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Abstract

This paper describes how inductively produced generalizations can influence the process of belief revi-
sion, drawing examples from a computational model of scientific discovery called REVOLVER. This system
constructs componential models in chemistry, using techniques from truth maintenance systems to resolve
inconsistencies that arise in the course of model formulation. The latter process involves reinterpreting ob-
servations (premises) given to the system and selecting the best of several plausible revisions to make. We
will see how generalizations aid in such decisions. The choice is made by considering three main factors: the
number of models each premise supports, the number of premises supporting the generalized reaction, and
whether a proposed revision to that premise matches any predictions made by any generalizations. Based
on these factors, a cost is assigned to each premise being considered for revision; the hypothesis (set of
revisions) having the lowest cost is chosen as best, and its revisions are carried out. By viewing generalized
premise reactions as a paradigm, we will argue that the revision process of REVOLVER models how scientific
paradigms shift over time.

Introduction

In this paper, we discuss three main topics: how to form simple scientific theories, how
to revise theories in order to account for new information, and how empirical generalizations
can help to direct that revision process. In earlier papers, we have discussed STAHLp
(Rose & Langley, 1986a, 1986b), a computer program that discovers explanatory models
of chemical substances. In this respect it was similar to the STAHL system (Zytkow &
Simon, 1986), which also constructed such models. However, unlike its predecessor, STAHLp
featured a unified mechanism for reinterpreting its given observations when inconsistencies
arose.

Yet STAHLp itself had a number of limitations. One of the most important is the need
to take generalizations into account during the belief revision process. For instance, one
should recognize when revising a premise will affect strongly held generalizations - i.e.,
those supported by many observations. Taken together, a set of generalizations can be
viewed as a paradigm in the sense of Kuhn (1970). For example, many of STAHLp’s runs
involved observations associated with two main paradigms of 18th century chemistry: phlo-
giston theory and oxygen theory. The phlogiston framework, which came first historically,
was based on the assumption that burning substances emitted a substance (phlogiston)
during combustion. Oxygen theory took an opposing view of this process, stating that
when a substance burns, it gains another substance (oxygen) in the process.

Historically, scientists like Lavoisier used generalizations to argue for their paradigm
(e.g., oxygen theory) and to reinterpret observations made by supporters of competing
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paradigms (e.g., phlogiston theory). Gradually, predictions made from the general re-
actions summarizing the oxygen paradigm were confirmed by new experiments, many of
which were proposed after the observations of the phlogiston paradigm were reinterpreted.
Later in the paper, we describe REVOLVER, a model of scientific theory formation that
takes such inductive generalizations into account during its belief revision process. But
first, let us recount the earlier work on STAHLp.

STAHLp: Scientific Discovery and Belief Revision

As we have mentioned, STAHLp constructed componential models based on many kinds
of observations. For example, suppose the system is given initial beliefs from phlogiston
theory: charcoal and calx-of-iron (known as iron oxide today) react to form iron and ash,
and charcoal decomposes into phlogiston and ash. In shorter notation, the premises are {CI
Ch} — {I Ash} and {Ch} — {Ph Ash}. The program would first infer the components of
charcoal (Ch = {Ph Ash}), then substitute its components into the first reaction, yielding
{CI Ph Ash} — {I Ash}. Cancelling ash from both sides yields {CI Ph} — {I}, and the
system would now infer a model for iron (I = {CI Ph}).

Using this method, STAHLp constructed many componential models, replicating several
episodes from the history of science. However, in the process of discovering such compo-
nential models, inconsistencies can arise. This occurs when the premises leading to these
beliefs are themselves mutually inconsistent; either specific observations may be faulty,
or groups of premises cannot be believed simultaneously. In both cases, some observa-
tions must be reinterpreted in order to arrive at a consensus. In an attempt to model
how scientists reinterpret their observations when confronted with inconsistencies, STAHLp
used belief revision techniques based on those of truth maintenance systems (Doyle, 1979;
de Kleer, 1984).

Let us look at an example of how STAHLp handles the task of reinterpreting (i.e.,
revising) its premises. The first premise given to the system is again from phlogiston
theory: the belief that mercury decomposes into calx-of-mercury and phlogiston ({M} —
{CM Ph}). The model M = {CM Ph} is then inferred. Next STAHLp is given a second
premise, one which embodies oxygen theory: {M O} — {CM}. Substituting mercury’s
components into the second premise yields {CM Ph O} — {CM}, and cancelling CM from
both sides of this transformed reaction results in {Ph O} — {}. This is an inconsistent
reaction, because it has inputs but no outputs.

At this point STAHLp invokes belief revision to find the premises that caused this error,
propose revisions to those premises, and implement the best set of revisions. Each proposed
revision to a premise can be viewed as a reinterpretation of the observation encapsulated
by that premise. In our example, the system proposes four sets of revisions (hypotheses),
each of which would remove the inconsistent reaction:

(1) Premise 2: outputs really had Ph and O;

(2) Premise 2: outputs really had Ph, inputs really had no O;

(3) Premise 1: inputs really had O, outputs really had no Ph;

(4) Premise 1: outputs really had no Ph; Premise 2: inputs really had no O.

Now the system must evaluate each hypothesis. STAHLp used one heuristic to drive its
evaluation: prefer the revision of premises that support the least number of models. That
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is, the system tried to reach a consensus by altering the current theory (set of models plus
the inconsistency) in the least drastic way. In our example, the cost of revising premise 1 is
2 because that premise supports the model of mercury and the inconsistency. In contrast,
premise 2 has a cost of 1 because it supports only the inconsistency. Since the cost of
each hypothesis is the cost of its suggested revisions, the four hypotheses have a cost of
1, 1, 2 and 2, respectively. The system then selects the best (lowest cost) hypothesis — in
this case, either the first or second hypothesis. Either set of revisions results in removal of
the inconsistency when inferencing begins again, and thus the premises will be mutually
consistent.

REVOLVER: Using Generalizations to Influence Belief Revision

We have seen that the STAHLp program modelled an important aspect of scientific
discovery: the need to reinterpret one’s observations when conflicts cause an inconsistent
theory to be formed. While STAHLp’s successes were significant, its belief revision process
left no place for generalizations like those used by Lavoisier. In response to this limitation,
we are integrating inductive reasoning into REVOLVER, a new model of scientific theory
formation. This system will be able to use generalizations as part of the belief revision
process and, ultimately, to formulate these generalizations on its own initiative.

The use of generalization in REVOLVER takes the form of two new heuristics, incor-
porated into the evaluation function that decides which revisions to make during belief
revision. New heuristic (1) is used to prefer revision to premises that support relatively
weak generalized beliefs. For example, when considering which of a set of premises to re-
vise, REVOLVER would change the premise that led to the generalization having the least
number of supporting premises, all other factors being equal. When selecting among can-
didate revisions, new heuristic (2) is used to prefer revisions that confirm predictions made
by strong generalized beliefs. For example, if plausible revisions have been generated, and
only one of them matches a prediction made by some generalization, then REVOLVER would
select that revision, all other factors being equal. If there are several such matches, the
system would select the revision matching the prediction that is part of the most heavily
supported generalization.

Let us take a closer look at how these rules will be incorporated into REVOLVER. The
method of detecting inconsistencies and generating plausible revisions will remain the same;
only the function used to evaluate the revisions will change. The new evaluation function
selects revisions of premises which support few models and generalizations, and which
match a prediction if possible. Ignoring prediction matching for the moment, the new
evaluation function computes the cost for each proposed revision by adding the number
of models supported by the premise to be revised, plus the total number of premises
supporting each generalization to which that premise lends support. The higher this
number for a given premise, the more damage would be done to the belief system by
revising that premise. However, if revising a premise would match a prediction made by
a generalization, then the cost would be decreased, indicating that the revision is more
desirable.

To illustrate how these new rules will be used in REVOLVER, let us reanalyze our
previous example, taking into account the above changes. The previous example only

involved two premises: {M} — {CM Ph} (premise 1) and {M O} — {CM} (premise 2).
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Suppose two new premises are added to the system: {I} — {CI Ph} (premise 3) and {I O}
— {CI} (premise 4), where I represents iron and CI represents calx-of-iron. At this point,
the system can form two general reactions: premises 1 and 3 lead to {X} — {CX Ph},
while premises 2 and 4 lead to {Y O} — {CY}. The new classes X and Y represent those
substances obeying the general reactions described (in this example, both classes contain
M and I). The first generalization represents phlogiston theory: when any combustible
burns, the calx of that substance (an element) remains and phlogiston is emitted. The
second generalization represents oxygen theory: when any combustible burns, oxygen is
gained and the calx of that substance (a compound) remains.

After this inductive step ends, standard deduction takes place. REVOLVER follows the
same inference path as before, arriving at M = {CM Ph} and then at the inconsistent
reaction {Ph O} — {}. The sets of revisions (hypotheses) proposed are also the same.
However, the cost assigned to each is now different. Let us reexamine the four hypotheses
proposed by both STAHLp and REVOLVER, along with the costs assigned by each system.
Each of the first two hypotheses involved changing only premise 2 ({M O} — {CM}).
While STAHLp would assign each a cost of 1 (because premise 2 only supports the inconsis-
tency), the new REVOLVER would assign each hypothesis a cost of 3, since premise 2 also
supports the generalization {X O} — {CX}, which has two premises as support. The third
hypothesis involves changing premise 1 ({M} — {CM Ph}). While STAHLp would assign a
cost of 2 (because premise 1 supports one model plus the inconsistency), REVOLVER would
assign a cost of 4, since premise 1 also supports the generalization {X} — {CX Ph}, which
has two premises as support. The fourth hypothesis involves changing both premise 1 and
premise 2. STAHLp would again assign a cost of 2, since premise 1 and 2 together support
one model plus the inconsistency; in contrast, REVOLVER would assign a cost of 6, since
each premise supports a generalization that has two premises as support.

To summarize, STAHLp’s hypotheses had costs of 1, 1, 2 and 2, respectively; those of
REVOLVER had costs of 3, 3, 4 and 6. Note that the first two hypotheses will be considered
the best by both systems, but that the last hypothesis is clearly the worst in the view of
REVOLVER, since it involves premise changes that would affect two generalizations (all
others would impact only one generalization). If we continue altering this example by
adding more premises, the choice of best hypothesis will also become different between
the two systems. In particular, consider the addition of another premise that fits oxygen
theory. This would mean that its generalization ({X O} — {CX}) would now have three
supporting premises, and thus the hypothesis costs would now become 4, 4, 4 and 7,
respectively. Note that three hypotheses now tie for best; the new entry is the third
hypothesis, which suggests revising only premise 1 — a belief from phlogiston theory.

In other words, adding more support to the oxygen theory generalization makes revision
of the phlogiston theory premise more plausible. This trend continues further if we add yet
another oxygen theory premise; this increases the support of its associated generalization
to four premises. The new hypothesis costs would thus be 5, 5, 4 and 8, respectively;
note that the third hypothesis is now the sole best choice. In short, as the general belief
embodying oxygen theory gained in strength, it became less desirable to revise premise
2 (which supports it), and thus more desirable to revise premise 1 (which supports the
general belief embodying phlogiston theory).
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Discussion

While the previous example involved induction on a relatively small number of premises,
one can envision examples involving large systems of beliefs, where the generalizations em-
body laws supported by substantial observational evidence. If we look at each law (plus
its supporting premises) as a paradigm and note that competing paradigms may result
from different subsets of the premises, we feel that our new heuristics relating induction
and belief revision bring us closer to modelling how paradigms shift over time. In this
view, older paradigms would usually consist of well-supported generalizations (i.e., laws
that summarize many observations), while new paradigms would consist of generalizations
having only a few observations as supporting evidence. Initially, new heuristic (1) - pre-
ferring revisions to premises supporting weak generalizations — would tend to protect older
paradigms. We claim that this is a plausible model of how science normally proceeds;
old paradigms tend to become entrenched and require a steady accumulation of negative
evidence to overthrow them.

This negative evidence comes as more observations are gathered that fit the gener-
alization for the competing paradigm. In this manner, the competing paradigm gains
strength and each of its premises becomes less vulnerable to revision. Coupled with this
effect are the effects of new heuristic (2), where predictions made by the new paradigm
are confirmed by revised premises. Each confirmed prediction can now add its support to
the new paradigm, which in turn makes each supporting premise less vulnerable to revi-
sion. In short, our two induction heuristics reflect two directions in which paradigms can
shift; heuristic (2) tends to build support for newer generalizations having little confirmed
support but many predictions, while heuristic (1) tends to retain support for older general-
izations having firm support. In our future research, we plan to use this general approach
to model historical shifts in scientific paradigms, in particular the shift from phlogiston
theory to oxygen theory.
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