zero velocity was assumed on all solid surfaces and the region 

between the numerical node P, closest to the wall, and the wall was 

bridged by the logarithmic velocity profile: 

U0  

11 	= Aln(r W 	) +B 

( Tw/P) 1  

is the shear stress at the wall, and yp  is the distance between the 

first grid node and the wall. The log-law constants were taken as 

A = 2.39 and B 	5.45 and U as the resultant velocity at P, assumed 

parallel to the wall shear stress. Assuming that generation and dis-

sipation of turbulence kinetic energy are in balance in the fluid layer 

between node P and the wall and using the log-law relation yields: 

T 	 = 	
p.0 k U 1, 

w 	'P 
Yp " . rp 

A1I 	 } +B 

The near-wail kinetic energy of turbulence, k 1,, was found from its normal 

transport equation with diffusion set equal to zero and generation term 

in accord with the wall shear stress equation (10). The value of the 

dissipation of kinetic energy near the wall was determined by requiring 

that the turbulence length scale vary linearly with distance from the wall. 

Thus, substitution of (U/y.) 1,,obt.ained from .equation-(9), into-a - 

simplified kinetic energy of turbulence equation for the near-wall regions 

(assuming generation equals dissipation) yields the expression: 
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The calculation algorithm used to solve the preceeding equations is 

an extension of the numerical procedure developed and applied by Humphrey, 

Taylor and Whitelaw (1977) for the prediction of laminar flow in curved 

ducts of rectangular cross-section. Generalization of the procedure to 

arbitrary orthogonal coordinates and its application to developing curved 

pipe flows of strong curvature have been documented by Humphrey (1978-a). 

Information of the transport equations in finite difference form, 

their numerical solution and results for various test cases can be found 

in the above two references and (in more detail) in Humphrey (1977). A 

summary of the essential features characterizing the turbulent flow 

calculation method is given below. 

The finite difference equations were obtained by integrating the 

conservation equations over volume, elements or "cells discretizing the 

flow domain. The velocity components, pressure, kinetic energy of 

turbulence and its rate of dissipation are the dependent variables computed 

on a number of staggered, interconnected grids, each of which is associated 

with a specific variable. The general form of the finite difference 

expressions is given by: 

/6 

4'p =( 	Aq 
	

+ 	 A 
	

(12) 

\ 1=1 

where 	(any one of the dependent variables) is solved at a position 

P in the discretized fTow domain. The Acoefficients are determined 

at the cell surfaces and represent the combined contributions of convection 

and diffusion to the balance of . Other contributions arising from 

pressure, body forces, etc., (sources or sinks) are contained in S0. 



Detailed forms for S, in variable property flows are given by Humphrey ,  

(1978-b). Solution of the system of finite difference transport equations 

with appropriately differenced boundary conditions is achieved by means 

of a cyclic series of predictor-corrector operations. The method in- 

volves using an initial or intermediate value of the pressure field to 

solve for an intermediate velocity field. A pressure correction to the 

pressure field is determined by bringing intermediate velocities into 

conformity with continuity. After corrections to the pressure and 

velocity fields are applied, the transport equations for kinetic energy 

of turbulence and its rate of dissipation are solved. Within each iteration, 

various sweeps of the entire flow domain are performed in alternate directions 

perpendicular to the main flow direction. The above steps are repeated 

until a pre-established convergence criterion is satisfied; for example, 

that the largest of any of the normalized residuals be less than lO s . 

Numerical computations were performed mainly with an unequally spaced 

grid of 14 x 11 x 19 nodes ( r x z x 0) requiring 164 k 8  words of CDC 7600 

computer storage. The calculation time per node per dependent variable per 

iteration was 8 x 10 	seconds and a run with the above node distribution 

and convergence criteria required 400 iterations and, as a result, 380 seconds.. 
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