UCLA UCLA Previously Published Works

Title

Retraction Note: Identification of a novel Na+-coupled Fe3+-citrate transport system, distinct from mammalian INDY, for uptake of citrate in mammalian cells

Permalink https://escholarship.org/uc/item/4f3113ph

Journal Scientific Reports, 8(1)

ISSN 2045-2322

Authors

Ogura, Jiro Babu, Ellappan Miyauchi, Seiji <u>et al.</u>

Publication Date 2018

DOI

10.1038/s41598-018-28645-x

Peer reviewed

SCIENTIFIC **Reports**

Published online: 17 July 2018

OPEN Retraction Note: Identification of a novel Na⁺-coupled Fe³⁺-citrate transport system, distinct from mammalian INDY, for uptake of citrate in mammalian cells

Jiro Ogura¹, Ellappan Babu¹, Seiji Miyauchi², Sabarish Ramachandran¹, Elizebeta Nemeth³, Yangzom D. Bhutia¹ & Vadivel Ganapathy¹

Retraction of: Scientific Reports https://doi.org/10.1038/s41598-018-20620-w, published online 06 February 2018

The authors are retracting this Article.

We were alerted to the possibility that the results described in the Article may be artefactual for the following reasons. Radiolabeled citrate binds to plastic culture dishes in the presence of ferric chloride. In the presence of excess unlabelled citrate and other iron chelators, this binding to plastic dishes may be inhibited, thus mimicking substrate selectivity and saturation kinetics.

We have now performed additional control experiments using culture plates without cells present, and obtained the same results as those described in the Article. The binding of ferric citrate to the plastic dishes showed sodium-dependence because N-methyl-D-glucamine chloride that we routinely use to substitute for NaCl to study sodium-dependence of a transport system interfered with the process.

As such, we are unable to support the conclusions regarding a new sodium-dependent ferric-citrate transporter in the mammalian cells.

All authors agree to the retraction of the Article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

¹Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA. ²Department of Pharmaceutics, Toho University, Funabashi, Chiba, 274-8510, Japan. ³Department of Medicine and Center for Iron Disorders, University of California at Los Angeles, Los Angeles, CA, 90095, USA. Correspondence and requests for materials should be addressed to V.G. (email: Vadivel.ganapathy@ttuhsc.edu)