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ARTICLE OPEN

Confounders mediate AI prediction of demographics in
medical imaging
Grant Duffy1, Shoa L. Clarke 2, Matthew Christensen1, Bryan He 3, Neal Yuan 4, Susan Cheng 1 and David Ouyang 1,5✉

Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician
interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age,
race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding
variables. Using a total of 433,469 videos from Cedars-Sinai Medical Center and 99,909 videos from Stanford Medical Center, we
trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to
identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI
model predicted sex with an AUC of 0.85 (95% CI 0.84–0.86), age with a mean absolute error of 9.12 years (95% CI 9.00–9.25), and
race with AUCs ranging from 0.63 to 0.71. When predicting race, we show that tuning the proportion of confounding variables (age
or sex) in the training data significantly impacts model AUC (ranging from 0.53 to 0.85), while sex and age prediction was not
particularly impacted by adjusting race proportion in the training dataset AUC of 0.81–0.83 and 0.80–0.84, respectively. This
suggests significant proportion of AI’s performance on predicting race could come from confounding features being detected.
Further work remains to identify the particular imaging features that associate with demographic information and to better
understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.
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INTRODUCTION
Recent advances in deep learning have resulted in leaps in
performance in analyzing and assessing image data, both with
natural images as well as diagnostic medical images1–3. While
traditional computer vision datasets are used by algorithms to
perform common perceptive visual tasks that are achievable by
most humans (for example, recognizing a cat when an animal is in
the image)2,4,5, deep learning in medicine has extended to tasks of
prognosis and detection beyond the normal abilities of human
clinicians. From evaluating blood pressure in fundoscopic images6

to predicting prognosis and biomarkers from videos7,8, convolu-
tional neural networks are being applied to tasks not traditionally
performed by clinicians.
Recent work from a variety of researchers on many medical

imaging modalities have suggested deep learning can identify
demographic features from medical waveforms, images, or
videos6,8–12. The ability of deep learning algorithms to identify
age, sex, and race from medical imaging raises challenging
questions about whether using artificial intelligence (AI) black
box models can be a vector for perpetuating biases and
disparities13–15. The current regulatory environment does not
require the demonstration of standard performance across
different populations16, however it has been shown that even
when race is not directly used as an input, complicated
decision support systems can learn patterns that reinforce
disparities in access or treatment17.
In this analysis, we sought to systematically evaluate whether

demographic information can be captured from echocardiogra-
phy, cardiac ultrasound, videos using deep learning. Using video-
based deep learning architectures known to be able to capture

quantitative traits commonly assessed by clinicians as well as
textual patterns associated with disease18,19, we evaluate whether
echocardiogram videos can be used to predict age, sex, and race,
and whether these models are robust across varying confounding
variables and generalize across institutions with different geo-
graphic and demographic characteristics.

RESULTS
Study cohort characteristics
This study used cohorts of patients from two geographically
distinct independent health care systems with different patient
demographics. The Cedars-Sinai Medical Center (CSMC) study
cohort consists of 30,762 patients who underwent 51,640
echocardiogram studies, individual instances when imaging were
obtained, between 2011 and 2021. The same patient can undergo
multiple studies over time as clinicians assess for change over time
or for disease surveillance. A total of 433,469 videos from
51,640 studies were used representing apical-4-chamber, apical-
2-chamber, parasternal long axis, and subcostal view videos. The
mean age at the time of echocardiogram study was 66.5 ± 16.4
years, 44.8% were women, and 68.8% self-identified as White. The
Stanford Healthcare (SHC) study cohort consists of 99,909 patients
who underwent 99,909 echocardiogram studies between 2000
and 2019. The mean age at the time of echocardiogram study was
59.9 ± 17.7 years, 44.3% were women, and 56.5% self-identified as
White. Demographic characteristics are shown in Table 1.
When initially trained on 99,909 apical 4 chamber videos from

SHC without balancing confounding covariables, video-based
deep learning models successfully learned features of age, sex,
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and race. The deep learning model accurately predicted sex with
AUC of 0.93 on the hold-out test set and 0.85 on the external test
set of apical 4 chamber views from CSMC. Predicting Black, Asian,
and White races, the AI model achieved an AUC of 0.74, 0.73, and
0.71 respectively on the hold-out test set and 0.71, 0.66, and 0.63
on the external test set. This performance was similar in both
inpatient as well as outpatient echocardiograms (Supplementary
Table 1) when trained and evaluated on CSMC data. The AI model
predicted age with a MAE of 7.40 years on the hold-out test set
and 9.29 years on the external test set. In general, there was a
slight drop off in model performance with external validation as
shown in Fig. 1; however, the model learned generalizable
features that allowed for high accuracy in external validation
datasets with sufficient training examples. When trained on
echocardiogram videos from CSMC without balancing confound-
ing covariables, video-based deep learning models similarly
successfully learned features of age and sex and, to a lesser
extent, race. With 150,913 CSMC apical 4 chamber video training
examples, the deep learning model accurately predicted sex with
an AUC of 0.84, age with a MAE of 9.66 years, and race with an
AUC ranging from 0.54 to 0.60 on the held-out test dataset. A

similar trend was seen when training models using different
echocardiographic views as input (Table 2). Ensembling the
information from all views modestly improved model perfor-
mance, but continues to show limited predictive ability for race
compared to age and sex.
We hypothesized that the modest ability to predict race from

echocardiograms may depend on biased distributions of pre-
dictable features in race-stratified cohorts. For example, in the
CSMC data, the proportion of males among the White subset is
slightly higher (58.5%) compared to the proportion of males in the
Black subset (54.1%). To test the impact of bias in a single
predictable covariate, we artificially created subset datasets where
race was confounded by sex. When sex is matched (bias= 0.5) in
the training set, the model performance decreased for predicting
White race (AUC 0.57) compared to the model trained without
matching (AUC 0.59). We then created datasets with artificially
introduced bias by selecting patients from subgroups unevenly.
For example, a model for predicting race was trained with a
dataset with an 80% sex bias means that 80% of the White
patients are male, 20% are female while 80% of non-White
patients are female while 20% are male. For predicting binary race

Table 1. Demographic characteristics of study participants.

CSMC SHC

Apical 4 chamber Apical 2 chamber Parasternal long axis Subcostal Apical 4 chamber

n, patients 28,450 25,502 28,685 23,596 99,909

n, videos 186,426 71,086 110,399 65,558 99,909

Age (mean (SD)) 66.5 (±16.5) 66.7 (±16.5) 66.1 (±16.5) 66.2 (±16.4) 59.9 (±17.7)

Male (%) 15,713 (55.2%) 14,093 (55.3%) 15,739 (54.9%) 12,884 (54.6%) 55,610 (55.7%)

Race/ethnicity, n (%)

American Indian 65 (0.2%) 57 (0.2%) 66 (0.2%) 56 (0.2%) 267 (0.3%)

Asian 2162 (7.6%) 1945 (7.6%) 2157 (7.5%) 1808 (7.7%) 14,197 (14.2%)

Black 4058 (14.3%) 3681 (14.4%) 4156 (14.5%) 3322 (14.1%) 4826 (4.8%)

Pacific Islander 87 (0.3%) 82 (0.3%) 86 (0.3%) 75 (0.3%) 1428 (1.4%)

White 19,519 (68.6%) 17,444 (68.4%) 19,595 (68.3%) 16,211 (68.7%) 56,498 (56.5%)

Other 1980 (7.0%) 1790 (7.0%) 2021 (7.0%) 1659 (7.0%) 17,452 (17.5%)

Unknown 579 (2.0%) 503 (2.0%) 604 (2.1%) 465 (2.0%) 5241 (5.2%)

CSMC Cedars-Sinai Medical Center, SHC Stanford Healthcare.

Fig. 1 AI model performance in predicting demographics in with unadjusted training and test datasets. A Performance in Predicting Sex
of Model trained at Stanford on Internal Held-out Test Set and External (Cedars) Held-out Test Set. B Performance in Predicting Race of Model
trained at Stanford on Internal Held-out Test Set and External (Cedars) Held-out Test Set. C Performance in Predicting Age of Model trained at
Stanford on Internal Held-out Test Set and External (Cedars) Held-out Test Set.
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classification biased by both age (binarized at 65 years old) and
sex, model performance is poor but increases as bias increases. As
bias in the training dataset approaches 100%, model performance
approaches the performance of the confounding task, 0.85 and
0.84 for age and sex classification respectively. For predicting
binary age and sex, performance is mostly unaffected when
confounded by binary race suggesting that race adds little to no
signal as a confounder for these tasks (Fig. 2). These results
demonstrate how even a single confounder may be used by a
deep learning model to predict race.
We expect that in most real-world datasets of clinical data, there

are many relevant confounders that vary across race categories.
Some of these confounders are comorbidities as shown in Table 3.
To evaluate the predictive power of these confounders, we used
logistic regression to predict White from non-White from
comorbidity data alone. This method resulted in an AUC of 0.62,
comparable to the AI computer vision model trained on CSMC
data. Many of these cardiovascular comorbidities have known
cardiac imaging findings. If an AI is able to detect imaging findings
of these confounders, then it would be able to “shortcut” predict
race without learning any additional information.

DISCUSSION
In this study, we systemically evaluated whether deep learning
models can learn features of age, sex, and race from large datasets
of echocardiogram videos. Consistent with prior applications of AI
to medical imaging, we show that echocardiogram videos can be
used to accurately predict age and sex and the models generalize
across institutions. In contrast, we were not able to reproduce
similarly accurate predictions of race and the model performance
did not generalize well across institutions. Our experiments
suggest race prediction results from shortcutting through predic-
tions of known confounders commonly seen when stratifying
large population cohorts by race.
Consistent with our deep learning model’s high accuracy in

predicting age and sex, there are well known age-associated
changes20,21 and sexual dimorphism22,23 in cardiac structures
visualized by ultrasound. While clinicians do not routinely use
echocardiography to assess age, established age-dependent
references for echocardiography and cardiac MRI highlights the
recognized changes seen with normal cardiac remodeling of
aging24. Conversely, conventionally measured metrics in echocar-
diography do not significantly vary across race, often within
measurement error across cohorts21,24. Others have shown that AI
models can predict race accurately using chest X-rays, thoracic CT
scans, and breast mammograms12. These results are surprising
given racial categories are imprecise, lack objective definitions,
and have varied over time and by geography25. Nonetheless,
identifying if and when AI may predict race is important for the
thoughtful development of equitable applications of AI to
medicine26. We believe it is equally important to understand
how and why AI may predict race. Without careful analyses and

discussion of such predictions, we risk sending the dangerous and
false message that race reflects distinct biological features. This
falsehood has been the basis of several missteps in medicine27.
Our results suggest that AI models may predict race by

leveraging the non-random distribution of predictable features
in race-stratified cohorts. We use sex and age, two highly
predictable features previously shown to be predictable by AI
on medical imaging11, to demonstrate that the degree of bias in a
predictable confounding feature can arbitrarily impact prediction
of a downstream task, such as predicting race even when there is
limited information. Consequentially, we expect that there are
many imaging-relevant features with varying predictability that
contribute to the performance of AI race prediction from medical
imaging. Importantly, some features, particularly related to health
and disease, reflect the impacts of social determinant of health,
and thus systemic differences in these features by racial category
in population cohorts is a marker of the structural racism in
medicine and society28.
There are a few limitations in this study worth mentioning. First,

the echocardiogram videos used in this study were only of two
institutions, although geographically distinct and with different
population demographics. The predominant ultrasound machine
make and model was the same in both institution, which could
standardize input video information and facilitate external validity
but through imaging characteristics that are particular to that
particular ultrasound machine. Second, the medical imaging used
in this study were obtained in the course of routine clinical care,
thus are enriched for individuals with access to healthcare and
comorbidities that might have particular relationships with age,
sex, and race. While this work was motivated to understand if AI
models can shortcut prediction tasks through predicting demo-
graphics, there are biases regarding who is able to access
healthcare, at what stage of disease, and for whom imaging is
obtained. Third, we are unable to remove all confounders in the
experimental set-up as there are many other measured and
unmeasured differential covariates among populations. However,
even in a setting with likely residual remaining confounding,
models to predict race in echocardiography performed poorly and
without generalizability. Without release of demographic informa-
tion from other studies, we cannot generalize these findings
across other medical imaging modalities, although we took
particular care in adjusting for confounders. Finally, different
views in medical imaging encode different information. In
echocardiography, we think the A4c view is one of the most
informative views and our experiments suggest the A4c view has
the highest performance in predicting demographics, but addi-
tional future experiments might better detail how demographics
are encoded in medical imaging and be a source of bias. Ethical
considerations must be considered carefully, as fair application of
AI is required to avoid perpetuating or exacerbating current biases
in the healthcare system.
In summary, echocardiogram videos contain information that is

detectable by AI models and is predictive of demographic

Table 2. Model performance when trained on different views.

Sex (AUC) Age (MAE) White vs Rest (AUC) Black vs Rest (AUC) Asian vs Rest (AUC)

Cedars-Sinai

Apical 4 chamber 0.84 (0.84–0.85) 9.66 (9.55–9.77) 0.59 (0.58–0.60) 0.60 (0.59–0.61) 0.54 (0.52–0.55)

Apical 2 chamber 0.80 (0.79–0.81) 10.82 (10.61–11.03) 0.58 (0.57–0.60) 0.60 (0.58–0.61) 0.55 (0.53–0.58)

Parasternal long axis 0.84 (0.83–0.85) 9.11 (8.97–9.25) 0.63 (0.61–0.64) 0.62 (0.61–0.64) 0.58 (0.56–0.60)

Subcostal 0.74 (0.73–0.75) 11.73 (11.62–11.81) 0.55 (0.54–0.57) 0.55 (0.53–0.57) 0.55 (0.53–0.58)

Ensemble of all views 0.93 (0.92–0.94) 7.78 (7.55–8.0) 0.71 (0.69–0.74) 0.72 (0.69–0.74) 0.60 (0.56–0.64)

Stanford

Apical 4 chamber 0.93 (0.92–0.93) 7.40 (7.28–7.53) 0.71 (0.70–0.73) 0.74 (0.71–0.76) 0.73 (0.71–0.74)

G. Duffy et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   188 



features. Age and sex features appear to be recognizable and
generalize across geography and institution, while race prediction
has significant dependence on the construction of the training
dataset and performance could be mostly attributable to bias in
training data. Further work remains to identify the particular
imaging features that associate with demographic information
and to better understand the risks of demographic identification
in medical AI as it pertains to potentially perpetuating bias and
disparities.

METHODS
Datasets
We used echocardiogram video data from two large academic
medical centers, CSMC and SHC. Originally stored as DICOM
videos after acquisition by GE or Philips ultrasound machines, we
used a standard pre-processing workflow to remove information
outside of the ultrasound sector, identify metadata29, and save
files in AVI format. Videos were stored as 112 × 112 pixel video
files and view classified into four standard echocardiographic

Fig. 2 Model performance mediated by varying training dataset ratio of confounding variable. a Model performance in predicting race
with varying levels of sex bias in the training set. b Model performance in predicting sex with varying levels of race bias in the training set.
cModel performance in predicting race with varying levels of age bias in the training set. dModel performance in predicting age with varying
levels of race bias in the training set.

G. Duffy et al.
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views (apical-4-chamber, apical-2-chamber, parasternal long axis,
and subcostal views). At time of training, a random 32 frame clip
was selected and every other frame (16 frames per clip) were
inputted into the model.
Echocardiogram videos were split into training, validation, and

test datasets by patient to prevent data leakage across splits.
Demographic information was obtained from the electronic health
record. Age was calculated from time from the echocardiogram
study to date of birth. Information about sex and race were
obtained from the electronic health record based on self-report
from the clinical record. Comorbidities were extracted from the
electronic health record by International Classification of Disease
Ninth or Tenth Revision codes present in problem lists or visit
associated diagnoses within 1 year of the echocardiogram
imaging study. This analysis did not independently re-survey or
use other instruments to evaluate data labels.
For experiments sweeping model performance with various

degrees of biased training datasets, we subsetted the whole
dataset to form simplified cohorts that binarized demographic
categories and maintained the same training set size across
experiments. The breakdown of these subgroups can be found in
Supplementary Tables 2 and 3. Additionally, Supplementary Table
4 shows the distribution of ultrasound machines and transducer
models used in the study. For predicting race, we focused on
white/non-white binary classification and varying the confounding
variable of sex and binary classification of age, binarized at 65
years old. For example, a bias of 0.5 corresponds to a dataset
where 50% of both white and non-white examples are male and
female. A bias of 1.0 corresponds to a dataset where all of the
white patients are male and all of the non-white patients are
female. Other than training dataset construction, all other model
training details (architectures, loss, learning rate, number of
epochs, etc) were held the same. The parallel set of experiments
predicting sex used the same format only with race proportion in
the training set varied as the confounding variable.

AI model architecture
Spatiotemporal relationships were captured by our deep learning
model using 3D convolutions using standard ResNet architecture
(R2+ 1D)18. This model interprets 3D videos by using 2D special

convolutions and 1D temporal convolutions at every convolu-
tional layer. Models were trained to minimize L2 loss for predicting
age (a regression task), binary cross entropy for predicting sex (a
binary classification task), and cross entropy for predicting race (a
multi-class classification task). Models were trained using stochas-
tic gradient descent with an ADAM optimizer using an initial
learning rate of 0.01, momentum of 0.9, and learning rate decay.
Models were trained using an array of NVIDIA 2080, 3090, and
A6000 graphical processing units. Deep learning models were
trained with input videos of each individual view and an ensemble
model was constructed by logistical regression with inputs of the
inference prediction from models of each view.

Analysis
The performance of deep learning models was assessed on
internal held out datasets or external datasets from another
institution. The performance of predicting age was evaluated by
the mean absolute difference between the model prediction and
actual age at time of echocardiogram study. The prediction of sex
and race was evaluated by area under receiver operating curve
(AUROC). Confidence intervals were computed using 10,000
bootstrapped samples of the test datasets. To benchmark with
the predictive ability of differences in population level comorbid-
ity rates, we developed a logistic regression model using all
comorbidities in Table 3 as well as age and sex as independent
input variables to predict race. The continuous output of the
logistic regression model was used to assess AUROC. This research
was approved by the Stanford University and Cedars-Sinai Medical
Center Institutional Review Boards.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
A representative subset of the data is publicly available at https://echonet.github.io/
dynamic/. The full dataset is available with a data use agreement with the respective
institutions after IRB approval by emailing David.Ouyang@cshs.org.

Table 3. Comorbidities for Cedars-Sinai Medical Center cohort, separated by race.

Prevalent diagnoses at the time of the study White Black or African American Asian Total P value

Atrial fibrillation 33,883 (29.83%) 6132 (24.83%) 3577 (27.46%) 43,592 (28.81%) <0.001

Heart failure 49,411 (43.50%) 13,084 (52.99%) 5990 (45.98%) 68,485 (45.26%) <0.001

Hypertension 68,114 (59.96%) 17,561 (71.12%) 8014 (61.51%) 93,689 (61.92%) <0.001

Diabetes 26,511 (23.34%) 8292 (33.58%) 4392 (33.71%) 39,195 (25.90%) <0.001

Ischemic stroke 12,017 (10.58%) 4190 (16.97%) 1405 (10.78%) 17,612 (11.64%) <0.001

Transient ischemic attack 7431 (6.54%) 1457 (5.90%) 410 (3.15%) 9298 (6.14%) <0.001

Systemic embolism 1076 (0.95%) 346 (1.40%) 113 (0.87%) 1535 (1.01%) <0.001

Pulmonary embolism 4981 (4.38%) 2146 (8.69%) 340 (2.61%) 7467 (4.93%) <0.001

Prior myocardial infarction 14,573 (12.83%) 4148 (16.80%) 1930 (14.81%) 20,651 (13.65%) <0.001

Stroke/transient ischemic attack/thromboembolism 32,387 (28.51%) 9380 (37.99%) 3529 (27.09%) 45,296 (29.94%) <0.001

Peripheral arterial disease 18,318 (16.13%) 3471 (14.06%) 1861 (14.28%) 23,650 (15.63%) <0.001

Vascular disease 29,029 (25.56%) 6721 (27.22%) 3421 (26.26%) 39,171 (25.89%) <0.001

Coronary artery disease 40,848 (35.96%) 6977 (28.26%) 4664 (35.80%) 52,489 (34.69%) <0.001

Chronic kidney disease 28,346 (24.95%) 10,148 (41.10%) 4044 (31.04%) 42,538 (28.11%) <0.001

Liver disease 7566 (6.66%) 1177 (4.77%) 1011 (7.76%) 9754 (6.45%) <0.001

Chronic obstructive pulmonary disease 7329 (6.45%) 2474 (10.02%) 387 (2.97%) 10,190 (6.73%) <0.001

Prior smoker 7077 (6.23%) 2089 (8.46%) 678 (5.20%) 9844 (6.51%) <0.001

P values are from Chi-square test.
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