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Abstract

We describe the performance of MELD-accelerated Molecular Dynamics (MELDxMD) in 

determining protein structures in the NMR-data-assisted category in CASP13. Seeded from web 

server predictions, MELDxMD was found best in the NMR category, over 17 targets, 

outperforming the next-best groups by a factor of ~4 in Z-score. MELDxMD gives ensembles, not 

single structures; succeeds on a 326-mer, near the current upper limit for NMR structures; and 

predicts structures that match experimental Residual Dipolar Couplings (RDC) even though the 

only NMR-derived data used in the simulations was NOE-based ambiguous atom-atom contacts 

and backbone dihedrals. MELD can use noisy and ambiguous experimental information to reduce 

the MD search space. We believe MELDxMD is a promising method for determining protein 

structures from NMR data.
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1 | INTRODUCTION

There are over 11,000 NMR protein structures and restraints in the Biological Magnetic 

Resonance Bank (BMRB) [1] and the Protein Data Bank (PDB) [2] – making NMR the most 

successful technique for protein structure determination after X-ray crystallography. NMR 

experiments take advantage of through sequence (COSY, TOCSY) or through space 

(NOESY) electron spin couplings[3] to identify distance restraints between pairs of atoms, 

which provides information to characterize the native state. Even so, determining structures 

from NMR data can often be troublesome. Information from NMR spectra are ambiguous 
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(multiple atomic interactions can satisfy the same signal) and some signals can be missing or 

incorrect. Solving these problems can be rate-limiting for obtaining a protein structure using 

NMR experiments (Fig. 1 A). A further complication is that an increase in protein size leads 

to an increase of ambiguities, broadness of NMR peaks and peak overlaps. This limits state-

of-the-art NMR protein structure determination to proteins smaller than 50–70 kDa [4]. 

Beyond that, it is usually not possible to generate an assignment informative enough to be 

exploited with current modeling tools. The field needs better ways for handling unassigned 

NMR spectra for larger proteins and their complexes.

A method called MELD (Modeling Employing Limited Data)[5, 6] addresses some of these 

challenges. MELD can harness noisy and/or ambiguous data to accelerate physics-based 

molecular dynamics (MD) modeling. MELDxMD can take advantage of various types of 

information to limit the search-space of MD simulations; it does so using a Bayesian 

framework. MELDxMD retains the important advantage of physical MD that it satisfies 

detailed balance, and that it therefore computes populations and free energies. Using 

MELDxMD we can explore the different interpretations of NMR peak assignments and the 

different conformations that satisfy them, and exploit those conformations that are most 

compatible with both the data and the force field. MELD also permits the integration of 

multiple distinct sources of information in the same simulation, further reducing the search 

space.

Here, we tested MELDxMD on determining protein structures with NMR data, in the 

context of the CASP13 blind test. We show that: (1) MELDxMD NMR-sampling improves 

predictions as compared to ab initio MELDxMD CASP predictions (2) MELDxMD is 

currently the best performing tool to handle NMR data among the few groups that attempted 

this challenge (3) MELDxMD is an effective technique to predict protein structures from 

NMR data, where computationally cheaper machine learning or homology tools fail.

2 | MATERIALS AND METHODS

2.1 | MELDxMD leverages ambiguous NMR data for structure determination

MELD is an MD accelerator that can incorporate external information using Bayesian 

inference (Eq. 1) – an MD force field provides the prior, information the likelihood, and a 

posterior ensemble of structures:

p(x |D) = p(D | x)p(x)
p(D) ∼ p(D | x)p(x) (1)

where x is the structural ensemble, D is data, p(D|x) is the probability of D given x, p(x) is 

the probability of x from MD, and p(D) is a normalization term. Sources of information can 

be from protein heuristics, e.g. form a hydrophobic core, or from experimental data like 

NOESY peaks from NMR (Fig. 1 B). The information is used to apply restraints that, 

depending on the data, enforce atom-atom distance or backbone dihedrals. The amount of 

restraints enforced are based on the reliability of the information, and easily changed for 

different data. In addition, MELDxMD has the ability to take data from one or many 

sources, select subsets of data on-the-fly that are consistent with MD-generated structures, 
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and populate low free energy ensembles that – given reliable data and accurate force field – 

predict native structures. MELDxMD simulations can start from a fully extended protein 

chain or from a template. During the CASP13 NMR data assisted predictions, the protocol 

used by our “Laufer” group (group code 431) seeded MELDxMD with templates from 

server predictions.

The best conformational searching must strike a balance between exploring (relatively 

undirected searching) and exploiting (downhill towards local minima in free energy). When 

NMR data has high accuracy, it can often identify a single conformational envelope (near-

native ensemble), when interpreted correctly, that can be found by simple exploitation. But, 

as the number of identified peaks diminishes or are unassigned, the conformational 

possibilities explode combinatorially. Then, more effective methods are needed to explore 

and exploit.

MELD does this through a Hamiltonian-Temperature Replica Exchange Molecular 

Dynamics (H,T-REMD) protocol [6, 5], with an automated setup to read all the NMR 

information into simulations. In MELD’s H,T-REMD scheme, the high temperature replicas 

explore new conformations where no Hamiltonian modifications are applied, while the lower 

temperature replicas exploit conformations that satisfy subsets and interpretations of the 

NMR data. Inside each conformational envelope where the NMR peaks are satisfied, the 

restraint energy is null, so only the force field energy is used. This allows MELDxMD to 

identify low free energy structures, which are represented by high population conformational 

clusters.

2.2 | NMR data processing

We were given four sources of information: (1) Residue Dipolar Coupling (RDC) data, (2) 

ambiguous NOE-based atom-atom contact lists, (3) sparse TALOS[7] dihedral-angle data 

and (4) evolutionary contacts. We used two of these four sources: the TALOS angles data 

and the NOESY peaks. We complemented the TALOS data with PSIPRED secondary 

structure predictions[8]. In addition, we calculated our own evolutionary information based 

on metagenomic libraries using jackhmmer[9] and GREMLIN[10]. The NOE-based contact 

lists came from ShiftX[11] chemical shifts simulated from CASP13 target X-ray crystal 

structures (except targets n1008 and N1008, which had real NMR data). The NOESY peaks 

were derived from the chemical shifts. Then ASDP (Automated Structure Determination of 

Proteins), software designed for automatic assignment of NOESY data [12, 13], was used to 

generate the ambiguous contact tables that contained possible atom-atom contacts for each 

peak. Some peaks had numerous atom-atom contacts (ambiguous data), while other peaks 

had only a single atom-atom contact (non-ambiguous). Noise was added by the organizers 

by removing some of possible assignments. As participants in the structure prediction 

competition, we did not know which peaks had missing interpretations and hence could be 

noisy (non-satisfiable peaks). Hence, from the user point of view the data was noisy and 

ambiguous. The NMR-derived ambiguous contact data contained distances in addition to 

atom-atom contacts. Prior to integrating the peaks list contact data in MELDxMD, it was 

filtered to remove peaks containing a local contact – defined as a contact between amino 

acids that are less than 4 residues apart in the sequence. Ambiguity from equivalent 
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hydrogen atoms (e.g. methyl groups) was reduced by mapping onto the nearest heavy atom 

and increasing the distance by 1Å. Unambiguous hydrogen atoms (e.g. amide H) were left 

alone.

2.3 | MELDxMD simulation protocol

We used the MELD OpenMM[14] plugin to carry out H,T-REMD with the ff14SBside force 

field[15] and GbNeck2 implicit solvent[16]. We seeded the replica exchange ladder with 15 

predictions from the servers: Baker-Rosettaserver[17], Quark[18], Zhang-Server[19]. The 

server models were first minimized and then seeded to the replica ladder with each replica 

containing one of the models. Therefore, each server prediction was present between 6 and 7 

times in the replica ladder. We used 100 replicas and ran for at least 1 μs or until the 

submission deadline of the given target.

Backbone dihedrals restraints came from secondary structure predictions (PSIPRED [8]) and 

from TALOS angle averages and standard deviations. Both were enforced at 60%. In cases 

where sequence homology queries against metagenomic libraries returned enough hits, we 

used co-evolutionary data produced by GREMLIN[10]. Each query sequence was iteratively 

searched against the May 2017 metaclust[20] database using jackhmmer[9], with bit score 

reporting and inclusion thresholds of 27, and maximum number of iterations set to 4. The 

output was filtered with HHfilter to include only 90% maximize pairwise sequence identity. 

GREMLIN residue-residue contacts that had at least 70% probability of being correct were 

used in MELD. Each residue-residue contact was treated as a MELD group of restraints 

between each pair of heavy atoms using a flat bottom harmonic restraint – 1 restraint had to 

be satisfied in each group. Those groups were inserted into a single collection, where 70% of 

the groups were enforced.

We incorporated NMR data by treating each NMR peak as one group of restraints. Inside 

each group only one restraint had to be satisfied at a given timestep during the MELD 

simulations – which restraint is satisfied depends on the conformation being sampled (see 

next). We arbitrarily decided to enforce NMR peaks at 90% accuracy for all targets since we 

were told to expect some noise. For target N1008, CASP provided real NMR data and 

mentioned to expect higher noise in the dataset – thus we enforced this data at 60%.

At no point is any information discarded. At each MD time step, MELD computes the 

energies of all possible restraints inside a group and chooses the one with lowest energy to 

represent that particular peak until the next time step. Then, at the same time step, all the 

peaks in the dataset are ranked according to their energy (that of the one restraint that MELD 

selected), and 90% of total peaks – those with lowest restraint energy – are enforced until the 

assessment occurs again at the next time step (4.5 femtoseconds). Each replica 

independently selects which restraints are active at a certain time step. The difference 

between the replicas is temperature and the strength of the restraints. Inside the replica 

exchange ladder, the strength of the restraints is controlled by k(α), where k is the force 

constant of the restraint and α is a scaling parameter that depends on the replica index. At 

the end points, k(α) is 0 at the highest replica (α =1) and k(α) is set to kmax (full force) at 

the lowest replica (α = 0). K(α) changes non-linearly in between. In this way no information 
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is ever lost and detailed balance is always obeyed – vital for a physics based methodology. 

Restraints follow our previously developed MELD protocol[6, 5, 21].

Each simulation was started from server templates and ran for several days. To improve 

sampling and compensate for the low exchange probabilities in the REMD ladder, we scored 

the ensembles based on all the provided peaks that did not have ambiguous contacts. We 

selected structures that satisfied the most of these non-ambiguous contacts and seeded them 

into a new round of MELDxMD. This helped us to converge faster on the correct structures 

and allowed us to take advantage of experimental data, not only to guide the sampling, but 

also to score the sampled structures. After CASP we identified a bug in our code that made 

exchanges harder – post-CASP simulations were done resulting in structures of similar 

accuracy (see Fig. S1 and SI text for details).

2.4 | Selecting 5 model structures to submit as CASP13 predictions

For each target, we clustered simulations at the lowest five temperatures and selected the five 

clusters with the highest population (lowest free energy). Clustering was done with a 

hierarchical agglomerative approach, using average-linkage to determine cluster distance 

and to stop clustering when minimum distance between clusters is greater than 2 Å. 

Clustering was done with CPPTRAJ[22] from AmberTools18. Our typical approach to select 

structures when making predictions is to use the representative structure from each of the top 

five clusters, but in this case, we also analyzed the ensembles for most non-ambiguous NOE-

based contacts satisfied and lowest non-ambiguous contacts restraint energy. We then 

selected five structures based on those three criteria by visual inspection.

2.5 | Measures of structure predictions and rankings.

The main measure of model quality used was GDT_TS (global distance test, total score) 

[23], which roughly represents the percentage of the structure within a certain cutoff to the 

native structure. The higher the score, the better the quality of the model. We used results 

reported by the CASP assessors for predictions submitted to CASP, and calculated the values 

for the post-CASP simulations in-house. TMscore[24] is another measure of structure 

quality, independent of protein size, and was also used to assess our predictions. The group 

rankings were done by z-score based on GDT_TS. In general, z-score is the difference 

between a sample and a mean divided by the standard deviation, which gives a relative 

measure of performance; positive z-scores are above average, z-scores of zero are average, 

and negative z-scores are below average. The group rankings were calculated according to 

the typical CASP procedure, by: 1) finding z-score using the best GDT_TS scores for each 

target 2) removing z-scores below 0.0 3) re-calculating z-scores 4) assigning z-scores of 0.0 

or below to 0.0, and 5) summing z-scores across all targets to give a cumulative z-score for 

each group.

2.6 | MELDxMD simulations without NMR data

We took part in the main CASP event (also as Laufer group 431), for which we made 

predictions based only on sequence knowledge. Instead of using experimental data, we used 

coarse physical insights (CPI) [5], evolutionary data when available [25], and seeded server 
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predictions into MELDxMD. There were 8 assessment units for which we had both NMR 

data-assisted and regular CASP results.

3 | RESULTS & DISCUSSION

3.1 | MELDxMD successfully incorporates ambiguous and noisy NMR data

MELDxMD was developed to integrate many types of data from a variety of sources into 

physics-based simulations, which allowed us to include NMR data in the simulations 

without any custom MELD code modifications, only a script to pre-process the NMR data 

(see methods). The power of MELDxMD is its flexibility with external information and its 

ability to select subsets of noisy, sparse, and ambiguous data consistent with the structures 

sampled by the force field in MD to reduce conformational searching and populate 

ensembles of near-native structures. In CASP13, this approach had a higher cumulative z-

score (Fig. 2A) than all other methods that used NMR data to build models, including the 

three baseline predictors that used ASDP. While in general a positive z-score value can be a 

result of many below average predictions and one very good prediction, our results show 

consistent enhancement over many targets (Fig. S2), asserting that our high z-score is, in 

fact, a consequence of regular improvements in prediction quality.

Below, we detail MELDxMD successes and failures from CASP13. We also discuss 

improving some explore and exploit strategies that we believe will improve the quality of 

NMR-informed physics-based simulations.

3.2 | What went right?

MELDxMD made accurate predictions, including a 326-residue protein.—There 

were 14 targets released during CASP13 and we submitted 5 models for all 14 targets. 

Evaluators determined from those targets that there would be 17 evaluation units (domains). 

Of the 17 evaluation units, MELDxMD had the best NMR data-assisted prediction for 12/17 

(see Fig. S2) (considering all 5 models, and 9/17 considering first model). Several of our 

predictions resulted in structures with GDT_TS values better than from any other predictor, 

including those from regular CASP13 (see Fig. 2B and 3). The targets ranged in size from 

54 to 326 residues, and our GDT_TS from 26.22 to 86.11 (see Table S1 and Fig. S3). The 

two best MELDxMD predictions based on GDT_TS were domains D1 and D2 from target 

N0957s1, and both predictions for N0957s1-D1 and N0957s1 scored higher than all other 

CASP predictors (Fig. 2B, 3A, and S4). Comparing to methods that did not use NMR data, 

MELDxMD predicted structures with the highest GDT_TS scores for six targets: N0957s1-

D1, N0981-D5, N0981-D4, N0957s1, N0989-D2, and N0981-D2 (Fig. 2B and 3).

Target N1005-D1 was a challenge for MD + NMR methods, at 326 residues long. This size, 

~40 kDa, is at the limits of NMR, and beyond the limits of MD. The largest protein 

previously folded by MD without data is just over 100 residues[26], and MELDxMD has 

only been able to fold proteins up to 240 residues, with the aid of experimental data[21]. 

There are only ~50 NMR structures currently in the PDB larger than this. However, 

MELDxMD was able to leverage the NMR data to explore near-native conformations and it 
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generated 5 reasonable structures (TMScore 0.64–0.68). So, MELDxMD looks promising 

for getting NMR structures of these challengingly large proteins.

NMR data improved MELDxMD predictions.—Of the 17 NMR data-assisted 

evaluation units, MELDxMD was also run on 8 of them without incorporating NMR data – 

using only heuristics, evolutionary contacts, and server predicted starting templates 

(submitted as regular CASP targets). The NMR data improved GDT_TS by an average of 

31.25 points (Fig. 3B, left panel), a larger improvement than any other group that submitted 

regular and data-assisted models.

MELDxMD with NMR predictions improved the best server predictions.—To 

reduce conformational searching compared to folding from a fully extended chain and 

exploit the ability of servers to quickly generate structures, the MELDxMD replica ladder 

was seeded with 15 server predictions. The server prediction templates were all 5 models 

from the Zhang-Server[19], Quark[18], and Baker-Rosettaserver groups[17], which were 3 

of the top 4 ranked server groups in CASP13. MELDxMD improved the GDT_TS for 12 of 

17 evaluation units an average of 13.70 points, i.e. for 12 targets the best MELDxMD model 

scored higher than the best of the 15 template models from the three servers (Fig. 3B, 

middle panel). Templates that scored higher than MELDxMD only did so by 6.04 GDT_TS, 

and were either high scoring predictions that servers simply outperformed (n1008-D1), or 

were hard targets that servers scored poorly (GDT_TS 27.64 to 55.83) but just slightly better 

than MELDxMD (N0981-D3, N0989, N0989-D1, and N1005-D1).

Without explicit instructions to do so, our structures agreed with RDC data.—
In addition to Cα-based structural measures like GDT, the CASP assessors also identified 

how well predictions satisfied the given data. MELDxMD models had high RPF[12, 27] 

(recall, precision and F-measure for NOESY peak data) scores, and ranked near the top with 

the ASDP methods. A noteworthy result was that our models had good agreement with 

Residual Dipolar Couplings (RDC) data although we did not include RDC data to build our 

models. Finally, the sidechain rotamers that MELD explored were in good agreement with 

experiments, an attribute – and additional validation – of the force field.

MELDxMD worked as well on real data as on simulated data.—Targets N1008 

(backbone only) and n1008 (backbone and sidechain) used real, rather than simulated, NMR 

data. These targets had more noisy data than the simulated ones – more unassigned and 

incorrectly assigned peaks – yet our best models had high GDT_TS scores of 74.03 and 

67.87 (Fig. S5).

Improvements over CASP11-NMR.—CASP11 had previously challenged predictors to 

incorporate NMR data, and we had used MELD to successfully model some structures. One 

big difference between the two competitions is that, in CASP11, each NOESY peak had at 

least one correct atom-atom contact. In CASP13, we were told that after using ShiftX for 

ILVA methyl assignment, about 30% of the assignments would be deleted – hence some 

NOESY peaks might not be satisfied by the remaining assignments. Therefore, in CASP11 

we tried to satisfy 100% of the NOESY peaks, while in CASP13 we enforce 90% – this 

increased the challenge in using CASP13 data: we considered CASP11 as ambiguous and 
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CASP13 as ambiguous and noisy. Table S2 and Figure S6 show that the number of peaks 

and individual interpretations of the peaks was roughly similar in both CASPs, as were the 

overall quality of our resulting structures.

Hence, in CASP13, the sampling protocol and force field had to account for a larger success 

of the predictions. Furthermore, selection of structures based on agreement with NMR data 

was more challenging. In CASP11, every peak with only one interpretation had to be 

correct, so agreement with those peaks was a metric for selecting structures and success. In 

CASP13, due to the deleted assignments, some of those peaks did not necessarily have to be 

satisfied. Our combination of choosing structures based on cluster population and restraint 

energy penalty score proved useful to overcome this issue.

3.3 | What went wrong?

Sometimes, replicas had poor exchanges.—The H,T-REMD scheme is meant to 

enhance sampling and expand the efficiency of MD exploration. Yet, we found that walkers 

(systems that move up and down the replica ladder by exchanging positions in the ladder 

with their neighbor) were not completing roundtrips between the highest and lowest 

temperatures as expected. Walkers favor exploration up the ladder, and exploitation down the 

ladder. Neighboring replicas (structures) exchange best when their energy overlap is high, 

and fail to exchange when large energy gaps occur. All of our prior experience has shown 

that 30 replicas is appropriate. However, we found that this was not the case with NMR data 

in this CASP. Figure S7 shows the exchange of a typical trajectory we sampled. As can be 

seen, exchanges are very infrequent and the lowest replica is only visited by four walkers. 

Hence, sampling and convergence is slow (in the limit of no exchanges this would be the 

equivalent of using independent MD trajectories).

To mitigate this problem during CASP and favor exchanges up and down the ladder, we 

resorted to two atypical interventions. The first was to increase the number of replicas from 

30 to 100 in order to diminish the energy gap between the replicas and increase the 

probability of exchange and exploration. The second intervention consisted of periodically 

stopping the simulation, clustering structures, and identifying frames with low numbers of 

restraints violations (see below). Following this, new MELDxMD simulations were seeded 

using those frames capitalizing on the fact that starting with a set of similar structures 

reduces the energy gap and allows walkers to exchange more frequently.

NMR data led to energy landscapes that were difficult to explore.—An average 

protein had 200 NOESY peaks after pre-processing, and each of those peaks typically had 

six ambiguous interpretations, where only 90% of peaks were considered to be correct. 

These considerations result in 10218 possible subsets of restraints for an average protein, 

each of which restrains two atoms to distances between 5–7 Å. Therefore, the NMR 

restraints define a tight conformational envelope that creates a frustrated energy landscape 

that was difficult to navigate. To illustrate, Figure S8 shows ensemble fluctuations between 

simulations in which we used NMR data and those where we did not. The average root-

mean-square fluctuation (RMSF) was smaller for simulations that used NMR data.
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Sometimes, we used inaccurate co-evolutionary contacts.—The co-evolutionary 

contacts (ECs) we calculated were less precise than the ECs provided by CASP (See Fig. 

S9). These inaccurate contacts were enforced at 70% precision, as described in our protocol, 

which was too high given the true precision and guided the simulations to non-native 

structures. Post-CASP, we repeated simulations using the provided ECs and saw an overall 

improvement, with two proteins (N0968s2-D1 and N0957s1-D2) improving over 20 GDT 

points (see Fig. S10). Yet, the overall improvement from using the provided ECs was modest 

because, although more accurate, they were uninformative since they were mostly local 

contacts that occurred in secondary structure elements, areas where MELDxMD often does 

well on its own, and we expect that more long-range, informative ECs would further 

improve predictions.

Sometimes, our constraints favor structures that are too compact.—For some 

targets MELDxMD predicted the individual domains accurately, but failed in producing 

accurate models of the assembly. For example, our prediction for N0989-D2 was best in 

CASP, but our N0989 prediction was our worst (though this target challenged all regular and 

data-assisted predictors). Figure S11A shows N0989 to be made up of two domains 

interacting loosely with each other through a linker loop, whose flexibility was poorly 

modeled by MELDxMD, which tended to bring the domains together to form a more 

compact structure. We anticipate finding that some of the poor performance on entire 

proteins compared to domains could be explained by the tendency of the force field to make 

compact structures[15, 28, 29], thus, modeling each domain well but producing an overall 

structure that is more compact than true native. In addition, N0989 is a trimer but we only 

modeled the monomer, which could also explain the poor result. Previously, MELDxMD has 

shown the ability to rescue [26] force field errors given accurate external information, so 

more complete analysis will be done when all reference structures are published. We see two 

ways for improving on this issue in the future: (1) using RDC data to determine the relative 

orientations of the domains and (2) using NMR data for domain parsing (other groups in 

CASP identified that the NMR data showed contacts in one part of the protein and complete 

absence of peaks between domains). This domain parsing strategy could add enough 

informational restraints to prevent the force field from compacting domains together.

4 | CONCLUSION

Determining protein structures from NMR data can sometimes be challenging because of 

ambiguities in assignments, or limitations or noise in the data. Some form of computer 

assistance is needed. Computational integrative modeling can be limited by the databases 

they require or by the assumptions required in using them, such as defining alignments. In 

principle, molecular dynamics using physical force fields can help, but brute force MD is 

usually computationally challenged, especially for large protein structures. CASP provides 

an excellent testbed for methods because it is blinded and time limited. Here, we find that 

MELDxMD can give a good solution to these problems. On the one hand, it substantially 

accelerates MD, and retains the benefits, such as an ability to compute ensembles and 

populations. On the other hand, it is able to handle troublesome ambiguities or noise or 

combinatoric choices in the data that it harnesses to speed up the MD. We have shown here 
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that MELDxMD, seeded by servers, has significantly outperformed other methods in this 

CASP13 test, and that it has the capability of reaching for relatively large protein structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MELDxMD handles ambiguous NMR data to generate near native structures.
A) The ambiguity problem with unassigned NOESY data makes integrative modeling 

challenging. B) MELDxMD handles sparse, noisy, and ambiguous data from various sources 

such as secondary structure predictions, 2D NOESY peaks, NMR dihedrals from NMR 

chemical shifts, and contact predictions. For data-assisted CASP13, MELDxMD starting 

coordinates were 15 server models, these were seeded into Hamiltonian, Temperature replica 

exchange molecular dynamics that enforces restraints on subsets of data consistent with 

structure in the MELDxMD ensemble. The ensemble trajectory is clustered and 
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representatives from the five most populated clusters are submitted to CASP. Funnel figure 

for MELDxMD adapted with permission from A. Perez, J. L. MacCallum, and K. Dill, Proc. 

Natl. Acad. Sci. U. S. A. 112, 11846 (2015). Copyright 2015 National Academy of Sciences, 

USA.
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Figure 2. MELDxMD was the highest-ranked group in NMR data-assisted CASP13. It was also 
best-in-CASP for some individual targets.
A) The MELDxMD method (group code 431) had the highest Z-score of all groups that 

competed in NMR data-assisted CASP13. B) MELDxMD predictions are aligned to 

reference structures, including 5 that were best in CASP, our best prediction (N0957s1-D2), 

and a large target that would be inaccessible by either MELDxMD or NMR alone (N1005-

D1)

Robertson et al. Page 14

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. MELDxMD was better with NMR data, better than server templates, and compared 
well against regular predictors.
A) MELDxMD models that beat regular CASP predictions are highlighted in orange. The 

best MELDxMD model (dark blue) is compared to the best of any non-data-assisted 

prediction (light blue) and MELDxMD without NMR data (green) for all 17 evaluation 

units. Not all targets were run with MELDxMD without NMR data. B) The left panel shows 

8 systems that were simulated by MELDxMD with and without NMR data. Using NMR 

data helped MELDxMD make better predictions. The middle panel shows MELDxMD with 

NMR data compared to the server predictions used to seed the MELDxMD replica ladder. 

MELDxMD generally improved on the server predictions. The right panel shows 

MELDxMD with NMR data compared to the best of other NMR predictors or regular 

category predictors (whichever was best for each target).

Robertson et al. Page 15

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	MELDxMD leverages ambiguous NMR data for structure determination
	NMR data processing
	MELDxMD simulation protocol
	Selecting 5 model structures to submit as CASP13 predictions
	Measures of structure predictions and rankings.
	MELDxMD simulations without NMR data

	RESULTS & DISCUSSION
	MELDxMD successfully incorporates ambiguous and noisy NMR data
	What went right?
	MELDxMD made accurate predictions, including a 326-residue protein.
	NMR data improved MELDxMD predictions.
	MELDxMD with NMR predictions improved the best server predictions.
	Without explicit instructions to do so, our structures agreed with RDC data.
	MELDxMD worked as well on real data as on simulated data.
	Improvements over CASP11-NMR.

	What went wrong?
	Sometimes, replicas had poor exchanges.
	NMR data led to energy landscapes that were difficult to explore.
	Sometimes, we used inaccurate co-evolutionary contacts.
	Sometimes, our constraints favor structures that are too compact.


	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.



