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CaloScore v2: Single-shot Calorimeter Shower Simulation with Diffusion Models

Vinicius Mikuni1, ∗ and Benjamin Nachman2, 3, †

1National Energy Research Scientific Computing Center, Berkeley Lab, Berkeley, CA 94720, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

Diffusion generative models are promising alternatives for fast surrogate models, producing high-
fidelity physics simulations. However, the generation time often requires an expensive denoising
process with hundreds of function evaluations, restricting the current applicability of these models
in a realistic setting. In this work, we report updates on the CaloScore architecture, detailing the
changes in the diffusion process, which produces higher quality samples, and the use of progressive
distillation, resulting in a diffusion model capable of generating new samples with a single function
evaluation. We demonstrate these improvements using the Calorimeter Simulation Challenge 2022
dataset.

I. INTRODUCTION

Deep generative models are a disruptive technology,
enhancing many aspects of every day life and basic sci-
ence research. In high energy physics, calorimeter sim-
ulations have been a benchmark for new deep genera-
tive models since their first application. Detailed physics
simulations of particle showers in calorimeters are often
prohibitively slow due to the large number of secondary
particles produced as the primary particle is stopped in-
side the detector material. Bespoke and often proprietary
fast simulations have been developed for many cases, but
they are usually derived using low-dimensional heuristics.
Deep learning has the potential to match the quality of
detailed simulations in their full high-dimensional repre-
sentation while also matching the speed of classical fast
simulations. Automated, high-fidelity and fast calorime-
ter simulations can enhance the science of existing detec-
tors and catalyze the development of better detectors at
future experiments.

The application of deep generative models to calorime-
ter simulation began with CaloGAN [2, 3]. Since that
time, Generative Adversarial Networks (GANs) [1] [2–
17], Variational Autoencoders [18] [15, 16, 19–21], Nor-
malizing Flows (NFs) [22] [23–29], and Diffusion Mod-
els [30] [31–33] have been applied to this problem. This
research entered a precision era with the first NF ap-
plication (CaloFlow) [23], which showed that even a
post-hoc classifier had difficulty distinguishing physics
from machine learning simulators. A number of re-
lated innovations in the CaloFlow series are motivat-
ing for our work including teacher-student training [24]
and factorizing into energy/layer and shape/layer. Deep
generative models are also now being used in practice.
The ATLAS experiment has integrated a GAN into its
fast simulation, which has improved the modeling of
hadronic final states [17]. Simulations from ATLAS,
combined with additional samples from more granular

∗ vmikuni@lbl.gov
† bpnachman@lbl.gov

hypothetical detectors, form the CaloChallenge [34], a
data challenge to compare a diverse set of models on
the same calorimeter simulations. The score-based model
CaloScore [31] was the first model deployed on all three
datasets from the CaloChallenge. Since that time, NF-
based approaches have also been studied for CaloChal-
lenge datasets 1 [26, 28] and 2-3 [25]. As the performance
of these approaches has not been quantified with exactly
the same metric1, it is hard to know which is ‘best’, but
it is clear that they are all able to accurately describe
various aspects of the complex calorimeter showers.
Since the publication of CaloScore, we have im-

proved the performance significantly by introducing a
number of innovations. Collectively, these updates con-
stitute CaloScore v2, which represents the state of the
art in calorimeter emulation. Improvements to the archi-
tecture and training procedure result in a model that has
significantly better fidelity and is much faster than the
original CaloScore. One aspect of CaloScore v2 is
progressive distillation to reduce the number of timesteps
in the diffusion process, with one step already achieving
reasonable fidelity. Additionally, we modify the diffusion
process to decrease the loss variance during training, and
separate the task of determining the total energy depo-
sition with the voxel generation through an additional
generative model. Altogether, CaloScore v2 is essen-
tially a new model built on the foundation of the orig-
inal CaloScore – where we demonstrated that diffu-
sion models are a compromise between flexibility (easy
for GANs, hard for NFs) and robustness (easy for NFs,
hard for GANs) – with qualitatively superior perfor-
mance than its predecessor.
This paper is organized as follows. Section II in-

troduces Diffusion Models and Sec. III describes how
we sample from a trained model. The three CaloChal-
lenge datasets are detailed in Sec. IV. The properties of
CaloScore v2 are provided in Sec. V before present-

1 A forthcoming CaloChallenge review paper will do this carefully,
also including many methods that have not (yet) been published
as standalone papers.
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ing numerical results in Sec. VI. The paper ends with
conclusions and outlook in Sec. VII.

II. DIFFUSION MODELS

Diffusion generative models apply perturbations to the
data to slowly corrupt the initial dataset into a tractable
noise distribution. The generation step aims to reverse
this processes, starting from a noise distribution that is
denoised towards realistic examples of the data to be
generated. The time-dependent perturbation can be de-
scribed by the following stochastic differential equation
(SDE):

dx = f(x, t)dt+ g(t)dw. (1)

In this equation, the data x ∈ Rd are perturbed over a
time parameter t ∈ [0, 1] with perturbation parameters
defined by the choice of drift and diffusion coefficients
f(x, t) ∈ Rd and g(t) ∈ R, respectively. The stochastic
term is identified by the Wiener process, or Brownian
motion, w(t) ∈ Rd, often sampled from a normal distri-
bution with the same dimension as the data. To reverse
this processes towards the generation of new data, the re-
verse stochastic differential equation needs to be solved,
described by

dx = [f(x, t)− g(t)2∇x log p(x)]dt+ g(t)dw̄. (2)

While the forward SDE is easy to solve, the reverse
process requires the knowledge of the term ∇x log p(x),
also known as the score function of the data. Since x
is high-dimensional, the probability density of the data
p(x) is often intractable, and similarly, the score function
cannot be easily estimated. Alternatively, the authors
in [35] have shown that, in the limit of small noise per-
turbations, learning the score function of perturbed data
is equivalent to learning the score function of the data
itself. This observation motivates the loss function

L =
1

2
Ext,t

[
λ(t) ∥sθ(xt, t)−∇xt log q(xt|x)∥22

]
. (3)

The neural network sθ(xt, t) with trainable parame-
ters θ takes as input data xt that has been perturbed at
time t. The weight parameter λ(t) is a positive function
used to determine the importance of each term in the loss
function over time. By considering Gaussian perturba-
tion q(xt|x) = N (xt, αtx, σ

2
t I), the score function of the

perturbed data xt = αtx+ σtϵ, ϵ ∼ N (0, 1)d is identified
as:

∇xt log q(xt|x) =
x− xt

σ2
t

∼ N (0, 1)d

σt
. (4)

In the original CaloScore implementation, λ(t) ≡
σ2
t , which improves the training stability by removing the

σ-dependence of the perturbed score function in Eq. 4.
While the direct prediction of the score function is bene-
ficial, recent works have moved towards learning different

representations of Eq. 3. The reason for this change is
explained by the high variance of the signal-to-noise-ratio
(SNR) distribution αt/σt. At the beginning the diffusion
process, at time values near zero, the standard deviation
of the perturbation is designed to be small, leading to
large values of SNR. Conversely, at time values near one,
the perturbation is the largest to ensure that any prior
data distribution is diffused towards a normal distribu-
tion at the end of the diffusion process, leading to small
values of SNR. Since we expect σtsθ(xt, t) ∼ N (0, 1)d,
the expected values of sθ(xt, t) also show high variance,
requiring sθ(xt, t) to spam a wide range of values. In
CaloScore v2, we instead opt for a so-called velocity
implementation, introduced in [36] that defines a target
vt ≡ αtϵ− σtx which modifies the loss function in Eq. 3
to introduce the updated loss as

L = Ext,t ∥vt − vθ(xt, t)∥2 , (5)

with a neural network trained to learn directly the ve-
locity parameter while taking as inputs the time and the
perturbed data. From this implementation, we can still
identify the approximation of the score function of the
perturbed data as

sθ(xt, t) = xt −
αt

σt
vθ(xt, t), (6)

with the advantage of having the velocity parameter with
similar range over the entire time interval of the diffusion
process.
The choice of the drift and diffusion coefficients f(x, t)

and g(t) are also important parameters of the diffusion
process. In CaloScore, different choices of parameters
were investigated yielding similar performance. The pa-
rameters of the perturbation α and σ can also be used to
define f(x, t) and g(t) with

f(x, t) =
d logαt

dt
xt

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t .

(7)

For CaloScore v2, we choose to focus on the variance
preserving (VP) implementation which additionally re-
quires σ2

t + α2
t = 1. A cosine schedule is used with

αt = cos(0.5πt) and σt = sin(0.5πt). This choice is
in contrast with the previous β-parameterization used
in CaloScore , where f(x, t) = − 1

2β(t)x and g(t) =√
β(t) with β(t) = βmin+t (βmax − βmin) with βmin = 0.1

and βmax = 20. This update is motivated by the use of
the progressive distillation method, explained in further
detail in Section III.

III. SAMPLE GENERATION

With the approximation of the score function of the
data, different methods an be employed to generate new
observations. Stochastic solvers can be used to solve
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Eq. 2. In CaloScore, sampling is performed using
the Euler-Maruyama algorithm [37] followed by an ad-
ditional corrector step that uses the Langevin MCMC
approach [38, 39] to increase the sampling quality. This
approach, however requires the discretization over time
of the reverse SDE in Eq. 2 to be of O(100) to generate
high fidelity calorimeter images. The large number of dis-
cretization steps is a natural consequence of the stochas-
tic nature of the equation to be solved, since the preci-
sion in this case is determined by the magnitude of the
stochastic noise added in each step. On the other hand,
the reverse SDE admits a deterministic solution [35] of
the form

dxt

dt
= f(x, t)− 1

2
g(t)2∇x log q(xt) , (8)

which can be solved with fewer time steps, while also
providing an unique mapping between points of the initial
noise distribution and the generated data. While Eq. 8
can be solved as is with direct integration, the authors of
Ref. [40] propose a different deterministic sampler named
DDIM, also shown to represent an integration rule for
Eq. 8, but requiring fewer time steps to achieve the same
level of precision. In the DDIM solver, the update rule
is then specified by:

xs = αsxθ(xt, t) + σs
xt − αtxθ(xt, t)

σt
, (9)

for time s < t and position prediction xθ(xt, t) = αtxt −
σtvθ(xt, t). Additionally, the choice of the DDIM sam-
pler is also motivated by the use of progressive distilla-
tion [36]. The idea of progressive distillation is to in-
troduce a second model whose task is to learn to halve
the number of time steps required by the DDIM solver
using a trained diffusion model as a guide. In this ap-
proach, the trained diffusion model (“teacher”) is used
to initialize a “student” model. During training, the goal
of the student model is to denoise data xt towards a tar-
get x̃t. The difference is that x̃t does not represent the
clean data (x), but is instead one that makes a single
student DDIM step to match two teacher DDIM steps.
After the student model is trained, generation can be
performed using half the number of time steps compared
to the teacher model. This process is then repeated mul-
tiple times, with the student at the end of each iteration
becoming the new teacher. In CaloScore v2, the initial
diffusion model uses 512 time steps to ensure precision
and is distilled multiple times with results using 8 time
steps and a single time step reported.

IV. FAST CALORIMETER SIMULATION
CHALLENGE 2022

The performance of CaloScore v2 is evaluated using
the datasets released for the Fast Calorimeter Simula-
tion Challenge 2022 [17, 41–43]. Three datasets are pro-
vided, representing calorimeter shower simulations with

Geant4 [44] of different detector geometries and number
of detector components. Dataset 1 [42] is based on the
ATLAS open dataset [17, 45] and is similar to the current
ATLAS detector calorimeter geometry. While samples
consisting of both photons and pions are provided, we
evaluate our model using only the photon dataset. The
voxelization procedure is defined such that it reduces the
amount of empty voxels, while maintaining high fidelity
compared to the full simulation. The downside of this ap-
proach is that the geometrical information present in the
original detector layout is also reduced since each voxel
now covers a different area depending on the number of
detector components merged during the voxelization. A
total of 368 voxels are then left to describe the full detec-
tor slice. Photon energies are provided in this configura-
tion for 15 incident energies ranging from 256 MeV up to
4 TeV in steps given by powers of two. For each gener-
ated energy, 10k samples are provided with this number
reduced at higher energies due to long simulation times,
resulting in a total of 121k used during training.
Datasets 2 [43] and 3 [41] contain each 100k examples

to be used for training and are simulated using a common
detector layout but with different voxelization granular-
ity. The detector simulated has a concentric cylinder
geometry with 45 layers, where each layer consists of ac-
tive (silicon) and passive (tungsten) material, simulated
with Geant4. Simulations for electrons are generated
at the detector surface with initial energy sampled from
a log-uniform distribution ranging from 1 GeV to 1 TeV.
In dataset 2, each layer consists of 144 readout cells, with
9 in the radial and 16 in the angular directions. Dataset
3 is more granular, consisting of 900 readout cells in each
layer, with 18 in the radial and 50 in the angular direc-
tions with a total of 6480 and 40500 voxels, respectively.
Since the initial representation of the datasets 2 and

3 are given in cylindrical coordinates, a preprocessing
step was used in CaloScore to convert the datasets
to Cartesian coordinates. This choice avoids the need
for the generative model to learn the periodic boundary
conditions in the α direction, while also centralizing the
detector readouts. Unfortunately, this transformation is
not reversible, since multiple voxels can be mapped to a
single voxel in the new Cartesian representation2. This
choice limited the comparison of CaloScore with other
generative models and has now been abandoned.
Similarly, CaloScore v2 uses a different data prepro-

cessing to improve the fidelity of the generative model
compared to CaloScore. In the original CaloScore,
each voxel energy Ev is normalized by the value of the
energy of the incident particle E0 times a factor f used
to fix the energy scale normalization caused by the sam-
pling fraction of the detector and ensure the normal-

2 A one-to-one assignment between the two sets of coordinates is
possible, but requires the distance interval in Cartesian coordi-
nates to follow a non-linear function since the transformation of
coordinates is itself non-linear.
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ized voxel energy E′
v = Ev

fE0
lies between 0 and 1. In

CaloScore v2, we instead split the generation into two
tasks: one that generates the overall deposited energy per
layer of the calorimeter, and one that generates normal-
ized voxel distributions. For the second task, the prepro-
cessing is changed, with the normalization factor for each
voxel to be the deposited energy per layer instead of the
incident particle energy. For the first task, to determine
the overall energy per layer, we first divide the deposited
energy per layer by the initial particle energy, multiplied
by the factor f . The additional preprocessing steps ap-
plied to the data are then identical to CaloScore. The
normalized energy depositions are then transformed to
logit-space, similarly to the strategy used in CaloFlow.
The log-transformed value uv is defined as:

uv = log

(
x

1− x

)
, x = α+ (1− 2α)E′

v. (10)

The value α in Eq. 10 is set to 10−6 and avoids a disconti-
nuity when E′

v = 0. The generated particle energy, used
as a conditional input to the model, is also transformed
before training. The transformed conditional energy u0

is defined as:

u0 =
e0 − emin

emax − emin
, (11)

where emin and emax are the minimum and maximum
energies available in the dataset used for the training.
Last, all voxels and energy depositions per layer are stan-
dardized to have mean zero and unit variance across all
training samples.

V. MODEL ARCHITECTURE AND TRAINING
DETAILS

In the previous CaloScore implementation, the
transformation to Cartesian coordinates resulted in a
model that could be efficiently learned using few convolu-
tional layers with large kernel sizes, implemented with a
U-net [46] network architecture. In CaloScore v2, we
employ a similar U-net architecture, but include addi-
tional attention layers. More specifically, datasets 2 and
3 have the number of spatial components in each dimen-
sion reduced by a factor 2 every other convolutional layer
(resulting in a factor 2× 2× 2 = 8 reduction) with fixed
kernel size set to 3. This process is repeated 3 times, with
lowest dimensional representation reduced by a factor 512
compared to the initial number of voxels. The 3D convo-
lution operations use 32, 64, and 96 hidden nodes with
swish [47] activation function. The attention layer is only
used at the lowest dimensional representation, with data
patches determined by the flattened array describing the
data at the lowest dimensionality. The upsampling sec-
tion of the architecture is a mirrored version, with di-
mensions increased by a factor 8 every other layer. Skip
connections between the downsampling and upsampling

sides of the architecture are combined with a concatena-
tion operation, completing the architecture. Conditional
information consisting of the time information, incident
particle energy, and deposited energy per layer (in case of
the diffusion model trained to generate normalized vox-
els), are included through an addition operation after
every convolutional layer. A trainable embedding of the
conditional features is created by a fully connected layer
over the conditional inputs. The output size is fixed to
match the expected output size of the convolutional lay-
ers. For dataset 1, the strategy is similar. The number
of voxels to be simulated are reduced by a factor 2 every
other layer, with this process repeated 4 times and overall
reduction of factor 16 compared to the initial size. The
number of hidden nodes for the 1D convolutional layers
is then chosen to be 16, 32, 64, and 96 for each fixed di-
mensionality. Since this dataset is smaller compared to
datasets 2 and 3, attention layers are used in all lower
dimensional representations of the initial data.
A second diffusion model is introduced in

CaloScore v2, tasked to learn only the energy
deposition per layer. The model used to train the
diffusion model is based on the ResNet [48] architec-
ture, consisting of multiple fully connected layers with
additional skip connections. The number of ResNet
layers is set to 3 in both datasets with 128 hidden nodes
in dataset 1 and 1024 in datasets 2 and 3. Additional
choices of hyperparameters such as overall number of
layers and hidden node sizes were tested and did not
yield noticeable improvements.
The training is carried out using the Perlmutter super-

computer interfaced with the Horovod package [49] for
distributed training. 16 NVIDIA A100 GPUs are used
simultaneously during training, while a single GPU is
used for evaluation and timing comparison. All models
are trained for up to 250 epochs with a cosine learning
rate schedule [50] with initial learning rate of 16× 10−4.
If the loss function does not decrease for 30 consecutive
epochs, evaluated in a separate testing set representing
20% to the sample size, the training is stopped. The im-
plementation of all models is carried out using Keras
backend [51] with TensorFlow [52].

VI. RESULTS

We evaluate the performance of CaloScore v2 us-
ing the metrics available for the evaluation of the Fast
Calorimeter Simulation Challenge 2022, as well as ad-
ditional studies to quantify the agreement of different
physics distributions with the original Geant simula-
tions. Since dataset 3 before distillation is much slower
than datasets 1 and 2, only distilled results with 8 and a
single time step are reported.
Distributions of the total energy deposition and num-

ber of calorimeter hits are presented in Fig. 1. A hit
both in the Geant simulation and from generated sam-
ples is defined by any energy deposition above 0.1 keV in
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dataset 1 and 15.1 kev in datasets 2 and 3.
We observe a good agreement between generated sam-

ples from CaloScore v2 compared to the full simula-
tion. In particular, CaloScore v2 after the distillation
to a single time step is still able to retain precision. In
dataset 1, energies are generated in specific energy in-
tervals, leading to discontinuous values of energy deposi-
tions. We compare the results for the total deposited en-
ergy with between CaloScore and CaloScore v2 us-
ing the 1-Wasserstein distance, referred as the Earth
mover’s distance (EMD), between generated samples and
theGeant simulation. Results for the EMD obtained us-
ing the total deposited energy are listed in Table. I, with
Wasserstein GAN (WGAN-GP) and CaloScore values
taken from the best performing models presented in [31].

TABLE I. Comparison of the earth mover’s distance cal-
culated using the total deposited energy. Values for
CaloScore are selected from the best performing model re-
ported in [31].

Model EMD
dataset 1 dataset 2 dataset 3

CaloScore 1.52 1.8 3.17
WGAN-GP 21.55 5.95 13.29
CaloScore v2 0.21 0.13 -
CaloScore v2 8 steps 0.33 0.15 0.25
CaloScore v2 1 step 0.35 0.19 0.40

We observe a significant improvement compared to
CaloScore with EMD values decreasing by a factor 10
compared to previous results. This improvement stems
from the independent determination of the energy deposi-
tions per layer achieved by the separate diffusion process.
Reduced fidelity is observed in the distilled models com-
pared to baseline CaloScore v2. Nevertheless, even the
single-shot model still improves upon CaloScore.

Next, we study the mean deposited energy versus r, α,
and layer number presented in Fig. 2.

The mean energy as a function of layer number is de-
termined by the independent diffusion model, making it
insensitive to the modeling of individual voxels. In con-
trast, the distributions concerning r and α are sensitive
to the modeling of the individual voxels, with agreement
within 10% observed in all distillation levels.

Additionally, we investigate the angular distributions
of the calorimeter showers in datasets 2 and 3 in terms of
the shower width, shown in Fig. 3. The shower width σi

with xi, i ∈ [1, 2] representing the r- and α- coordinates
is calculated as:

σi =

√
⟨x2

i ⟩ − ⟨xi⟩2, (12)

with energy-weighted mean defined as

⟨xi⟩ =
∑

j xi,jEj∑
j Ej

. (13)

The agreement of CaloScore v2 is often within 10%
compared to the Geant simulation, with exception to

the tails of the distribution located in the later layers of
the detector with differences more pronounced for the dis-
tilled models compared to the baseline CaloScore v2.

We also perform a visual inspection for datasets 2 and
3 using samples generated by CaloScore v2 by look-
ing at the average energy deposition per voxel for 10,000
showers in layers 10 and 44, the layers with the highest
and lowest average energy deposition, respectively. Re-
sults are shown in Fig. 4.

In layer 10, the majority of the energy deposition is
located near r = 0 since incident particles are generated
at the center and orthogonal to the detector plane. As the
electromagnetic shower evolves, the interactions with the
detector material result in more energy deposited away
from the center, with layer 44 showing the majority of
the energy depositions spread over higher values of r.
In all cases, the CaloScore v2 samples are able to
reproduce the correct trend and do not seem to create
any noticeable mismodeling.

Finally, we investigate the energy conditioning of the
model by comparing the distributions of the deposited
energy and the energy of the incident particle. Results
are presented in Fig. 5.

In all cases the CaloScore v2 model is able to cor-
rectly reproduce the deposited energy with spread similar
to the one observed by the Geant samples.

We also perform the so-called “classifier test” where a
binary classifier is trained to distinguish generated sam-
ples from the samples produced by Geant, as used in the
construction of GANs and proposed as a post-hoc metric
in [23]. We use the official classifier and training schedule
provided by the challenge to evaluate the results shown
in Tables II and III for classifiers trained using either
lower level inputs or high level distributions respectively.
A similar classifier test was carried out when evaluating
the original CaloScore performance, where an AUC of
around 98% was observed for all datasets. We should also
point out that not only the classifier architecture, number
of training epochs, and learning rates were different, but
the initial preprocessing to convert datasets 2 and 3 to
Cartesian coordinates makes the comparison of this met-
ric deceptive. On the other hand, CaloScore v2 shows
much lower values for both AUC and JSD metrics, show-
ing a large improvement compared to the previous model.
After distillation, we observe a degradation of the AUC
and JSD in all datasets. Nevertheless, even the single-
shot model observes AUC values significantly lower than
1 in all datasets. Direct comparisons with other models
submitted to the Fast Calorimeter Challenge containing
additional metrics will be made available in the forth-
coming review paper.

We investigate the generation time required by
CaloScore v2 and compare with previous results re-
ported using the same hardware setup in Table. IV. The
baseline CaloScore v2 uses 512 time steps, value
5 times bigger than the original CaloScore, leading
to slower generation times. On the other hand, the
distilled model with 8 time steps and the single-shot
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FIG. 1. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3
(right). The Earth mover’s distance (EMD) between each distribution and the Geant distribution is also provided.

TABLE II. Area under the ROC curve (AUC) and Jensen-
Shannon divergence (JSD) calculated based on the classifier
trained using low level information.

Model AUC/JSD
dataset 1 dataset 2 dataset 3

CaloScore v2 0.758/0.155 0.597/0.023 -
CaloScore v2 8 steps 0.815/0.242 0.709/0.106 0.670/0.075
CaloScore v2 1 step 0.878/0.367 0.755/0.157 0.6974/0.1002

TABLE III. Area under the ROC curve (AUC) and Jensen-
Shannon divergence (JSD) calculated based on the classifier
trainined using high level information.

Model AUC/JSD
dataset 1 dataset 2 dataset 3

CaloScore v2 0.587/0.047 0.622/0.039 -
CaloScore v2 8 steps 0.6278/0.066 0.833/0.282 0.851/0.310
CaloScore v2 1 step 0.714/0.136 0.846/0.305 0.880/0.376

model decrease significantly the amount of time required,
even compared to the initial CaloScore implementa-
tion and with a WGAN with similar overall architec-
ture as CaloScore. The reason for the reduction comes
from CaloScore v2 utilizing convolutional layers with
smaller kernel sizes as opposed to CaloScore. The
larger kernel sizes were required to achieve a more precise

result, since the transformation to cartesian coordinates
increased the data sparsity, leading to a larger fraction
of voxels without energy depositions.

TABLE IV. Number of dimensions, trainable parameter, and
time to generate 100 new calorimeter showers for each dataset
studied in this work. Generation times for Geant are based
on the average time required to generate samples over the
energy range provided.

Model Time to 100 showers [s]
dataset 1 dataset 2 dataset 3

CaloScore 4.0 5.8 33.4
WGAN-GP 1.3 1.33 2.06
Geant O(102 − 103) O(104) O(104)
CaloScore v2 4.0 27.8 73.7
CaloScore v2 8 steps 0.05 0.33 1.71
CaloScore v2 1 step 0.002 0.010 0.011

VII. CONCLUSIONS

In this work we introduced CaloScore v2 as a fol-
low up to CaloScore, a diffusion generative model for
calorimeter shower simulation. Compared to its prede-
cessor, CaloScore v2 brings several changes to both
increase the fidelity of the simulation and decrease the
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FIG. 2. Comparison of the average deposited energies in the r- (left), α- (middle), and z-coordinates (right) for datasets 2 (top)
and 3 (bottom). The Earth mover’s distance (EMD) between each distribution and the Geant distribution is also provided.
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FIG. 3. Comparison of the particle shower width in the r- and α- directions in datasets 2 (first two figures from the left) and 3
(last two figures from the left). The Earth mover’s distance (EMD) between each distribution and the Geant distribution is
also provided.

time required for the sampling of new observations.

We evaluate the performance of CaloScore v2 using
the simulated samples created for the Fast Calorimeter
Simulation Challenge 2022. We separate the generation
process into two problems: generating the overall energy
deposition in each layer of the calorimeter and gener-
ating the normalized voxel response. This modification
improves the quality of the generated samples with bet-
ter estimation of the overall energy deposition. Similarly,
modifications to the network architecture through the use
of attention layers increased the model performance with-
out resulting in slower sampling times. Indeed, a single

evaluation of CaloScore v2 is now faster compared to
a single evaluation of CaloScore.

The sampling speed has also been reduced compared
to CaloScore by a factor 500-2000 through the addi-
tional use of progressive distillation, a technique to it-
eratively reduce the number of time steps required dur-
ing sampling. With this technique, we are able to re-
duce the generation to a single time step, resulting in
the first single-shot diffusion models for detector sim-
ulation in collider physics. While the single-shot dif-
fusion model shows a degradation in fidelity compared
to the baseline CaloScore v2, we still observe an
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FIG. 4. The 2-dimensional distribution of the mean deposited energy in layers with highest (first and third rows) and lowest
(second and fourth rows) mean energy depositions in datasets 2 (first two rows) and 3 (last two rows). Simulated samples from
Geant are shown in the first column, compared with CaloScore v2 using different number of sampling time steps.

overall good performance, also evidenced by the classi-
fier test which is not able to distinguish samples from
Geant and CaloScore v2 with perfect accuracy.

Finally, progressive distillation shows that single-shot
diffusion models can be achieved for fast and high fidelity
simulation in collider physics. This observation moti-
vates future work on reducing the performance degrada-
tion during the distillation process to retain the same
level of precision as the initial diffusion model. Alterna-
tively, smaller model architectures may be able to reduce
even further the evaluation time by exploring additional
symmetries present in the data.

CODE AVAILABILITY

The code used to produce all results presented
in this paper are available at https://github.com/
ViniciusMikuni/CaloScoreV2
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