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Abstract 
Through complex interspecies interactions, microbial processes drive nutrient cycling and 
biogeochemistry. However, we still struggle to predict specifically which organisms, communities, and 
biotic and abiotic processes are determining ecosystem function and how environmental changes will 
alter their roles and stability. While the tools to create such a predictive microbial ecology capability 
exist, cross-disciplinary integration of high-resolution field measurements, detailed laboratory studies, 
and computation is essential. In this perspective, we emphasize the importance of pursuing a multiscale, 
systems approach to iteratively link ecological processes measured in the field to testable hypotheses that 
drive high-throughput laboratory experimentation. Mechanistic understanding of microbial processes 
gained in controlled lab systems will lead to the development of theory that can be tested back in the field. 
Using N2O production as an example, we review the current status of field and laboratory research and 
layout a plausible path to the kind of integration that is needed to enable prediction of how N-cycling 
microbial communities will respond to environmental changes. We advocate for the development of 
realistic and predictive gene regulatory network models for environmental responses that extend from 
single-cell resolution to ecosystems, which is essential to understand how microbial communities 
involved in N2O production and consumption will respond to future environmental conditions.  
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The need for integrating microbial regulatory information into biogeochemical models 
Microorganisms are majorly responsible for the cycling of essential nutrients through Earth’s oceans, 
soils, and atmosphere. Each cycle is interconnected, and perturbations to a single biogeochemical cycle 
has permeating effects, ultimately leading to changes in ecosystem functioning. Current global nutrient 
models are invaluable and present fairly accurate depictions of the inputs and outputs of cycles. However, 
microbial gene regulatory information is mainly lacking from biogeochemical models. To gain a 
quantitative and predictive understanding of biogeochemical processes in a changing climate, we must 
integrate the fields of systems biology and biogeochemistry. Tools are now available for characterizing 
structure, function, and regulation of microorganisms and communities with relative ease, and 
technologies continue to expand rapidly. Systems-level analyses of key organisms and communities in the 
laboratory and the field can reveal regulatory mechanisms and environmental constraints determining 
microbial ecosystem processes. Integrating novel microbial insights gained from systems-level analyses 
into existing nutrient cycle models will greatly improve their predictive capabilities, which is essential for 
determining mitigation strategies and policies in a changing climate.  

The nitrogen cycle is highly perturbed due to anthropogenic inputs of synthetic fertilizers. This 
global-scale perturbation has detrimental consequences including eutrophication (tied to dangerous algal 
blooms and dead zones) and groundwater contamination [1,2]. One of the most pressing issues is rapidly 
increasing levels of the greenhouse gas N2O, which is linked to fertilizer usage. N2O has a 100-year 
global warming potential 298 times higher than CO2 [3] and is currently the most significant ozone-
depleting emission [4]. Microorganisms drive transformations of nitrogen through various redox reactions 
(Figure 1). Microbial transformations of nitrogen, including the reactions that control the production of 
N2O, are incredibly complex and determinants of these reactions are still being de-convoluted. In fact, a 
recent thematic issue in this journal focused on the microbial sources and sinks of N2O (December 2017). 
In order to create an accurate model of the nitrogen cycle, including sources and sinks of N2O, 
understanding the environmental and regulatory controls governing these microbial reactions at a 
mechanistic level is essential. Therefore, the nitrogen cycle serves as an exemplar for the need to integrate 
microbial regulatory information into current biogeochemical models. 

Denitrification and nitrification (Figure 1) are widely accepted as the major contributors to N2O 
production, as 70% of global N2O emissions are thought to result from these processes occurring in 
managed and natural soils alone [3]. Enzymes involved in nitrification and denitrification are known 
(Table 1 in Figure 1) and certain organisms involved in these processes are characterized, but linking this 
microbial information with ecosystem-level processes is extremely complex for various reasons. For one, 
organisms involved in nitrogen-cycling processes, particularly denitrification, tend to be metabolically 
versatile. Therefore, presence of genes involved in denitrification (e.g., Nor for the reduction of NO to 
N2O) does not necessarily mean that the organism is utilizing this respiratory pathway for energy 
production. Instead, genes involved in the production and consumption of N2O are regulated by various 
physical, chemical, and biological factors. In-depth studies relating gene expression to environmental 
conditions (e.g., pH, temperature, soil moisture, etc.) are necessary in order to predict N2O dynamics in a 

2 

https://paperpile.com/c/k0Qyxd/22u9+3BY0
https://paperpile.com/c/k0Qyxd/1JMV
https://paperpile.com/c/k0Qyxd/QHZi
https://paperpile.com/c/k0Qyxd/1JMV


given environment. Adding additional complexity to the task of predicting ecosystem function (e.g., N2O 
emissions) from microbial information is the fact that N-containing intermediates are likely readily 
transferred between organisms in the environment. For example, studies have shown that denitrification is 
a highly modular process and that incomplete denitrification pathways are common amongst organisms 
[5,6]. This means that products of NO3

- reduction (NO2
-) and partial denitrification (NO, N2O) are likely 

produced by certain populations of organisms, and then transferred and transformed by other populations 
of organisms. Furthermore, N-containing compounds relevant to the production and consumption of N2O 
can be both reduced and oxidized by microorganisms. For example, NO2

- can be used as both an electron 
acceptor (reduced to NO in the denitrification pathway or reduced to ammonia in the DNRA pathway) 
and an electron donor (oxidized to NO3

- by NO2
- oxidizing organisms) (Figure 1).  

A critical challenge we face today is the global perturbation of the nitrogen cycle, and the 
corresponding increase in N2O emissions (IPCC 2007). Creating predictive models of N2O, that 
incorporate microbial information, can help to inform educational campaigns and policy decisions 
regarding nitrogen fertilizer usage. In the following sections, we will describe advancements that have 
been made for characterizing microbial processes involved in N2O production and consumption in both 
the field and the laboratory, additional work that is required for gaining a high-resolution understanding 
of N2O dynamics (functional genomics, high resolution time series experiments, synthetic communities, 
etc.), and how these data can be integrated into predictive models for the nitrogen cycle and N2O 
emissions. 

Current and future methods for assessing sources and sinks of N2O 
Biogeochemical models of N2O production 
Modelling approaches to estimate N2O emissions for different spatio-temporal scales are needed in order 
to predict the responses of the microbial biota to a changing climate. There are different types of models 
for nitrification/denitrification and N2O prediction based on atmospheric N2O measurements and 
anthropogenic activity [7]. These include single species models [8], field models [9], regional and global 
scales models, [10] bottom-up models [11], and top-down models [12]. N2O simulation models are often 
used to predict the activity of nitrification/denitrification processes in soils [13–15]. One process-based 
model, the Landscape DeNitrification DeComposition (DNDC) model, predicts N2O emissions from 
agricultural management variables like field observations of soil temperature, water content, plant growth 
and inorganic sources of nitrogen (NH4

+, NO3
-) including NO3

- leaching from agricultural systems [16]. 
This model continues to be adapted and improved (reviewed by Gilheshy et al. [17]), including the 
incorporation of CO2 measurements [18].  

Isotopic labelling is another powerful strategy for creating models to describe the different 
nitrogen species transformed by microorganisms. These models use isotopic ratios to discriminate 
between different N2O sources using δ15N-N2O and δ18O-N2O, including the intramolecular distribution of 
15N according to its site preference. This information has been successfully incorporated into 
biogeochemical compartmentalized or box models for marine environments [19] as well as for terrestrial 
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environments. This method of quantification has been applied at different scales ranging from regional 
[20] to global [21,22]. Global models incorporating isotopic information demonstrate that N2O from
marine sources is isotopically different from freshwater and continental soil [23]. This finding likely
reflects differences in microbial community structure and function in these regions. For instance,
ammonia-oxidizing archaea (AOA) are thought to be major contributors to N2O in marine environments,
whereas ammonia-oxidizing bacteria (AOB) and denitrifiers majorly contribute to N2O emissions in
certain soil environments [24–26]. Across environments, N2O emissions are rising rapidly. Historically,
marine N2O emissions have had little effect on climate. However, the oxygen minimum zones (OMZs)
are expanding and intensifying in the oceans due to global warming and eutrophication (IPCC 2017 [27]
and [28–30]). For example, the Eastern Tropical South Pacific (ETSP) and the northern Indian Ocean as
well as other anoxic areas, play increasingly critical roles in the net production of N2O [9,31,32]. Thus,
the production of N2O in the OMZs may have an enormous impact on the global N2O entering the
atmosphere in the near future [9,33].

Altogether, while current biogeochemical models are useful, they all are limited by a lack of 
microbial regulatory information. Models assume that all microbial populations contribute similarly to the 
production of N2O or that they have a minor effect on N2O production [34]. However, sequencing data 
have demonstrated high spatio-temporal dynamics of soil and marine microbial diversity [35] and 
different rates of N2O production and consumption by microbial communities [36]. Recently, successful 
efforts to integrate environmental genomics, enzyme kinetics and biogeochemical models have been 
developed [37–39]. 

Field-based analysis of microbial communities involved in N2O cycling 
The characterization of nitrification and denitrification in the field has improved enormously, not only 
from the use of stable isotopes (discussed above) but also from the development of next generation 
sequencing (NGS) methods [40,41]. Combinations of ribosomal rRNA sequencing (16S rRNA), 
functional gene sequencing, metagenomics, and metatranscriptomics have been used to understand the 
roles of microorganisms in the nitrogen cycle [9,42–50]. The integration of these molecular tools with 
environmental and other biological measurements has significantly enhanced our understanding of 
microbial diversity and community dynamics in soils and marine areas. Sequencing methods have also 
identified a high temporal and spatial resolution of microbial communities involved in N2O production 
and consumption, [51,52] which has important implications for modelling. Nitrifier and denitrifier 
communities vary regionally in relation to the different physico-chemical characteristics of the 
environment (soil/seawater/freshwater, oxygen/no oxygen). Thus, much effort has gone into 
understanding microbial community structure in various environments involved in N2O emissions and 
responses to changes in environmental conditions, e.g., O2 depletion, higher temperature, lower pH, etc. 
[49,53–57]. 

As it is now possible to quantify community composition through next generation sequencing 
methods, a natural next step is the inference of species interactions and activity. Several methods are 
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available for inferring potential community interactions from NGS data, including correlations between 
taxon abundances. Simulation studies have shown how certain types of interactions (e.g., strong 
mutualism or antagonism) are more easily detected using correlation methods than others (e.g., 
commensalism or amensalism [58]). Prior work has shown that environmental heterogeneity is often the 
strongest driver of correlation structure in microbial communities [59]. Indeed, cross-sectional 
correlations across space can either reflect environmental filtering or putative interactions between 
microbes, and telling the difference between the two is challenging. Therefore, understanding the overall 
spatial structure of an ecosystem is crucial to interpreting these analyses [60]. Spatial autocorrelation can 
be used to look for structured gradients in field systems, where proximate regions of space are more self-
similar (e.g., patchy) than would be expected by chance [61]. This spatial patchiness in the biotic 
community could be related to physicochemical parameters in order to better assess whether these 
patterns are shaped by niche filtering or by biotic interactions. Similarly, at the temporal scale, we can 
take advantage of variable dynamics in time series observations by looking at temporal autocorrelation 
and cross-correlation structure. There are computationally tractable methods for rapidly inferring sparse, 
time-lagged cross-correlation networks between microbial phylotypes, which are equivalent to partial 
Granger causal interaction networks [62]. If the past abundance of one microbial species is linearly 
correlated with the future abundance of another species (i.e. Granger causal or linearly predictive), then 
perhaps there is some direct or indirect causal association between them or they are undergoing some sort 
of successional process. Many other spatiotemporal methods are available for inferring putative 
interactions from ‘omics’ data [63–65]. However, no matter how sophisticated these correlation-based 
methods are, inferred interactions must be validated by direct experimental evidence, including metabolite 
exchange assays, competition experiments, or microscopy before they are accepted as true [66]. Other 
methods like BONCAT (Bioorthogonal non-canonical amino acid tagging [67]) are capable of revealing 
metabolically active species. Once active taxa are defined, metabolic fluxes can be predicted using 
genome-scale metabolic models [68] combined with high-resolution measurements of N2O consumption 
and production [9,69]. 

In the marine OMZs, metagenomics, metatranscriptomics and single-gene surveys have identified 
characteristic transitions in microbial community composition and metabolism with depth. Mainly, 
nitrification dominates in the oxygenated surface waters, whereas denitrification and anaerobic 
ammonium oxidation (anammox) are major processes in the suboxic OMZ core [31,52,70,71]. These 
studies in the OMZ have also revealed a remarkable richness of metabolic processes along the redox 
gradient, as well as novel linkages between community members [44]. Furthermore, stable isotope studies 
have provided enormous insight into understanding spatio-temporal patterns of production and 
consumption of different nitrogen species in the OMZ [72,73]. In these areas, the production of N2O 
varies regionally [74] and seasonally [75–77]. Historically, consumption of N2O (through NosZ activity) 
has been in balance with N2O production. However, N2O is now accumulating rapidly in the atmosphere 
(National Oceanographic and Atmospheric administration; [78]). While the OMZ is a clear oceanic region 
that shows highest N2O production, patterns of N2O ‘hotspots’ in soil are more complex. N2O emissions 
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do appear to be tightly linked with environmental conditions (e.g., pH) as well as microbial community 
composition, but these complex relationships are not completely elucidated. One important factor that has 
been shown to control N2O emissions in soils is the presence and activity of NosZ. Two distinct clades of 
this enzyme exist, which have been shown to have important differences and to be associated with 
different patterns of N2O production [79–81]. Understanding the presence, activity, and regulation of 
genes like NosZ is essential for modelling N2O production and consumption from a particular 
environment.  

Laboratory-based studies to gain mechanistic understanding of N2O production and consumption 
In-depth understanding of denitrification and nitrification pathways is mainly based on pure culture 
studies in the laboratory with model organisms, such as the denitrifier Paracoccus denitrificans. Through 
dozens of studies that employ a range of techniques (e.g., transcriptomics, proteomics, enzyme kinetics, 
gas flux analysis), its denitrification phenotype, including biochemical pathways and regulatory networks 
involved, has been well-characterized [34,82–85]. For example, higher N2O production is associated with 
low pH conditions, an observation that is consistent with field observations [86]. Certain ammonia 
oxidizers have been characterized in-depth, including the ammonia-oxidizing archaeon (AOA) 
Nitrosopumilus maritimus and the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea [87]. 
While the AOA and AOB carry out the same nitrogen transformation, the two groups show important 
differences with respect to their ammonia-oxidizing phenotype, including higher N2O emissions by the 
AOB [88]. This observed difference between microbial groups that carry out the same function illustrates 
the limitations of incorporating only process-level information (e.g., ammonia oxidation) into global 
biogeochemical models. Rather, developing a mechanistic understanding of the distinct physiologies of 
active microorganisms (e.g., AOA versus AOB) and their role in biogeochemical processes in the context 
of environmental constraints is essential for creating robust and predictive models.  

Studies with model organisms such as P. denitrificans and N. maritimus have provided a strong 
foundation for understanding denitrification and nitrification. However, there is currently a need to 
expand detailed lab-based studies to other organisms in order to better represent the diverse organisms 
known to carry out these processes. Tools for elevating uncharacterized field isolates to model organism 
status have expanded rapidly in recent years with the ease of sequencing and technologies for high-
throughput functional analysis (e.g., RB-TnSeq [89]). New model organisms for representing processes 
related to N2O production and consumption should be carefully selected based on relevance to the 
environment and unique metabolic features. For example, a large fraction of denitrification studies have 
focused on a handful of Gram-negative bacteria (including P. denitrificans). However, studies suggest 
that Gram-positive organisms are important in many environments and show distinct differences in 
denitrification phenotype and likely their regulatory pathways [90–93]. Furthermore, while pure culture 
studies have provided invaluable information, it is essential to increase complexity of laboratory-based 
study systems in order to better reflect the complexity of microbial community interactions occurring in 
the environment. Across the field of microbiology, there is a push to create model communities that better 
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represent processes of interest [94–97]. Model microbial communities provide a platform for detailed 
studies on community structure, function, dynamics, and evolution in controlled, tractable systems that 
are more environmentally-relevant than pure cultures. Model communities for denitrification and 
nitrification can be designed to represent environmentally important sinks and sources of N2O (e.g., 
OMZ, specific soil types/conditions, etc.) and capture the diverse organisms involved in N transformation 
processes. As an example, a consortium can be developed that consists of an N2O-producing and N2O-
consuming organism, and dynamics of N2O can be tracked across time and various growth conditions, 
and eventually genetic perturbations. Communities can be established through both bottom-up methods 
(i.e., isolates assembled into synthetic communities) and top-down methods (i.e., simplified field 
communities selected under different conditions in reactor systems). Using a range of technologies from 
community-level systems analyses (e.g., metatranscriptomics, metaproteomics) to single-cell analytics 
(e.g., flow cytometry, single cell genomics), detailed characterization of these model communities across 
a range of conditions can reveal environmental and regulatory determinants of N2O production.  

Towards predictive and mechanistic gene regulatory network models to uncover dynamic 
control  of N2O production and consumption by  microbial communities 
The ultimate goal of microbial ecology is phenotype prediction. Prediction rests on two pillars: 
quantification and theory. Current technologies are at a level of precision and recall that identification and 
quantification of all molecular species in a cell can be done at a relatively low cost and in a short 
timeframe—genomics, transcriptomics, proteomics, metabolomics and many more “omic” technologies 
are now available. Nevertheless, a major challenge of microbial ecology is the incorporation of high-
throughput data into dynamic predictive models of molecular regulation at mechanistic resolution. While 
molecular data has never been so accessible to our community, we are not generally taking full advantage 
of these vast and detailed data to infer molecular regulatory mechanisms in microbial communities and 
their impact on the environment. 

Data from various studies with model denitrifiers [83,84,98–101] and nitrifiers [102–108] is 
available for integration into models. However, soil and aquatic environments host complex microbial 
communities that could differ substantially in terms of the regulation and activity with respect to their 
nitrogen-cycling pathways [109]. We appreciate that it is essential to build upon current understanding 
based on studies with model organisms by performing systems-level analysis of a diverse range of 
environmentally-relevant denitrifiers and nitrifiers to reveal the vast universe of gene regulatory 
mechanisms around N2O. We advocate for integrated microbial community models that include gene 
regulation across time. Along with other successful efforts in gene regulatory network inference [110–
113], environmental gene regulatory influence network (EGRIN) models have broadly been used to 
predict cellular phenotypic states from single species [114–119]. The goal of creating EGRIN models for 
denitrifying organisms is to highlight key regulatory pathways and environmental determinants affecting 
the production and consumption of N2O. This information could then be incorporated into global N 
models alongside taxa abundance and activity information. EGRIN models consist of genes organized in 
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conditionally co-regulated modules learned through semi-supervised biclustering of gene expression, 
guided by biologically informative priors and de novo cis-regulatory gene regulatory elements (e.g., 
transcription factor binding sites) [120,121]. Next, the underlying regulatory factors governing the co-
regulation of genes within modules is deciphered through a combination of protein-DNA interaction 
mapping and a regression-based approach, to model transcriptional changes of genes within each module 
as a function of a linear combination of influences of  transcription factors (TFs) and environmental 
variables [122]. Dynamic temporal response is naturally incorporated into EGRIN models, which enables 
the characterization of control regulatory mechanisms (feed-forward loops, toggle switches, fold-change 
detection) under varying environmental conditions like oxygen depletion and nutrient availability. These 
gene regulatory network models have also been successfully integrated with reconstructed metabolic 
models [68]. Probabilistic Regulation Of Metabolism (PROM; [123]) and Integrated Deduced REgulation 
And Metabolism (IDREAM; [124]) are approaches to integrate EGRIN models with reconstructed 
metabolic networks to predict how regulatory changes observed at a transcriptional level manifest at the 
phenotypic level. Ultimately, predictive and mechanistic-level EGRIN models need to be incorporated 
into global-scale biogeochemical N2O production and consumption models, linking experimentally 
observed N fluxes in the field to biotic and abiotic factors, opening the possibility for testable hypothesis 
in laboratory conditions under simpler synthetic microbial communities. 

Indeed, while pure culture studies allow for detailed, mechanistic studies of processes of interest, 
increasing complexity of study systems by developing experimental microbial communities is an 
important step towards increasing the environmental relevance of lab-based experimentation. Numerous 
studies have documented the prevalence of incomplete denitrification pathways in the genomes of 
organisms, strongly suggesting that N-intermediates are transferred across groups of interacting 
organisms [45]. These interactions can be recreated in the laboratory by pairing incomplete denitrifiers 
with N2O-reducing organisms. EGRIN models can then be inferred through systems-level analysis of pure 
cultures and synthetic communities [68] by performing transcriptomics, metabolomics, and enzymatic 
assays on N-cycle enzymes across varied growth conditions of environmental relevance. In this way, the 
genetic, regulatory, and environmental determinants controlling the fate of N and N2O fluxes can be 
elucidated. We envision first the development of such integrated models for relatively small communities 
under controlled environments in the lab, e.g., mutualistic syntrophic communities [125,126] or synthetic 
communities of microbial keystone taxa [127]. There have been multiple efforts to build such synthetic 
communities with simple interactions that result in predictive dynamical behavior ranging from predation, 
to competition and cooperation [128]. Uncovering the mechanistic underpinnings of resilience of 
microbial communities [129–131] will facilitate more accurate prediction of their response and 
adaptability to novel environments [132]. In the future, we foresee these models as useful tools to perturb 
microbial communities in the field such that metabolic sources and sinks are manipulated. For example, 
we would be able to predict the different impacts of introducing NosZ gene in specific taxa, or the effect 
of perturbing pH on community composition, physiological state and N2O production [133]. Ultimately, 
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we would like to manipulate at the population level dynamical properties of microbial communities that 
are key for the production and consumption of N2O.  

Outlook 
In summary, in order to answer fundamental questions about N2O net production, we advocate for an 
iterative approach that interlaces field monitoring and laboratory studies (Figure 1). Field measurements 
allow us to understand temporal (daily, weekly, monthly, seasonal) and spatial (microenvironments to 
regional and global scales) patterns of microbial communities, which allow us to generate hypotheses for 
how species and environmental variables are interacting with one another. Furthermore, field 
measurements can track microbial community dynamics and activity [134], isotopic signatures, and the 
roles of symbiosis [135,136] and interacting biota [137–140] (e.g., viruses, other bacteria, protozoa) in 
shaping microbial community structure and function. However, it is difficult to discern mechanisms of 
regulation based on field studies, and this regulatory information is critical for determining and predicting 
activity of the microbial communities producing and consuming N2O today and in a changing climate. 
Therefore, specific hypotheses relating microbial ecology to biogeochemistry can be formed based on 
field measurements, and then lab-based studies with field isolates can be designed in order to test these 
hypotheses in controlled, reproducible systems [102]. Laboratory investigations can provide mechanistic 
understanding of physiology and regulatory pathways of organisms and communities [129,130]. Through 
detailed studies, microbial dynamics, interactions, and evolution can be characterized in the laboratory 
and fundamental questions, including the response of communities to perturbation and the resilience of 
communities to climate change, can be answered [129–131]. Theories derived from lab-based studies 
(e.g., regulatory mechanisms involved in N2O production across various conditions) can then be tested 
back in the field. The emergent knowledge of these iterative activities will allow for mechanistic 
understanding of field processes. Extending this framework to other environments around the globe has 
the potential to ultimately link microbial diversity to ecological and biogeochemical function. A 
Lawrence Berkeley National Laboratory-led effort is building this predictive ecology framework, by 
iteratively linking field and lab activities to understand the biotic and abiotic changes that have led to 
increased N2O production from contaminated areas of the Oak Ridge National Laboratory Field Research 
Center. The ultimate goal of this effort is to be able to predict how environmental perturbations influence 
the fate of microbial processes in the natural environment. Answering these fundamental questions allows 
for an evolving predictive microbial ecology paradigm to emerge.  
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Figure 1. Systems biology approaches towards predictive microbial ecology. The nitrogen cycle includes 
an intricate set of reactions, which are mainly driven by microorganisms. Major microbial processes 
include denitrification, nitrogen fixation, nitrification, anammox, and dissimilatory nitrate reduction to 
ammonia (DNRA) (see Table 1 for details). These microbial activities, along with geochemical 
parameters, determine the fate of nitrogen, for instance whether a given environment is a source of the 
greenhouse gas N2O. Through an iterative approach that integrates detailed field measurements with high-
throughput laboratory experimentation, predictive models for N2O production and consumption can be 
built. This approach requires application of current technologies (from singlecell to multi-omic analyses) 
and advanced computation (e.g., gene regulatory network inference algorithms). This framework can be 
extended to other biogeochemical cycles in order to predict how microbial communities and ecosystem 
function will be altered in a changing climate.  
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Table 1. Major microbial processes driving the nitrogen cycle. Microorganisms transform nitrogen 
compounds through various oxidation and reduction reactions. Specific nitrogen transformations and the 
enzymes known to catalyze these reactions are shown.  
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