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LBL-28869 

COMPUTER MODELING OF THE CHEMISTRY OF AQUEOUS SCRUBBER 
SYSTEMS 

Abstract 

David Littlejohn and Shih-Ger Chang 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, CA 94720 

The chemistry occurring in aqueous flue gas scrubbing solutions can be quite 
complicated, due to the large number of chemical species present and the 
many physical processes involved. These include gas absorption into 
solution, gas and solution kinetics involving both nitrogen oxides and sulfur 
oxides, oxidation and hydrolysis reactions in solution, and liquid-solid 
interactions. Simple models that neglect the solution kinetics which can 
occur in scrubbers cannot be expected to accurately model aqueous-based 
scrubber chemistry. We have developed a computer model which 
incorporates the aqueous solution kinetics of nitrogen oxyanions, sulfur 
oxyanions, nitrogen-sulfur compounds, and other species. The model can be 
adapted to predict the chemistry in a wide range of aqueous-based scrubber 
systems. It can be used to study the effect of changes in the operating 
conditions of the scrubbers. The results of the model can be compared with 
experimental observations to determine how well the chemistry of the 
solutions is understood. 

This work was supported by the Assistant Secretary for Fossil Energy, Office of Coal 
Utilization Systems, U.s. Department of Energy under Contract No. DE-AC03-76SF00098 
through the Pittsburgh Energy Technology Center, Pittsburgh, P A. 
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Introduction 

A good understanding of the chemistry occurring in wet flue gas scrubbing 
systems is inportant. The chemistry will influence the NOx and S02 removal 
and the product distribution, as well as factors such as scalin~. A large 
number of compounds can be formed in scrubber solutions. The 
compounds present depend, in part, on the type of scrubber chemistry 
utilized. Nitrogen-sulfur compounds will form under neutral to acidic 
conditions when both nitrite ion and bisulfite ion are present in significant 
quantities. 1 The term nitrogen-sulfur compound is used to collectively refer 
to hydroxyimidodisulfate (HADS), hydroxysulfamic acid (HAMS), 
nitridotrisulfate (ATS), imidodisulfate (ADS), sulfamate, and hydroxylamine. 
The compounds have been observed in a number of wet scrubber 
solutions.2,3 These compounds can interfere with the recovery of desirable 
byproducts from scrubber solutions. They will also build up in scrubber 
solutions and must eventually be treated or removed. 

To develop an understanding of the solution chemistry of wet scrubbers, a 
chemical kinetic computer modeling program has been developed. It allows 
simulation of the known reactions occurring in solution and calculation of 
reaction rates and concentration of aqueous species. 

The Model 

Exact equations for calculating the concentrations of species involved in 
chemical reactions can only be established for the simplest reaction systems. 
Approximations, such as the steady-state approximation, permit estimation of 
concentrations and rates of reaction in more complicated chemical systems 
under suitable conditions, provided that the system is not too complicated. A 
different approach is required to accurately calculate concentrations and rates 
in complex reaction systems, partiCularly where conditions are rapidly 
changing. 

In the 1970's, work by Whitten4 and others led to the development of matrix
based computer calculations to simulate complicated chemical kinetic 
systems. The system of chemical reactions is converted into a series of 
ordinary differential equations. A method to integrate a sytem of ordinary 
differential equations was developed by GearS and modified by Hindmarsh6 at 
Lawrence Livermore National Laboratory. This routine is the basis for most 
chemical kinetic modeling schemes. The program performing the Gear 
routine has subsequently been modified to handle sparse matrices and 
improve its operating efficiency? This version of the Gear routine is the basis 
of the chemical kinetic modeling program used in this work. It is similar to 
modeling routines that have been used to simulate air pollution chemistry 
for a number of years.8 
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Results and Discussion 

The chemistry of the nitrogen-sulfur compounds in solution has been 
studied extensively for many years, and is, for the most part, reasonably well 
understood. The rate constants for the reactions involving nitrogen-sulfur 
compounds, along with those for other important reactions, are incorporated 
into the computer model. The initial conditions for the calculation are also 
included as input. These include temperature or temperture vs time profile, 
initial concentration of species, pH and length of time of the calculation. The 
program generates a list of reaction rates vs time and concentration vs time 
for all species included in the calculation. In this way, we can explore the 
effect of variables such as temperature, pH, concentrations, and additives on 
the scrubber chemistry. 

The chemical reaction database used as input into the model is listed in Table 
1. Depending on conditions, some of the reactions are unimportant and are 
not included in the calculation to reduce the processing time. Tests are 
performed to ensure the absence of a reaction does not significantly alter the 
results of the calculation. Updated or additional reaction rate constants can be 
incorporated into the database as new measurements become available. 

Examples of the calculations are shown in Figure 1 and Figure 2. Figure 1 
illustrates the effect of pH on the generation and interconversion of 'nitrogen
sulfur compounds. Calculations were done at pHs of 3,5 and 7 at a 
temperature of 40°C for a batch reactor exposed to concentrations of 502 = 
2000 ppm, NO = 450 ppm and N02 = 50 ppm. Increasing the solution pH 
significantly increases the total concentration of nitrogen-sulfur compounds 
and favors A TS and ADS as products. Figure 2 illustrates the effect of 
temperature on the system of nitrogen-sulfur .compounds. Calculations were 
done at temperatures of 20°C (68°F),40°C (l04°F), and 60°C (l40°F) at a pH of 5 
for a batch reactor exposed to concentrations of 502 = 2000 ppm, NO = 450 
ppm, and N02 = 50 ppm. Increasing the solution temperature also increases 
the total concentration of nitrogen-sulfur compounds. Higher temperatures 
increase the concentrations of ATS and ADS relative to HADS and HAMS. 

These calculations illustrate what can be studied using the cpmputer model. 
The influence of a number of scrubbing system parameters can be 
investigated relatively rapidly. The model does require accurate information 
on kinetics, gas concen-trations, and solubilities for all compounds that have 
a significant influence on the chemistry to provide realistic results. 

The chemical kinetics modeling program is still under development to 
increase its versatility. We are in the process of incorporating precipitation 
processes in the model to simulate the formation of solids. This will allow 
more accurate investigation of some scrubber chemistries, such as 
lime/limestone-based scrubbing systems. Measurement of the solubilities of 
the nitrogen-sulfur compounds is currently in progress,9 and the results of 
this study will be incorporated into the model. 
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The model is also being developed to incorporate the effects of ionic strength 
and activities of the ions in solution on the reactions used. Scrubbing 
solutions are generally at conditions that are far from those of ideal solutions. 
By incorporating ionic strength and ionic interactions into the model, we 
should be able to obtain more accurate simulation of the chemistry of 
scrubbing solutions. 

i . 
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Table 1 

Chemical Reactions Related to Aqueous Scrubber Chemistry 

Reaction k,K or Ha Eactb 

1. S02(gas) <=> S02(aq) 1.24 (f 

2. NO(gas) <=> NO(aq) .0019 

3. N02(gas) <=> N02(aq) .007 

4. C02(gas) <=> C02(aq) .034 

5. HN02(gas) <=> HN02(aq) 60 

6. NO + N02 + H20 (gas) <=> HN02 + HN02 5.3 x 10-2 

7. S02(aq) <=> HS03- + H+ 15 x 10-2 

8. C02(aq) <=> HC03- + H+ 4.3 x 10-7 

9. HS03- <=> S032- + H+ 1.2 x 10-7 

10. HN02(aq) <=> N02- + H+ 5.8 x 10-4 

11. HS04- <=> S042- + H+ 1.2 x 10-2 

12. HS03- + HS03- <=> S2052- + H2O 65 x 10-2 

13 NO(aq) + N02(aq) -> HN02(aq) + HN02(aq) 1.6 x 108 

14. HN02(aq) + HN02(aq) -> NO(aq) + N02(aq) 14 

15 H+ + HN02(aq) -> NO+ + H2O 4.08 x 102 11.5 

16. HN02 + HS03- -> ONS03- + H2O 2.43 12.1 

17 NO+ + HS03- -> ONS03- + H+ c 

18. ONS03- + HS03- -> . HON(S03)22- c 

19 HON(S03)22- + H+ -> HONHS03- + H+ + HS04- 2.1 x 1011 17.6 

20 HON(S03)22- -> HONHS03- + HS04- 1.67 x 1011 23.0 

21.HONHS03- + H+ -> NH20H + H+ + HS04- 6.2 x 1012 26.3 

22. HON(S03)22- + HS03- -> N(S03)33- + H2O 3.4 x 1010 19.2 

23. N(S03)33- + H+ -> HN(S03)22- + HS04- 1.5 x 1013 16.5 l,i 
I' 

24. HN(S03)i2- ..: H+ -> H2NS03- + HS04- 2.54 x 1014 23.5 , 

25. HON(S03)22- + HS03- .-> HN(S03)22- + HS04- 1.5 x 1010 19.0 ".,' 

26. HONHS03- + HS03- -> HN(S03)22- + H2O 1.4 x 1013 24.5 

27. HONHS03- + HS03- -> H2NS03- + HS04- 6.0 x 1012 24.5 

28 NH20H + S02(aq) -> H2NS03- + H20 + H+ 1.74 x 1011 13.4 

29. NH20H + S02(aq) -> NH4+ + HS04- 1.06 x 102 3.0 
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Table 1 
(continued) 

, 

30. H2NS03 + HN02 -> HS04- + H2O 1.13 x 102 11.3 

31. NO(aq) + H503- -> -ONS03- + H+ 2.6 x 1014 17.6 
,) 

32. NO(aq) + 5032- -ONS03- 3.2 x 1010 10.6 -> 

33. NO(aq) + -ONS03- -> -ON(NO)S03- c 

34. -NO(NO)S03- -> N20 + 5042- 1.55 x 10-3 

35. N02(aq) + N02(aq) -> HN02(aq) + N03- + H+ 8.4 x 107 

36. H503- + 2N02(aq) -> 2N02- + 3H+ + 5042- 1.2 x 107 

a. k in units of M-1 sec-lor sec-I; K in units of M; H in units of M atm-1 

b. In units of kcal mol-1 

c. reactions 17,18 and 33 are assumed to be fast. 
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