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Abstract

Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that 

the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients 

uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC 

in younger women, including those of childbearing age. This has led investigators to become 

increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published 

cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 

30s, and that during gestation, pruritus and jaundice are the most common symptoms. During 

gestation, susceptible women may experience onset of PBC resulting from the drastic changes 

in female hormones; this would include not only the mitochondrial damage due to accumulation 

of bile acids but also changes in the immune response during the different stages of pregnancy 

that might play an important role in the breakdown of self-tolerance. The mechanisms underlying 

the potential relationship between PBC and pregnancy warrant further investigation. For women 

first diagnosed with PBC during gestation, or those for whom first appearance of a flare up 

occurs during and postpartum, investigation of the immune response throughout gestation could 
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provide new avenues for immunologic therapeutic intervention and the discovery of new treatment 

strategies for PBC.
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Introduction

Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver characterized, in part, 

by a strong gender bias. PBC is nearly ten times more prevalent in women, and onset 

occurs in peri-menopausal age, usually at around 50 years [1]. However, with the recent 

use of serum anti-mitochondrial (AMA) autoantibodies and liver function tests—including 

early stage liver biopsy—the age of disease detection has expanded to include women of 

childbearing age [2–5]. We previously reported that more controls than patients with PBC 

were nulliparous [6], and there was significant association between gravidity and PBC. As 

with other autoimmune diseases, the disease is secondary to genetic and environmental 

interactions [7–9].

Gender has important implications for autoimmunity [10–15]. Pregnancy has an important 

impact on some autoimmune diseases, with varying outcomes (remission or exacerbation) 

[16–21]. The role of pregnancy in the occurrence and progression of PBC remains unclear. 

It has been speculated that PBC is a preexisting condition that is detected during prenatal 

medical supervision or that nonspecific symptoms such as pruritus are first noticed during 

pregnancy [1]. However, studies suggest that pregnancy does indeed create a susceptible 

environment for the ontogeny of PBC under certain genetic and environmental conditions. In 

this review, we focus on pregnancy in patients with PBC, using a systematic analysis of the 

literature. We discuss the possible mechanisms for pregnancy implications in PBC, including 

the effect of pregnancy on bile acid (BA) formation and secretion, the role of BAs in the 

progression of PBC, as well as sex hormones, fetal microchimerism, and the gestational 

immune response. We then describe how understanding the possible role of pregnancy in the 

etiology of PBC may help to disentangle complex host autoimmune mechanisms, provide 

new avenues for immunologic reconstitution in patients with PBC, and identify new targets 

for early PBC intervention therapy.

Pregnancy and PBC

BA Metabolism and Pregnancy

BAs, the major organic solutes in bile, are derived from two pathways. Synthesis of the 

first type, termed primary BAs, occurs in hepatocytes as a result of oxidation of cholesterol 

via the key enzyme cytochrome P450 7A1 (CYP7A1). These primary BAs replace daily 

BA loss via stool. The other, termed secondary BAs, is produced from the hepatocellular 

basolateral uptake of BAs undergoing enterohepatic circulation in the sinusoidal blood. 

Following synthesis, primary BAs are conjugated with taurine or glycine, then cross the 

canalicular membrane to be secreted in bile [22]. In the terminal ileum and colon, following 
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the bacterial modification, the primary BAs form secondary BAs. Ursodeoxycholic acid 

(UDCA), a widely used treatment for cholesterol cholelithiasis and PBC, is one of the 

secondary BAs and is formed as a metabolic by-product of intestinal bacteria [23].

It is widely recognized that hormones play a key role in the regulation of various 

metabolic processes [24]. Studies have shown that sex hormones are responsible for the 

differences between males and females with respect to BA metabolism [25, 26], and 

animal studies have provided evidence that estradiol can contribute to cholestasis [27]. 

During pregnancy, increased estrogen levels can result in decreased bile uptake. Hepatic 

estrogen conjugates inhibit bile salt uptake via the sodium-dependent bile salt transporter—

Na+/taurocholate co-transporter (NTCP)—and sodium-independent bile salt transporters—

organic anion transporting proteins (OATP). These specific transport proteins are expressed 

at the basolateral hepatocyte membrane and contribute to the uptake of BAs [28]. Increasing 

estrogen can decrease the fluidity of the basolateral membrane [29–31], which causes 

decreased activity of the Na+/K+-ATPase, further hindering the sodium-dependent BA 

uptake into the hepatocyte.

In order to keep the balance between synthesis, uptake, and excretion of BAs, the expression 

of hepatobiliary transporters is tightly regulated by nuclear receptors (NRs), which provide a 

network of negative feedback and positive feed-forward mechanisms. During pregnancy, 

the nuclear BA receptor farnesoid X (FXR), the best defined NRs for BAs, regulates 

the transcription of the majority of genes involved in the negative feedback pathway, 

serving as the primary mediator of hepatic BAs [32]. The estrogen receptor alpha (ERα) 

participates in transporter downregulation during normal pregnancies, and activation of ERα 
during pregnancy is important for the repression of hepatobiliary transporters in particular. 

Aleksunes et al. reported that 17α-ethinylestradiol, an orally bioactive synthetic estrogen 

used as an oral contraceptive, was associated with downregulation of uptake gene NTCP, 

OATP1a1, OATP1a4, and canalicular efflux gene for the bile salt export pump (BSEP) [33]. 

ERα represses the function of FXR in an estradiol-dependent manner, and this inhibition 

may result in pro-cholestatic gene expression and heightened hepatic BA levels during 

pregnancy [34, 35].

Animal studies show a decline in expression of uptake and efflux transporters in the livers 

of pregnant mice. The reduction of transport proteins affects the uptake and excretion of 

BAs, BA metabolism genes, and hepatic NR genes. Aleksunes et al. demonstrated that 

this regulation began as early as gestational day 7 and was inversely related to increasing 

concentrations of circulating 17β-estradiol and progesterone as pregnancy progressed [33]. 

This led to reduced protection of the liver from cholestatic injury and consequent cholestatic 

liver disease. The authors proposed that elevated BAs during late pregnancy are probably 

due to increased mRNA expression of classic BA synthesis enzymes [33]. Moreover, 

estrogen-glucuronides in the liver are also excreted into bile by the multidrug resistance-

associated protein 2 (MRP2), where they trans-inhibit the BSEP, further impacting the 

export of BAs [36]. These numerous factors indicate that heightened estrogen levels during 

pregnancy may be a factor in intrahepatic cholestasis.
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Effect of BA on Biliary Epithelial Cell (BEC) Proliferation, Apoptosis, and Cytotoxicity (Fig. 
1)

Impairment of bile formation or excretion processes results in accumulation of BAs in 

blood and hepatocytes. When the concentration of BAs exceeds the binding capacity 

of the binding protein located in the cytosol of the hepatocyte, hydrophobic BAs will 

produce toxic effects in hepatocytes [37] and BECs [38, 39]. Alpini et al. [40] provided 

evidence in animal studies that accumulated BAs can stimulate biliary proliferation. For 

example, following BA feeding, rats exhibited an increase in cholangiocyte proliferation, 

secretin receptor gene expression, and secretin-induced cAMP levels, similar to levels found 

in animals with bile duct ligation. Other studies have indicated that BAs can interact 

with cholangiocytes and alter cholangiocyte proliferation and bile secretion [40–42]. BAs 

enter cholangiocytes using the Na+-dependent apical BA transporter (ABAT), and via this 

mechanism, conjugated hydrophobic BA taurocholate (TC) and taurolithocholate (TLC) 

could increase cholangiocyte proliferation. Accordingly, Alpini et al. found that rats fed with 

TC or TLC exhibited an increased number of proliferating cell nuclear antigen (PCNA)-

positive cholangiocytes and bile duct proliferation compared to the control rats. Further, 

[3H]-thymidine incorporation studies demonstrated that cholangiocytes from BA-fed rats 

showed increased cellular proliferation. The authors suggested that elevated BA levels 

could stimulate cholangiocyte proliferation and ductal secretion. To evaluate this hypothesis, 

they isolated small and large cholangiocytes from rats, fed the rats with TC, TLC, or BA 

control diet for 1 week, and determined PCNA and ABAT expression and BA transport 

activity. The results indicated that TC and TLC could stimulate proliferation of small and 

large cholangiocytes associated with protein kinase C-dependent upregulation of ABAT. 

Contrary to the proliferative effect of taurocholate and taurolithocholate, ursodeoxycholate 

and tauroursodeoxycholate inhibited the cholangiocyte proliferation [43, 44]. Inhibition 

of liver cell apoptosis is one of the main processes underlying the protective effect of 

UDCA, along with protection of cholangiocytes against cytotoxicity of hydrophobic BAs, 

inhibition of cholangiocyte proliferation, and stimulation of impaired biliary secretion [45]. 

This inhibitory effect may provide an explanation for the histological and biochemical 

improvement of PBC following ursodeoxycholate or tauroursodeoxycholate treatment.

In addition to stimulating biliary proliferation, BAs can also induce the apoptosis of BECs. 

A study by Lamireau et al. [39] indicated that although conjugated hydrophobic BA TUDC 

could not induce BEC apoptosis, TCDC, TDC, TLC, and TC could all induce the BEC 

apoptosis. While TC had only a slight effect on the induction of apoptosis, it had a 

striking effect on the secretion of monocyte chemotactic protein-1 (MCP-1), one of the 

potent chemokines that regulate migration and infiltration of monocytes [46], and interleukin 

(IL)-6, which is critical to triggering autoimmune reactions and contributes substantially to 

BEC barrier function and wound repair [47].

Specific BAs could exert potent effects on BEC; generally, taurine- or glycine-conjugated 

BAs seem to prevent its cytotoxic effects, and only unconjugated hydrophobic BAs 

(chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA)) exert 

cytotoxicity. Benedetti et al. reported that, in vitro, hydrophobic unconjugated BAs induced 

damage to intracellular organelles of BECs. Their study showed that BECs are susceptible 
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to the cytotoxic effects of unconjugated BAs [48] and that the primary site of damage was 

mitochondrial [49, 50]. Regarding the enterohepatic circulation of BAs, unconjugated BAs 

that have undergone de-conjugation by the intestinal bacteria are detectable in the blood 

circulation [51]. Benedetti et al. [48] further indicated that the mitochondrial alterations 

induced by DCA and LCA were similar, with a swollen appearance and electron lucent 

matrix. When BECs were exposed to CDCA, the mitochondria exhibited globular shapes, 

rarefaction of the matrix, and loss of cristae. As for the damage by BA to the apical 

membranes of BECs, reports indicate that only the BA lithocholate can cause changes of the 

BEC apical membrane [48].

The Effect of Pregnancy Hormones on Cholangiocyte Proliferation

Estrogen hormones are essential for the female reproductive system but also play an 

important role in the control of fundamental functions in other tissues, including the 

liver. Estrogens are considered immunomodulating hormones [52, 53], probably acting 

by potentiating the effects of growth factors and should be considered in discussing all 

autoimmune diseases [54]. There are three major naturally occurring estrogens: estrone (E1), 

estradiol (E2), and estriol (E3). E2 is the predominant estrogen during reproductive years, 

both in terms of absolute serum levels and estrogenic activity. During pregnancy, E3 is the 

predominant circulating estrogen in terms of serum levels, and during peri-menopause, E1 

is the predominant circulating estrogen, though its levels drop dramatically in at menopause. 

Cholangiocytes are the primary targets of damage in PBC, as PBC is characterized by 

destruction of the BEC lining small intrahepatic bile ducts, and the progressive development 

of fibrotic chronic liver disease culminating in biliary cirrhosis [55]. The clinical appearance 

and progression of different cholangiopathies are influenced by the physiology of the female 

sex and changes in estrogen status in the body [56], so estrogens have been considered to 

play a pathogenic role in diseases, such as PBC, that preferentially affect the female sex 

[57].

Cholangiocyte proliferation, which acts as a repair and compensatory mechanism in the 

bile duct, may influence the outcome of the disease and its evolution toward the terminal 

ductopenic stage [58, 59]. Estrogens have been considered for many years to play a role 

in the development and progression of pathologies involving the biliary tree [56]. They 

may therefore play a role in modulating the growth of cholangiocarcinoma [60] and could 

modulate the disease progression in PBC [57, 61–65]. Estrogens can modulate cell growth 

and proliferation in target tissues expressing ERs [66–69]. It has been shown through 

animal studies and analysis of human liver tissue that estrogens and their receptors may 

influence the pathophysiology of cholangiocytes, which is characterized by cholangiocyte 

injury and proliferation [70–73]. Once bound by estrogen, the ER undergoes conformational 

changes that allow the receptor to bind DNA elements in target gene promoters and activate 

transcription [66–69]. In this way, estrogens work through interaction with the ERs to induce 

transcriptional regulation. Most cells of the human immune system express ERs, including 

CD4+ and CD8+ T lymphocytes, B lymphocytes, natural killer (NK) cells, dendritic cells 

(DCs), and macrophages. This suggests that estrogens may be able to modulate the function 

of these immune cells [74, 75]. ERs have two different forms, ERα and ERβ, that may 

play different roles in gene regulation. Paech et al. [76] found that, when complexed with 
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the natural hormone estradiol, the two forms produced opposite effects. When bound to 

ERα, 17β-estradiol activated transcription, whereas interaction with ERβ led 17β-estradiol 

to inhibit transcription.

Cholangiocytes are the primary cells targeted by immunopathology in PBC. During PBC 

progression, cholangiocytes will undergo proliferation as well as loss. Alvaro et al. [70] 

reported that ERs are not found in cholangiocytes of normal liver but are significantly 

positive in cholangiocytes from patients with PBC. They demonstrated that in PBC, the 

presence of ERα increased from stage I to stage III, but in stage IV, ERα was absent in 

association with maximal ductopenia. ERα positivity in cholangiocytes of patients with 

PBC was markedly lower than primary sclerosing cholangitis and alcoholic cirrhosis. 

The low expression of ERα in PBC and its disappearance in the advanced histological 

stages suggests that an estrogenic deficiency could favor the evolution of this disease 

toward ductopenia. These reports indicate that estrogens, in conjunction with various 

growth factors, may play an important role in sustaining cholangiocyte proliferation and 

in depressing cholangiocyte apoptosis [77–79]. However, some results provide evidence 

contrary to this hypothesis. Floreani [57] reported that dehydroepiandrosterone sulfate, a 

metabolite of dehydroepiandrosterone/prasterone (DHEA-S), serum levels were significantly 

higher in PBC subjects and were higher in precirrhotic than in cirrhotic patients. Alvaro et 

al. [70] found the serum levels of 17β-estradiol in PBC stage IV were significantly higher 

than PBC stage I. Alvaro et al. suggested that this discrepancy may be a consequence of 

cholestasis and liver failure. Despite these observations, it seems that endogenous estrogens 

could contribute to the PBC progression. The above studies measured serum levels of 

estrogen rather than the presence of the ERs. Granulomas are also a feature of PBC but the 

mechanisms involved are still unclear [80]. Clearly, more work is needed to resolve these 

findings.

Parikh-Patel [6] showed a higher frequency of past oral contraceptive use in patients with 

PBC than controls, though the difference was not significant. Previous studies from our 

group [81] have indicated that the history of oral contraceptives may not affect the onset 

of PBC but have shown significant differences between PBC and controls using hormone 

replacement therapy, regardless of past or current use of oral contraceptives. However, 

Corpechot et al. [82] considered the use of oral contraceptives to be a putative protective 

factor instead of a risk factor. To date, no studies have been able to clearly define the link 

between the use of oral contraceptives or hormone replacement therapy and PBC.

Progesterone, a steroid hormone synthesized by the corpus luteum of the ovaries and 

adrenal glands during pregnancy, as well as the central and peripheral nervous system 

may also play a role in cholangiocyte proliferation [83, 84]. A study by Glaser et al. 

[85] reported a significant downregulation of progesterone secretion in cholangiocytes 

isolated from rats with experimental bile duct ligation (BDL). Rat cholangiocytes express 

both nuclear and membrane progesterone receptors, and while chronic administration of 

progesterone to normal rats appears to stimulate biliary proliferation, this proliferation 

can be partially prevented by the administration of a neutralizing anti-progesterone 

antibody. Cholangiocytes from both female and male rats possess the enzymatic pathway 
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for progesterone steroidogenesis and secretion, suggesting that progesterone may be an 

important regulator of cholangiocyte proliferation.

Prolactin is another hormone responsible for regulating the growth of female cholangiocytes. 

A study by Taffetani et al. [86] indicated that prolactin stimulates normal cholangiocyte 

growth by an autocrine mechanism. Normal female rat cholangiocytes express prolactin 

receptors, whose expression increased following BDL. They reported that long receptor 

isoform is predominant in cholangiocytes but not in hepatocytes, indicating that the actions 

of prolactin on the liver are cell type-specific. The administration of prolactin to normal 

female rats increased cholangiocyte proliferation, while administration of an anti-prolactin 

antibody to BDL female rats led to decreased cholangiocyte proliferation [86]. Thus, altered 

prolactin production may affect disease progression, and regulation of prolactin secretion 

may be helpful for the management of cholangiopathies affecting female patients.

Cholangiocyte proliferation is a stepwise process involving liver fibrosis during acute and 

chronic cholestasis and finally leading to periportal fibrosis and eventually biliary cirrhosis 

[87]. Steroid hormone stimulation of cholangiocyte proliferation might contribute to the 

crosstalk occurring during cholestasis [85, 88]. In summary, these combined studies suggest 

that proliferating cholangiocytes may have a role in the induction of fibrosis, either directly 

or indirectly ways [89–92].

Clinical Evidence of Pregnancy-Associated PBC

Cases of Pregnancy with PBC (Table ;1)—Earlier studies about PBC have been 

limited to case reports and small cohort studies. It was in 1950 that Ahrens et al. first 

coined the term PBC [93]. After a detailed study of fertility and PBC, the authors found that 

PBC was associated with infertility—most of the patients had scanty, irregular, or profuse 

periods and even progressed to amenorrhoea—but produced no irregularities in patients who 

did become pregnant. Consistent with these early results, Olsson [94] reported four healthy 

pregnancies in three patients with PBC; all the pregnancies occurred after diagnosis, the 

reproductive ages were 22, 25, 33, and 36, and all pregnancies ended with normal deliveries. 

In contrast, Whelton [95] reported five patients with PBC, four of whom went to term and 

had vaginal deliveries, and all of whom presented jaundice in the last trimester. The authors 

suggested that the endogenous sex hormones associated with pregnancy may have had an 

exacerbating effect on the preexisting cholestatic liver disease. In 1989, Nir [96] reported 

a 20-year-old pregnant woman diagnosed with PBC who experienced different clinical 

symptoms, including not only jaundice but also itching. In 1995, Rabinovitz [97] reported 

a more severe case in which a PBC patient, diagnosed with PBC during the third trimester 

of pregnancy, gave birth to a normal healthy child before her disease rapidly deteriorated 

and she had to be listed for liver transplantation. These reports indicate that there may be a 

relationship between PBC and pregnancy.

Despite reports from these and other studies, we have few clues as to the relationship 

between pregnancy and PBC. It should be noted that the concordance of PBC in twins is 

about 60 % [111].
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In 2002, standardized questions were used to compare 182 cases of PBC with 225 age- and 

sex-matched friend controls to examine the role of reproductive factors in PBC. The results 

showed a significant association between pregnancy and PBC, where patients with PBC 

had more pregnancies than controls, and had their first child at an earlier age [6]. In 2013, 

Trivedi et al. [2] performed a retrospective analysis of women with PBC during pregnancy. 

They identified 50 pregnancies in 32 women and found that liver biochemistry remained 

stable in 70 % of patients throughout pregnancy, and 72 % had a flare in biochemical 

disease activity postpartum. Moreover, only 6 % of patients developed progressive disease 

after delivery. In 2014, Efe published another retrospective study [5], which indicated 

that 30 % of the pregnancies with PBC were associated with biochemical flares but no 

maternal deaths. Seventy percent of patients exhibited clinical improvement or stabilization, 

and 60 % of pregnant patients showed postpartum flare. One patient was referred for 

liver transplantation after delivery. These studies suggest that female hormones during 

pregnancy likely drive the immunological changes behind, and contribute to, PBC flare 

and progression.

In pregnant women, intrahepatic cholestasis of pregnancy (ICP), a pregnancy-related liver 

disease presenting similar clinical features and onset time during gestation to PBC [112], 

is the most frequent cause of cholestasis and may therefore warrant further investigation 

[113]. Like PBC, ICP is characterized by pruritus, elevated alkaline phosphatase (AP), 

and an increase in the levels of BAs. At this point, UDCA is the most effective therapy. 

However, whether there is a correlation between ICP and PBC has not been established. 

Ropponen et al. [114] analyzed the intrahepatic cholestasis of pregnancy as an indicator 

of liver biliary diseases; when analyzed separately for PBC alone, the rate ratio did not 

reach statistical significance, but need to rule out the possibility of the small number of 

occurrences [115]. Otherwise, during normal pregnancy, it has been demonstrated that 

serum alkaline phosphatase levels can increase significantly in the third trimester [116]. 

Serum alkaline phosphatase elevation is one of the most important biochemical indicators of 

cholestasis and PBC [117], but during pregnancy, this elevated serum alkaline phosphatase 

may be due to production by the placenta [118]. Pregnancy may contribute to the onset of 

cholestasis in susceptible individuals under certain genetic and environmental conditions, 

leading to the detection of hepatic diseases during pregnancy.

Case Studies of PBC in Different Female Life Cycles

Based on the observations above, we hope to elucidate whether the changes in female 

hormones during pregnancy can drive the susceptible individual’s onset and progression of 

PBC. We therefore consider other phases of the human life cycle that may help to elucidate 

the effect of female hormones on PBC.

PBC has seldom been reported in childhood, but during pubertal development, peri-

menstrual period, pregnancy, and peri-menopausal periods, when females experience 

hormonal changes, the risk of developing PBC notably increases. Dahlan et al. [119] 

were the first to report two pediatric-onset AMA-positive patients with PBC: both were 

overweight girls, diagnosed with PBC at 15 and 16 years of age, respectively. One 

was reported stable after starting treatment with UDCA, but the other needed liver 
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transplantation. What could explain the early onset and rapid progression of the disease 

in these patients? The age of puberty appears to be related more to body weight than 

to chronologic age; heavier minimum weight for height is necessary for the onset and 

maintenance of regular menstrual cycles in girls over 16 years of age [120], so the patients 

were experiencing hormonal changes and were consequently at greater risk for developing 

progressive PBC. Increased awareness of early-onset PBC may create opportunities for 

preventative measures, including intervention for individuals exhibiting certain risk factors. 

Following Dahlan’s report, Floreani et al. [121] described a diagnosis of PBC in a 17-year-

old girl, the third youngest case of PBC ever reported. This patient appeared healthy but 

presented with premenstrual itching 1 year prior to diagnosis. Female hormones undergo 

dramatic fluctuations during menstrual cycle; in order to prepare for pregnancy, estrogen and 

progesterone hormones are released in the premenstrual phase of the cycle to stimulate the 

lining of the uterus. If a pregnancy does not occur, the hormone levels decline. The onset 

of PBC in this patient occurred during a time period that was characterized by rapid female 

hormonal changes, suggesting that the sex hormone changes accompanying the premenstrual 

period may have contributed to her PBC onset. Shah et al. [122] reported a case in which a 

36-year-old pregnant patient with PBC who stayed off of UDCA after pregnancy exhibited 

normal liver function during pregnancy but sharp deterioration postpartum. This sharp 

deterioration may have been the result of the hormonal changes occurring postpartum. And 

as we know, PBC onset usually occurs in peri-menopausal age at around 50 years [1], and 

based on the data discussed, sex hormone changes in different female period of women may 

contribute to an increased risk of PBC onset or progression in susceptible individuals.

Fetal Microchimerism and PBC

The incidence of autoimmune disease varies relative to the onset of reproductive 

function. Multiparous women may experience significantly altered susceptibility to PBC, 

as prevalence of PBC has been associated with greater number of pregnancies [6], while 

nulliparous women have been negatively associated with PBC [81]. These associations 

suggest that PBC may be a pregnancy-related liver disease, but how pregnancies affect PBC 

has yet to be determined. Pregnancy has both short-term effects and long-term consequences 

on the female body; in addition to the physiological changes that accompany pregnancy, 

fetal cells traffic into the maternal circulation, where they can persist in blood and tissues 

for decades [123]. The presence of small numbers of allogeneic fetal cells in the maternal 

system is termed fetal microchimerism, and these fetal invading cells may be the cause 

of the pregnancy-associated differences observed in patients with autoimmune diseases. It 

would be advantageous to the study of autoimmune diseases if we could elucidate how the 

woman’s immune system responds to these “foreign” cells. In 1996, Nelson et al. proposed 

that fetal microchimerism might, in part, explain the female predilection to autoimmune 

disease that women retain following pregnancy [124]. In a follow-on study in 1998, it was 

discovered elevated levels of fetal microchimerism in the blood of women with scleroderma 

compared to healthy women [125]. This was the first study to explore the radical concept 

that many autoimmune diseases may be caused by microchimerism, and subsequent studies 

have extended this line of inquiry to investigate the potential role of microchimerism in 

PBC. Kobayashi [126] reported that maternal microchimerism is present within the livers 

of patients with progressive postnatal type biliary atresia, suggesting that biliary atresia 
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could be a graft-vs-host disease (GVHD) triggered by maternal microchimerism that is 

masquerading as an autoimmune reaction.

PBC shares important features of autoimmunity with chronic GVHD [127, 128]. Clinical 

onset in both diseases is characterized by a significant rise in alkaline phosphatase, bilirubin, 

hypergammaglobulinemia, and autoantibodies including anti-mitochondrial antibodies, with 

only mild elevation in transaminases. Both are associated with dry gland syndrome and 

other co-occurring autoimmune diseases. The histologic characteristics include mononuclear 

cell infiltrates into the portal triad with bile duct injury, bile duct loss, and proliferation of 

bile ductules. Primary biliary cirrhosis is associated with human leukocyte antigen (HLA) 

class II genotypes, including HLA-DR molecules. Nelson [124] has suggested that fetal 

microchimerism might be involved in the etiopathogenesis of some autoimmune diseases, 

including PBC, probably through initiation of a GVHD-like response [129]. This work is 

of particular interest for PBC because fetal cells may contribute to alteration of the host 

response to normal environmental pathogens, during pregnancy and in the following years. 

Such fetal cells could induce loss of tolerance to fetal antigens that allows the maternal 

immune system to react to microchimeric fetal cells, and thus, fetal hepatocytes may act as 

immune targets or as a source of foreign antigen leading to chronic inflammatory diseases 

like PBC. However, Invernizzi et al. found that in addition to fetal cells, fragments of fetal 

DNA are also present in maternal circulation. These data do not support the hypothesis 

that fetal microchimerism plays a significant role in the onset or progression of PBC. The 

peripheral blood of the PBC women did not contain a higher frequency of male DNA than 

that of the healthy controls, and the presence of male DNA in patients with PBC was not 

associated with any particular characteristics of the disease [130]. Furthermore, though some 

studies reported fetal cells and DNA in liver samples from patients with PBC, most also 

found fetal microchimerism in control livers as well, offering no clear indication that fetal 

cells present in the liver contribute to the disease [131–135]. Thus, previous studies suggest 

that analysis of the biological effects of fetal microchimerism in maternal liver requires 

further study. More recently, workers have emphasized the role of the X-chromosome and 

also epigenetic alterations [136, 137].

Immune Response in Pregnancy and PBC (Fig. 2)

Unlike organ transplants, foreign genes donated by the father during pregnancy can 

be tolerated by the female immune system. Consequently, the innate immune system 

might play an important role in pregnancy progression. NK cells recognize the major 

histocompatibility complex (MHC) class I chain-related gene B (MICB), which is a 

membrane-bound glycoprotein involved in both innate and adaptive immunity through its 

interaction with natural killer group 2D (NKG2D) receptor. However, during pregnancy, 

MHC class I expression is reduced on the syncytiotrophoblast and instead express HLA-G. 

This inhibits NK cells from binding to activating their killer cell immunoglobulin-like 

receptors (KIR) [138], thereby blocking the cytolytic activity of NK cells and promoting 

immune regulation [139]. In addition to the low MHC expression, Thellin and Heinen 

found that during pregnancy, the transporters that have been previously associated with 

PBC-specific antigen processing were poorly functioning [140]. Interestingly, E2 was 

found to suppress MICB mRNA as well as surface protein levels in a dose-dependent 
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manner. Estrogens also appear to have an influence on NK cell number [141]. Studies have 

reported that the number of peripheral NK cells decreases with an increase in estrogen 

concentration during pregnancy [142–144]. Studies have additionally reported heightened 

levels of T helper 2 (Th2) cytokines and with a decline in T helper 1 (Th1) cytokines 

during pregnancy [145, 146], which further decreases NK cell numbers and NK cytotoxic 

activity thereby reducing the opportunities for loss of immune tolerance. This inhibition of 

NK cytotoxicity will abate approximately 6 months postpartum [147]. The breakdown of 

immune tolerance to self-PDC-E2 and the adaptive multilineage anti-mitochondrial response 

are the key steps toward PBC onset and usually appear as an extended clinical prodrome. 

The mechanism for loss of self-tolerance in PBC is as yet unclear, and direct cytotoxic 

activity against autologous BEC has yet to be demonstrated. Thus, the arm of the immune 

system responsible for bile duct destruction remains to be determined.

Toward that goal, NK, natural killer T cell (NKT), and monocytes are all important cells 

involved in innate immune response, and each of them may be involved in the pathogenesis 

of PBC. The role of NK cells in the immunopathogenesis of PBC is not yet clear, though 

our preliminary data suggest that the number and mean frequency of NK cells in blood 

of patients with PBC is greater than control subjects. Additionally, isolated NK cells from 

patients with PBC had significantly higher natural cytotoxic ability and higher expression of 

perforin, and NK cells were recruited to liver more efficiently, potentially leading to higher 

cytotoxicity and exacerbated hepatic damage [148]. After 9 months of pregnancy, the natural 

cytotoxic ability of NK cells returns to normal levels [147], but whether this is associated 

with postpartum flare up has not been determined.

NKT refers to CD1d-restricted T cells, which are of particular interest due to the recent 

identification of a specific subset of invariant natural killer T cells (iNKT) that link 

the innate and adaptive immune responses [149]. iNKT cells exert important regulatory 

functions through their capacity to produce both Th1 and Th2 cytokines. PBC is 

characterized by Th1-polarized T cell responses [150], implicating a role for NKT cells 

in the regulation of autoimmune diseases. Activation of iNKT cells is a critical factor 

in modulating the natural history and acceleration of the disease, as the ligand-activated 

CD1d-restricted NKT cells are of great importance to PBC initiation and the evolution from 

subclinical to clinical disease [151–153]. Our group found that transformation of growth 

factor beta receptor II in a dominant-negative mouse model enabled NKT to attenuate the 

development of PBC. We have demonstrated that NKT cells can exacerbate liver injury in 

PBC [153], and that in patients with PBC, the NKT cell number and hepatic CD1 expression 

were elevated [151, 152]. The proportion of NKT cells was significantly decreased in the 

liver of patients with early PBC, but increased with advanced PBC, and the proportion 

of activated Fas ligand (FasL)-positive NKT cells was significantly increased in the livers 

of patients with advanced compared to early PBC. Activated NKT cells may therefore 

contribute to the biliary epithelial cell death resulting in the progression of PBC [154]. 

E2 can increase the number of NKT cells producing interferon (IFN)-γ and the IFN-γ 
mRNA expression level [155]. Interestingly, in pregnancy, the numbers of iNKT cells in the 

peripheral blood do not change, and they become less able to produce the type 1 cytokine 

IFN gamma between the first, second, and third trimester; however, the cells become very 

activated in the third trimester [156].
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Monocytes are another class of key innate immune effector cells that produce cytokines 

and chemokines upon activation. E2 has a direct role in the modulation of monocyte 

immune function [157]. Luppi et al. [158] reported that in normal pregnancy, the number of 

monocytes was stable throughout gestation, but monocytes could produce higher IL-12 and 

IL-1β, especially in late pregnancy. Comparatively, monocytes from patients with PBC seem 

to produce higher relative levels of pro-inflammatory cytokines, especially IL-1β, IL-6, 

IL-8, and tumor necrosis factor (TNF)-α, which are critical to the inflammatory response 

that may be essential in the breakdown of self-tolerance [159]. However, whether monocytes 

participate in the flare observed in late PBC pregnancy is still unclear.

Women also tend to have higher levels of immunoglobulins. During pregnancy, 

asymmetrical IgG molecules increase in serum, and the placenta is capable of releasing 

factors that can regulate the relative proportion of asymmetrical IgG molecules and induce 

modifications of the produced antibodies. Asymmetrical IgG molecules are univalent 

antibodies and therefore act as antigen blockers [160]. In early pregnancy, IgM levels 

decrease immediately but then rise rapidly following delivery [161]. As we know, in patients 

with PBC, beyond cholestasis and the presence of mitochondrial antibodies, the common 

feature is high levels of IgM. Little is known about the role of hyper-IgM in the pathogenesis 

of PBC, but the elevated levels of serum IgM in patients with PBC seem to be related to high 

expression of CD40L that plays an important role in modulation of BEC apoptosis in PBC 

[162].

CD4+CD25high regulatory T cells (Tregs) are a subset of T cells that can regulate the 

cellular immune response [163]. Some studies have shown an increase in the peripheral 

CD4+CD25+ Treg cell pool during pregnancy [164–166], and Tillburgs et al. [167] indicated 

that the percentages of CD4+CD25 high T cells in decidua were significantly higher than that 

in peripheral blood. Mjosberg and colleagues [168] reported that during pregnancy, Tregs 

contribute to strict regulation of both Th1-like and Th2-like anti-fetal immune reactions, but 

Th2-like cells can escape the suppression of Tregs. This would allow for increased IL-4 

and potential regulation of potentially detrimental IFN-γ production. However, they did not 

find any evidence for altered Treg numbers or function during pregnancy. Impairment of 

CD4+CD25high Tregs could also play an important role in the breakdown of self-tolerance 

[163, 169]. Forgers et al. [170] reported that numbers of CD4+CD25high Tregs were 

inversely correlated with disease activity of rheumatoid arthritis in the third trimester and 

postpartum, but how the numbers of CD4+CD25high Treg cells change in the flare up in the 

third trimester of pregnancy with PBC warrants further study.

Estrogen modulates the cell-mediated immune response by inducing TH2 cytokines to 

inhibit TH1 responses [171]. Successful implantation depends upon these cytokines to create 

an optimal environment [172, 173]. Pregnant females are biased toward Th2-type immunity 

rather than Th1-type immunity; during pregnancy, IL-10, IL-4, etc. (Th2-associated 

cytokines) increased, while T helper cells (Th1-associated cytokines), like IFN-γ, IL-1, 

etc., were decreased. The authors also observed reduced numbers of pro-inflammatory 

cytokines like TNF-γ and IL-12 [145, 146]. In addition to estrogen, progesterone serves 

as an important effector in establishing Th2 bias in pregnancy. It exerts immunomodulator 

action by inducing blocking factors expressed on lymphocytes, altering cytokine secretion, 

Sun et al. Page 12

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2022 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and reducing the production of pro-inflammatory cytokines [174]. Progesterone was found 

to specifically block trophoblast elicit Th1 immunity and inhibit IL-10 production but 

upregulate tumor growth factor (TGF)-β secretion [175].

Prolactin has been shown to have a role in immunomodulation [176]; during late pregnancy, 

prolactin will reach its highest levels to enable female mammals produce milk [177]. 

Matalka [178] reported that in addition to its role in milk production, prolactin can enhance 

the function of Th1-mediated response by increasing production of IFN-γ, IL-12p70, IL-10, 

[179] but not TNF-α, in whole blood [178].

T cell-mediated immune response has been considered to play an important role in the 

pathogenesis of PBC [180, 181]. The destruction of the biliary tract in PBC is thought to 

be mediated by auto-reactive liver infiltrating CD4+ T helper cells [182]. In the majority of 

patients with PBC, CD4+ and CD8+T-cells reactive with PDC are present in the peripheral 

immune system and liver [183], but cytotoxic T lymphocytes (CTL) are thought to be 

directly involved in the tissue injury in patients with PBC [184]. Kita reported a 10-fold 

increase in the frequency of auto-reactive CTL in the liver as compared to the blood in 

patients with PBC [185]. Nagano [186] reported that IFN-γ and IL-5, IL-6, IL-10, IL-12, 

and IL-15 were all expressed in most liver biopsies of patients with PBC where IFN-γ 
was highly expressed in contrast to the regulatory cytokine, IL-10, and IL-2 and IL-4 were 

rarely detected. The authors believed that both Th1 and Th2 cytokines might play a role 

in the pathogenesis of PBC. For this study, patients with PBC were all selected at an early 

stage, so these results require further study in later stage samples. Soon after, Itoh [187] and 

colleagues used a murine model of PBC to clarify the relationship between the by CD4+ 

T cell cytokine profile and the formation of hepatic lesions. They investigated the elevation 

of IFN-γ mRNA expression at an early phase before the appearance of nonsuppurative 

destructive cholangitis. IL-10, which can stimulate antibody production and inhibit the 

function of Th1 cells and developing fibrosis, showed delayed expression.

Th17 cells can selectively produce IL-17, and play a critical role in the induction of 

inflammation and the pathogenesis of autoimmune diseases [188, 189]. Th17 cells and 

Tregs share a requirement for TGF-β, high TGF-β concentrations induce Tregs, and terminal 

differentiation of Th17 cells requires IL-1β and TGF-β [190]. Studies indicate that during 

normal pregnancy, the population of peripheral blood Tregs cells increases, while the 

number of circulating Th17 cells decreases [191]. This ration would be reversed in the 

case of embryonic death, where the Th17 cells are increased and Tregs decreased [192]. 

In patients with PBC, the circulating Th17 cells were increased and Tregs were decreased 

[193], and recently, our group found that this Th1/Th17 imbalance was relevant to the 

pathogenesis of PBC. Whether a flare up during or postpartum in patients with PBC is 

associated with changes in the ratio of Th1/Th17/Tregs needs further study.

Future Directions

One of the major difficulties in PBC is the latency time between the onset of the loss 

of tolerance and the clinical presentation. There is increasing evidence, with respect 

to autoantibodies, that this loss of tolerance occurs for many years before the onset 
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of symptoms. This makes identification of etiological factors more difficult. There are, 

however, mouse models of PBC and these should be explored in more detail [194–198]. In 

addition, there is increasing evidence for the role of specific lymphoid subpopulations as 

effector mechanisms in PBC, but the role of hormones in the modulation of these pathways 

remains enigmatic [199, 200]. We also note that researchers should take advantage of newer 

technologies in both genomics and proteinomics to identify effector pathways that may also 

lead to therapeutic tools [201]. PBC is in the crossroads now in which there is considerable 

data on basic science but a relative lack of translation to therapies that will benefit patients. 

We submit that it is time to apply these advances in basic science to patients and begin 

further efforts in such translation.
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Fig. 1. 
Estrogen, progesterone, and prolactin interact with BECs and hepatocytes during pregnancy. 

Pregnancy creates a susceptible environment for the ontogeny of PBC under certain genetic 

and environmental conditions. During gestation, the drastic elevation in female hormones, 

estrogen, progesterone, and, prolactin, affect BA metabolism and BEC proliferation 

resulting in accumulation of BA in hepatocyte and apoptotic cell death in BEC
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Fig. 2. 
Maintaining immune tolerance during pregnancy. Fine-tuning maternal innate and adaptive 

immune response occurs to maintain fetal tolerance, which may create an environment for 

the ontogeny of PBC in susceptible women
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