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ABSTRACT"

The steady,'incompressibje, isothermal, developing flow fn a square-
section curved duct with smooth walls has been 1nvest1gated The
40 mm x 40 mm duct had a radius ratio of 2. 3 with 1ong upstream and down-
 stream straight ducts attached. Measurements of the longitudinal and
radial components of mean velocity, andléorresponding combonents‘df the
Reynolds-stress tensor, were obtained with a laser-Doppler anemometter
at a Reynolds numbéf.of 4 x 104 and fh Va}ious cross-stream b]anes. The
_'secondary mean velocities, driven mainiy by the prgssure field, éttain_
values up to 28% of the bulk velocity and are largely responsib]e'for the
convection of Reynolds stresses in the-cross-stream plane. Production of
| turbulent kinetic energy predominates close to the outer-radius wall aﬁd
regions with négative contributions to the productibn exist; Thus, at
a bend angle of 90 degrees and near the inner-radius wall, ue au /ar is
positive and represents a negative contribution to the generation of
turbulent kinetic energy.

In spite of the complex meanefiow and Reynolds stress distribufioné,
.the cross-stream flow is controlled mainly by the centrifugal-force,
fadiél pressure gradient imbalance. As a consequence, calculated
mean ve10c1ty resu]ts obtained from the solution of e111pt1c differential
equations in  finite- d1fference form and incorporating a two-equation
turbulence model are not strongly dependent on the model; numerical errors
are of greater importance. | .. |

Thé calcd]ation procedure used in this Work, and a semi-elliptic version,
‘are presently the bases for predicting turbulent’ heat trahsfer and fwo-

phase flow phenomena in curved ducts and related geometries. Modeling of



the appropriate turbulence correlations, éspecia11y fluid-particle
interactions, is underWay at the University of Ca]%fornia'(Berkeley) to
account for the influence of.these effects in dilute solid-liquid systems.
The latter study is-part of a research effort, including expgriments, aimed
at predicting the erosive wear céusedvby,slurry flow through the various
conduits, connections and‘components typical of coa1}]iquefaction process

‘equipment.



‘1.~ Introduction

Flow in a curved duct-fs characterized by a stress field with
stabilizing effects near to the inner—radius'wa]T and destabilizing effects
close to the outer radius wall, These . effects, and the related turbulence
.features, have been éonsidered by ‘Bradshaw (1973) for two-dimensional,
boundary-layer type flows but as indicated by Johnston (1976), 1ittle work
has been directed to cénfined curved-duct flow. This lack of information
exists in spite of the relevance of confined curved flows to bend$; headers,
alternator cooling ducts and the blade passages of compressors and turbines.
A review of engineering design infqrmation of re]evance.to bends has been
pkovided by ward—Smith (1971) but does not offer substantial contributioné
to the understanding of flow mechani;ms. More recently Mori et al. (1971)
and‘Pratap and Spalding (1975) have made eXperimenta] confributions but,
in common_withvmany previous investigations of threeQdimensional curved-duct
f]ows,gthese are 1imited mainly to Pitot-tube measurements and; therefore,
substantially to the determination of 1ongitudina1 mean velocity. Pierce
and Duerson (1975) using hot wire anémometry techniques have measured
compbnents of the Reynolds stress tensor in an end wall three dimensional
channel boundary layer but these are of limited extent.

A major reason for the lack of detailed information of curved-duct
flow stems from measuremént difficulties which have been part]y removed
by the development of laser-Doppler anemometry. Humphrey, Taylor and
Whitelaw (1977), in a previous investigation of a Imainar flow in the
present bend, made use of a laser-Doppler anemometer to measure fhe
longitudinal component of mean've1ocity.v This study followed an earlier
investigation of developing turbulent flow in a square duct by Melling

and Whitelaw (1976) and provides the basis for the precise measurement of



two components of meah velocity and thé Corrésponding norma]land Reynolds
stresses in the same rectangular curved duct at a Reynolds number corre§pond-
fng to turbulent flow. |
Significant contributions to the understanding of curved-duct flows

have been made through the solution of reduced forms of the Navier-Stokes
equations; Solutions of the ideal, rotational-flow equations have beeh
obtained, for example, by Rowe (1970) and Stuart and Hetherington (1970)

and exhibit relatively strong oscillatory secondary flows of the type
investigated earlier by Squire and Winters (1951) and Hawthorne (1951).

The laminar flow solutions of the steady, three-dimensional, Navier-Stokes
equations of'Gh}a and Sokhéy (1977) and of Humphrey, Taylor and Whitelaw
(1977) for réctangq]ar cross-sections and of Humphrey (1978-a) for circular
and annular cross-sections also demonstrate strbng secondary flows. The
latter two studies are based on e]]ibtic forms of the transport equations
and reveal, for a range'of Reynolds numbers, that recirculation in the main
flow direction can be present. Turbulent flow resﬁlts have been obtained,
for example, by Patankar, et al. (1975) and Pratap and Spalding (1975),
by solving parabolic forms of the transport equations; Thus, these authors
presumed that rgcircu]ation in the planes parallel to the symmetry |
plane does not exist and that the flow can be representéd by a two-equation
turbulence model. In all céses, there is a need for experimental information
to test the appropriateness of the assumptions and tovhelp remove the
-~present—lack-ofuundenstanding of the physical processes, especia]iy in
~ ducts of strbng curvature.

| In an earlier communicatioh, Humphrey and Whitelaw (1977) presented
preliminary results and brief discussion reTated to flows over curved

surfaces and in bends. The purpose of the present contribution is to



- provide detailed measurements, of quantified and good precision, which
will increase present understanding of the physical processes governing
curved duct flows. This is partly achieved here by comparison of |
experimental fesu]ts with elliptic calculations based on a fwoeequation
(k-e) model of turbulence. Although, as will be shown, the numerical
uncertainties are significant and probably greater than those introduced
by the turbulence modei. _

The following section describes the flow configuration anq the
instrumentation used to obtain the measurements. The resu]ts;'including
those obtained from the calculation method outlined in Appendix A and
prev1ous]y described, in relation to laminar- f1ow equat1ons, by Humphrey,
Taylor and Whitelaw (1977), are presented in the third section and

discussed in the fourth. The paper ends with brief conc1uding remarks.

2. Flow Configuration,"InstruhentatiOn'and'Procedures

The flow configuration is identical to that used by Humphrey, Taylor:
and Whitelaw (1977). It comprises a 90 degree perspex bend of mean radius
RC = 92 mm, éee Fié. 1, attached to the end of a rectangular channel
previously described by Melling and Whitelaw (1976). The cross section
was 02 =40 + 0.1 x 40 + 0.1 mm2 and the bend was 1o¢ated in the vertical

plane with a>1 2 m length of straight duct of the same cross section
attached to its downstream end. The present results were obtained with

a water flow of 1.42 kg/s corresponding to a Reynolds number of 4.0 x 104

Re(s D/R ) = 2.6 x 10%.

and a Dean number of De
The anemometer was similar to that described in the two previous

papers. It was aligned perpendicularly to the side walls of the bend and

comprised a 5 mW helium-neon laser, an optical unit of the type described

by Durst and Whitelaw (1971) but modified to a]low_rotation of the measuring



volume through 90 degrees without the need fo adjust the position of the
laser, a light coiiection arrangement, an EMI 95588 photomu]tipiier and a
frequency-tracking demodulator (DISA 55L20). The mean velocity, after true
“integration (DISA 55830), and oorresponding normal stress were obtained
from a Solartron digital voitmeter and true rms meter (DISA 55035);
respectively. The oOntroi—voiume dimensions were determined by the 15°
angle between the transmitted 1ight beams and the light-collection |
arrangement and were calculated to correspond to a 1ength of 2.0 mm and
a diameter of 0.26 mm; the discrimination level of the frequency-tracking
demodulator reduced these dimen51ons, according to a count of fringes
reproduced by scattering particles on an oscilloscope, by approx1mate1y 20%.

‘Measurements of the longitudinal and radial components of mean |
velocity and the corresponding normal and Reynolds stressee.were obtained
with the single channei anemometer in the manner described by Humphrey
(1977) and Durst, Melling and Whitelaw (1976) On average 12 traverses
of 25 p01nts each were made in planes corresponding to -11. ] ;6;25 and
-2.5_hydrau1ic diameters in the straight duct and at O, 45,_71 and 90
~degrees in the bend. The cross-stream ve]ocity and corresponding stresses
_ were also measored in the 0 and 90 degree_planesi |

The influence of transit-time, gradient and noise broadening were
examined and, as far as possible, quantified; The estimated max imum

systematic and rms of the random errors are indicated below:



Maximum error¥

' Variable | a  Systematic Random :
Ug/Ugs U, /Ug o8 1.0
U./Ug | - 1.0 . 2.0
ig/Ups ﬁx/bB : 10 - 2.0
u,./Up | 1.7 T 2.8
Ugu /U5 22 | 5.0

The large number of measured points allowed them to be convéniently fitted

to a 1east—squares po1ynomia1 of the form:

2 3

PV : 2
Uorit = Ao + A]y + AZZ + A3y + Agyz + A52 + A6y

2

2 3
+ A7 g + A8yz + Agz + ...

The theory underlying this approach has been reported, for example, by
Himmelblau (1970). The maximum deviaﬁions\of measured:points from the
fits used to plot the figufes of the following section, were 2% for mean
velocities and 3% for Reynolds stresses and arose in'the flow regions
close to the walls. The results on bofh sides of the bend symﬁetry
p]ane'were'compared at all measurement stations and indicated randbm
asymmetries only slightly larger than the uncertainty introduced by the
fitting procedure; as a consequence, the data 6n the two sideé were

averaged and the regression applied to a symmetrical half.



3. Resu]té and Comparisons

A typical set of measurements is shown on Fig. 2 and reﬁresents
‘values of the mean voltage and rms of the corresponding fluctﬁations in the
45 degree plane. Contours of mean velocity and Reynolds stress were
obtained from a knowledge of the relationship between the measured voltage

and velocity and the fitting procedure described in the previods Section;'

they are presented in Figs. 3-11 for five of the seven measurement stations.

Figures 3 to 7 relate to the longitudinal velocity component, Figs. S and
9 to the radial component and Figs. 10 and 11 to the shear stress. For
compar1son and discussion calculated contours of mean flow propert1es,

where appropr1ate, have been 1nc1uded in the figures.

3.1 Mean Velocities

The measurements of longitudinal mean velocity obtained at -11.1,
-6.25 and -2.5 hydraulic diameters from the entrance plane of the bend
are within 5% of the results previously reported by Melling and WhitelaW

(1976) for Re = 4.2 x 10°

and at 36.8 hydraulic diameters from the inlet
to the present straight duct. The measurements at Xy = -2.5, shown on

Fig. 3, correspond to a location 42.5 hydraulic diameters from the duct
inlet and have the general features of developed square-duct flow w1th no
1nf1uence of the downstream bend. Th1s is in contrast to the 1am1nar-flow
results of Humphrey, Tay]or and Whitelaw (1977) which were s]1ght1y
1qf]uen¢¢d by thglbenﬁ qy_§H<f.f?°5' _Thg_pp]g}qg of tbg‘grg§gn£_ggqtoqfs__
towards the corners of the duct is caused by the norma]-stress driven
cross-stream flow (< O.OZUB) previbus]y discussed, for exémp]e; by Gessner
(1973) and Melling and Whitelaw (1976). This weék cross-stream flow is in

the form of symmetric counter-rotating vortices in the duct corners and

directed along the angle bisector towards the corner; it will be overcome



by the much stronger pressure-driven secondary flow in the bend which takes
the fbrm of two counter-rotating longitudinal (méin) vortices with a
forward stagnation region at the centre: line of the outer wall.

At.the inlet plane of the bend, Fig. 4a, the mean 1ongitudiﬁa] velocity
contours (Ue/UB) display an acceleration of the fluid moving near the
fnner-radius wall‘(ri) in accordance with the initially favorable longi-
tudinal pressure gradient there. Simultaneously, the fluid moviﬁg near
the outer-radius wall (ro),_responding to an initia]]ydunfavburable

'Tongitudinal pressure gradient, is decelerated. .The Tongitudinal pressure
gradient inf]uencing.the flow entering the bend i; avcdnsequence of the
centrifugal force, radial pressure-gradient balance set up by the flow in
the bend. Bulging of the Ue contours towards the duct cornefs persjsts at
the 0 degree plane but has been substanfia]ly reduced at the outer?radius
wall, in accordance with the negative va]ue§ of U, over almost the entire ~
cross-section as shown in,Fig. 8a. The effect of Ur ié, therefore, to
oppose normal stress-driven métion at the buter-wall corners of the bend
and to favour it at the inner-wa]f corners.. |

Acceleration of the fluid near r, displaces the maximum Ug velocity .

~ contours towards the innekfradius wall and the effect is still noticeable
at the 45 degree stafion shown in Fig. 5a with steép gradients of Ue
appearing near r. The distorted contours for Ue/UB =1.20 and 1.25, whicﬁ
arise in both laminar and tﬁrbu]ent bend flows as a result of the pressure
gradient in the secondary flow plane induced by 1atefa1 curvature of the
main flow are evidence of developing pressure-driven secondary motion.
At 71 and 90 degrees, Figs. 6a and 7a, the strong secondary motion (up to
0.28 x UB at the 90 degree plane) produced by the lateral curvature,

causes a substantial deformation of the Ue Contours{ The steep gradients



in Ue shift from r; to ro with Tower gradients appearing at the inner-radius
wall. The results also show that high speed flow has been increasing]y |
displaced towards the outer-radius and side walls, whereas fluid with Tow
ve]oc1ty accumu]ates at the inner-radius wall of the bend. |

The contours of radial velocity obtained in the inlet p]ane to the
bend are shown on Fig. 8a and reveal secondary velocities up to 0.075 UB'
These values are significantly larger than those associated with normal-
stress-driven secondary flows and confirm the influence of the bend on the
flow at the inlet. The vortex pattern, associated with normal-stress-driven
secondary flows is no 1onger apparent although the sign changes, near to
the inner and outer walls, indicate that it has not been comp]ete]y overcome
by the pressure forces. At 90 degrees, F1g. 9a, 1arge secondary flows
are present and the pattern conforms to a stnong rotational movement in
each symmetrical half of the bend with values of U, as 1arge as + 0.28 Ug
'along the symmetry line and -0.15 UB along the side walls.

The velocity contours, ca1cu1ated at the three downstream stations
display the same general characteristics as the measurements but
quantitative differences which are large. The contours of the longitudinal
ve]oc1ty component 1nd1cate a shift of maximum velocity which, like the
vmeasurements, is displaced slightly towards the inner wa]] at 45 degrees
and moves towards the outer wall for larger values of angular position.

Tne movement is rather more rapid than the measurements and there is a
"genera]_gendency for the ve]ocify”gradients to be.less-except-—in -the.--
jmmediate vicinity of the walls where the logarithmic wall functions control
the calculations. It would appear, therefore and consistent with tne
distrfbution of grid nodes in the cross stream plane as shown in Fig. 5,

that there has been some smearing in the numerical results.



It is also noticeable, at the 45 degree position that the secondary

flow has been slower to develop in the calculations than in the measurements.

The tendency for the cbntours'to bend into the corners, shown by the
measurements, is not revealed by the calculations until the 71 degree
station. Thé main features of the radial component of meén velocity, shown
in Fig. 9, are represented by the calculation a]though'the location of the
zero-velocity line dividing the regions of positive and negative Qelocity is
further.from the side wall, the magnitude of the negative ya]ués is high

and of the kinetic values too Tow.

3.2 Reynolds Stre§§e$

Turbulence intensities and shear stress measdrements (normalized by
Ug) are presented in contoured form in Figs. 3b to 9b and Figs. 10 and 11,
respectively. As for the mean longitudinal velocity component; the pattern
'in the distribution of Gx did not change significantly between Xy = -11.1
and -Z;S'and the values for ﬁx are in good agreement with the measurements
of Melling and Whitelaw (1976) at their furthest downstream position.

In genera?, the résu]ts.at the three upstream tangent stations (see
Fig. 3b)‘show_high va]ues‘of ﬁx near the duct walls, diminjshing towards
the core region of the flow. Distortions by the normal stress driven |
secondary motfons are evidenced (as for UX) by bu]éing of the contours
towards the duct corners. At O degrees, Ge has been affected 1itt1é_by
the pressure gradients affecting the longitudinal and transverse mean
velocities although a slight diminution in the ﬁe contours near r,
relative to those atAr., can be observed‘and‘is caused by the same
mechanism wh1ch reduced bulging in the U contours. |

At 45 degrees, Fig. 5b shows a dramatic a]terat1on in the pattern for
u

o Relatively high levels of turbulence intensity (12% to 15%) arise

10.



near r, and the side walls with lower values (6% to 9%) appearing near rs
except nearer to the inner-radius wall. At 71°, the pattern is modified
further with ﬁe returning to Tower values'(lo% tbﬂlz%) near to r, and the
side wa]ls but incfeasing (8% to 11%) near to ri; At 90°, a complete
reversal of thé situation observed at 45° has emerged; vé]ues of Ge are
relatively large (12% to 15%) at the inner-radius‘wa]]; whereas they are
Tower (10% to 13%) near o and the side wa]is.‘ The genéra1 patterns for
ﬁe at 45°, 71° and 90° are seen to be incénformfty with the sense of
circuTation in the secondary motion of the first kind which increases in
magnitude along the bend. This appearé to suggest that convectioﬁ of the
Reynolds stresses by the cfossestream flow becomes ihéreasing1y significant
with distance through the bend. |

Contour plots of ﬁr at 0 and 90’degreés are presented in Figs. 8b and
9b and although the trends at 0 degrees ére in agreément with those of
Melling and Whitelaw (1976) at the furthest downstream position of their
square duct flow, differences can be observed. In the present case, two
islands of relatively high turbu]énce intensity (8;5%) have been formedﬂ
at the side wall (near ri)'.and near the bend symmetry plane (neaf ro) :
respectively. These peaks are jdined by a 7.5% ridge separating two
regions Qf lower turbulence intensity‘with strong gradients appearing
towards the walls. At 90 degrees, the ﬁr profiies indicéte a distortion
| which appears to stem from the strong secondary motion there. | |

_Figures 10 and 11 present the shear stress contours ugu  .at 0.and 90

degrees, respectively. At O degrees, the contodrs in fhe'upper half of
the figuré (towards ri) presenf features strongly reminiscent of the |

' deveToped turbulent duct f1ow‘resu1ts of Melling and Whitelaw (1976). The
bottom half of the figure, however, is very different and shows a region

of negative Ugl,.s near the side wall, contained between positive values:

11.



12.

since this region coincides with negative values of aue/ar, the result is
a negative contribution to the generation of kinetic energy of turbu]eﬁce.
At 90 degrees, the GEU;.confoufs display distortions, caused by the
secondary,motién. Re1ative1y high andApositjve va]ues»qf USU;‘are dis-

- placed towards s and the side wall. Lower values of Ugl.s but still mainly

positive, appear over a large region near r{ coinciding with positive
values of aue/ar; As above, this represents a negative contribution to the>
generation of kinetic energy of turbulence and is in agreement with tne

stabilizing effects of the inner-radius wall on the flow.

The calculated values of furbu]ence energy in the exit plane are not
shown for reasons of space but reflect the deficiencies of the mean-flow
ca]cu]&fions and of the assumed turbulence model. Comparison of the
calculations and-the measurements of Figs; 7b and 9b indicates that the
former are generé}]y lower and morevuniform‘in the central regidn.' The
calculated values of the Reynolds shear stresses are also poorly rep-
resented in detail although major féatures, such as the centra] zero

_contour of»ueur, are reproduced.

4, Discussion

Comparisons between the present turbulent flow aﬁd the previous
laminar flow of Humphrey, Taylor and Whitelaw indicate that the norma]ized '
velocity fields are similar in magnitude although the small region of

Tongitudina1 recirculation observed in the laminar flow does not appear in



the turbulent flow. A second differencé‘re]ates to the locus of
maximum-velocity locations which, in the turbulent flow case; are close

to the centre of curvature for the first 71 degrees. Secondary motion,
arising through an imbalance between centrifugal force and radial pressure

grad1ent at the side walls of the bend, displaces high- -speed fluid towards

the outer-radius wall, along the region containing the symmetry plane, and

low-speed fluid towards the inner-radius wall, i.e., along the side walls:
this effect is much larger in the turbulent-flow results due to the higher
Dean number. The secondary motion in the turbulent case is responsible
for stréng cross-stream convection of Reynolds stresses and for high
turbulence-energy fluid to be driven from the outer-radius wall, where
turbulence is generated strongly, towards the inner-radius wall, where it
can be‘suppressgd. In turn, stabilized flow with lower level turbulence
energy at the inner-radius wall is convected, by the secondary motion,
along the symmetry plane info-the core région of the flow and towards_the
outer-radius wall. Between‘45°'and 90°, the characteristics of the
turbulent bend flow near to the symmetry plane are similar to those ob-
Served.in two-dimensional channels with;curVature. - The similarity
diminishes, however,'at larger bend angles where the secondary

motion reaches values between 20% and 30% of the bulk average velocity.
‘Comparison between present resu]ts‘and two-dimensional channel. flow also

shows that the former are more isotropic than the latter at the

—outer—radius-wall.--Secondaryumotion,-dri&en-by.normal—stresses-and—jmpontant=

in straight non-circular-duct flow, is negligible compared to the pressure-

driven secondary flows.

Stabilizing curvature, occurring on convex walls, i.e., the

inner-radius wall of the bend, has the effect of lowering Reynolds shear

13.



stresses and turbulence energy levels in comparison to otherwise equivalent

straight shear-layer flows. The results for Uy at 45° and UE and Ugu,.
at 90° show this effect clearly as do previous results for two;dimensional
curved flows. The decrease in turbulence is associated with a corresponding
decrease in static pkessure in the flow direction and hence acce]eration
of the flow.. This is in agreement with the larger ]eve]s for U6 ﬁeasured
near the inner-radius wall at 0° and 45°. Destabilizing curvature appears
at concave walls, i.e., the outer-radius wall of the bend, and results in
unusually high levels of Reynolds shear stresses and turbu}ence kinetic
energy. This accounts for the relatively large values of the stresses at
the outer-radius wall of the bend.

The comparison between the better known behavior of curved two-
dimensional channel flow and present eXperimental results helps to
‘explain some of the characteristics of bend f]ow;' In the threé-dimensiona]
flow, however, the cross-stream vortical motion is fesponsib1e for the
transport of ehérgy containfng eddies along the side walls of the bend
from the concave (destabilizing) to the convex (stabilizing) surface,
and is partiy the cause of the high 1évels of Reynolds stresses which
appear at the side walls. In.turn, fluid elements in which the turbulence
has been suppressed are displaced along the bend symmetry plane from the
inner-radius Wa]] into the core region of the flow by the secondary motion.
At the same time, pressure strain redistribution betwéen normal stress
components, turbulent diffusion and dissipation, all affect thé distribution
of the stresses throughout the flow. 'A result is for regions of relatively
strong anisotropy to occur in the bend. For example, at Q° and near the

<77 7

side walls, 1 < ue/ur < 4 and -0.2 < ugu fu, < 0.4. At 90° and near

2,72

. ' . ~ 2
the 1nner-rad1gs wall, 1.6 < ue/ur < 4.6 and 0.1 < ueur/ur < 0.5,

14.
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whereas at the outer-radius wall, 0.5 < 'ug/ﬂf' < 1.4 and

Sttt

0.3 < ueur/;g < 0.4: these resﬂ]ts at 90°, indicate that the flow at

the outer-radius wall is more isotropic than that at the:inner-radius wall.

This observation is in agreement with the results of Eskinazi and Yeh (1956)

who found 4 <v'ug/ui* < 5.8 at the inner-radius wall and 3 < ug/ﬂf' < 4.4

at the outer;radiQS»waIT for ful]y-deveToped cﬁfved two-dimensiona] channel
flow. The comparfson also shows that a higher degree of i;otropy is
attained at the outer-radius wall 6f,a fully three-dimensiona] bend flow
than at the corresponding wa11 o% a twd-dimensibna] curved channe] flow.
Analysis of the Reynolds stress équations, which include éffects due
to convection, pressure strain, turbulent difquion and di§éipatfoh, would
benefit understanding of the present anisotropic flow but is hampered by |
the incompleteness of the measurements and their precision. A simp]ified.
analysis of the generation terms in the normal stress eqﬁations based on

the assumption of Tocal equilibrium conditions near walls éndvprovided

§n detailed form by Humphrey (1977) is.in c1dse accord with the measured

distribution of ﬁr at 0° and 90°, but not with that of ﬁe at 90° due,

in . part, to the neglect of BUG/SG in the analysis. The experimental

results indicate that convective transport of ug into the inner-wall region

of the bend flow (from the outer and side wa11 locations) increases the

level of ;z_(at the inner wall [ggjon) at q_faste[_rﬁtg_ihanﬁjt_js_3uppressed

or dissipated. In regions where ;g and :g are suppressed, the Reynolds
stresses act on the mean momentum gradiénts to return energy to the mean
flow and accounts for ihe displacement between positions of maximum velocity

and zero shear stress.

“15.



$ide [ @

N ITpeari

16.

Thé comp]éxity of the turbulence characteristics of the flow implies
that the eddy-viscosity hypothesis will give rise to errors. Detailed
features, such as negative production and the influence of the ind%viduql
normal stresses are clearly not represehted although, for example, the
calculated gradual disp]acement of-%hé peak vé]ue of ﬁe from the outer to
inner wall is in accord with measgfemént. The mean flow is very strongiy
influenced by the pressure forces and is unlikely to be stroﬁgly'in-
fluenced by the turbulence model. In addition; the representation of the
flow byvless fhan 3200'di$crete nddes is bodnd to give rise to numerical
errors which ﬁay be'large, iﬁ comparison with those caused by the

turbulence model. The storage requiremént 6f the computer limited the

number of nodes which could be used with the present program and precluded

~calculations with a more refined grid. Similarly, the extensive run times

and related costs allowed only a small number of tests with different
distributions 6f‘dddes. | |

The ca]cu]afioﬁs for"Ue:along thevbend symmetry-plane (especially near
the inner;ﬁédius wall) &o not show the strong inf]gence that secondary

motion has on the corresponding experimental variables. This discrepancy

is certéin]y related to the finite numbers of nodes which result in

numerical diffusion in the calculations. An estimate of the magnitude of
the numerical diffusion, relative to turbulent diffusion, may be obtained N
from the expressibn | |
W Juee o= 0.36 R, (—E) sin 2a
num /Feff | C CMoff _
where Rc = Vph/u is the cell Réyno]ds number based upon the distance

betweén nodes, h, and o is the angle that the velocity vector makes with the

\
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'examp]e, “they would have “ruled out the p0551bi]ity of the rec1rcu1at10n
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Coordinate‘system. Calculated values for Houm /ueff show that, contrary to
the case for the cross-stream flow, longitudinal numerical diffusion Was
probably significant in the bend. Thus, in the main flow direction, values
Youm /u ¢ of up to 6 were obtained near the side and inner-radius walls

and along the symmetry p]ané in the bend. These are precisely the locations

where Uy and U, disagree most with the measurements. Adjustment of the grid

nodes to lower the value of cell Reynolds number in this region/inevitabiy

increased it elsewhere and significant imprdvements could not be obtained

with the total number of nodes available. Calculations, with the same

initial conditions and a turbulent viscosity of zero, gave rise to muth
larger values of the'fatio Houm /“efi and to a similar pattern of results
near the inner radius; this suggests that, in this region, the numerical
diffu51on strongly affects the nresent flow.

| The numericai deficiencies associated w1th regions of the present flow,
the 1imited availability of grid nodes and the elliptic differential
equations %aiseithe question‘of the relative advantages of parabolic
equations or partially elliptic equatiansv[P'= P(8,r,z] but 32/862 = 0].

The reduced equation forms have reduced storage requirements and the

number of nodes can be increased significantly with consequent decrease in

numerical error. Their use implies, however, that longitudinal diffusion

is'unimportanf and this cannot always be known a priori.  In the

laminar-flow results of Humphrey, Taylor and Whitelaw (1977), for

region observed experimentally. In the present case, the magnitude of

longitudinal diffusion could not be adequately assessed from the experimental

results at the 45, 71 and 90 degree locations in the bend although Tow

values of U near the inner-radius wall suggested that it could be signi-

ficant. Subsequent]y, the turbulent flow calculations indicated that, even
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though 9P/36 is large, longitudinal diffusion is not larger than 2% of
longitudinal convection in the present geometryL It would appear, therefore,
that a semi- e1]1pt1c procedure accounting for strong pressure variations
could provide more precise results through 1ncreased grid refinement.
However, this probability will certainly decrease with increasing Dean '

numbers.

6. Concluding Remarks

The main effect of the bend on the flow passing threcugh 1t}i$ te
induce strong“cross—stream'motions which develop into a pair of counter-
rotating vortices in the longitudinal direction. The driving force for this
secondary motibn is the .centrifugal force-radial pressure gradient im-
balance which acts upon the slowly moving fluid along the side wa]1s of
the bend, and displaces it élong the side walls from the outer to inner
curvature wall; Continuity requires that a corresponding motion displace
fluid élong the bend symhetry plane from the inner to the outer curvature
wall. The cross-stream flow is weak at first (= 0.07 UB) but progressively
gains momentum until it attains values < 0.28 UB~at the 90‘deQree plane.

As a result of the strong cross-stream motion, high speed flow accumulates
at the outer wall of the bend and low speed flow at the inner wall. Like-
wise, the sécondaky motion is responsible for cross-stream convection of
the stresses. This‘preséufe driven cross-stream f{ow is more than an

order of magnitpde larger than the cfoss-stream flow which arises due to
the normal stress imbalances.

Secondary motion driven by the normal stresses does exist and is responsible
- for bulging of the velocfty contours towards the duct corners in the up-
stream section connected to the bend. Its effects are, however, over-

whelmed by the pressure-driven secondary flow before the 45 degree station

bhas been reached.

o



~ stabilizing concave curvature effects at the outer wall raises it. A

The results may be compared with the previous 1aminar?f1ow data
obtained in the same bend at a lower Dean number. In the present case,.
thére is no region of longitudinal flow recirculation although the velocity
gradients do.fhdiggte a reéion of low wall-shear stress at. the inner-radius

wall énd in the ]after part of the bend.. This is consistent with the locus

of maximum velocity positions which corresponds to the mean radius .until

‘the 71 degree station where it begins to move towards the outer wall. In

‘the laminar-flow case, the locus of maximum velocity positions moves

rapidly toward the outer wall from the beginning of the bend and tends to
stay thére. It may be expected that large differences may exist jn the
geometric configuration for other changes in the fnitiél‘conditions; For
example, the use of a shorter régionvof the stréight inlet duct, with
corresponding thin boundary layers and a cofe region 6f potential flow, can

be expected to behave in a manner consistent with potential flow solutions

for a significant region of the bend. Thus, in such a case, the locus

of maximum-velocity-positions will move'rapid1y to the inner wall.and will
move out again at a downstream location where the boundary layers have
thickened and»providedislower moving fluid which can be moré képid]y driven
into a secondary flow pattern. | '

In general, the stress meaguremeﬁts show high values near the walls,
where shearing is greatest, diminishing towards-the core of the flow. |
Stabilizing effects due to conVex curvature at the inner wall of the behd
are responsible for lowering the turbu1énce intensity there whereasbde-

consequence of the secondary motion is an interchange of turbulence energy

between the -inner and outer wall; this serves to counteract the stabilizing _

and destabi]izing'effects.of these walls, respectively. The result is a
highly anisotropic complex pattern of stresses. In agreement with two-

dimensional channel flows, the measurements indicate a higher level of

19.



20.

anisotropy at the destabi]izing outer wall than at the stabilizing inner
wall. However, the present bend flow is more isotropic at the outer-radius
wall than the cnannei flow. Regions of negative contribution to the
kinetic energy of turbulence arise at both the 0 and 90 degree planes and
are responsible for returning energy from the turbulent motion to the mean
flow. As a consequence, dispiacements between positions of maximum velocity
and zero shear stress can arise.

Eddy viscosity models of turbulence are unable to represent neaative
contributions to the generation of kinetic energy of turbulence. However,
because chanoes in the oend'fiow are governed primarily by pressure
gradient effects, an eddy viscosity formulation, preferably which allows
for transport of turbulence properties, may adequately a]iow the
description of the bulk features of this flow. Accurate representation of
the stress,distributions will require modelling based on solutions of the
Reynolds stress equations and the present data will assist eva]uation of
this approach. | ‘

It should be emphasized that the choice of equation form is important‘
in fiows of the present type. Although 1ongitudina1 diffusion is probably
small enough to be neglected in the present geometry and, hence, allow ’
the use of semi-ei]iptic calculation schemes, its effects niii become in-
creasingly important as the mean radius of curvature is decreased or the
Dean number increases. The three-dimensional Navier-Stokes equations are -
appropriate to tne present flow but, as shown here, their solution is
subject to numerical inaccuracy wnich limits the complexity of turbulence
model which can be justified. A discussion of the relative merits of
possible turbulence models is probably academic in view of the degree of
pressure gradient control and numerical uncertainty associated with the

finite number of discrete nodes.
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The calculation procedure used in this work, and a semi-el1iptic
version, are presently the bases for predicting turbulent heat transfer
and two—phase flow phenomena in curved ducts and related geometries.
Modeling of the appropriate turbu]ehce correlations, especially fluid-

particle interactions, is underway at the University of California

_(Berke]ey) to account for the inf]uénce of thesé effects in dilute

solid-liquid systems. The latter study is part of a research effort,
including experiments,vaimed at predicting'the erosive wear caused by
slurry flow through the various conduits, connections and components

typical of coal liquefaction process equipment.
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Appendix A

Equations, Boundary Conditions and Calculation Method

Numerica] calculations of the curved duct flow are based on the
elliptic form of the time averaged Navier-Stokes equatioﬁs in cylindrical
coordinates: Thus, for steady, incompressible, isothermal flow, the
differential equations for continuit} and momentum, with an eddy-Viscosity

assumption, are given by:

Continuity
U aU ol U :
r 1 ) y4 r _
iyttt 00 | (1)
Momentum
2
[u EEE_+ EQ.EEﬁ + U Egﬁ._ EQ~ I
P r " v 38 T Yz 8z T r ar | | :
‘ U 3U - . (2)
2 r_2 '8
el VU - 7 - 7 55 | |
r r
au U, au, ou uu
_6, 6_6 e, rey - _123P
W ar* v " 23z * 73 7 "3 |
' U U (3)
2 6 2 r
+u e VU, - =5+ 5 5]
eff-’ = 2020
aU U . su_ - 3Uu

Tz,0 Tz . 3P ¥2 ‘ |
Pl 57 * v 38 * Y232 5z + Heff V Uz (4)
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where
Mopp = M Mg
and
2 2% 1 .1 2% P
Vs St ewt 2z 2t 2
ar® T r® 6" 0z

The turbulent viscosity, ut, is assumed to be determined.uniQUe]y by
the local values of density p, turbulent kihetic energy k, and a turbulent
length scale 2. At high Reyno1dé'numbers 2 is proportional to k3/2/s,

where ¢ is the rate of dissipation of turbulent kinetic energy and thus
u = C p Ke | - (5)
t vl v ' v

where Cu has the constant value given below. The spatial variation of

My is determined by solving transport equations for k and € in cylindrical
coordinates, readily derived from the general tensor equations given by
Bryant and Humphrey (1976): | |

i.e.,

i
ok , 83k .y 3Ky o “to? 4~ ope (6)
PV 5 * 7 36 * U2 52 " oy | v |
" and
‘ U BT 2
de , 6 3¢ deq . "t .2 € _ € 7
e[V TS T I Y3 g VetC. g6 Ce, P& (7)
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with
6 - u 2'<f’_”£>,2+ 13‘39_2+<3_";>2_E’_e_ 1% %)
U r r 96 3z r \r 36  or
u /U U aU aU.  au_ aU U 3U
r{r 2 0 1 “r 778 y4 ) r z
T<T+F‘aé'>+?'<ae T T az>+ 3z or |7 (8)

2 2 2 2

2
Ul oU /. aU- U aU. aU_\"
8 8 1°r r z 177z
+<ar> +<az> +<F 36> +<az> +<ar> +<r 86> }

The constants in these equations were taken as\Cu = 0.09, CE = 1.47,

1

Ce =1,92, g, = 1.0 and oé = 1.3, in accordance with the.recommendations

k
onPatankar, et al. (1975).

It isvrequired to solve equations 1-7 together with appropriate
boundary conditions. At the inlet plane (6 = 0°), Ue andwUr velocity
components were specified from measurements of:this work. In the absence
of experimehta1 information; UZ wés éet to zero and is a good approximation
since the cross-stream flow in the bend is initially weak. The entrance
distribution of k was also estimated from the measurements of ;g and Eg
and € was taken proportional to k3/2/£, with 2 a fraction of the duCt
| hydrauiic diameter. At the exit plane (6 = 905),-fu]1y developed flow
conditions were imposed by setting 3/36 = 0 for all variab]es; this
approximation has been discussed by Humphrey (1978a) in relation to laminar
flow and, for the flow of interest here, is adequate since calculations
with this condition applied at 6 = 90° and 110° showed negligible
differences in the mean velocity results at 9 = 90°. Along the bend
symmetry plane, the condition 3/3z = 0 was imposed for all variables

except UZ which was set equal to zero.
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Zero velocity was assumed on all solid surfaces and the region
between the numerical node P, closest to the wall, and the wall was
bridged by the 1ogarithmic velocity profile:

1/2.
Up yP(Tw/p) :

e S A AL BT | (9
(r,/0)" | |

Ty is the shear stress‘at the wall, and yﬁ'is the distance between the
first grid node gnd the wall. The ]og-]aw constants were taken as

A = 2.39 and B = 5.45'and Up as the resultant velocity at P, assumed
parallel to the wall shear'stress. Assuming ;hat generation and dis-
sipation of turbulence kinetic energy are in balance in the fluid layer

between node P andvthe wall and using the log-law relation yields:

| ok h : : -
- pCrkg U
T, o= T T n PP V - (0) .
. oy Alkz . .

A1h{-3—{§—34 +B

The near-wall kinetic energy of turbulence, kP’ was found from its normal »
transport equation with diffusion set equal to zéro and generation term

in accord_with thg'wall sheér stress equation (10). The value of the
dissipation of kinetic energy near_the wall was determined by requiring

that the turbu1énce length scale vary linearly with distance from the wall.
Thus, substitution of (aU/ay)P,_obtaiﬁed from equation-(9), into-a- — - -
simplified kinetic energy of turbulence equation for the near-wall regiqns
(assuming generation equals dissipation) yields the expreSsion:

c3/4 kg/z

= A ._u___.___——

1
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The ca1cu1atfon algorithm used to so]ve'the preceeding equations is
an extension of the numerical procedure developed and applied by Humphrey,'
Taylor and Whitelaw (1977) for the prediction of laminar flow in curved
ducts of rectangu1ar cross-section. Generalization of the procedure to
arbitrary orthogonal ccordinates and its application to deve]opiﬁg cﬁrved
‘pipe flows of stroné curvature have been documented by Humphrey (1978-a).
Information of the transport equétions in finite difference form;
their numerical solution and results for various test cases can be found -
in the.above two references and (in more detail) in Humphrey (1977). A
summary of the essential features éharacterizing thg turbulent flow
ca]culatibn method is given below.

The finite différénce equations were obtained by integrating the
conservation equations over volume elements or "cells" discretizing the
flow domain. The ve]ocity'components, pressure, kinetic énergy of
turbulence and its rafe of dissipaiion are the dependenf variables computed
on a number of staggered, interconnected grids, each of which is associated
with‘a specific variable. IThe general form of the finite difference

expressions is given by:

6
p =\ I Ay S,
- \in

(12)

Nt~ O
b

i

where op (any one of the dependent variables) is solved at a position
P in the discretized flow domain. The A, coefficients are determined
at the cell surfaces and represent the combined contributions of convection
and diffusion to the balance of ¢. Other contributions arising from

pressure, body forces, etc., (sources or sinks) are contained in So.



Detai]ed forms for So in variable property flows are given by Huﬁphrey'

(1978-b). Solution of the system of finite difference transport equations -

with appropriately differenced boundary conditions is achieved by means

of a cyclic series of predictor-corrector operations. The method in-

volves using an initial or intermediate value of the pressure field to

solve for an intermediate ve]ocityvfield. A pressure correction‘to the

pressﬁre fie]d}is determined by bringing intermediate velocities into

conformity with continuity. After corrections.to the pressure and

velocity fields are applied, the transport equationé for kinetic enérgy

of turbulence and its rate of dissipation are so]ved. Within each iteration,

various sweeps of the entire flow domain are performed in alternate directions

perpendicular to the main flow direction. The above steps are repeated

until a pre-established convergence criterion is satisfied; for example,

that the largest of any of the normalized residuals be less than 10'3.
Numerical computations were performed mainly with an unequally spaced

grid of 14 x 11 x 19 nodes ( rxzx6)requiring 164 kg words of CDC 7600

computer storage. The calculation time per node per dependent variable per

iteration was 8 x 10'5 seconds and a run with the above node distribution

and convergence criteria required 400 iterations and, as a result, 380 seconds.

29.
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