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In discrete choice experiments, patients are presented with sets of health states described

by various attributes and asked to make choices from among them. Discrete choice ex-

periments allow health care researchers to study the preferences of individual patients by

eliciting trade-offs between different aspects of health-related quality of life. However, many

discrete choice experiments yield data with incomplete ranking information and sparsity due

to the limited number of choice sets presented to each patient, making it challenging to esti-

mate patient preferences. Moreover, methods to identify outliers in discrete choice data are

lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit

model for discrete choice data. Missing ranks are accounted for by marginalizing over all

possible permutations of unranked alternatives to estimate individual patient preferences,

which are modeled as a function of patient covariates. We provide a Bayesian version of

relative attribute importance, and adapt the use of the conditional predictive ordinate to

identify outlying choice sets and outlying individuals with unusual preferences compared to

the population. The model is applied to data from a study using a discrete choice experi-

ment to estimate individual patient preferences for health states related to prostate cancer

treatment.
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CHAPTER 1

Introduction

1.1 Motivation

Discrete choice experiments (DCEs) have been increasingly used in health applications to

characterize the preferences of individual patients for various health care interventions and

services (Lancsar et al., 2013; DeBekker-Grob et al., 2012). In a typical health care DCE,

patients are presented with sets of health states described by various attributes and asked to

make choices from among them (Ryan et al., 2008). For example, a patient might be asked to

choose between a health state with long life expectancy and poor quality of life and a health

state with shorter life expectancy and high quality of life. By asking individuals to make

choices between health states, they are forced to make trade-offs that reveal information

about their preferences for different aspects of health-related quality of life.

Historically, in a DCE, patients provided their most preferred health state or a full

ranking of a set of possible health states. However, continued research in discrete choice

experiments has led to the development of best-worst designs in which patients indicate

their most preferred and least preferred choices from a set (Lancsar and Louviere, 2008;

Louviere et al., 2008). While reducing patient burden compared to full rankings, best-worst

discrete choice experiments pose new statistical challenges. In such data, incomplete ranking

information occurs when choosing best and worst from among four or more health states,

and patient-level data are often insufficient to estimate individual-level preferences using

maximum likelihood methods.

A number of models have been developed for discrete choice data. The multinomial

logit model has been used for best choice data (McFadden, 1974), while the rank-ordered

1



logit model has been used for full ranking data (Allison and Christakis, 1994). Mixed logit

models include random effects that vary across individuals to account for heterogeneity in

preferences (Revelt and Train, 1998; McFadden and Train, 2000). More recently, Hernandez-

Alava et al. introduced a model for ranked and partially ranked data that includes random

effects, and estimated the random effects using Monte Carlo maximum likelihood methods

(Hernandez-Alava et al., 2013). Although the model introduced by Hernandez-Alava et al.

accommodates partially ranked data, it is not uncommon to obtain coefficient estimates in

the wrong direction when using maximum likelihood estimation with sparse data (Rao, 2008).

Moreover, their model does not include individual-specific covariates although inference on

covariate effects is often of interest and it has been shown that including covariates can

improve preference estimates for the mixed logit (Crabbe and Vandebroek, 2011; Orme and

Howell, 2009; Greene et al., 2006; Allenby et al., 2005).

In many studies a key purpose of the DCE is to obtain an individual’s ranking of various

attributes relative to each other. The concept of relative attribute importance is widely used

in the marketing research literature to provide rankings of features of consumer products

(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Recently, this concept has been

extended into the health care domain (Dowsey et al., 2016; Kruk et al., 2016; van Dijk et al.,

2016). In this context, the purpose of the DCE is to obtain an individual’s ranking of various

attributes of health care or health-related quality of life, so that this information can be

used as part of the health care decision-making process. For example, how a prostate cancer

patient values full sexual functioning, long lifespan and no urinary incontinence relative to

each other may inform which treatment options are a better match for the patient. While

discrete choice data are now routinely analyzed using Bayesian hierarchical models with

random effects to accommodate preference heterogeneity (McFadden and Train, 2000; Train,

2001; Allenby et al., 2005; Train, 2009), methods to compute relative attribute importance

for such models are not fully developed.

Methods to identify outliers for such models are also lacking. Using the means of the

individual-specific parameter distributions, Campbell and Hess (2010) classified individuals

in the upper and lower percentiles as outliers. Farrel et al. (2012) proposed a graphical

2



method to identify outliers by plotting standardized random effects against their expected

values for a Bayesian hierarchical logistic regression model. Several approaches for outlier

detection in Bayesian models have been explored. For example, using the posterior distribu-

tion of the residuals of a regression model, Chaloner and Brant (1988) and Chaloner (1991,

1994) define an outlier as an observation with a large random error and calculate the pos-

terior probabilities that observations are outlying. Other approaches for outlier detection

are based on the predictive distribution. The conditional predictive ordinate (CPO), first

suggested by Geisser (1980), is a diagnostic measure used to detect observations discrepant

with the proposed model (Geisser, 1980, 1987, 1989, 1993; Dey et al., 1997; Pettit, 1990).

To our knowledge, CPO has not been used to identify outlying random effects.

1.2 Our Approach & Contributions

We develop a Bayesian hierarchical model for best-worst discrete choice data. Incomplete

rankings are handled by marginalizing over all possible permutations of unranked health

states in a model that includes random effects to model individual-specific preferences.

Bayesian methods are used to overcome the problem of sparse data to obtain estimates

of individual preferences. To understand how patient characteristics are related to prefer-

ences, we model individual-specific preferences as a function of individual-specific covariates.

We also define Bayesian versions of relative attribute importance for individuals and for the

population that include random effects and covariates. To identify outliers in DCEs, we

adapt the CPO in two ways: we adapt it to include random effects to identify patients who

are unusual in their preferences for specific attributes or combinations of attributes, and we

adapt it to handle vector outcomes to identify choice sets that are outlying with respect to

individual preferences.

The development of best-worst discrete choice designs reduces patient burden compared

to full rankings while posing new statistical challenges. By accounting for missing rank-

ing information, patient covariates, and the sparse nature of the individual-level data in

a Bayesian framework, our model extends current methods and provides individual-level

3



preference estimates. Our CPO measures provide some of the first diagnostic techniques

for discrete choice models. Our model coupled with our measures of relative importance

and outlyingness provide practical methodology for discrete choice modeling applications,

in which parameter estimation at the individual-level is desirable, but observed data at the

individual-level are limited.

1.3 Overview of the Dissertation

The dissertation is organized as follows. Chapter 2 defines various types of discrete choice

experiments. Chapter 3 describes the PROSPECT study. Chapter 4 provides current meth-

ods used to analyze discrete choice data. Chapter 5 presents preliminary analyses. Chapter

6 presents the Bayesian hierarchical model for best-worst choice data with random effects

and patient covariates, defines measures of relative importance, presents CPO-based mea-

sures for outlier detection, and demonstrates application of our methods to data from the

PROSPECT study. Chapter 7 presents sensitivity analyses evaluating prior assumptions.

Finally, Chapter 8 describes estimation of patient preferences using an adaptive best-worst

conjoint method and ordinary least squares regression, and compares the estimated rela-

tive attribute importance scores to those obtained using the Bayesian hierarchical model of

Chapter 6.
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CHAPTER 2

Discrete Choice Experiments

This chapter briefly discusses the history of discrete choice experiments, sets a common

nomenclature for discrete choice experiments in this dissertation and describes three common

experimental designs for discrete choice experiments.

2.1 Origins

The origin of DCEs can be traced to a family of techniques called conjoint analysis, which

grew out of the mathematical area of conjoint measurement (Luce and Tukey, 1964). In

the 1930’s and 1940’s researchers were interested in whether psychological attributes could

be quantified, and conjoint measurement provided a means to investigate this. In conjoint

measurement, the joint effect of independent variables on a dependent variable is quantified.

These variables need not be known quantities and can include psychological attributes, such

as attitudes, cognitive abilities, etc. The conjoint measurement model is a deterministic

mathematical model and not a statistical one. This distinguishes conjoint measurement

from conjoint analysis, where the model is a statistical model with an error term and where

the goal is to estimate the parameters of this model. In 1971, Green and Rao introduced

conjoint methods to marketing research (Green and Rao, 1971). Its introduction was well

received and research in this area continues to this day (Orme, 2010).
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2.2 Nomenclature

Carson and Louviere (2011) discuss the need for a common nomenclature for stated pref-

erence elicitation approaches. DCEs are a rapidly growing field of research and conjoint

analysis has become a blanket term for many variations of the orginal methods. Carson

and Louviere (2011) argue that the term conjoint analysis is vague and should no longer

be used because it fails to convey information regarding data collection, the experimental

design and what statistical procedures were used for analysis. In their paper, they provide

suggestions to improve clarity in the communication of research results. In alignment with

this sentiment, this dissertation will use discrete choice experiments or best-worst discrete

choice experiments in lieu of conjoint analyses. In addition, we make the following definitions

for use throughout this dissertation:

• An attribute is a variable that describes a characteristic of a health state. For example,

urinary functioning is one attribute of a health state. Sexual functioning and expected

lifespan are also attributes of health states.

• An attribute level is a category of an attribute. For example, short term urinary issues

is an attribute level of the attribute urinary functioning.

• A profile is a combination of attribute levels that together describe a health state. For

example, a decreased sex life, short term urinary issues, live your expected lifespan,

having doctor and family support, taking immediate action, and no surgery describe

one health state profile.

• A choice set is a set of profiles from which choices are made. For example, if A, B, C

and D represent four health state profiles, the set {A,B,C,D} is a possible choice set.

• An alternative is a profile within a choice set. For example, A, B, C and D are each

alternatives in the choice set {A,B,C,D} .

In the context of this dissertation, the attributes are categorically defined variables de-

scribing characteristics of health states which could result from prostate cancer treatment.
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A combination of attribute levels constitutes a health state profile. Profiles are assigned to

choice sets according to an experimental design. Patients select choices from various choice

sets which contain health state profiles as alternatives.

2.3 Traditional Full Profile Conjoint Analysis

Traditional full profile conjoint analysis has been a mainstay of the conjoint community.

Individuals view full profiles (all attributes at once) and are asked to either rank order all

profiles (if given as a set of profiles) or provide a metric rating, for example, a rating be-

tween 0 and 100, of each profile (if viewing a single profile). Based on rankings and ratings,

regression coefficients for the attributes (also called partial utilities or partworths) are calcu-

lated through regression techniques (for example, ordinary least squares) or through linear

programming techniques (for example, Linear Programming Technique for Multidimensional

Analysis of Preference (LINMAP)) for each individual or at the population level. This ap-

proach is simple in design and execution and all profiles are evaluated in the context of all

other alternatives.

2.4 Discrete Choice Experiments

Discrete choice experiments, also known as choice-based conjoint analyses or discrete choice

conjoint analyses, have become a popular method for measuring preference (Taneva et al.,

2008). In a typical DCE, individuals indicate their best choices from among sets of exper-

imentally designed profiles (Louviere, 1998). In contrast to traditional full profile conjoint

analyses, DCEs allow for better representation of actual respondent behavior. Individuals

are generally not asked to rate or rank alternatives based on preferences. They simply choose

their most preferred alternative from a choice set. The probability of choosing a preferred

alternative from among a set of alternatives is generally modeled using a multinomial logit

(MNL) model.

Although DCEs reflect actual choice behavior, they are not without disadvantages. DCEs
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require a more complicated experimental design in which more choice sets are presented to

the respondent. In addition, compared to traditional full profile conjoint analyses, each choice

task in DCEs reveals less information since little information is gained about alternatives

which were not chosen.

2.5 Best-Worst Discrete Choice Experiments

A special type of DCE is the best-worst discrete choice experiment (BWDCE), in which indi-

viduals are shown a set of alternatives and asked to indicate their most preferred alternative

(best) and least preferred alternative (worst). Louviere et al. (2008) orginally developed the

BWDCE (also referred to as multi-attribute best worst scaling tasks) to elicit additional

preference information per choice set. In their version of the BWDCE, individuals are asked

to indicate their best choice and their worst choice compared to best choice only, first in

the entire choice set and then in each successively smaller subset of unranked profiles until

a full ranking is attained. Parameters in models for ranked items have been estimated using

the rank ordered logit or exploded logit model (Chapman and Staelin, 1982) or the sequential

best worst multinomial logit model introduced by Lancsar and Louviere (2008).

In the PROSPECT study, patients are presented with choice sets containing four profiles

describing treatment related outcomes and asked to indicate their best and worst choices

within each set. The two mid-ranked profiles are unranked with respect to each other. To

handle ties or incomplete rankings, Allison and Christakis (1994) suggested marginalizing

over all possible permutations of unranked items. This idea was implemented by Hernandez-

Alava et al. (2013) who introduced a model for partially ranked data that includes random

effects estimated using Monte Carlo maximum likelihood methods. We develop a method of

implementing this idea and incorporate it into the analysis of the PROSPECT study data

using Bayesian methods.
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CHAPTER 3

Data Set

This chapter describes the data set, the development of the health state profiles, and the

experimental design of the applied study.

3.1 Description of the Data

To understand people’s preferences, two types of data reflecting individuals’ choices may

be elicited: revealed preference data and stated preference data. Revealed preference data

reflect actual choices made by individuals in a real-world setting while stated preference

data are collected in experimental settings and are elicited as responses to hypothetical, but

realistic, choice senarios as presented in a DCE. Stated preference data were collected for

the prostate cancer project and this data was analyzed in this dissertation.

The PROSPECT study data originates from a randomized trial designed to compare

three methods for assessing preference for health states after prostate cancer treatment:

discrete choice experiment, time trade-off, and rating scale. The dataset that we use for

this proposal comprises data from 121 men recruited from the West Los Angeles Veteran’s

Administration Medical Center (WLA VA), the Veteran’s Administration Sepulveda Ambu-

latory Care Center and Olive View-UCLA Medical Center. All men had negative prostate

biopsies within one month of enrollment and were randomized into two arms; either the

DCE and rating scale arm or the DCE and time trade-off arm. In both arms, patients were

presented with tasks for both preference assessments methods, where the order of prefer-

ence assessment methods was random. Patients who could not read or speak English were

excluded from the study. Table 3.1 describes the sample of 121 men. Approximately half
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of the sample were at least 65 years old, and more than half of the sample were non-white,

partnered, unemployed, non-smokers or had at least some college education. The majority

of the sample made at least $10,000 dollars per year.

Table 3.1: Patient characteristics for 121 men in the PROSPECT study
Patient Characteristic Category N (%)
Age

GTE 65 years old 59 (0.49)
LT 65 years old 62 (0.51)

Race
White 51 (0.42)
Black 43 (0.36)
Other 27 (0.22)

Partnered
Yes 81 (0.67)
No 40 (0.33)

Employed
Yes 42 (0.35)
No 79 (0.65)

Smoker
Yes 18 (0.15)
No 103 (0.85)

Education
At least some college 97 (0.80)
At most high school 24 (0.20)

Income
LT 10k USD 18 (0.15)
10k-30k 53 (0.44)
GT 30k 50 (0.41)

The discrete choice method for the PROSPECT study is a best-worst discrete choice

experiment where a choice task for an individual involves choosing their best choice and

their worst choice from a set of four hypothetical health states. In the time trade-off method,

patients are presented with a single profile describing a hypothetical current health state and

a number line and are asked to indicate the number of years of life in better or perfect health

that would be equivalent to the number of years of life in the current hypothetical health

state. The rating scale method involves presenting a linear rating scale ranging from 0 (worst

possible outcome equivalent to death) to 100 (perfect health) on which individuals indicate

their rating for a given health state.
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The data used for analysis in this work will pertain only to the discrete choice applica-

tion and consist of choices from among hypothetical health states which could result from

various cancer treatments. Since the study is currently recruiting subjects, the data used in

preliminary work for this proposal are only a portion of the data that will be gathered by

the conclusion of data collection.

3.2 Development of Health State Profiles

Profiles for health states were developed using the Voice of the Patient Process with a group

of seventeen men with localized prostate cancer recruited from the WLA VA for in-person

interviews (Saigal and Dahan, 2012). The Voice of the Patient Process is a multistep ap-

proach which begins by eliciting important issues from patients regarding their prostate

cancer treatments (Dahan and Saigal, 2012). Quotations from patient interviews were tran-

scribed and narrowed by researchers into a smaller set of quotations. Each patient then

grouped the quotations into piles that he perceived as similar. For example, “Take charge of

your body, take charge of the situation” and “Cancer kills...Do something about it” might be

grouped in the same pile. Following the interviews, groupings were evaluated across patients

by investigators, who developed the final set of treatment related attributes and levels.

Seven attributes and levels were defined. These are presented in Table 3.2. The attributes

include sexual functioning, urinary incontinence, bowel issues, lifespan, others’ support, ac-

tive and cutting. Active refers to taking immediate action towards treatment. All attributes

were defined by two levels except for sexual functioning and urinary incontinence which were

defined by three levels. Hypothetical health state profiles were derived by varying the levels

of the seven attributes.

3.3 Experimental Design

The computer-based survey instrument designed for the DCE was developed in Excel by

Ely Dahan, PhD, MBA (Dahan and Saigal, 2012). The DCE application was designed to
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Figure 3.1: Example of a choice set from the PROSPECT study. Patients choose their most
and least preferred health state from among the four health states.

present each patient with a series of choice sets each consisting of four health state profiles.

Individuals were then asked to identify their best choice and their worst choice in the set

presented. No profile was repeated within a choice set and no choice set was repeated in the

experiment. Individuals were not given the option to opt out of identifying best and worst

choices. A representative screen from the survey is shown in Figure 3.1.

With five 2-level attributes and two 3-level attributes, there are 25 ∗ 32 = 288 possible

health states in a full factorial design. Sixteen profiles were selected for creation of choice sets

because they formed an approximately orthogonal array. These sixteen profiles described

by their attribute levels are presented in Table 3.3. In an orthogonal experimental design,

the coded attribute levels of the experiment form a set of mutually orthogonal non-zero

vectors which are statistically independent. This property is desirable because it allows for

an independent determination of each attribute’s influence upon the observed choices.

Choice sets of size four were formed using these sixteen identified profiles. The first

four choice sets presented were the same for all patients. The selection of subsequent choice

sets, determined by the software’s algorithm, was dependent on the patient’s prior responses.

Choice set 5 was constructed by comparing the best choices selected from the first four choice

sets while choice set 6 was constructed by comparing the worst choices from the first four

choice sets. Choice sets 7 and 8 compared the unranked profiles from the first four choice

sets. The remaining choice sets were formed by randomly pairing profiles which had not yet
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Table 3.3: Sixteen health state profiles described by attribute levels and utilized in the
PROSPECT study where lower attribute levels indicate more side effects, less support, not
taking action or surgery.

Profile Lifespan Bowel Issues Cutting Action Support Urinary Sex
1 2 2 2 2 2 3 3
2 2 2 2 1 2 2 2
3 2 1 2 2 2 1 1
4 2 1 2 1 2 2 2
5 2 1 1 2 1 2 3
6 2 1 1 1 1 3 2
7 2 2 1 2 1 2 1
8 2 2 1 1 1 1 2
9 1 2 2 1 1 1 3

10 1 2 2 2 1 2 2
11 1 1 2 1 1 3 1
12 1 1 2 2 1 2 2
13 1 1 1 1 2 2 3
14 1 1 1 2 2 1 2
15 1 2 1 1 2 2 1
16 1 2 1 2 2 3 2

been compared. Pairs of cards which had been ranked relative to each other or for which

a ranking could be inferred were considered a resolved pair. In addition to pair resolutions

made directly by the individual, pairs are also resolved by an algorithm using transitivity of

preference. For example, if A > B and B > C then A > C, where > indicates the better

choice. The algorithm for choice set creation stopped when all possible paired comparisons

were resolved. The men were presented with a total of 10-17 choice sets each consisting of 4

health state profiles. The number of choice sets presented varied across patients because of

the adaptive design of the DCE.
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CHAPTER 4

Current Models for Discrete Choice Data

This chapter reviews current models that are commonly fit to discrete choice data and

describes two methods used to estimate model parameters.

4.1 The Random Utility Model

In economics, discrete choice models are based on the theory of utility maximization, where

utility is defined as the total satisfaction received from consuming a good or service. In the

context of our project, we assume that patients choose among alternative health states to

maximize their utility.

The analytic framework for discrete choice modeling is based on Lancaster’s theory of

value, where utility is derived from the underlying characteristics or attributes (Ryan et al.,

2008), and on the Random Utility Model, where utility has a systematic and a random

component (Lancsar and Louviere, 2008). Although utility is not directly observable, it can

be estimated from observed choices. The random component may result from unobserved

attributes, variations in tastes, or measurement error (Viney et al., 2002).

We begin by describing the modeling framework for best choice. For exposition, we

assume that each attribute has two levels coded using dummy coding. Suppose that we have

N respondents. Further suppose that each respondent i, i = 1, ..., N , has to make a choice

from a single choice set containing J alternatives. Index the J alternatives by j = 1, ..., J .

Let Yi represent individual i’s preferred (best) choice among the J alternatives. Then the
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basic problem is the estimation of a utility function

Uij = fij(xij1, ..., xijH) (4.1)

where Uij denotes the utility of alternative j for individual i, (xij1, ..., xijH) denotes the levels

of the H attributes of alternative j presented to individual i and fij indicates that the utility

Uij is a function of the H attribute levels (xij1, ..., xijH), that in the most general case could

be specific to individual i and alternative j. The random utility model assumes that utility

can be partitioned into a systematic component and a random component. Thus, the utility

of alternative j for individual i can be written as

Uij = Vij + εij (4.2)

where Vij represents the systematic component and εij represents the random component.

If we model the systematic component of utility as a linear function of parameters

Vij = xT
ijβ (4.3)

where xij is the H × 1 attribute vector of the jth alternative for individual i and β is the

H × 1 coefficient vector of the fixed attribute effects in the valuation of alternative j across

all individuals, then we can write the utility function of alternative j for individual i as

Uij = xT
ijβ + εij. (4.4)

4.2 Best Choice & Fixed Effects: The Multinomial Logit Model

4.2.1 The Gumbel Distribution

The random component of the random utility model is commonly assumed to be independent

and identically distributed (iid) with a Gumbel distribution, also called the Extreme Value

Type I distribution. Extreme value distributions arise as the limiting distribution for an
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extreme value (maximum or minimum) of a sample of iid random variables. The Gumbel

distribution has been used in engineering and hydrology to measure annual flood flows (Kotz

and Nadarajah, 2000).

If X has a Gumbel distribution with location parameter µ and scale parameter η, then

the probability density function is given by

fX(x|µ, η) =
1

η
exp

(
− x− µ

η

)
exp

(
− exp

(
− x− µ

η

))
(4.5)

and the cumulative distribution function is given by

FX(x|µ, η) = exp
(
− exp

(
− x− µ

η

))
(4.6)

where x, µ and η are real-valued (x ∈ R, µ ∈ R, η ∈ R) and η > 0. The mean of the Gumbel

distribution is

E(X) = µ+ λη (4.7)

where λ is the Euler-Mascheroni constant ≈ 0.5772, the mode is µ and the variance is

Var(X) =
π2η2

6
(4.8)

where π ≈ 3.1416. Using the standard Gumbel distribution with location parameter µ = 0

and scale parameter η = 1, the probability density function and the cumulative distribution

function are given by

fX(x) = exp(−x) exp(− exp(−x)) (4.9)

and

FX(x) = exp(− exp(−x)), (4.10)
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respectively, E(X) = λ and Var(X) = π2/6. We now derive the logit model choice probabil-

ity, the probability respondent i chooses alternative j as best from a choice set containing J

alternatives.

4.2.2 Derivation of the Logit Model Choice Probability

If we assume that the random components of utility, the εij’s, are iid with a standard Gumbel

distribution, then the probability that alternative j is selected by individual i as the best

choice in a choice set is

p(Yi = j) = p(Uik 6 Uij, for all k 6= j) (4.11)

= p(Vik + εik 6 Vij + εij, for all k 6= j) (4.12)

= p(εik 6 Vij − Vik + εij, for all k 6= j). (4.13)

Suppose that εij is given. Then the conditional probability of alternative j being selected as

best by individual i given εij

p(Yi = j|εij) = p(εik 6 Vij − Vik + εij, for all k 6= j) (4.14)

is the cumulative distribution for each εik evaluated at Vij − Vik + εij. Because the εik’s are

assumed to be independent, the cumulative distribution over all k 6= j is the product of the

individual cumulative distributions,

p(Yi = j|εij) =
J∏

k=1,k 6=j

p(εik 6 Vij − Vik + εij) (4.15)

=
J∏

k=1,k 6=j

exp{− exp[−(Vij − Vik + εij)]}. (4.16)
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Because the εij’s are not given, the marginal choice probability is the integral of p(Yi = j|εij)

over all values of εij weighted by the density, f(εij). Thus

p(Yi = j) =

∫ ∞
−∞

p(Yi = j|εij)f(εij)dεij

=

∫ ∞
−∞

J∏
k=1,k 6=j

exp{− exp[−(Vij − Vik + εij)]}

· exp(−εij) exp[− exp(−εij)]dεij.

(4.17)

Let u = exp(−εij). Then du = − exp(−εij)dεij and the limits change from εij = −∞ to

u =∞ and εij =∞ to u = 0. Now we have that

p(Yi = j) = −
∫ 0

∞

J∏
k=1,k 6=j

[
exp
{
−u exp(−(Vij − Vik))

}]
exp(−u)du (4.18)

=

∫ ∞
0

J∏
k=1,k 6=j

[
exp
{
−u exp(Vik − Vij)

}]
exp(−u)du (4.19)

=

∫ ∞
0

exp
[
−u
{ J∑
k=1,k 6=j

exp(Vik − Vij)
}]

exp(−u)du (4.20)

=

∫ ∞
0

exp
[
−u
{

1 +
J∑

k=1,k 6=j

exp(Vik − Vij)
}]
du. (4.21)

Finally, if we let w = −u
{

1 +
∑J

k=1,k 6=j exp(Vik − Vij)
}

, then

dw = −
{

1 +
∑J

k=1,k 6=j exp(Vik − Vij)
}
du and the limits of integration change from u = ∞
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to w = −∞ and u = 0 to w = 0. We now have that

p(Yi = j) =
1

1 +
∑J

k=1,k 6=j exp(Vik − Vij)

∫ 0

−∞
exp(w)dw (4.22)

=
1

1 +
∑J

k=1,k 6=j exp(Vik − Vij)
(4.23)

=
1

1 +
∑J

k=1,k 6=j exp(Vik − Vij)
(4.24)

=
exp(Vij)

exp(Vij) + exp(Vij)
∑J

k=1,k 6=j exp(Vik − Vij)
(4.25)

=
exp(Vij)

exp(Vij) +
∑J

k=1,k 6=j exp(Vik)
(4.26)

=
exp(Vij)∑J
k=1 exp(Vik)

. (4.27)

Thus, the logit model choice probability, the probability respondent i chooses alternative j

as best from a choice set containing J alternatives, is calculable in closed form as

p(Yi = j) =
exp(Vij)∑J
k=1 exp(Vik)

. (4.28)

If we model the systematic component of utility as a linear function of parameters

Vij = xT
ijβ (4.29)

where xij is the H × 1 attribute vector of the jth alternative for individual i and β is the

H × 1 coefficient vector of unknown fixed attribute effects in the valuation of alternative j

across all individuals, then

p(Yi = j) =
exp(xT

ijβ)∑J
k=1 exp(xT

ikβ)
. (4.30)

From our derivation, we see that the Gumbel distribution leads to the logit choice prob-

ability which forms the basis of the multinomial logit model, a model often chosen for its

mathematical convenience.
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We will model the best choice as the most preferred choice among the four alternatives

in a choice set and we will model the worst choice as the least preferred choice among the

four alternatives in a choice set.

Define δij = 1 if individual i chooses alternative j and δij = 0 otherwise and let pij =

p(Yi = j) be the probability that individual i chooses alternative j as their best choice, then

the likelihood contribution for individual i choosing from a single choice set is given by

Li(β|yi) = pδi1i1 p
δi2
i2 ...p

δiJ
iJ (4.31)

where J indicates the total number of alternatives and yi is the observed choice for individual

i. Assuming that all individuals are selecting a best choice from a single choice set, the

likelihood for a sample of N individuals is

L(β|y) =
N∏
i=1

Li(β|yi) (4.32)

where y is the set of observed choices across all patients. The log-likelihood is given by

logL(β|y) =
N∑
i=1

J∑
j=1

δij log(pij) (4.33)

=
N∑
i=1

J∑
j=1

δij log
( exp(xT

ijβ)∑J
k=1 exp(xT

ikβ)

)
. (4.34)

4.2.3 The Multinomial Logit Model for Panel Data

In the PROSPECT study, each patient was presented with multiple choice sets from which

to make choices. Because each choice task completed by a patient contributes a single

observation, the data are a collection of repeated observations for each patient. This type of

data is sometimes called panel data (Hsiao, 2003). Because the design of the experiment was

adaptive, as described in Chapter 3, the total number of choice sets presented to a patient

differed for each respondent. Let Ti be the total number of choice sets presented to individual

i in the course of the experiment. With the exception of the first four choice sets, the choice

21



set presented at a specific time also differed for each respondent. Thus, the J alternatives in

a choice set presented at a specific time differed across all patients. If we index choice sets

by t, where t = 1, 2, 3, ..., Ti, then Uitj, the utility of alternative j for individual i in choice

set t, is given by

Uitj = Vitj + εitj (4.35)

where Vitj is the systematic component of utility and εitj is the random component of utility

for alternative j presented to individual i in choice set t. If εitj is iid with a standard

Gumble distribution for all i, j and t, then using a similar derivation as in Section 4.2.2,

the probability respondent i chooses alternative j as best from a choice set t containing J

alternatives is given by

p(Yit = j) =
exp(Vitj)∑J
k=1 exp(Vitk)

. (4.36)

Finally, if we model the systematic component of utility as a linear function of parameters

Vitj = xT
itjβ (4.37)

where xitj is the H × 1 attribute vector of the jth alternative for individual i in choice set t

and β is the H × 1 coefficient vector of unknown fixed attribute effects in the valuation of

alternative j for all individuals, then the probability of individual i choosing alternative j in

choice set t as best choice can be written as

p(Yit = j) =
exp(xT

itjβ)∑J
k=1 exp(xT

itkβ)
(4.38)

where Yit is the observed best alternative in choice set t for individual i. Define δitj = 1

if individual i chooses alternative j in choice task t and δitj = 0 otherwise and let pitj =

p(Yit = j) be the probability that individual i chooses alternative j in choice set t as their
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best choice. Then the likelihood function for individual i choosing in choice set t is given by

Lit(β|yit) = pδit1it1 p
δit2
it2 ...p

δitJ
itJ (4.39)

where J is the total number of alternatives in choice set t and yit is the observed choice for

individual i in choice set t. Because each respondent is presented with a varying number of

choice sets, the likelihood contribution for individual i making their choices in the course of

the experiment is given by

Li(β|yi) =

Ti∏
t=1

Lit(β|yit) (4.40)

where yi is the set of observed choices for individual i across all choice sets. The likelihood

for the full sample of N individuals is

L(β|y) =
N∏
i=1

Li(β|yi) (4.41)

where y is the set of observed choices and the log-likelihood is given by

logL(β|y) =
N∑
i=1

Ti∑
t=1

J∑
j=1

δitj log(pitj) (4.42)

=
N∑
i=1

Ti∑
t=1

J∑
j=1

δitj log
( exp(xT

itjβ)∑J
k=1 exp(xT

itkβ)

)
. (4.43)

4.2.4 The Property of Independence of Irrelevant Alternatives

A property which results from deriving the multinomial logit choice probabilities as de-

scribed in (4.38) is the property of independence of irrelevant alternatives (IIA). For any two

alternatives j and k, the ratio of the logit probabilities is

p(Yit = j)

p(Yit = k)
=

exp(xT
itjβ)

exp(xT
itkβ)

= exp[(xitj − xitk)T]β. (4.44)
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This implies that the choice of one alternative over another does not depend on any remaining

alternatives included in the set. In other words, choosing j over k is independent of the set

that contains j and k and the remaining alternatives are irrelevant in the choice between

them.

The property of IIA has been identified as a limitation of the MNL model. In cases where

choice sets contain similar alternatives or alternatives with a natural order, the property of

IIA can be violated (Hernandez-Alava et al., 2013). One well-known example where the

property of IIA is inappropriate is called the red-bus, blue-bus paradox and involves a choice

set that contains two similar alternatives.

Suppose that an individual needs to choose a mode of transportation from a choice set

containing two choices:

A = {car, red bus}

and that pA(Yi = car) = 0.7 and pA(Yi = red bus) = 0.3. Now suppose that a blue bus is

introduced as a new mode of transportation. Then we now have the choice set:

A′ = {car, red bus, blue bus}

Assuming that color does not influence choice of transportation,

pA′(Yi = red bus) = pA′(Yi = blue bus) (4.45)

and intuitively we would think that pA′(Yi = car) = 0.7, pA′(Yi = red bus) = 0.15 and

pA′(Yi = blue bus) = 0.15. But because of the IIA property, the odds of selecting the

car over the red bus does not depend on whether the blue bus is in the choice set or not.

According to the IIA property,

pA′(Yi = car)

pA′(Yi = red bus)
=

pA(Yi = car)

pA(Yi = red bus)
=

0.7

0.3
= 2.33. (4.46)
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Because

pA′(Yi = car) + pA′(Yi = red bus) + pA′(Yi = blue bus) = 1 (4.47)

equations (4.45) and (4.46) imply that

2.33 · pA′(Yi = red bus) + 2 · pA′(Yi = red bus) = 1, (4.48)

and pA′(Yi = red bus) = 0.23 = pA′(Yi = blue bus) and pA′(Yi = car) = 0.54. We summarize

the results in the following table.

Table 4.1: Illustrative results for the red-bus, blue-bus paradox
Mode of transportation Intuition IIA

Car 0.7 0.54
Red Bus 0.15 0.23
Blue Bus 0.15 0.23

If one considers the situation where a choice is made between a car and a red bus, and

then a blue bus is introduced, because the blue bus is functionally like the red bus, its

introduction should draw commuters from primarily the red bus and not from the car. But,

as we can see in Table 4.1, assuming that the IIA property holds in the situation where we

have similiar alternatives in a choice set we can mis-predict the probability of choice for each

of the alternatives. Formal tests have been developed by Hausman and McFadden (1984) to

test the IIA property, but Cheng and Long (2007) have shown in a simulation study that

the Hausman-McFadden test performs rather poorly, even in large samples and conclude

that the test is unsatisfactory for applied work. The IIA property has the potential to be

violated in the PROSPECT study, however, in the absence of a well performing test of the

IIA property and becasue MNL-based models are commonly fit to discrete choice data, we

fit a MNL-based model to the data from the PROSPECT study.
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4.3 Best Choice & Random Effects: The Mixed Logit Model

The Mixed Logit (MXL), also sometimes called the Mixed Multinomial Logit Model or the

Random-Parameters Logit Model, extends the MNL model by including random effects. It

was first described for revealed preference data by Boyd and Mellmand (1980) and Cardell

and Dunbar (1980) and later introduced for discrete choice responses by McFadden and Train

in 2000 (McFadden and Train, 2000). Increased application of the MXL model occurred with

the development of simulation methods which allowed for better estimation of the model.

In the mid-1990’s, such methods were integrated into software packages and the application

of the MXL model increased (Hensher and Greene, 2003). Following its introduction, the

MXL model has been applied in a variety of areas, some of which include: transportation

(Ben-Akiva and Bolduc, 1996; Brownstone and Train, 1999), willingness to pay (Giergiczny

et al., 2012), multiparty elections and food choices (Rigby and Burton, 2006).

Like the MNL model, a MXL model assumes that the error terms are iid according to

a Gumbel distribution. However, a MXL model relaxes the restriction that the coefficient

vector be fixed for all individuals, which allows one to model heterogeneity or variation in

taste by allowing coefficients to vary across individuals (Revelt and Train, 1998). In the MXL

model, each individual has their own coefficient vector, βi, meaning that each individual has

different regression coefficients, also called partial utilities or part-worths, for each attribute.

Because the MXL model assumes that differences across patients have some influence on the

selection of best choice, the MXL model is a random effects model where βi is the coefficient

vector of random attribute effects.

4.3.1 The Mixed Logit Model for Panel Data

The MXL model can be applied to panel data where multiple observations are collected for

each individual. In the MXL model, the utility of alternative j for individual i in choice task

t is

Uitj = xT
itjβi + εitj (4.49)

26



where xitj is the H×1 attribute vector for alternative j in choice set t, βi is the H×1 vector

of unknown coefficients for respondent i and εitj is a random error term that is iid Gumbel

and independent of βi. The coefficients vary in the population with density f(βi|θ) where

θ are the parameters of this population distribution. This model specification is similar to

the MNL model for panel data except in this model, the coefficient vector is now allowed to

vary over respondents rather than being fixed. Thus, conditional on βi, the probability that

respondent i chooses alternative j as the best alternative in choice set t is

p(Yit = j|βi) =
exp(xT

itjβi)∑J
k=1 exp(xT

itkβi)
. (4.50)

4.4 Full Ranking & Fixed Effects: Rank Ordered Logit Model

Because of the limited amount of data collected from individuals in a traditional discrete

choice experiment, where a single alternative is identified as the preferred choice, individual

level models were considered inestimable in the past (Finn and Louviere, 1992). Recently,

Louviere et al. (2008) showed that individual models could be estimated using a best-worst

discrete choice experiment type method with a more efficient experimental design, instead

of relying on only best choices collected from a large number of choice sets (Lancsar and

Louviere, 2008). We call the model Louviere et al. (2008) to model full ranking the sequential

best-worst (SBW).

In a SBW, the goal is to obtain more information from a single choice set without

increasing the total number of choice sets presented to an individual. More information

is elicited from the respondent by obtaining a full ranking of the alternatives in each choice

set. For a given choice set in Louviere’s SBW, the respondent is asked to choose the best and

the worst preferred choice. Once identified, these selected alternatives are removed from the

choice set and the best-worst task is repeated again on the set of the remaining alternatives.

This process continues until a full ranking of alternatives is obtained. An advantage of this

method is the increased ability to fit individual-level models. In their paper, Lancsar and

Louviere were able to estimate individual level models involving three to five alternatives in
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a choice set and six to ten attributes (Louviere et al., 2008). Under the same assumptions as

the MNL model, it is possible to define a multinomial logit model on ranked alternatives, also

called the rank ordered logit (ROL) model, the sequential multinomial logit or the exploded

logit model. Under the ROL model, the probability of observing a ranking is defined as the

product of multinomial logit probabilities of selecting a best choice from successively smaller

choice sets. We compare the probability of a full ranking under the ROL model and SBW

model in Appendix C, Statement 3.

4.4.1 Complete Ranking, 1 Individual, 1 Choice Set

Let pC(j) denote the probability that an alternative j is chosen as best from a set C =

{1, 2, 3, ...j..., J} of alternatives and consider the finite set of alternatives. Then the ranked

data is a set of permutations, π : C → C, mapping alternatives to their ranks (Sun et al.,

2012). For permutation π, π(j) is the rank assigned to item j ∈ C and π−1(j) is the jth

most preferred alternative in C. For example, if π(2) = 1, then alternative 2 is assigned

rank 1. Similarly, if π−1(1) = 2 then the first ranked alternative is alternative 2. Now, let

RC be the set of all possible permutations of the elements in C and let π ∈ RC denote the

complete ranking π−1(1) > π−1(2) > ... > π−1(J). Here the notation, i > j, indicates that

alternative i is preferred over j. Finally, let pC(π) equal the probability of the ranking π.

According to Louviere et al. (2008), Bergland (1994) and Chapman and Staelin (1982),

the probability of a ranking of alternatives can be written as the probability of a sequence of

choices. Applying this approach to the random utility model, for an individual i and ranking
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of alternatives πi = (1 > 2 > ... > j > ... > J), the probability of observing the ranking πi is

pC(πi) = pC(1 > 2 > ... > j > ... > J) (4.51)

= pC(π−1(1) > π−1(2) > ... > π−1(J)) (4.52)

= pC(Ui1 > Ui2 > ... > UiJ) (4.53)

=
J∏
j=1

pC(Uij > Uik, for all k > j) (4.54)

= pC(Ui1 > Uik, for all k > 1) · p(Ui2 > Uik, for all k > 2) · ... (4.55)

·p(Ui(J−1) > Uik, for all k > (J − 1))

= pC(alternative 1 is best) · pC(alternative 2 is 2nd best) · ... (4.56)

·pC(alternative J is last)

where Uij is the utility of alternative j for individual i (Velandia et al., 2011). This equation

is derived from the Luce-Suppes Ranking Choice Theorem which decomposes the joint prob-

ability pC(Ui1 > Ui2 > ... > UiJ) into a series of successive and independent events where Uij

represents the utility of the most preferred alternative at each stage of decision (Chapman

and Staelin, 1982). According to Velandia et al. (2011), the right hand side of (4.54) can

be described as the product of the probability that alternative 1 is preferred over all other

choices given the entire choice set, times the probability that alternative 2 is preferred over

all other choices given that alternative 1 was already chosen and removed from the choice

set, and so on.

In general, let πi be a permutation in RC , the set of all permutations of alternatives in

the choice set C, for individual i where π−1i (1) > π−1i (2) > . . . > π−1i (J) is a ranking of the

alternatives in the choice set, C. Then

pC(πi) = pC

(
π−1i (1) > π−1i (2) > ... > π−1i (J)

)
(4.57)

=
J−1∏
j=1

p{π−1
i (j),...,π−1

i (J)}(π
−1
i (j)) (4.58)
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where π−1i (j) represents the jth preferred alternative in the choice set, C. Because the

probability of choosing one alternative as the least preferred given that all others were already

chosen equals one, the last term, p{π−1
i (J)}(π

−1
i (J)), equals one and is implicitly included in

the equation above.

4.4.1.1 Example: The PROSPECT Study

Consider a ranking, πi, for individual i of four health states in choice set C = {1, 2, 3, 4},

such that 4 > 3 > 2 > 1. Because p(j) equals the multinomial logit probability of choosing

j from C, if

pC(j) =
exp(Vij)∑
k∈C exp(Vik)

, (4.59)

then

p(πi) = p{1,2,3,4}(4)p{1,2,3}(3)p{1,2}(2) (4.60)

=
exp(Vi4)∑

k∈{1,2,3,4} exp(Vik)

exp(Vi3)∑
k∈{1,2,3} exp(Vik)

exp(Vi2)∑
k∈{1,2} exp(Vik)

(4.61)

where Vij is the linear function from the choice model (Vij = xT
ijβ̂) defined in (4.3).

4.4.2 Complete Ranking, N Individuals, Ti Choice Sets for Each Individual

Now suppose that we have N individuals each stating preferences about more than one choice

set. Let πit represent the complete ranking of the choice set t, made by individual i, where

π−1it (1) > π−1it (2) > ... > π−1it (J), i = 1, ..., N , t = 1, ..., Ti and each choice set t contains
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exactly J elements. Then the probability of observing the ranking πit is

p(πit|β) = p
(
π−1it (1) > π−1it (2) > ... > π−1it (J)

)
(4.62)

=
J−1∏
j=1

p{π−1
it (j),...,π−1

it (J)}(π
−1
it (j)) (4.63)

=
J−1∏
j=1

exp(Viπ−1
it (j))∑

J≥k≥j exp(Viπ−1
it (k))

(4.64)

=
J−1∏
j=1

exp(xT
iπ−1

it (j)
β)∑

J≥k≥j exp(xT
iπ−1

it (k)
β)

(4.65)

where π−1it (j) represents the jth preferred alternative for individual i in choice set t, xiπ−1
it (j)

is the H× 1 attribute vector of the jth ranked alternative for individual i in choice set t and

β is H × 1 the coefficient vector of the fixed attribute effects.

Now, let πi = (πi1, πi2, πi3, ..., πiTi) represent the sequence of rankings made by the re-

spondent over the course of the experiment, where Ti is the total number of choice sets

presented to individual i. Then the probability that respondent i makes this sequence of

rankings is the product

p(πi|β) =

Ti∏
t=1

p(πit|β) (4.66)

=

Ti∏
t=1

J−1∏
j=1

exp(xT
iπ−1

it (j)
β)∑

J≥k≥j exp(xT
iπ−1

it (k)
β)
. (4.67)

4.5 Full Ranking & Random Effects: Rank Ordered Mixed Logit

Model

A mixed logit model can also be estimated on ranked data. Let βi be the coefficient vector

of random attribute effects. If we assume that βi is random and distributed with den-

sity f(βi|θ), where θ are the parameters of the distribution, then conditional on βi, the
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probability of observing the ranking of choice set t by individual i, πit, is

p(πit|βi) =
J−1∏
j=1

exp(xT
iπ−1

it (j)
βi)∑

J≥k≥j exp(xT
iπ−1

it (k)
βi)

(4.68)

where π−1it (j) represents the jth preferred alternative for individual i in choice set t, xiπ−1
it (j)

is the H× 1 attribute vector of the jth ranked alternative for individual i in choice set t and

βi is the H × 1 coefficient vector of the random attribute effects for individual i.

Let πi = (πi1, πi2, πi3, ..., πiTi) represent the sequence of rankings made by the respondent

over the course of the experiment, where Ti is the total number of choice sets presented to

individual i. Then conditional on βi, the probability that respondent i makes this sequence

of rankings is the product

p(πi|βi) =

Ti∏
t=1

p(πit|βi) (4.69)

=

Ti∏
t=1

J−1∏
j=1

exp(xT
iπ−1

it (j)
βi)∑

J≥k≥j exp(xT
iπ−1

it (k)
βi)

. (4.70)

For a study where J = 4 and conditional on βi, the probability of observing a ranking, say

4 > 3 > 2 > 1, by individual i is given by

p(πit|βi) = p{1,2,3,4}(4)p{1,2,3}(3)p{1,2}(2) (4.71)

=
exp(xT

it4βi)∑
k∈{1,2,3,4} exp(xT

itkβi)

exp(xT
it3βi)∑

k∈{1,2,3} exp(xT
itkβi)

exp(xT
it2βi)∑

k∈{1,2} exp(xT
itkβi)

(4.72)

where Xitj is the attribute vector for the jth alternative in choice set t presented to individual

i, βi is the coefficient vector of random attribute effects for individual i. Then

p(πi|βi) =

Ti∏
t=1

p(πit|βi) (4.73)
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and the unconditional probability is the integral of this product over the density of βi

p(πi) =

∫
p(πi|βi)f(βi|θ)dβi. (4.74)

4.6 Partial Ranking & Fixed Effects

Thus far we have only considered the situation where we elicit a best choice or a full ordering

of alternatives. However, it is possible to obtain a partial ordering. The respondent might

have difficulty ranking alternatives and thus, leave some alternatives unranked, or the design

of the experiment may lend itself to partial rankings. If we consider the data collected in the

PROSPECT study, only the best and worst choices from a choice set of four alternative health

states are elicited from a respondent. Let C = {1, 2, 3, 4} represent a choice set containing

four alternative health states presented to a single individual. Suppose that health state 1

is identified as the best choice in the set and health state 4 is identified as the worst choice

in the set, which we denote by 1 > {2, 3} > 4. In this case, the middle alternatives, 2 and

3, are unranked relative to each other. The likelihood function for the rank ordered logit

model requires data with rankings starting from the most preferred to least preferred choices

in a sequential order. Allison and Christakis (1994) proposed an alternative likelihood for

ties and incomplete rankings. They assumed that respondents have a preference among

the unranked items, e.g., 2 > 3 or 2 < 3, and these unobserved events are necessarily

mutually exclusive. To handle incomplete or partial rankings, Allison and Christakis (1994)

suggest marginalizing over all possible permutations of unranked items. We generalize their

discussion below. Hernandez-Alava et al. (2013) published a general version of the model

presented below, however did not implement the model on a real dataset in the Bayesian

setting.

4.6.1 Partial Ranking, 1 Individual, 1 Choice Set

We begin this section with an example. We first consider the situation where we have a

single individual presented with a single choice set. For simplicity, we suppress the indices
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representing individuals, i, and choice sets, t. We replace the indices later when generalizing

the example to multiple individuals and choice sets.

4.6.1.1 The PROSPECT Study: 4 Alternatives, 1 Best, 1 Worst

Let πpart = (1 > {2, 3} > 4) be a partial ranking of a choice set containing four health

state profiles for an individual such that 1 is chosen as best and 4 is chosen as worst. In

this example, it is unknown how 2 and 3 rank relative to each other. We have two possible

cases: one where 2 > 3 and one where 3 > 2. Thus, πpart implies two possible rankings:

π1 = 1 > 2 > 3 > 4 and π2 = 1 > 3 > 2 > 4. Because the two cases are mutually exclusive

events, the probability of one event or the other occurring is the sum of the probability of

each event, i.e., p(π1 or π2) = p(π1) + p(π2). Thus

p(πpart) = p(π1 or π2) (4.75)

= p(π1) + p(π2) (4.76)

= p(1 > 2 > 3 > 4) + p(1 > 3 > 2 > 4) (4.77)

=
exp(xT

1β)∑
k∈{1,2,3,4} exp(xT

kβ)

(
exp(xT

2β)∑
k∈{2,3,4} exp(xT

kβ)

exp(xT
3β)∑

k∈{3,4} exp(xT
kβ)

(4.78)

+
exp(xT

3β)∑
k∈{2,3,4} exp(xT

kβ)

exp(xT
2β)∑

k∈{2,4} exp(xT
kβ)

)

where xj is the H × 1 attribute vector of the jth alternative, j = 1, 2, 3, 4, for the individual

and β is the H × 1 coefficient vector of the fixed attribute effects across all individuals.

4.6.1.2 General Discussion: J Alternatives, b Best, w Worst

In the example above, we described the case in which we had an incomplete ranking of the

alternatives in the finite choice set, C = {1, 2, 3, 4}, where the best alternative and the worst

alternative were chosen leaving two mid-ranked alternatives in the entire choice set unranked
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with respect to each other

πpart =
(
π−1(1) > {...} > π−1(4)

)
. (4.79)

Let π : {1, 2, 3, ...j..., J} → {1, 2, 3, ...j..., J} be a mapping of the set of alternatives to

the set of their ranks. Then π(j) is the rank assigned to item j and π−1(j) is the jth

most preferred alternative in the choice set. Now, suppose an incomplete ranking of the

alternatives of the finite choice set, C = {1, 2, ..., J} exists, where the b best alternatives and

the w worst alternatives are chosen leaving the mid-ranked J −w− b alternatives unranked

with respect to each other. We now have the partial ranking

πpart =
(
π−1(1) > ... > π−1(b) > {π−1(b+ 1)...π−1(J − w)}

> π−1(J − w + 1) > ... > π−1(J)
) (4.80)

where the middle J−w−b alternatives, {π−1(b+1)...π−1(J−w)}, are unranked with respect

to each other. If we assume that a preference order among choice set alternatives exists, then

there are (J − w − b)! possible full rankings which are consistent with the partial ranking.

4.6.1.3 General Discussion: Bests, Worsts and Some Middles Ranked

n1

unranked
n2

unranked

... nm
unranked

bests worsts> > > > > > > >

Figure 4.1: A General Partial Ranking

More generally, if we consider the case where we have a more general partial ranking

for a single individual and a single choice set (the bests, the worsts and some of the middle

alternatives are ranked), then we have the situation illustrated in Figure 4.1, where ranked

alternatives are depicted by solid boxes and unranked alternatives are depicted by dashed

boxes. If we suppose that there are m sets of unranked middle alternatives and if we let nk be

the number of alternatives in unranked set k, k = 1, 2, 3...m, then there are (n1!)(n2!)·...·(nm!)
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possible full rankings which are consistent with the partial ranking described in Figure 4.1

π1, π2, ..., πR (4.81)

where R = (n1!)(n2!) · ... · (nm!), the total number of possible full rankings which agree

with the partial ranking. If we assume a preference ranking exists and that only one can

hold, the R full rankings which agree with the partial ranking are mutually exclusive events

and the probability of any event occurring is the sum of the probability of the individual

events. If we have an incomplete ranking, πpart, of the alternatives of the finite choice set,

C = {1, 2, ..., J}, then

p(πpart) =
R∑
r=1

p(πr) (4.82)

=
R∑
r=1

(
J−1∏
j=1

exp(xT
rπ−1

r (j)
β)∑

J≥k≥j exp(xT
rπ−1

r (k)
β)

)
(4.83)

where R is the total number of possible full rankings which are consistent with the partial

ranking, xrπ−1
r (j) is the H × 1 attribute vector of the jth ranked alternative in the rth full

ranking which is consistent with partial ranking πpart and β is the H × 1 coefficient vector

of fixed attribute effects.

4.6.2 Partial Ranking, N Individuals, Ti Choice Sets for Each Individual

Suppose that we have N individuals each stating preferences about more than one choice set.

Let πparti = (πparti1 , πparti2 , πparti3 , ..., πpartiTi
) represent the sequence of incomplete rankings made

by individual i over the course of the experiment, where Ti is the total number of choice

sets presented to individual i. Then the probability that individual i makes this sequence of

incomplete rankings is the product
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p(πparti ) =

Ti∏
t=1

p(πpartit ) (4.84)

=

Ti∏
t=1

R∑
r=1

p(πitr) (4.85)

=

Ti∏
t=1

R∑
r=1

(
J−1∏
j=1

exp(xT
itrπ−1

r (j)
β)∑

J≥k≥j exp(xT
itrπ−1

r (k)
β)

)
(4.86)

where πpartit is the partial ranking of choice set t presented to individual i, πitr is the full

ranking r of the alternatives in choice set t presented to individual i which is consistent with

πpartit , R is the total number of possible full rankings consistent with the partial ranking,

πpartit , xitrπ−1
r (j) is the H × 1 attribute vector of the jth ranked alternative in the full ranking

r which is consistent with πpartit and β is the H×1 coefficient vector of fixed attribute effects.

4.7 Partial Ranking & Random Effects

A model with random effects can also be fit to partially ranked data. Let βi be the coefficient

vector of random attribute effects. If we assume that βi is random and distributed with

density f(βi|θ), where θ are the parameters of the distribution, then conditional on βi,

the probability of an individual’s partial ranking of alternatives is given in (4.86) with βi

substituted for β.

Let πparti = (πparti1 , πparti2 , πparti3 , ..., πpartiTi
) represent the sequence of partial rankings made

by the respondent over the course of the experiment, where Ti is the total number of choice

sets presented to individual i. Then conditional on βi, the probability that respondent i
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makes this sequence of rankings is the product

p(πparti |βi) =

Ti∏
t=1

p(πpartit |βi) (4.87)

=

Ti∏
t=1

R∑
r=1

p(πitr|βi) (4.88)

=

Ti∏
t=1

R∑
r=1

(
J−1∏
j=1

exp(xT
itrπ−1

r (j)
βi)∑

J≥k≥j exp(xT
itrπ−1

r (k)
βi)

)
(4.89)

where πpartit is the partial ranking of choice set t presented to individual i, πitr is the full

ranking r of the alternatives in choice set t presented to individual i which agrees with πpartit ,

R is the total number of possible full rankings implied by the partial ranking, πpartit , xitrπ−1
r (j)

is the H × 1 attribute vector of the jth ranked alternative in the full ranking r which agrees

with πpartit and βi is the H × 1 coefficient vector of random attribute effects.

Then the unconditional probability is the integral of this product over the density of βi

p(πi) =

∫
p(πi|βi)f(βi|θ)dβi. (4.90)

4.7.1 Special Case: The Rank Ordered Logit Model for Full Rankings

Suppose that for individual i that have partial rankings of a choice sets t = 1, ..., Ti with

no unranked middle cards, i.e., a full rankings. Then R = 0! = 1 and (4.89) reduces to the

probability of observing the full ranking πic defined in (4.70).

4.7.2 Special Case: The Multinomal Logit Model

Suppose now that for individual i that have partial rankings of a choice sets t = 1, ..., Ti

with only best choices ranked. Then (4.89) reduces to the probability of observing the best

choices defined in (4.50).
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4.8 Methods of Estimation

A challenge to researchers that has arisen when trying to account for heterogeneity in re-

spondents’ preferences is the difficulty of obtaining sufficient data to estimate individual-level

parameters. With discrete choice experiments, there is difficulty in calculating individual

utilities because each respondent provides only a small amount of information. In construct-

ing choice sets for evaluation, a tradeoff is made between the need for a large number of

choice sets and the need to minimize respondent fatigue. In typical surveys, respondents

make choices from as little as eight to twelve choice sets and it has been documented that

increasing the number of choice sets can affect the accuracy in responses (Hauser and Rao,

2002).

While some methods aim to collect more data by making changes to the experimental de-

sign to derive individual-level estimates (Louviere et al., 2008; Lancsar and Louviere, 2008),

Bayesian methods can also be used to obtain individual-level estimates in the presence of

sparse data (Rossi and Allenby, 1993; Allenby, 1995, 1994; Allenby and Rossi, 1999). We

first discuss a classical method for estimating individual-level preferences before describ-

ing a Bayesian approach. We illustrate the methods using the MXL model to define the

choice probability, but we note that the methods are not specific to this model and can be

implemented using any of random effects models described in Chapter 4.

4.8.1 Approximate Likelihood Methods

One way to fit mixed logit models is by using maximum simulated likelihood. Maximum

simulated likelihood methods involve integration over the distribution of the individual-level

preference parameter. If the integral has no closed form solution, one can use simulation

and maximize a simulated likelihood. In this method, draws are made from the distribution

of the individual-level preference parameter. The likelihood is calculated for each draw and

averaged over all draws. This simulated likelihood is then maximized.

In the PROSPECT study, respondents were presented with 10 to 17 choice tasks. Let

yi = (j1, j2, j3, ..., jTi) represent the sequence of preferred choices made by the respondent
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over the course of the experiment, where Ti is the total number of choice sets presented

to individual i. Conditional on βi and because the εitj’s are independent over time, the

conditional likelihood that respondent i makes this sequence of choices is the product

Li(βi|yi) = P (yi|βi) =

Ti∏
t=1

[
exp(xitjtβi)∑
k∈Ct

exp(xitkβi)

]
(4.91)

where yi is the observed choices for respondent i in the course of the experiment and Ct is the

tth choice set presented to individual i, t = 1, 2, 3, ..., Ti. A distribution for the coefficients,

f(βi|θ), is then specified and the parameters, θ, of the coefficient distribution are estimated.

In many studies f(βi|θ) has been specified to be normal or lognormal (Mehndiratta,

1996; Ben-Akiva and Bolduc, 1996; Revelt and Train, 1998; Johnson, 2000). Triangular and

uniform distributions have also been used (Revelt and Train., 2000; Hensher and Greene,

2003). In moving away from finding point estimates of a parameter vector to analyzing the

distribution of parameters, the problem of specifying the functional form for the distribution

arises. Recent studies have attempted to address this issue (Rigby and Burton, 2006). In

this dissertation, we will begin by specifying βi to be normally distributed with parameters

θ = (β,Σβ), which we denote by βi ∼ N (β,Σβ).

The likelihood function for individual i making their choices in the course of the exper-

iment is the unconditional probability of making that sequence of choices, the integral of

Li(βi|yi) over all values of βi,

Li(θ|yi) = P (Yi = yi|θ) =

∫
Li(βi|yi)f(βi|θ)dβi (4.92)

where yi is the observed choices for respondent i in the course of the experiment. Then the

log-likelihood function is

l(θ|y) =
N∑
i=1

log(Li(θ|yi)) (4.93)

where y is the observed choices across all choice sets and respondents. Although there is no
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closed form solution for the integral in (4.92), Li(θ|yi) can be estimated through simulation.

A draw of βi for all i is taken from the density f(βi|θ) and Li(θ|yi) is calculated. This is

repeated many times and the results are averaged to approximate the likelihood function for

individual i, using

SLi(θ|yi) =
1

R

R∑
r=1

P (Yi = yi|β(r)
i ) (4.94)

where R is the number of draws, β
(r)
i is the rth draw from f(βi|θ) and SLi(θ|yi) is the sim-

ulated likelihood function for individual i given their sequence of choices, yi. The simulated

log-likelihood function is constructed by summing over the log of the simulated probabilities

over all individuals

Sl(θ|yi) =
N∑
i=1

log(SLi(θ|yi)). (4.95)

The maximum simulated likelihood estimator (MSLE) is the estimate of θ that maximizes

Sl(θ|yi)

θ̂MSLE = arg max
θ∈Θ

Sl(θ|yi). (4.96)

So, for example, if we assumed that βi ∼ N(β,Σβ), then the MSLEs are the values β̂ and

Σ̂β that maximize Sl(θ|yi).

4.8.2 Hierarchical Bayes Approach

In using classic methods of estimation with sparse data, it is not uncommon to obtain

estimates of the coefficients in a direction inconsistent with the true values (Rao, 2008).

Hierarchical Bayes (HB) provides a method to overcome the problem of sparse information.

Bayesian ideas for MXL models with normally distributed coefficients were introduced

by Allenby and Lenk (1994) and Allenby (1994). Allenby and Rossi (1999) showed how

Bayesian procedures could be used to obtain estimates for individual parameters within a
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random coefficient model and Train (2001) extended the procedures for the MXL model

to allow for non-normal distributions (e.g., uniform and lognormal distributions) of the

coefficients. For convenience, we will assume that the coefficients are normally distributed.

Consider the utility, Uitj, of alternative j for individual i in choice task t

Uitj = xT
itjβi + εitj (4.97)

where xitj is the attribute vector for alternative j presented to individual i in choice set t,

εitj is iid Gumbel and βi is the coefficient vector of random attribute effects for respondent

i, and is normally distributed, βi ∼ N (β,Σβ). Then the posterior distribution of β and Σβ

is

P (β,Σβ|Y ) ∝
N∏
i=1

P (Yi = j|β,Σβ)p(β,Σβ) (4.98)

where p(β,Σβ) is the prior distribution on β and Σβ. If β and Σβ are independent, then

p(β,Σβ) = p(β)p(Σβ). Typically, p(β) is assumed to be multivariate normal, N (µ,Σ), and

p(Σβ) is assumed to be Inverse Wishart with prior degrees of freedom w and prior precision

W . The Inverse Wishart distribution is often used in Bayesian modeling because it is a

proper conjugate prior for an unknown covariance matrix in a multivariate normal model

(Gelman, 2006).

If X has an Inverse Wishart distribution with scale matrix W and degrees of freedom

parameter w (denote this by X ∼ inverseWishart(w,W )), then the probability density

function is given by

fX(x|µ, η) =
|W |w2

2
wp
2 Γp(

w
2
)
|X|−

w+p+1
2 exp−

1
2
tr(WX−1) (4.99)

where X and W are p× p positive definite matrices, Γp is the multivariate gamma function,

tr is the trace function, w is real-valued (w ∈ R) and w > p + 1. The mean of the Inverse
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Wishart distribution is

E(X) =
W

w − p− 1
. (4.100)

where w > p+ 1 and w ∈ R.

The conditional posteriors can be shown to be

p(β|Σβ,βi for all i) ∝ N
( N∑
i=1

βi/N,Σβ/N
)

(4.101)

and

p(Σβ|β,βi for all i) ∝ inverseWishart
(
w +N,

wW +NG

w +N

)
(4.102)

where N is the number of individuals and G =
∑N

i=1(βi − β)(βi − β)′/N (Train, 2001).

Using Gibbs sampling we can draw from p(β,Σβ|Y ) in three steps (Train, 2001):

1. Take a draw of β conditional on Σβ and βi for all i.

2. Take a draw of Σβ conditional on β and βi for all i.

3. Take a draw of βi for all i conditional on values of β and Σβ.

The posterior for each person’s coefficient vector, βi, conditional on their choices and the

population mean, β, and variance, Σβ, of βi, is

p(βi|β,Σβ, Yi = j) ∝ P (Yi = j|βi)f(βi|θ) (4.103)

where we have assumed that βi is normally distributed with mean β and variance Σβ. The

three steps above are repeated for many iterations and the resulting values converge to

draws from the joint posterior of β, Σβ and βi for all i individuals. The mean and standard

deviation of these draws can then be calculated to obtain estimates and standard errors of

the parameters.
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CHAPTER 5

Preliminary Analyses

This chapter presents the results of early analyses conducted using data from the first 44

patients while patient recruitment was ongoing. First, using only best choices, a multinomial

logit model using maximum likelihood and a mixed logit model using simulated maximum

likelihood were fit to the data and compared. Then two hierarchical Bayes models (one

using best choices only and another using best and worst choices) were fit to the data and

compared. Relative attribute importance was then calculated using Bayesian methods and

finally, principal components analysis was used to identify attribute groupings which may

inform us about possible underlying choice processes.

5.1 Best Choice: Fitting the Multinomial Logit and Mixed Logit

Models Using Maximum Likelihood and Simulated Maximum

Likelihood in R

We fit three models for best choice to the PROSPECT study data. For the analyses in this

section, we ignore the additional information gained by asking for the worst alternatives.

Attributes were included as dummy variables in the models. The models include the multi-

nomial logit (MNL) using maximum likelihood estimation and two mixed logit models based

on different specifications for the covariance matrix of the random coefficients using simu-

lated maximum likelihood (MXL1 and MXL2). In the MNL model, the attribute coefficients

are considered fixed for all patients. The coefficients for the mixed logit, on the other hand,

are considered to vary randomly in the population. In the first model MXL1, it is assumed

that each coefficient is independently distributed according to a normal distribution. In
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model MXL2, all coefficients are normally distributed and allowed to be correlated. Monte

Carlo simulation for the likelihood of the mixed logit models was performed using 500 draws

for each participant. Analysis was performed using the mlogit package in R.

Table 5.1 presents the estimated population parameters for the three models. For the

MNL model, all coefficients are significantly different from zero except for Taking Action

(taking action immediately vs not jumping into a radical treatment). Similar results are

found for the two mixed logit models MXL1 and MXL2. Except for Taking Action, the signs

and significance of the coefficients are consistent with a priori expectations.

For MXL1, the estimated standard deviations of the random effects for all attributes,

except for active, decreased urinary function and decreased sexual function, are significant.

The estimated standard deviations vary in the population, which implies that there is consid-

erable heterogeneity in patients’ preference for a full lifespan, bowel issues, surgery, others’

support, same urinary functioning and same sexual functioning. By allowing the parameters

to vary, the log likelihood increases. From Table 5.3, the likelihood ratio test comparing the

MNL model to the MXL1 is significant, indicating that the mixed logit model provides a

better fit for the data.

The random coefficients are specified to be independently distributed in MXL1, but

it is possible that the coefficients are correlated. For example, patients concerned about

urinary functioning might also be concerned about sexual functioning. Thus, for MXL2, the

coefficients are specified to be normally distributed with a covariance matrix with possibly

non-zero off-diagonal entries. From Table 5.1, we see that the MXL2 yields similar estimates

compared to MXL1. However, from Table 5.3, we see that the likelihood ratio test comparing

the MXL1 to MXL2 is significant indicating that the mixed logit model where the coefficients

are allowed to be correlated provides a better fit. Table 5.2 presents the estimated covariance

matrix and estimates for the correlation matrix. Seventeen covariances were found to be

significantly different from zero.

The coefficient for full lifespan is negatively correlated with the coefficient of no bowel

problems and positively correlated with the coefficient of no cutting. This implies that pa-
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tients who value a full lifespan tend to value no cutting and tend not to value no bowel issues.

The coefficient of no cutting is negatively associated with the coefficients of active, others

support and sexual functioning. This implies that the patients who value no cutting also

tend to not value taking an active role in treatment, others support and sexual functioning.

The coefficient of others’ support is negatively associated with the coefficients for urinary

functioning and sexual functioning, and the coefficients for urinary functioning are positively

correlated with the coefficients for sexual functioning.

5.2 Best Choice and Best-Worst Choices: Fitting the Multinomial

Logit and the Rank Ordered Logit Model for Best and Worst

Choices Using Bayesian Methods

We fit a MNL model with random effects for best choice and a rank-ordered logit (ROL)

model with random effects for best-worst choices to the PROSPECT study data using

Bayesian methods. The models are defined in more detail in Section 6.3. The estimates

were obtained using Gibbs sampling using JAGS software. The JAGS model specifications

can be found in Appendices A.1 and A.2.

Table 5.4 presents the results for our best and best-worst models. For these patients,

the most valued attributes (and most variable) in both models were full lifespan, urinary

functioning and sexual functioning. For these analyses, we considered those coefficients with

high posterior probabilities of being non-zero to be those whose 95% posterior credible inter-

val did not contain zero. All estimated coefficients for the population means and standard

deviations are considered significantly different from zero under both models except for the

posterior mean estimates of taking action. In addition, because the 95% credible intervals

for these posterior mean estimates overlapped we find that there is no significant difference

between these mean estimates.

Compared to the MNL for best choice with random effects, the estimated coefficients

for the model incorporating worst choices are slightly higher across nearly all attributes.
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Table 5.3: Likelihood Ratio Tests
Model df LogLik Chisq Chisq df P-value
Multinomial Logit 9 -616.69
Mixed Logit with independent coefficients 18 -558.95 115.49 9 <0.0001

Mixed Logit with independent coefficients 18 -558.95
Mixed Logit with correlated coefficients 54 -528.79 60.31 36 0.01

In addition, by incorporating worst-choices, the standard deviations of the mean estimates

decrease. We see a similar results for the estimated standard deviations of the random effects.

Table 5.5 presents the correlation matrix for the random effects. Under the MNL model

for best choice, the estimated mean correlation between short term urinary issues and full

lifespan is positive and the 95% credible interval does not contain zero (highlighted), which

implies that an average patient who values full lifespan may be willing endure short term

urinary issues. Under the ROL model for best and worst choices, patients who tend to value

urinary functioning also tend to value sexual functioning. The negative correlations in the

table describe the trade-offs in attribute preferences. For example, patients who tend to

value full lifespan may be willing to undergo surgery.

5.3 Classification of Health State Attributes Using Principal Com-

ponents Analysis

The principal aim of this analysis was to ascertain if an underlying structure could be identi-

fied to assist with classification of the health state attributes in the population. Classification

of the health state attributes may assist the clinician and the patient in an initial discussion

regarding treatment, which may prompt the patient to begin exploring their own personal

preferences.

Correlations among the nine attributes were examined using principal components anal-

ysis (PCA). PCA examines the correlations among measured variables to determine if there

are groups of variables that are correlated. It is a tool used to extract components that

simplify the data, while retaining as much information as possible. PCA initially generates
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the same number of components as the number of variables, but most of the components

will explain very little variance. Components that explain much of the variance in the data

are identified on a scree plot as those above the elbow and/or those with eigenvalues greater

than one. The eigenvalues measure the amount of variance accounted for by each principal

component. The sum of the eigenvalues equals the total number of principal components

and the proportion of variance accounted for by each principal component is calculated by

dividing the eigenvalue corresponding to the principal component by the total number of

principal components.

Interpretation of the principal components relies on the factor loadings, which are the

correlations between the original variable values and the extracted components. Components

are considered to represent those variables with which they have moderate to high correla-

tions. For this analysis, the variables were the estimate individual-level random effects. A

cutoff of 0.4 was used and attributes with factor loadings of 0.4 or greater were considered

to load highly on the component. The value of using PCA lies in the fact that attribute

groupings may inform us about possible underlying choice processes. For example, if lifes-

pan, bowel issues, cutting, sexual and urinary functioning were grouped together (loaded

highly on the same component), then these might be interpreted as issues that patients tend

to be considered together.

The estimated individual-level random effects from the Best-Worst model, which has

results in Table 5.4, are presented in Table 5.6 and a scatterplot matrix of the estimated

random effects is depicted in Figure 5.1. From Figure 5.1, we observe that nearly all pairs

of attributes appear to have some degree of correlation.

Principal components analysis was conducted using the posterior mean estimates for each

of the components of the correlation matrix presented in Table 5.5. The PCA results are

presented in Table 5.7. The eigenvector with the highest eigenvalue is the first principal

component of the data. In Table 5.7, the highest eigenvalue is 3.78. If the data are projected

onto the line defined by the eigenvector, this line describes the direction where the variability

is maximized. Comp.1 accounts for 42% (3.78/9) of the total variation in the data and

Comp.2 accounts for 20%.
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To reduce dimensionality in the data, we could use the scree plot in Figure 5.2 to identify

components with variances above the elbow. Following this rule of thumb, we may decide to

keep the first four components. Another rule of thumb recommends that we keep components

whose eigenvalues are > 1 (Afifi et al., 2003). Since the eigenvalue corresponding to the

fourth component is approximately equal to one, using this rule we would keep the first four

components. Together, these first four components explain 88% of the total variance of the

data.

To interpret the components we look at the attributes corresponding to the highest vector

components (loadings) in absolute value. Factor loadings with absolute value greater than

or equal to 0.4 are highlighted in red. We could characterize the first principal component

as a vector describing urinary and sexual functioning. The second principal component

focuses on treatment issues: surgery, support & action, while the third principal component

reflects bowel functioning. The fourth component reflects expected lifespan. PCA clarified

choice processes in the population by identifying meaningful groups of health state attributes.

The results suggest that health state attributes related to prostate cancer treatment can be

summarized by four components related to urinary and sexual functioning, treatment issues,

bowel functioning, and expected lifespan. These components are useful for future research

and my have implications for treating patients.

5.4 Remarks

These early analyses helped with the iterative process of model development. We moved

forward with the mixed logit where all coefficients are assumed to be normally distributed

and allowed to be correlated. We did not directly use the PCA approach in subsequent

analyses; this could be an area for future research.
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Table 5.6: Individual-Level Random Effects
Full No Bowel Short Term Full Urinary Short Term Full Sexual No Taking Others’

Patient ID Lifespan Issues Urinary Issues Functioning Sexual Issues Functioning Cutting Action Support
1 1.35 1.49 1.16 1.73 2.31 3.69 0.38 0.34 0.35
2 0.79 0.61 0.61 0.99 0.72 1.24 2.47 -0.11 0.67
3 0.67 0.88 1.08 1.64 1.30 1.89 1.11 0.17 1.07
4 0.93 1.89 0.15 0.30 -0.04 -0.09 2.01 -0.07 0.73
5 2.50 0.77 0.78 1.00 1.41 2.31 1.53 -0.11 0.29
6 0.86 1.14 0.87 1.25 1.09 1.71 1.05 0.28 1.29
7 1.15 0.39 0.91 1.25 1.20 2.00 1.12 -0.05 1.20
8 1.91 1.90 0.36 0.45 0.61 1.17 1.78 0.03 0.15
9 1.40 1.21 0.73 0.96 0.66 0.93 0.80 0.05 1.38
10 2.69 0.08 1.25 1.78 2.58 4.25 0.58 0.05 0.66
11 2.36 0.02 0.74 1.15 1.19 1.82 1.68 -0.20 0.84
12 -0.40 1.76 0.51 0.87 0.45 0.95 2.62 -0.07 0.29
13 0.86 0.93 1.16 1.75 1.95 2.96 0.97 0.22 0.59
14 3.21 0.90 0.77 0.85 1.09 1.39 0.64 0.10 0.93
15 0.09 0.78 0.92 1.53 0.38 0.30 0.60 0.27 2.45
16 0.74 0.98 0.78 1.16 0.34 0.18 0.56 0.35 2.26
17 1.09 0.97 0.46 0.82 0.67 1.11 2.66 -0.14 0.19
18 3.22 0.57 0.93 1.10 1.51 2.14 0.47 0.07 1.03
19 1.86 0.36 1.33 2.17 3.45 5.99 0.91 0.06 -0.21
20 2.06 1.27 1.07 1.41 2.31 3.71 0.53 0.15 0.12
21 1.63 0.86 1.15 1.64 1.93 3.04 0.53 0.25 0.85
22 0.08 1.21 0.33 0.71 0.15 0.28 2.55 -0.12 0.91
23 1.59 0.45 0.83 1.19 1.28 2.13 1.61 -0.12 0.75
24 4.76 0.32 1.06 1.34 2.47 3.90 0.14 0.11 0.45
25 4.20 0.70 0.98 1.16 1.91 2.92 0.01 0.15 0.78
26 2.06 0.92 0.98 1.64 2.44 3.97 0.53 0.16 0.41
27 3.21 0.39 0.75 0.99 0.74 0.76 0.45 0.09 1.78
28 1.39 1.27 0.47 0.74 0.86 1.48 2.26 -0.02 0.16
29 0.54 1.42 0.53 0.89 0.15 0.02 1.65 0.16 1.35
30 0.77 2.07 0.56 0.87 0.77 1.22 1.18 0.20 0.77
31 0.34 0.50 0.94 1.60 0.98 1.44 1.04 0.17 1.85
32 2.44 0.16 0.84 1.30 1.92 3.24 1.49 -0.08 0.44
33 1.49 2.88 0.50 0.61 0.72 1.01 0.72 0.36 0.37
34 2.00 1.39 0.66 0.80 0.44 0.43 0.69 0.25 1.31
35 3.05 0.52 0.64 0.94 1.67 2.75 1.50 -0.06 0.29
36 3.27 0.95 0.62 0.86 1.15 1.52 0.62 0.10 0.99
37 0.34 1.25 0.76 1.27 2.00 3.58 2.12 -0.07 -0.20
38 2.48 0.82 1.14 1.59 2.38 3.62 0.44 0.21 0.54
39 3.66 1.61 0.69 0.62 1.03 1.47 0.47 0.19 0.50
40 2.05 1.45 0.86 1.12 1.39 1.97 0.51 0.26 0.87
41 1.71 0.91 1.22 1.77 2.53 4.25 0.65 0.15 0.23
42 1.82 1.96 0.81 1.10 1.69 2.58 0.64 0.28 0.28
43 2.70 0.99 1.10 1.38 1.60 2.29 0.21 0.19 1.00
44 1.14 0.55 0.88 1.42 1.46 2.05 1.03 -0.03 1.09
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Figure 5.1: Scatterplot of Random Effects
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Figure 5.2: Scree plot
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Table 5.7: Results of the principal components analysis using Bayesian estimates for corre-
lation matrix

Eigenvalues 3.71 1.72 1.31 1.16 0.47 0.30 0.17 0.12 0.03
Eigenvectors Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

FullLife 0.227 -0.022 -0.387 0.687 -0.075 -0.296 -0.408 0.256 -0.018
Bowel100 -0.238 0.043 -0.569 -0.440 0.493 0.013 -0.201 0.375 0.008

Urinary50 0.418 0.168 0.186 -0.151 0.358 -0.723 0.291 0.063 -0.020
Urinary100 0.404 0.139 0.327 -0.309 0.041 0.119 -0.768 -0.094 -0.002

Sex50 0.482 -0.185 -0.104 -0.067 -0.065 0.277 0.208 0.263 0.724
Sex100 0.464 -0.254 -0.092 -0.111 -0.104 0.286 0.206 0.306 -0.686

NoCutting -0.288 -0.463 0.306 -0.223 -0.384 -0.359 -0.154 0.506 0.060
Active 0.081 0.510 -0.369 -0.327 -0.674 -0.178 0.050 -0.031 -0.002

Support -0.129 0.614 0.368 0.205 0.064 0.239 0.084 0.601 -0.013
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CHAPTER 6

A Hierarchical Bayes Model for Discrete Choice Data

in Health Care

This chapter presents the Bayesian hierarchical model for best-worst choice data with random

effects and patient covariates, defines measures of relative importance, presents CPO-based

measures for outlier detection, and demonstrates application of our methods to data from

the PROSPECT study.

6.1 Introduction

Discrete choice experiments (DCEs) have been increasingly used in health applications to

characterize the preferences of individual patients for various health care interventions and

services (Lancsar et al., 2013; DeBekker-Grob et al., 2012). In a typical health care DCE,

patients are presented with sets of health states described by various attributes and asked to

make choices from among them (Ryan et al., 2008). For example, a patient might be asked to

choose between a health state with long life expectancy and poor quality of life and a health

state with shorter life expectancy and high quality of life. By asking individuals to make

choices between health states, they are forced to make trade-offs that reveal information

about their preferences for different aspects of health-related quality of life.

Historically, in a DCE, patients provided their most preferred health state or a full

ranking of a set of possible health states. However, continued research in discrete choice

experiments has led to the development of best-worst designs in which patients provide only

their most preferred and least preferred choices (Lancsar and Louviere, 2008; Louviere et al.,

2008). While reducing patient burden compared to full rankings, best-worst discrete choice
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experiments pose new statistical challenges. In such data, incomplete ranking information

occurs when choosing best and worst from among four or more health states, and patient-level

data are often insufficient to estimate individual-level preferences using maximum likelihood

methods as it is not uncommon to obtain estimates of the coefficients in the wrong direction

with sparse data (Allenby et al., 2005; Rao, 2008).

A number of models have been developed for discrete choice data. The multinomial logit

models the probability of observing best choices (McFadden, 1974), while the rank-ordered

logit models the probability of full rankings (Allison and Christakis, 1994). Mixed logit

models include random effects that vary across individuals to account for heterogeneity in

preferences (Revelt and Train, 1998; McFadden and Train, 2000). More recently, Allenby

et al. (2005) developed a Bayesian hierarchical model for best choices with random effects

and individual-level covariates and Hernandez-Alava et al. (2013) introduced a model for

ranked and partially ranked data that includes random effects, and estimated the random

effects using Monte Carlo maximum likelihood methods. Although the model introduced by

Hernandez-Alava et al. accommodates partially ranked data, it is not uncommon to obtain

coefficient estimates in the wrong direction when using maximum likelihood estimation with

sparse data (Rao, 2008). Moreover, their model does not include individual-specific covariates

although inference on covariate effects is often of interest and it has been shown that including

covariates can improve preference estimates for the mixed logit (Crabbe and Vandebroek,

2011; Orme and Howell, 2009; Greene et al., 2006; Allenby et al., 2005).

In many studies a key purpose of the DCE is to obtain an individual’s ranking of various

attributes relative to each other. The concept of relative attribute importance is widely used

in the marketing research literature to provide rankings of features of consumer products

(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Recently, this concept has been

extended into the health care domain (Dowsey et al., 2016; Kruk et al., 2016; van Dijk et al.,

2016). In this context, the purpose of the DCE is to obtain an individual’s ranking of various

attributes of health care or health-related quality of life, so that this information can be

used as part of the health care decision-making process. For example, how a prostate cancer

patient values full sexual functioning, long lifespan and no urinary incontinence relative to
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each other may inform which treatment options are a better match for the patient. While

discrete choice data are now routinely analyzed using Bayesian hierarchical models with

random effects to accommodate preference heterogeneity (McFadden and Train, 2000; Train,

2001; Allenby et al., 2005; Train, 2009), methods to compute relative attribute importance

for such models are not fully developed.

Methods to identify outliers for such models are also lacking. Using the means of the

individual-specific parameter distributions, Campbell and Hess (2010) classified individuals

in the upper and lower percentiles as outliers. Farrel et al. (2012) proposed a graphical

method to identify outliers by plotting standardized random effects against their expected

values for a Bayesian hierarchical logistic regression model. Several approaches for outlier

detection in Bayesian models have been explored. For example, using the posterior distribu-

tion of the residuals of a regression model, Chaloner and Brant (1988) and Chaloner (1991,

1994) define an outlier as an observation with a large random error and calculate the pos-

terior probabilities that observations are outlying. Other approaches for outlier detection

are based on the predictive distribution. The conditional predictive ordinate (CPO), first

suggested by Geisser (1980), is a diagnostic measure used to detect observations discrepant

with the proposed model (Geisser, 1980, 1987, 1989, 1993; Dey et al., 1997; Pettit, 1990).

To our knowledge, CPO has not been used to identify outlying random effects.

In this paper, we develop a Bayesian hierarchical model for best-worst discrete choice

data. Our model extends previous approaches. Incomplete rankings are handled by marginal-

izing over all possible permutations of unranked health states in a model that includes ran-

dom effects to model individual-specific preferences. Bayesian methods are used to overcome

the problem of sparse data to obtain estimates of individual preferences. To enable anal-

ysis of how patient characteristics are related to preferences, we model individual-specific

preferences as a function of individual-specific covariates. We also define Bayesian versions

of relative attribute importance for individuals and for the population that handle random

effects and covariates. To identify outliers in DCEs, we adapt the CPO in two ways: we

adapt it to include random effects to identify patients who are unusual in their preferences for

specific attributes or combinations of attributes, and we adapt it to handle vector outcomes
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to identify choice sets that are outlying with respect to individual preferences.

The paper is organized as follows. Section 6.2 describes the motivating dataset and

defines terms used throughout the remainder of the paper. Section 6.3 presents the Bayesian

hierarchical model for best-worst choice data with random effects and patient covariates.

Section 6.4 defines measures of relative importance, while Section 6.5 presents CPO-based

measures for outlier detection. Section 6.6 demonstrates application of our methods to data

from the PROSPECT study. This is followed by a discussion in Section 6.7.

6.2 Motivating Example: The PROSPECT Study

The methods are motivated by the PROSPECT (PROState cancer PrEferenCes for Treat-

ment) study, which used a DCE to understand patient preferences for aspects of health-

related quality of life associated with prostate cancer treatment outcomes (Saigal and Dahan,

2012). The 121 patients were men with negative prostate biopsies.

We make the following definitions. An attribute is a characteristic of a treatment or a

health state resulting from a treatment. For simplicity of discussion, we define an attribute

as a characteristic of a health state. Attributes are defined by at least two attribute levels.

For example, sexual functioning is an attribute with three attribute levels, no sexual func-

tioning, decreased sexual functioning and full sexual functioning. Investigators identified

seven attributes important for prostate cancer treatment decision making using a Voice of

the Patient process (Saigal and Dahan, 2012). In addition to sexual functioning, these were

urinary incontinence, bowel issues, expected lifespan, others’ support for the proposed treat-

ment, cutting and taking immediate action towards treatment. Table 3.2 presents the seven

attributes with their attribute levels. Health state attribute variables are dummy variables

for health state attributes with the lowest attribute level as the reference group. A health

state is defined by specifying attribute levels for each of the seven attributes. Sets of health

states from which patients make choices are called choice sets and a health state contained

in a choice set is called an alternative. An example of a choice set is shown in Figure 3.1.

In the PROSPECT study, Patients were presented with choice sets comprised of four
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hypothetical health states that could result from various cancer treatments, and asked to

choose their most and least preferred health state from each set, leaving two health states

unranked. Sixteen health states were selected by investigators for creation of choice sets.

These sixteen health states described by their attribute levels are presented in Table 3.3. The

first four choice sets were the same for all patients and consisted of health states {1,3,9,15},

{2,4,10,14}, {5,6,11,12} and {7,8,13,16}. An algorithm was used to create the remaining

choice sets for each patient. The algorithm composed subsequent choice sets in a manner

that achieved an implicit ranking of the sixteen states using the minimum of choice sets.

As a result, the number of choice sets as well as the choice sets presented to each patient

differed. The number of choice sets per patient ranged from 10 to 17.

6.3 Bayesian Hierarchical model for Best-Worst Choice Data

Our model includes a probability model for best-worst choice data with incomplete rankings,

a hierarchical prior distribution, and individual-specific covariates predicting an individual’s

preference scores for attributes.

6.3.1 Probability Model

Let i = 1, ..., N index patients, t = 1, ..., Ti index choice sets within patient i, and j = 1, ..., Jit

index the health states within choice set t presented to patient i, where N is the total number

of patients, Ti is the total number of choice sets presented to patient i, and Jit is the total

number of health states in choice set t presented to patient i.

Let Y it be a Jit × 1 vector describing an observed full ranking of a choice set, where

element yitj of Y it is the observed jth ranked health state in choice set t presented to

individual i. For example, suppose patient i gives a full ranking D > A > C > B of

choice set t = {A,B,C,D} where D is most preferred and B is least preferred. Then

Y it = (yit1, yit2, yit3, yit4)
T = (D,A,C,B)T.

We use a linear predictor to relate choices to the attribute levels of health states (Hauber
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et al., 2016). Let xitj be an H×1 vector encoding the attribute levels of the jth ranked health

state in choice set t presented to individual i, where H is the total number of health state

attribute variables. Let βi be an H × 1 unknown vector of preference scores for individual i.

Suppose that individual i provides only a most preferred health state for choice set t.

Then the probability that individual i chooses the jth health state as the best state in choice

set t is

p(yitj|βi) =
exp(xT

itjβi)∑Jit
k=1 exp(xT

itkβi)
, (6.1)

where the summation is over the health states in the choice set (McFadden, 1974).

Patient i is presented with Ti choice sets, each of size Jit = 4. Eliciting best and worst

choices from a choice set of size four yields a partial ranking of the choice set. Two possible

full rankings are consistent with each partial ranking. For example, the full rankings A >

B > C > D and A > C > B > D are consistent with the partial ranking A > {B,C} > D,

where A is most preferred and D is least preferred. We can model the probability of observing

a full ranking of health states as a product of probabilities, where each factor in the product

is the probability of observing a best choice from a subsequently smaller choice set. For

example, the probability of observing the full ranking A > B > C > D is the product of

the probability of choosing A as best from the choice set {A,B,C,D} times the probability

of choosing B as best from the choice set {B,C,D} times the probability of choosing C as

best from the choice set {C,D}. The probability of choosing D from {D} is one.

Let r = 1, ..., Rit index the full rankings consistent with an elicited partial ranking of

choice set t for patient i, where Rit is the total number of possible full rankings consistent

with the partial ranking. Then the probability of observing Y rit, a full ranking consistent

with the partial ranking Y it, is written as the probability of a sequence of choices (Louviere

et al., 2008; Bergland, 1994; Chapman and Staelin, 1982),

p(Y rit|βi) =

Jit−1∏
j=1

exp(xT
ritjβi)∑

Jit≥k≥j exp(xT
ritkβi)

. (6.2)
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Because the set of Rit full rankings consistent with Y it is a set of mutually exclusive

events, marginalizing over all possible permutations of unranked health states amounts to

summing over all possible full rankings, and the probability of observing a partial ranking

Y it is

p(Y it|βi) =

Rit∑
r=1

(
Jit−1∏
j=1

exp(xT
ritjβi)∑

Jit≥k≥j exp(xT
ritkβi)

)
. (6.3)

If a patient is asked to provide their most preferred and least preferred health states from

a choice set t containing fewer than four alternatives or if choice set t is fully ranked, then

Equation (6.3) simplifies to Equation (6.2). Moreover, if we observe only best choices, then

Equation (6.3) simplifies to Equation (6.1).

Let Y i = {Y i1, . . . ,Y iTi} represent the set of partial rankings made by patient i over

the course of the experiment. Then assuming that each set of rankings Y it is conditionally

independent given βi, the likelihood contribution for individual i is given by

p(Y i|βi) =

Ti∏
t=1

p(Y it|βi). (6.4)

6.3.2 Hierarchical Prior Distributions

Let zi be a Q × 1 vector of patient covariates for individual i including an intercept. For

example, suppose we want to include an indicator for patient age greater than 65 years in

the model. Then we could let zi = (1, zi1)
T where zi1 = 1 when patient age is greater than

65 and zi1 = 0 otherwise. To model patient preferences as a function of patient covariates,

we model random effect βi as a linear function of zi plus error as

βi = Γzi + εi, (6.5)

where Γ is an unknown H×Q matrix of fixed regression coefficients and εi is an H×1 mean

zero random effect vector that allows patients with the same covariates to have different
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values for βi. We model εi as

εi|Σ ∼ NormalH(0,Σ), (6.6)

a multivariate normal distribution with mean vector 0 and H×H covariance matrix Σ. Let

h = 1, ..., H index health state attribute variables, and q = 1, ..., Q index patient covariates.

Then each element γhq of Γ describes the effect of covariate q on patient preference for

attribute variable h. We set the prior for the γhq as

γhq ∼ Normal(0, 1), (6.7)

and the prior for Σ as

Σ ∼ inverseWishart(w,W ), (6.8)

an inverse Wishart distribution with w degrees of freedom and scale matrix W . We set the

prior mean of the inverse Wishart distribution equal to the identity matrix. If no covariates

are included, then Equation (6.5) reduces to βi = µ + εi, where µ = (µh) is the H × 1

unknown population mean vector of the distribution of βi. In this case, we set a prior for

µ as µ ∼ NormalH(0, IH), where 0 is the H × 1 zero vector and IH is the H × H identity

matrix.

6.4 Relative Attribute Importance

An attribute may be represented using two, three or more levels. When using dummy variable

coding, this yields one, two or more coefficients where the coefficient for the reference level

is defined to be zero. In market research, the difference between the estimated maximum

and minimum attribute-level coefficients has been used as a measure of attribute importance

(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Relative attribute importance is

calculated by normalizing attribute importance measures to sum to one, so that the relative
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importance of an attribute is a proportional contribution to the importance of all attributes

jointly (Soofi et al., 2000). Although model coefficients can be estimated using maximum

likelihood or Bayesian methods (Orme, 2010), current methods only provide point estimates

of relative importance. We extend current measures by defining relative attribute importance

as a function of the random-effects βi, and describe Bayesian versions of relative atribute

importance.

Let a = 1, ..., A index health state attributes, where A is total number of health state

attributes and let k = 1, ..., Ka index the attribute levels of attribute a, where Ka is the

total number of attribute levels for attribute a. In the PROSPECT study, we consider

seven health state attributes. Urinary functioning and sexual functioning each have three

attribute levels, while the other attributes have two levels. The importance of attribute a

for individual i is defined as

max
k
βiak −min

k
βiak,

where βiak is an unknown preference score for the kth attribute level within attribute a for

patient i. Using Equation (6.5), we define the relative importance (RI) of attribute variable

a for individual i as the proportional contribution of attribute variable A to the sum of all

attributes’ importance,

RIia =
maxk(γ

T
akzi + εiak)−mink(γ

T
akzi + εiak)∑A

f=1 maxk(γT
fkzi + εifk)−mink(γT

fkzi + εifk)
, (6.9)

where γT
ak is the row of Γ corresponding to attribute level k within attribute a, and εiak

is the random effect for the kth attribute level within attribute a for individual i. If no

patient covariates are included in the model, then γT
akzi reduces to µak, the kth attribute

level population preference score within attribute a for attribute a.

We can define the average relative importance (ARI) of attribute a for the population as

the arithmetic average of Equation (6.9) over all patients,

ARIa =
1

N

N∑
i=1

RIia. (6.10)
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For a specific set of patient covariates z, we define the relative importance of attribute a for

the population as

RIaz =
maxk(γ

T
akz)−mink(γ

T
akz)∑A

f=1 maxk(γT
fkz)−mink(γT

fkz)
, (6.11)

where the summation is over all attributes. This formulation can be used to, for example,

compute marginal predictions at specific patient covariate values. If no patient covariates are

included in the model, then γT
akz reduces to µak and we get estimates of relative importance

at the population level.

Equation (6.11) differs from Equation (6.10) in that relative importance is calculated

from population parameters, rather than as an average of the individual preference scores.

The posterior means and standard deviations of Equations (6.9), (6.10), and (6.11) are

estimated as the means and standard deviations of the MCMC samples of relative importance

scores, calculated using randomly sampled draws from the posterior distributions of the

relevant parameters.

6.5 Outlier Statistics for Choice Sets and Preferences

We use the conditional predictive ordinate (CPO) (Geisser, 1980, 1987, 1989, 1993; Dey

et al., 1997; Pettit, 1990) to identify outliers in discrete choice data. In general, suppose we

have a set of observations Y = (Y1, . . . , YS) which we model using parameters θ. Let Y (s)

be the vector Y after omitting Ys. The CPO for observation Ys is the predictive density of

Ys conditional upon the model and all other observations Y (s) (Geisser, 1980)

CPOs = p(Ys|Y (s)) (6.12)

=

∫
p(Ys|θ,Y (s))p(θ|Y (s))dθ, (6.13)

where p(Ys|θ,Y (s)) is the distribution of Ys given θ and Y (s). Small values of CPO indicate

that observation Ys is a poor fit to a given model.
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We can use CPO to identify outlying choice sets as follows. If we let Y = (Y T
1 , . . . ,Y

T
S)T

be the vector of S =
∑N

i=1 Ti observed choice set rankings across all N patients and let Y (s)

be the vector after omitting choice set s, we can use Equation (6.13) to calculate CPO for

the observed ranking of choice set s, Y s. To find outlying choice sets inconsistent with a

patient’s preferences, we can calculate and compare the CPOs for each of their choice sets,

CPO-SETi1, . . . ,CPO-SETiTi .

Gelfand et al. (1992), Dey et al. (1997), Gelfand (1996), Pettit (1990), and Weiss (1994,

1996) observed that

CPOs =
{

Eθ|Y

[ 1

p(Ys|θ,Y (s))

]}−1
, (6.14)

and showed that Monte Carlo integration can be used to estimate CPO (Gelfand et al., 1992;

Gelfand, 1996) using a posterior sample from p(θ|Y ). Drawing an MCMC sample θ1, . . . ,θG

of size G, where g = 1, ..., G indexes iterations of the Gibbs sampler, from the full posterior

density after the burn-in period allows us to obtain a Monte Carlo approximation of CPO

for choice set s as

CPO-SETs ≈
{ 1

G

G∑
g=1

1

p(Y s|θg,Y (s))

}−1
. (6.15)

We also use CPO to identify patients with outlying preferences with respect to the pop-

ulation. To do so, we define several varieties of the conditional predictive ordinate for

preferences. Suppose we want to identify patients with outlying preferences on a single at-

tribute variable h. Let Lh = (0, ..., 0, 1, 0, ..., 0)T be an H × 1 indicator vector for attribute

variable h, where the single 1 in LT
h corresponds to the hth component of LT

h and all other

components are zero. Then LT
hβi = βih, where βih the unknown preference score for individ-

ual i and attribute variable h. Let θ(ih) be the vector of model parameters θ after omitting

LT
hβi. Then the CPO for individual i and attribute variable h, which we denote CPO-UVP

(univariate preference), is defined as the inverse of the posterior mean of the inverse prior
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density of LT
hβi from equation (6.6),

CPO-UVPh
i = p(LT

hβi|θ(ih)) (6.16)

=
{∫ 1

p(LT
hβi|θ(ih),Y )

p(θ|Y )dθ
}−1

(6.17)

=
{

Eθ|Y

[ 1

p(LT
hβi|θ(ih),Y )

]}−1
, (6.18)

where p(LT
hβi|θ(ih),Y ) is the distribution of LT

hβi given θ(ih) and Y .

More generally, suppose we want to identify patients with outlying preferences on a

combination of attribute variables. For example, in our application, urinary functioning and

sexual functioning are represented by two attribute variables and thus two component βi.

To do so, we can define an appropriate H×M indicator matrix Lc in which each row selects

one of the desired attribute variables. For example, to select the 8th and 9th elements of the

attribute vector corresponding to short term sexual issues and full sexual functioning, we

can use

LT
c =

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

 .
Then the CPO for individual i and combination of attribute preferences c, which we could

here denote as CPO-BVP (bivariate preference), is defined using Equation (6.18)

CPO-BVPc
i =

{
Eθ|Y

[ 1

p(LT
c βi|θ(ic),Y )

]}−1
, (6.19)

where θ(ic) is the vector of model parameters θ minus LT
c βi. CPO-BVP can also be computed

for other combinations of attributes, for example, full lifespan and others’ support. Drawing

an MCMC sample of size G, θ1, . . . ,θG, from the full posterior density after the burn-

in period allows us to obtain the following Monte Carlo approximations of CPO-BVP for

individual i and list of attributes c

CPO-BVPc
i ≈

{ 1

G

G∑
g=1

1

p(LT
c βi|θ

g
(ic),Y )

}−1
. (6.20)
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We can also compute a more global outlier statistic for preferences. Identifying patients

with outlying preferences on all attributes is a special case in which Lc is the identity matrix

of size H. We call this statistic CPO-MVPi.

6.6 Results

We fit the Bayesian hierarchical model of Section 6.3 to data from the 121 patients in the

PROSPECT study. Dummy variables for three patient covariates were included in the model.

These were: age (≥ 65 years vs. age < 65 years), race (black vs. white, other race vs. white),

and partnered (vs. unpartnered). We chose a proper prior distribution (Gelman, 2006) for

Σ−1 as Wishart(9, 1
9
I9), where I9 is the 9 × 9 identity matrix, and we used Gibbs sampling

implemented in JAGS (Plummer, 2003) to obtain posterior samples. Three Markov chains

were run, each with a burn-in of 20,000 iterations, followed by 100,000 iterations keeping

every 10th draw of the chain. The final posterior sample consisted of 30,000 iterations (3

chains × 10,000 iterations).

The last two columns of Table 6.1 present the posterior means and standard deviations

of the population mean preferences µ for the model without patient covariates. Attribute

variables were considered significant if the posterior probability that the parameter is greater

than zero was at least 95% or at most 5%. Preferences for all attributes were nonzero except

for taking action. Sexual functioning appeared to be the most important attribute affecting

health state preference followed by full lifespan, urinary functioning, no bowel issues, no

cutting, and others’s support. For comparison, we also fit the model for best choices to our

data (first and second columns of results in Table 6.1). The comparison shows that, by using

all available information (best and worst choices), we gain precision in our estimates (smaller

posterior standard deviations). From Table 6.1, we see that our model for best-worst choices

consistently provides more precise estimates than does the model for best choices, while

providing similar results. Table 6.1 also presents the standard deviations of the attribute-

specific random effects, which describe the between-subject variation. For both models, we

can see a relatively high standard deviation of the random effect for full life, indicating
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substantial heterogeneity in preference between patients. Full sexual functioning also had

high variance. In contrast, the random effects for taking action and others’ support have

relatively low standard deviations indicating less heterogeneity.

Table 6.2 presents the correlation matrix of the random effects. The correlation between

short term urinary functioning and full urinary functioning is 0.84, as might be expected,

since they measure the same attribute. We find the same relationship between short term

sexual functioning and full sexual functioning. No cutting is negatively correlated with each

of the other attributes implying that patients who prefer no cutting place less value on all

of the other attributes.

Table 6.3 presents the posterior means and standard deviations of the regression coeffi-

cients Γ for the model including patient covariates and thus shows how preferences vary with

age, race, and partnership status. The column labeled Intercept contains the posterior means

and standard deviations corresponding to younger (<65 years old), white, and unpartnered

patients. For this particular group, preferences for all attributes except taking action were

nonzero. Older men (>= 65 years old) appeared to favor full lifespan and urinary function-

ing more than younger men. For older men, each of these attributes were associated with

approximately a 0.7 and 0.6 (respectively) higher estimated patient preference score than

younger men. Differences in preferences were also found by partnership status. Partnered

men favored full lifespan more than unpartnered men by 0.98 points.

Figure 6.1 presents the posterior mean average relative importance scores for each health

state attribute for the population and the posterior mean relative importance scores for

fourteen sample patients. To select the fourteen patients in Figure 6.1, patients were sorted

by decreasing relative importance score on full lifespan and every 10th ranked patient was

selected. This figure shows the heterogeneity of preferences for health state attributes in

the sample. Greater heterogeneity in preference for full lifespan and lower heterogeneity in

preference for taking action were apparent.

Table 6.4 presents the posterior mean relative importance scores for each health state

attribute for the population and for three sample patients. In general, the standard devia-
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Figure 6.1: Posterior mean relative attribute importance scores for each health state attribute
for fourteen men and for the population.

Table 6.4: Posterior mean (standard deviation) of relative attribute importance scores for
three men and for the population.

Attribute Patient 115 Patient 13 Patient 108 Population
Full Life 0.41 (0.05) 0.07 (0.04) 0.22 (0.05) 0.201 (0.005)
No Bowel Issues 0.22 (0.03) 0.09 (0.04) 0.11 (0.05) 0.143 (0.004)
No Cutting 0.07 (0.03) 0.07 (0.04) 0.07 (0.04) 0.094 (0.004)
Taking Action 0.02 (0.02) 0.07 (0.03) 0.04 (0.03) 0.044 (0.004)
Others Support 0.07 (0.03) 0.04 (0.03) 0.07 (0.05) 0.082 (0.004)
Urinary Functioning 0.10 (0.04) 0.31 (0.05) 0.16 (0.06) 0.189 (0.006)
Sexual Functioning 0.12 (0.04) 0.35 (0.06) 0.34 (0.07) 0.245 (0.006)
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tions of the relative importance scores are small relative to the posterior means, suggesting

that the posterior means provide a reliable ranking of attributes by relative importance.

At a population level, sexual functioning, urinary functioning and full lifespan appear to

be the three most important attribute variables, whereas taking action appears to be the

least important. Patient 115 clearly placed highest importance on full lifespan, moderate

importance on bowel issues, and low importance on all other attributes. Patient 13 placed

highest importance on urinary functioning and sexual functioning. Patient 108 has posterior

mean estimates similar to those of the population.

Figure 6.2: Plot of the -log(CPO-MVP)s on all health state attributes, the -log(CPO-UVP)s
for specific attributes, and the -log(CPO-BVP)s for the bivariate combinations of attributes
for urinary and sexual functioning for 121 patients. Patients with values of the outlier
statistic in the upper 2.5th percentile are labeled with ID numbers.

Figure 6.2 presents boxplots of CPO-MVP values for the set of all attributes, CPO-

UVP values for specific attributes, and CPO-BVP values for the two bivariate combina-

tions of attributes for urinary and sexual functioning for the 121 patients. A negative log-

transformation was applied to the CPOs to better visualize small values. High values of
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negative log-transformed CPOs indicate possible outliers (low CPO). Patients 15, 83, and

17 are multivariate outliers on the set of all attribute variables by CPO-MVP. Patient 83

is also outlying on the bivariate CPO for urinary functioning and the bivariate CPO for

sexual functioning. Patient 15 had highest negative log-transformed CPO-UVP values on

others’ support. Patient 17 is an example of a multivariate outlier that cannot be detected

by looking at outliers on specific health state attributes, while patient 54 is an example of a

patient with outlying preferences on a single attribute who is not a multivariate outlier.

Figure 6.3 presents time series of the negative log CPO values for choice sets presented

to eight patients. DCEs require patients to evaluate a number of different choice sets and

some patients may undergo a learning effect where accuracy in responses improves with

time. Conversely, some patients may become fatigued and accuracy of their responses may

degrade as the number of questions increases (Bradlow et al., 1998; Hauser and Rao, 2002).

By examining these time series, we can gain insight as to an individual’s performance on

discrete choice tasks, and observe possible learning effects or fatigue effects, and whether

they made choices on specific sets that were inconsistent with their preferences. High values

of negative log-transformed CPO indicate possible outlying choice sets. Patient 115 is an

example of a patient with consistent responses and no outliers. In contrast, patient 52 shows

highly variable responses, which might indicate more difficulty with the choice tasks. Patient

10 has an outlier on the first choice set, which may indicate a cognitive error early in the

exercise. Patient 109 shows an upward trend suggesting a possible fatigue effect and an

especially inconsistent choice on the second to last choice set. For patient 74, we observe

a downward trend suggesting a learning effect where patient performance on choice tasks

improves over time.

We conducted sensitivity analyses on the prior assumptions Wishart(w,W ) for the ran-

dom effects precision matrix Σ−1 by comparing the posterior results over variations of the

prior. With degrees of freedom parameter w and scale matrix W we explored the following

Wishart specifications: w = 9 and W = 1
9
I, w = 9 and W = 1

18
I, w = 18 and W = 1

9
I,

w = 18 and W = 1
18
I. There was little change in the posterior estimates for the elements of

the correlation matrix or the population preference parameters with different specifications,
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Figure 6.3: Plot of the -log(CPO-SET)s calculated for each choice set presented to eight
patients.
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indicating that the results were fairly robust to changes in the hyperprior specifications. The

details of this analysis are given in Chapter 7.

6.7 Discussion

We developed a Bayesian hierarchical model for best-worst discrete choice data that accounts

for incomplete rankings and includes patient covariates. The model can handle sparse data

and is particularly useful when discrete choice experiments involve relatively few choice sets

per patient. Although our application had choice sets of size four, the model can be applied

to studies with larger choice sets.

The main goal of our discrete choice experiment was to identify health state attributes

that are most important to individual patients to guide that individual’s treatment; thus, we

presented Bayesian versions of a commonly used measure of relative attribute importance.

The estimates of relative attribute importance include posterior standard deviations that

reflect uncertainty; in the literature, many studies only provide point estimates which may

give false confidence about how the patient ranks the attributes. Our method for computing

relative attribute importance is not specific to best-worst DCE and can be applied to other

DCE designs. The concept of relative attribute importance is akin to the concept of variable

importance in regression and prediction modeling. We have not explored other possible

measures of variable importance that might be applied to DCE. The measurement of relative

variable importance is an active area of research (Kruskal and Majors, 1989; Retzer et al.,

2009; Johnson and Lebreton, 2004; Bi, 2012; Grömping, 2015; Harris and Burch, 2005).

We have shown how the conditional predictive ordinate can be adapted to identify out-

lying choice sets and outlying patients with unusual preferences in discrete choice data. Our

CPO for identifying preference outliers finds outliers in the random effects. Random effects

are a common feature of Bayesian models, and this new application of the CPO could have

broader application in Bayesian modeling. The method is quite flexible and general, and can

even identify outliers on sets of multiple random effects. We have shown how the method can

be applied to identify outliers on categorical attributes modeled using two coefficients. The
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CPO for identifying outlying choice sets utilizes a vector outcome and is also an important

extension of the CPO that could be used in other applications.

Our application includes two attributes, sexual functioning and urinary functioning,

whose attribute levels are naturally ordered; the levels of sexual functioning are none, de-

creased and full, and the levels of urinary functioning are long term issues, short term issues

and full functioning. One approach to estimating the corresponding coefficients would be

to impose order constraints, such that the coefficient for decreased functioning must be less

than or equal to the coefficient for full functioning. This could be accomplished by specify-

ing a truncated multivariate prior density on the vector of random effects and the vector of

population effects (Gelfand et al., 1992). However, we obtained satisfactory results without

imposing such constraints.

Experimental design for DCEs is an area of active research (Johnson et al., 2013; Jaynes

et al., 2016); however, there is little consensus on the optimal design of choice experiments,

including how to generate choice sets (Lusk and Norwood, 2005; Louviere et al., 2011). A

recent report described alternative approaches to experimental design for DCEs (Johnson

et al., 2013), but did not recommend any specific approach as best practice. The choice of

alternatives for each choice set and the choice sets presented to each patient are important

with regard to statistical efficiency. Random selection of profiles to choice sets may result in

choice sets for which little information is gained on relative preferences because the attributes

are not varied sufficiently. In addition, increasing the number of choice sets presented to

patients can increase cognitive burden, jeopardizing the quality of patient responses. When

creating a DCE, a trade-off is made between maximizing statistical efficiency and maximizing

respondent efficiency (measurement error related to the quality of responses). A direction

for future research would be to formally evaluate the impact of the experimental design on

estimation of preferences.

Our DCE uses factors with different numbers of levels. Studies have shown that there

is a positive association between the number of attribute levels and attribute importance

scores (Wittink et al., 1982, 1990). Designing a study with the same number of attribute

levels for each attribute may not be acceptable for some applications. In our study, all of
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our attributes have either two or three levels. We think it reasonable that a priori important

variables, such as urinary and sexual functioning, would be modeled using more levels. We

fit the model after collapsing the two highest categories of urinary functioning and sexual

functioning into a single category and obtained similar posterior means. Hence we surmise

that the different numbers of levels did not appreciably affect our results.

The development of best-worst discrete choice designs reduces patient burden compared

to full rankings while posing new statistical challenges. By accounting for missing rank-

ing information, patient covariates, and the sparse nature of the individual-level data in

a Bayesian framework, our model extends current methods and provides individual-level

preference estimates. Our CPO measures provide some of the first diagnostic techniques

for discrete choice models. Our model coupled with our measures of relative importance

and outlyingness, provide practical methodology for discrete choice modeling applications,

in which parameter estimation at the individual-level is desirable, but observed data at the

individual-level are limited.
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CHAPTER 7

Sensitivity Analyses

This chapter presents sensitivity analyses to evaluate the prior assumptions of the Bayesian

hiearchical model developed in Chapter 6.

7.1 The Wishart Distribution for the Between-Attribute Precision

Matrix

For the multivariate normal distribution of the random attribute effects vector of Chapter

6, the conjugate prior distribution for the between-attribute precision matrix is a Wishart

distribution,

Σ−1 ∼Wishart(w,W ), (7.1)

with inverse-scale matrix W and w degrees of freedom where w is at least the length of

the random attribute effects vector. The prior mean of the precision matrix is w ∗W−1,

and smaller values of w imply a less informative distribution. The least informative, proper

Wishart prior is obtained by setting w equal to the length of the random attribute effects

vector.

We conducted sensitivity analyses for the specification of the Wishart(w,W ) prior for

the random effects precision matrix Σ−1 by comparing the posterior results for different

specifications of the prior. With degrees of freedom parameter w and scale matrix W

with prior mean w ∗W−1, we explored the following Wishart specifications: w = 9 and

W = (1/9) ∗ I9, w = 9 and W = (1/18) ∗ I9, w = 18 and W = (1/9) ∗ I9, w = 18 and
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W = (1/18) ∗ I9.

Tables 7.1 and 7.2 summarize the posterior results for important parameters. Resulting

changes in the posterior estimates for the elements of the correlation matrix (Table 7.2) as

well as for the population preference parameters (Table 7.1) were relatively small, indicating

that the posterior results were fairly robust to changes in the hyperprior specification.

Table 7.1: Sensitivity analyses for the specification of the Wishart prior for the random
effects precision matrix Σ−1. The table provides posterior means and standard deviations of
the components of the vector of population mean preferences µ and the standard deviations
of the random effect εih for the model without patient covariates. The posterior probability
that the parameters are greater than zero is also provided for each parameter.

Wishart(9, (1/9)I9) Wishart(9, (1/18)I9) Wishart(18, (1/9)I9) Wishart(18, (1/18)I9)
Parameter Mean SD Pr(>0) Mean SD Pr(>0) Mean SD Pr(>0) Mean SD Pr(>0)
µ1 2.20 0.17 1.00 2.32 0.18 1.00 2.09 0.15 1.00 2.22 0.17 1.00
µ2 1.47 0.13 1.00 1.55 0.14 1.00 1.39 0.12 1.00 1.48 0.13 1.00
µ3 1.22 0.13 1.00 1.28 0.14 1.00 1.16 0.12 1.00 1.23 0.13 1.00
µ4 1.83 0.16 1.00 1.93 0.18 1.00 1.75 0.15 1.00 1.85 0.16 1.00
µ5 1.55 0.15 1.00 1.63 0.16 1.00 1.48 0.14 1.00 1.57 0.15 1.00
µ6 2.47 0.21 1.00 2.60 0.22 1.00 2.36 0.19 1.00 2.50 0.20 1.00
µ7 0.79 0.11 1.00 0.85 0.12 1.00 0.75 0.10 1.00 0.80 0.11 1.00
µ8 0.08 0.08 0.85 0.08 0.09 0.84 0.07 0.07 0.85 0.08 0.08 0.84
µ9 0.69 0.10 1.00 0.73 0.11 1.00 0.66 0.09 1.00 0.70 0.10 1.00
SD of εi1 1.68 0.16 1.82 0.17 1.48 0.14 1.63 0.15
SD of εi2 1.25 0.12 1.38 0.12 1.11 0.10 1.24 0.11
SD of εi3 1.21 0.12 1.34 0.13 1.06 0.11 1.19 0.11
SD of εi4 1.53 0.15 1.67 0.16 1.34 0.14 1.48 0.14
SD of εi5 1.47 0.14 1.61 0.15 1.29 0.12 1.43 0.13
SD of εi6 2.03 0.19 2.19 0.20 1.79 0.17 1.95 0.18
SD of εi7 0.97 0.10 1.11 0.10 0.85 0.08 0.99 0.09
SD of εi8 0.61 0.06 0.74 0.06 0.55 0.05 0.68 0.06
SD of εi9 0.82 0.08 0.96 0.09 0.73 0.07 0.87 0.08
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Table 7.2: Sensitivity analyses for the specification of the Wishart prior for the random
effects precision matrix Σ−1. The table provides posterior means and standard deviations
of the elements of the correlation matrix of the random effect εi for the model without
patient covariates. The posterior probability that the parameters are greater than zero is
also provided for each parameter.

Wishart(9,(1/9)I9) Wishart(9,(1/18)I9) Wishart(18,(1/9)I9) Wishart(18,(1/18)I9)
Parameter Mean SD Pr(¿0) Mean SD Pr(¿0) Mean SD Pr(¿0) Mean SD Pr(¿0)
ρ12 0.15 0.11 0.91 0.15 0.11 0.92 0.15 0.11 0.91 0.14 0.14 0.91
ρ13 0.28 0.11 0.99 0.27 0.11 0.99 0.28 0.11 0.99 0.27 0.11 0.99
ρ14 0.26 0.11 0.99 0.25 0.11 0.99 0.25 0.11 0.98 0.24 0.11 0.98
ρ15 0.16 0.11 0.92 0.15 0.11 0.92 0.15 0.11 0.91 0.15 0.15 0.91
ρ16 0.18 0.11 0.95 0.19 0.11 0.96 0.18 0.11 0.95 0.17 0.17 0.95
ρ17 -0.22 0.12 0.03 -0.19 0.11 0.05 -0.24 0.12 0.02 -0.20 0.11 0.04
ρ18 0.004 0.13 0.51 0.01 0.12 0.52 0.01 0.13 0.51 0.01 0.01 0.51
ρ19 -0.02 0.13 0.42 -0.01 0.12 0.45 -0.03 0.13 0.40 -0.02 0.12 0.43
ρ23 0.29 0.11 0.99 0.27 0.11 0.99 0.30 0.11 0.99 0.27 0.11 0.99
ρ24 0.36 0.11 1.00 0.34 0.11 1.00 0.37 0.11 1.00 0.34 0.10 1.00
ρ25 0.02 0.12 0.56 0.02 0.11 0.56 0.01 0.12 0.52 0.01 0.01 0.54
ρ26 -0.04 0.12 0.37 -0.03 0.11 0.39 -0.05 0.12 0.32 -0.04 0.11 0.36
ρ27 -0.09 0.12 0.24 -0.06 0.12 0.30 -0.11 0.12 0.20 -0.08 0.11 0.25
ρ28 0.18 0.13 0.91 0.15 0.12 0.89 0.19 0.13 0.93 0.15 0.15 0.90
ρ29 -0.09 0.13 0.24 -0.07 0.12 0.27 -0.09 0.13 0.23 -0.07 0.12 0.26
ρ34 0.84 0.04 1.00 0.79 0.05 1.00 0.82 0.04 1.00 0.78 0.05 1.00
ρ35 0.26 0.11 0.99 0.25 0.11 0.98 0.27 0.12 0.99 0.25 0.11 0.98
ρ36 0.24 0.24 0.98 0.22 0.22 0.97 0.24 0.24 0.98 0.23 0.23 0.97
ρ37 -0.22 0.12 0.04 -0.19 0.11 0.05 -0.24 0.12 0.03 -0.20 0.11 0.04
ρ38 0.12 0.13 0.82 0.09 0.12 0.78 0.14 0.13 0.85 0.10 0.10 0.81
ρ39 -0.18 0.12 0.08 -0.15 0.12 0.10 -0.19 0.12 0.06 -0.15 0.12 0.10
ρ45 0.29 0.11 0.99 0.27 0.11 0.99 0.29 0.11 0.99 0.27 0.11 0.99
ρ46 0.26 0.11 0.99 0.25 0.11 0.99 0.26 0.11 0.99 0.25 0.11 0.98
ρ47 -0.24 0.12 0.03 -0.21 0.12 0.04 -0.27 0.12 0.02 -0.22 0.11 0.03
ρ48 0.15 0.13 0.86 0.12 0.12 0.83 0.16 0.13 0.89 0.13 0.13 0.85
ρ49 -0.15 0.13 0.11 -0.12 0.12 0.15 -0.16 0.13 0.10 -0.13 0.12 0.14
ρ56 0.88 0.03 1.00 0.85 0.03 1.00 0.87 0.03 1.00 0.84 0.04 1.00
ρ57 -0.28 0.11 0.01 -0.24 0.11 0.02 -0.29 0.11 0.01 -0.25 0.11 0.01
ρ58 0.05 0.13 0.66 0.04 0.12 0.64 0.05 0.13 0.66 0.04 0.04 0.64
ρ59 -0.15 0.12 0.12 -0.11 0.12 0.16 -0.16 0.12 0.11 -0.12 0.12 0.14
ρ67 -0.24 0.12 0.02 -0.21 0.11 0.03 -0.26 0.12 0.02 -0.22 0.11 0.02
ρ68 0.03 0.13 0.58 0.02 0.12 0.57 0.02 0.13 0.58 0.02 0.02 0.58
ρ69 -0.21 0.12 0.04 -0.17 0.11 0.07 -0.22 0.12 0.04 -0.18 0.11 0.06
ρ78 -0.11 0.13 0.21 -0.09 0.12 0.24 -0.11 0.13 0.20 -0.09 0.12 0.22
ρ79 -0.06 0.13 0.31 -0.04 0.12 0.36 -0.06 0.13 0.30 -0.04 0.12 0.35
ρ89 0.07 0.13 0.71 0.07 0.12 0.72 0.06 0.13 0.69 0.06 0.06 0.70
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CHAPTER 8

Comparing models of patient preference: the

PROSPECT study

This chapter describes estimation of patient preferences using an adaptive best-worst conjoint

method and ordinary least squares regression. We present and compare estimated relative

attribute importance scores for patients obtained using adaptive best-worst conjoint and the

Bayesian hierachical model of Chapter 6.

8.1 Dahan’s Adaptive Best-worst Conjoint method: Using Ordi-

nary Least Squares Regression

Dahan’s Adaptive Best-worst Conjoint method is a method for discrete choice experiments

developed by Ely Dahan that elicits discrete choice data using the experimental design

described in Chapter 3 and uses ordinary least squares regression to estimate patient pref-

erences. The development of the method was motivated by the need for preferences to be

quickly estimated immediately after a patient completed the DCE module and then used

during a discussion regarding a patient’s treatment plan with the patient’s physician.

In the PROSPECT study, the DCE module used to collect best-worst choices monitors

which pairs of health states have been resolved. Resolved health states are pairs of health

states that have been ranked relative to each other or for which a ranking can be inferred.

For example, if A > B and B > C, then it is inferred that A > C. Sixteen health states were

used in the PROSPECT study. In Dahan’s method, an ordinary least squares regression was

perfomed for each patient using only that patient’s data. The outcome for each individual-
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level regression is a vector of length 16 in which each component c corresponds to one of the

16 health states and indicates the number of the remaining health states that ranked lower

than c.

For a specific patient i, let yi = (yi1, ..., yi16)
T be a 16× 1 vector where each component

yic represents the number of the remaining health states ranked lower than health state c for

individual i. Let X denote the 16 × 9 covariate matrix of attribute information for the 16

health states where each row xT
c corresponds to the covariate vector of attribute information

for health state c. The regression model is
yi1

yi2
...

yi16

 =


1 x1,1 x1,2 . . . x1,9

1 x2,1 x2,2 . . . x2,9
...

...
...

1 x16,1 x16,2 . . . x16,9

×

βi1

βi2
...

βi9

+


εi1

εi2
...

εi16

 .

Using matrix notation, this is represented by

yi
16×1

= X
16×9
× βi

9×1
+ εi

16×1
. (8.1)

To estimate relative attribute importance for each patient, Dahan’s used ordinary least

squares regression to estimate the elements of the parameter vector βi of unknown patient

preference scores. We use the abbreviation LinEST to refer to this method and we use HB to

refer to our Bayesian method and we compare the relative importance scores estimated using

the LinEST method with the relative importance scores estimated using our method. Point

estimates of relative importance for the both methods are calculated using the definition in

Chapter 6.

8.2 Comparing Methods: Relative Importance Scores

Figure 8.1 presents the posterior mean estimates of relative attribute importance ±1 SD

for the Bayesian hiearchical model without patient covariates and the point estimates of

relative attribute importance using the LinEST estimates for 10 randomly selected men. For
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many men, it appears that the methods provide similar results; using the posterior mean

relative importance scores provides a ranking of attributes for each patient similar to that

obtained using the LinEST point estimates of relative importance. Using the LinEST point

estimates for patient 3, urinary functioning followed by sexual functioning appear to be most

important and second most important attributes affecting health state preference followed

by cutting, bowel issues, lifespan, others’ support and, lastly, taking action. Using the HB

point estimates for patient 3, we obtain a similar ranking where bowel issues appears to be

ranked more favorably over cutting.

Although the point estimates give a ranking of attributes by importance, the Bayesian

results suggest that some attributes maybe similarly ranked. From Figure 8.1, we see that

for patient 3 the error bars for lifespan, bowel issues, cutting, active role and others support

appear to overlap indicating that the posterior mean estimates of relative importance for

these attributes may not be significantly different, and thus maybe similarly ranked. More-

over, the methods can provide wildy different results for some patients. Patient 121 is an

example of a patient who did not have similar rankings according to the HB and LinEST

methods. For patient 121, the HB method ranked sexual functioning as the most important

attribute, while the LinEST method ranked sexual functioning as the least important.

Table 8.1 summarizes the LinEST point estimates, the HB point estimates, and the

differences between the LinEST and HB point estimates across all patients. While the mean

differences are close to zero, the minimum and maximum differences show that the methods

can disagree by over 0.3 points and are frequently over 0.1 points discrepant.

8.3 Mean Squared Difference

We use the root mean squared difference (RMSD) to measure the degree of dissimilarity

between our HB model estimates of relative importance and the LinEST estimates. The

RMSD measures the average absolute difference in relative attribute importance between

the LinEST and HB estimates. Lower values of RMSD indicate less discrepancy and the

RMSD has the same units as the estimates of relative importance (%).
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Figure 8.1: Posterior mean estimates of relative importance ± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.88
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We define the root mean squared difference as

RMSD =
[ 1

N

N∑
i=1

(RHB
ia −RLinEST

ia )2
]1/2

(8.2)

where N is the number of patients in the sample and RHB
ia is the relative attribute importance

of attribute a for individual i for the HB method and RLinEST
ia is the relative attribute

importance of attribute a for individual i for the LinEST method. The RMSD was calculated

for each of the seven health state attributes.

Table 8.2: Root mean square difference in relative importance scores between the HB method
and the LinEST method by attribute

Attribute RMSD
Lifespan 0.0477
Bowel Issues 0.0508
Cutting 0.0497
Taking Action 0.0397
Others’ Support 0.0480
Urinary Functioning 0.0580
Sexual Functioning 0.0650

Table 8.2 presents the RMSDs for each attribute. The RMSD ranged from a minimun of

0.0397 for taking action to 0.0650 for sexual functioning.

8.4 Remarks

Dissimilarity in estimated relative importance scores was greatest for lifespan, bowel issues,

urinary functioning and sexual functioning, which are attributes determined to be most

important in the population under the HB model. One potential problem in fitting a multiple

linear regression model to observations which are essentially vectors of rankings is that for

pairwise samples of {xi,yi}Ni=1 are not independent, thus violating the assumption that the

errors εi are independent. Comparison of the LinEST and HB methods should be more

formally investigated via a simulation study. This is a direction for future research. The

code provided in Appendix B can be used to simulate the observed data from our specific
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discrete choice experiment.
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Appendix A

JAGS Code

A.1 Bayesian Hierarchical Model for Best Choices With No Pa-

tient Covariates

# Purpose: To fit the Bayesian hierarchical model for best choices with no

# patient covariates

# Author: Anna Liza Malazarte Antonio

# Developed using JAGS version 4.2.0

# Assumptions:

# 1) Each choice set contains 4 health states

# 2) Nine health state attribute variables

# User input:

# N (total number of choice sets)

# nsubj (total number of patients

# mean.mu.b (mean of the hyperprior distribution for the population

# mean vector of preference scores mu.b)

# prec.mu.b (precision matrix of the hyperprior distribution for the

# population mean vector of preference scores mu.b)

# df (degrees of freedom parameter of the hyperprior distribution for

# the precision matrix of the prior distribution of the vector of

# patient preference scores prec.b)

# Omega (scale matrix of the hyperprior distribution for the precision

# matrix of the prior distribution of the vector of patient

# preference scores prec.b)

# Data description:

# X (an N by 36 matrix where each row corresponds to a unique

# patient-choice set combination and contains the attribute

# information for each of the four health states in that specific

# choice set)

# X[,1:9] (attribute information for the best health state)

# X[,10:18] (attribute information for one of the mid-ranked health
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# states)

# X[,19:27] (attribute information for the remaining mid-ranked

# health state)

# X[,28:36] (attribute information for the worst health state)

data {

for (j in 1:N) {

ones[j] <- 1

}

}

model {

for (i in 1:N){ # Loop over choice sets

for (j in 1:4){ # Linear predictor

mu[i,j]<-inprod(beta[id[i],1:9],X[i,(9*(j-1)+1):(9*j)])

expmu[i,j]<-exp(mu[i,j])

}

L[i] <- expmu[i,1]/sum(expmu[i,]) # Best choice probability

# Ones trick

phi[i] <- L[i]

ones[i] ~ dbern(phi[i])

}

# Prior for the random effects

for(n in 1:nsubj){

beta[n,1:9] ~ dmnorm(mu.b,prec.b)

}

# Hyperpriors

mu.b[1:9] ~ dmnorm(mean.mu.b, prec.mu.b)

prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix

sigma.b[1:9,1:9] <- inverse(prec.b[,])

# Standard deviations

for(k in 1:9){

sd.b[k] <- sqrt(sigma.b[k,k])

}

# Correlations

for(p in 1:9){

for(q in 1:9){

corr.b[p,q] <- sigma.b[p,q]/sqrt(sigma.b[p,p]*sigma.b[q,q])

}
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}

}
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A.2 Bayesian Hierarchical Model for Best-Worst Choices With

No Patient Covariates

# Purpose: To fit the Bayesian hierarchical model for best-worst choices with no

# patient covariates

# Author: Anna Liza Malazarte Antonio

# Developed using JAGS version 4.2.0

# Assumptions:

# 1) Each choice set contains 4 health states

# 2) Nine health state attribute variables

# User input:

# N (total number of choice sets)

# nsubj (total number of patients

# mean.mu.b (mean of the hyperprior distribution for the population

# mean vector of preference scores mu.b)

# prec.mu.b (precision matrix of the hyperprior distribution for the

# population mean vector of preference scores mu.b)

# df (degrees of freedom parameter of the hyperprior distribution for

# the precision matrix of the prior distribution of the vector of

# patient preference scores prec.b)

# Omega (scale matrix of the hyperprior distribution for the precision

# matrix of the prior distribution of the vector of patient

# preference scores prec.b)

# Data description:

# X (an N by 36 matrix where each row corresponds to a unique

# patient-choice set combination and contains the attribute

# information for each of the four health states in that specific

# choice set)

# X[,1:9] (attribute information for the best health state)

# X[,10:18] (attribute information for one of the mid-ranked health

# states)

# X[,19:27] (attribute information for the remaining mid-ranked

# health state)

# X[,28:36] (attribute information for the worst health state)

data {

for (a in 1:N) {

ones[a] <- 1

}

}
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model {

for (i in 1:N){ # Loop over choice sets

for (j in 1:4){ # Linear predictor

mu[i,j]<-inprod(beta[id[i],1:9],X[i,(9*(j-1)+1):(9*j)])

expmu[i,j]<-exp(mu[i,j])

}

p[i,1]<-expmu[i,1]/sum(expmu[i,]) # Best choice

p[i,2]<-expmu[i,2]/sum(expmu[i,2:4]) # 1st factor in first summand

p[i,3]<-expmu[i,3]/sum(expmu[i,3:4]) # 2nd factor in first summand

p[i,4]<-expmu[i,3]/sum(expmu[i,2:4]) # 1st factor in second summand

summand[i,1]<-expmu[i,2]

summand[i,2]<-expmu[i,4]

p[i,5]<-expmu[i,2]/sum(summand[i,]) # 2nd factor in second summand

# Best-worst choice probability

L[i] <- p[i,1]*p[i,2]*p[i,3] + p[i,1]*p[i,4]*p[i,5]

# Ones trick

phi[i] <- L[i]

ones[i] ~ dbern(phi[i])

}

# Prior for the random effects

for(n in 1:nsubj){

beta[n,1:9] ~ dmnorm(mu.b,prec.b)

}

# Hyperpriors

mu.b[1:9] ~ dmnorm(mean.mu.b, prec.mu.b)

prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix

sigma.b[1:9,1:9] <- inverse(prec.b[,])

# Standard deviations

for(k in 1:9){

sd.b[k] <- sqrt(sigma.b[k,k])

}

# Correlations

for(p in 1:9){

for(q in 1:9){

corr.b[p,q] <- sigma.b[p,q]/sqrt(sigma.b[p,p]*sigma.b[q,q])

}

}

}
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A.3 Bayesian Hierarchical Model for Best-Worst Choices With

Patient Covariates

# Purpose: 1) To fit the Bayesian hierarchical model for best-worst choices

# with patient covariates

# 2) To calculate the inverse CPO-SET for each unique patient-choice

# set combination, and the inverse CPO-MVP and inverse CPO-MVP for

# each patient

# Author: Anna Liza Malazarte Antonio

# Developed using JAGS version 4.2.0

# Assumptions:

# 1) Each choice set contains 4 health states

# 2) Nine health state attribute variables

# User input:

# N (total number of choice sets)

# nsubj (total number of patients

# ncov (total number of patient covariate variables)

# pie (number pi)

# mu.b (mean of the hyperprior distribution for the residual effect

# epsilon[n,1:9] of the vector of preference scores)

# df (degrees of freedom parameter of the hyperprior distribution for

# the precision matrix of the prior distribution of the vector of

# patient preference scores prec.b)

# Omega (scale matrix of the hyperprior distribution for the precision

# matrix of the prior distribution of the vector of patient

# preference scores prec.b)

# Data description:

# X (an N by 36 matrix where each row corresponds to a unique

# patient-choice set combination and contains the attribute

# information for each of the four health states in that specific

# choice set)

# X[,1:9] (attribute information for the best health state)

# X[,10:18] (attribute information for one of the mid-ranked health

# states)

# X[,19:27] (attribute information for the remaining mid-ranked

# health state)

# X[,28:36] (attribute information for the worst health state)

# zeta (an nsubj by ncov matrix where each row corresponds to a unique
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# patient and contains the patient’s covariate information)

data {

for (a in 1:N) {

ones[a] <- 1

}

}

model {

for (i in 1:N){ # Loop over choice sets

for (j in 1:4){ # Linear predictor

mu[i,j]<-inprod(beta[id[i],1:9],X[i,(9*(j-1)+1):(9*j)])

expmu[i,j]<-exp(mu[i,j])

}

p[i,1]<-expmu[i,1]/sum(expmu[i,]) # Best choice

p[i,2]<-expmu[i,2]/sum(expmu[i,2:4]) # 1st factor in first summand

p[i,3]<-expmu[i,3]/sum(expmu[i,3:4]) # 2nd factor in first summand

p[i,4]<-expmu[i,3]/sum(expmu[i,2:4]) # 1st factor in second summand

summand[i,1]<-expmu[i,2]

summand[i,2]<-expmu[i,4]

p[i,5]<-expmu[i,2]/sum(summand[i,]) # 2nd factor in second summand

# Best-worst choice probability

L[i] <- p[i,1]*p[i,2]*p[i,3] + p[i,1]*p[i,4]*p[i,5]

# Ones trick

phi[i] <- L[i]

ones[i] ~ dbern(phi[i])

}

# Calculate 1/CPO-SET to identify choice sets which are outlying

# with respect to patient prefereces

for (b in 1:N){ # Loop over choice sets

invcpo.set[b] <- 1/L[b]

}

for(n in 1:nsubj){

# Prior for the random effects

mu.beta[n,1:9] <- zeta[n,1:ncov]%*%Gamma[1:ncov,1:9]

beta[n,1:9] <- mu.beta[n,1:9] + epsilon[n,1:9]

epsilon[n,1:9] ~ dmnorm(mu.b,prec.b)

# Calculate 1/CPO-MVP to identify patients with outlying preferences

# on all attributes

98



ppo.beta[n] <-sqrt(exp(logdet(prec.b[1:9,1:9])))/sqrt(pow((2*pie),9))

*exp(-0.5%*%t(beta[n,1:9]-mu.b[1:9])

%*%prec.b[1:9,1:9]%*%(beta[n,1:9]-mu.b[1:9]))

invcpo.beta[n] <- 1/ppo.beta[n]

# Calculate 1/CPO-UVP to identify patients with outlying preferences

# on individual attributes

for (r in 1:9){ # Loop over attributes

ppo.beta.marg[n,r] <-dnorm(beta[n,r], mu.b[r], sigma.b[r,r])

invcpo.beta.marg[n,r] <- 1/ppo.beta.marg[n,r]

}

}

for(l in 1:ncov){ # Loop over columns of Gamma

for (m in 1:9){ # Loop over rows of Gamma

Gamma[l,m] ~ dnorm(0,1)

}

}

# Hyperpriors

prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix

sigma.b[1:9,1:9] <- inverse(prec.b[,])

# Standard deviations

for(k in 1:9){

sd.b[k] <- sqrt(sigma.b[k,k])

}

# Correlations

for(p in 1:9){

for(q in 1:9){

corr.b[p,q] <- sigma.b[p,q]/sqrt(sigma.b[p,p]*sigma.b[q,q])

}

}

}
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Appendix B

R Code

B.1 Code to Generate Discrete Choice Data

B.1.1 (001) Simulate Data - Functions.R

# Author: Anna Liza Malazarte Antonio

# Developed using R version 3.3.1

# Contingencies: None

# Program Description --------------------------------------------------------

# The purpose of this code is to:

# Define functions to be used in the script "(003) Simulate Data.R"

# prob.best ------------------------------------------------------------------

# Purpose: To calculate the probabilities of best choice in a choice set

# Arguments:

# M = covariate matrix

# b = beta vector

# nalts = size of the choice set

# nsets = number of choice sets

# Output: Matrix of probabilities

prob.best<-function(M,b,nsets,nalts){

# Numerators

Xbeta=M%*%b

expXbeta=matrix(exp(Xbeta),byrow=TRUE,ncol=nalts)

# Denominators

denom=as.matrix(rowSums(expXbeta))

denominvmat.b=matrix(rep(denom^-1,each=nalts), byrow=T, nrow=nsets, ncol=nalts)

# Probabilities: Best Choice
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# element-wise multiplication; by row, each element/rowsum

bprob=expXbeta*denominvmat.b

}

# draw.y ---------------------------------------------------------------------

# Purpose: Draw Y as a multinomial response by applying the random multinomial

# function to each row of the probability matrix (Will identify best

# in choice set)

# Arguments:

# M = covariate matrix

# p = probability matrix

# nalts = size of the choice set

# nsets = number of choice sets

draw.y <-function(M,p,nsets,nalts){

y = matrix(data=NA,nrow=nsets,ncol=nalts) # define a null matrix

y = apply(p,1,function(M){rmultinom(1,1,M)}) # draw multinomial response

y =t(y) # transpose to row vectors

}

# id.best --------------------------------------------------------------------

# Purpose: To identify the cards (by label) chosen as best

# Arguments:

# S = matrix of cards (labels); each row represents a choice set

# y = observation matrix

# nalts = size of the choice set

# nsets = number of choice sets

id.best <-function(S,y,nsets,nalts){

bchoice = matrix(data=NA, nrow=1, ncol=nsets)

for (i in 1:nsets) {

for (j in 1:nalts) {

if (y[i,j]==1){bchoice[i]=S[i,j]}

}

}

bchoice

}

# remove.choicesX ------------------------------------------------------------

# Purpose: To remove covariate data for past choices within a choice set

# Arguments:
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# y = matrix of observations

# M = covariate matrix

remove.choicesX <-function(y,M){

y.vec = as.vector(t(y))

subset = subset(cbind(M,y.vec), y.vec==0,-c(y.vec)); subset

}

# remove.choicesS ------------------------------------------------------------

# Purpose: To remove cards(labels) for past choices within a choice set

# Arguments:

# y = matrix of observations

# S = card (labels) matrix

remove.choicesS <-function(y,S){

y.vec = as.vector(t(y))

cards.sets.sub = subset(cbind(as.vector(t(S)),y.vec), y.vec==0,-c(y.vec))

cards.sets.sub = matrix(cards.sets.sub, nrow=nrow(S), ncol=ncol(S)-1, byrow=T)

}

# id.bestworst ---------------------------------------------------------------

# Purpose: To identify the cards (by label) chosen as best and worst

# Arguments:

# Yb = observed matrix of best choices

# S = card (labels) matrix by choice set

# w = vector of worst choice cards (labels)

id.bestworst <- function(Yb,S,w){

Y.bw = Yb

for (i in 1:nrow(S)) {

for (j in 1:ncol(S)) {

for(k in 1:ncol(w)){

if (S[i,j]==w[1,k]){Y.bw[i,j] = -1}

}

}

}

Y.bw

}

# resolvedpairs.counts.setup -------------------------------------------------

# Purpose: To count the number of times of a card beats (count>0) another card

# Winners along x-axis and losers along y-axis
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# Example: if card j beats card j n times,

# then count[i,j] = n, n an integer, n>0

# Arguments:

# ncards = number of unique cards presented to subjects

resolvedpairs.counts.setup <-function(ncards){

counts = matrix(data=NA, nrow = ncards, ncol = ncards)

for (i in 1:ncards){

for (j in 1:ncards) {

if (j>i | i>j){counts[i,j] = 0}

}

}

counts

}

# resolvedpairs.setup --------------------------------------------------------

# Purpose: To identify which card pairs have been resolved

# Winners along x-axis and losers along y-axis

# Example: if the card pair (i,j) has been resolved , then ind[i,j] = 1

# Arguments:

# ncards = number of unique cards presented to subjects

resolvedpairs.setup <-function(ncards){

ind = matrix(data=NA, nrow = ncards, ncol = ncards)

for (i in 1:ncards){

for (j in 1:ncards) {

if (j>i){ind[i,j] = 0}

}

}

ind

}

# resolvedpairs.counts.update ------------------------------------------------

# Purpose: To update counts which describe the number of times card pairs have

# been resolved

# Winners along x-axis and losers along y-axis

# Example: if the card pair (i,j) has been resolved , then ind[i,j] = 1

# Accounts for 5 comparisons for each choice set

# Note: Loop operates on each choice set

# Arguments:

# R = matrix of ranked cards (row is a choice set)
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resolvedpairs.counts.update <-function(R){

for (i in 1:nrow(R)){

print(R[i,])

# work with best

for (j in 2:4){

resolvedpairs.counts[R[i,j],R[i,1]] = resolvedpairs.counts[R[i,j],R[i,1]] + 1

}

# work with worst

for (k in 2:3){

resolvedpairs.counts[R[i,4],R[i,k]] = resolvedpairs.counts[R[i,4],R[i,k]] + 1

}

}

resolvedpairs.counts

}

# resolvedpairs.update -------------------------------------------------------

# Purpose: To update the indicator matrix which describes which card pairs have

# been resolved

# Winners along x-axis and losers along y-axis

# Example: if the card pair (i,j) has been resolved , then ind[i,j] = 1

# Accounts for 5 comparisons for each choice set

# Arguments:

# Mc = matrix which describes the number of times card pairs have been resolved

# Mi = matrix which describes which card pairs have been resolved

resolvedpairs.update <-function(Mc,Mi){

# Keep track of what has been compared

for (i in 1:16){

for (j in 1:16){

# in lower triange of paircounts

if (Mc[i,j] > 0 & i>j){Mi[j,i]=1}

# in upper triange of paircounts

if (Mc[i,j] > 0 & j>i){Mi[i,j]=1}

}

}

Mi

}

# listunresolvedpairs --------------------------------------------------------

# Purpose: To output a list of unresolved pairs
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# Arguments:

# M = indicator matrix describing which card pairs (described by row and col

# indices) have been resolved

listunresolvedpairs <- function(M){

n = 16

index = which(M==0) # gives indices of matrix (by column) where == 0

columnlist = ceiling(index/n)

rowlist = index%%n; rowlist # vector index mod 16

pairs = as.list(data.frame(t(cbind(rowlist, columnlist)))); pairs

}

# newchoiceset ---------------------------------------------------------------

# Purpose: To form a new choice set using a list of unresolved pairs

# Arguments:

# l = list of unresolved pairs

newchoiceset <- function(l){

# Permute list of unresolved pairs

perm = sample(l)

# Select first two pairs to create a new choice set

# If there is a duplicate card in the set, resample a new pair

# duplicated(v) outputs a indicator vector for input vector v,

# where a component = 1 identifies a duplicate

# Example:

# if pairs 1 and 2 have duplicates then pick pairs 1 and 3

# if pairs 1 and 3 have duplicates then pick pairs 1 and 4...

# repeat until a set of four unique cards are found

for (i in 2:length(perm)){

cset = c(rbind(as.vector(unlist(perm[1])),as.vector(unlist(perm[i]))))

if(sum(duplicated(cset))==0){break}

}

cset

}

# transitivity ---------------------------------------------------------------

# Purpose: To account for card ’wins’ derived from observed ’wins’ using

# the property of transitivity, e.g., if 1>2 two times and 2>3 one time

# then 1>3 three times

# Arguments:
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# R = 16x16 matrix of resolved pair counts

transitivity <- function(R){

# Remove "NAs" from count matrix diagonal for arithmetic

for (j in 1:16){

R[j,j] = 0

}

# Update resolved pair counts

for (i in 1:16){

for (j in 1:16){

for (k in 1:16){

if(i!=k & R[i,j] != 0 & R[j,k] != 0){

R[i,k] = R[i,k] + R[i,j] + R[j,k]

}

}

}

}

# Replace "NAs" in count matrix

for (m in 1:16){

R[m,m] = NA

}

return(R)

}

# create data ----------------------------------------------------------------

# Purpose: To generate data which replicates the adaptive choice elicitation

# process created by Ely Dahan

# Function creates data using the random effects for each patient

# Arguments:

# betavec = random effects vector for one patient

# Output:

# Let Nchoicesets be total number choice sets presented to a single patient

# in a DCE

# Y = NchoicesetsX4 matrix indicating best and worst choices; each row

# corresponds to a choice set; within a row, 1 = best choice in choice
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# set, -1 = worst choice in choice set and 0 = mid-ranked choices in

# choice set

# cardsets = NchoicesetsX4 matrix which describes the cards presented in

# a choice set by label; each row corresponds to a choice set

# X = (NchoicesetsX4)X9 matrix that describes the attribute information for

# each card in the DCE; each row corresponds to a card; row order is

# determined by the choice set and the order in which it is presented in

# the choice set, e.g., the first row corresponds to the first card

# displayed in the first choice set

# beta = random effects vector for one patient

# ranked = NchoicesetsX4 matrix which describes the cards ranked in a choice

# set by label; each row corresponds to a choice set

# Ycounts = 1x16 vector where Ycounts[i] is the number of times card i ’beat’

# the other 15 cards by majority vote

createdata <- function(betavec) {

# Count all the paired comparisons (1v2,...1v16,2v3,...,2v16,...,15v16)

# Winners along x-axis; Losers along y-axis

resolvedpairs.counts = resolvedpairs.counts.setup(16)

# Keep track of resolved pairs

resolvedpairs <- resolvedpairs.setup(16)

# ----------------------------------------------------------------------------

# Choices sets 1-4 : Present all 16 cards ------------------------------------

# ----------------------------------------------------------------------------

# Subset the data ------------------------------------------------------------

cards.sets1_4.1 = matrix(data.matrix(attribdata[,3], rownames.force = NA)

,byrow=TRUE,ncol=4)

X.1_4.1 = data.matrix(attribdata[,4:12], rownames.force = NA)

beta = data.matrix(betavec, rownames.force = NA)

# beta dataset above loads with an extra column ("X" = obs num)

# Code below excludes the first variable/column

beta = beta[c(-1)]

# Best Choices ---------------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.1_4.1 = prob.best(X.1_4.1,beta,4,4)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix
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Y.1_4.1 = draw.y(X.1_4.1,prob.1_4.1,4,4)

# Identify Best Choices

bchoice.1_4.1 = id.best(cards.sets1_4.1,Y.1_4.1,4,4)

# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

X.1_4.2 = remove.choicesX(Y.1_4.1,X.1_4.1)

cards.sets1_4.2 = remove.choicesS(Y.1_4.1,cards.sets1_4.1)

# 2nd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.1_4.2 = prob.best(X.1_4.2,beta,4,3)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.1_4.2 = draw.y(X.1_4.2,prob.1_4.2,4,3)

# Identify Best Choices

bchoice.1_4.2 = id.best(cards.sets1_4.2,Y.1_4.2,4,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.1_4.3 = remove.choicesX(Y.1_4.2,X.1_4.2)

cards.sets1_4.3 = remove.choicesS(Y.1_4.2,cards.sets1_4.2)

# 3rd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.1_4.3 = prob.best(X.1_4.3,beta,4,2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.1_4.3 = draw.y(X.1_4.3,prob.1_4.3,4,2)

# Identify Best Choices

bchoice.1_4.3 = id.best(cards.sets1_4.3,Y.1_4.3,4,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.1_4.4 = remove.choicesX(Y.1_4.3,X.1_4.3)

cards.sets1_4.4 = remove.choicesS(Y.1_4.3,cards.sets1_4.3)

# Worst Choices --------------------------------------------------------------
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bchoice.1_4.4=t(cards.sets1_4.4)

# RESULTS --------------------------------------------------------------------

# Display cards in order presented by choice set -----------------------------

cards.sets1_4.1

# Identify cards in order presented by choice set ----------------------------

Y.bw.1_4 = id.bestworst(Y.1_4.1,cards.sets1_4.1,bchoice.1_4.4)

# Display cards in ranked order by choice set --------------------------------

cards.ranked.1_4 = t(rbind(bchoice.1_4.1,bchoice.1_4.2,bchoice.1_4.3

,bchoice.1_4.4))

# ACCOUNTING: Resolved Pairs -------------------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.1_4)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

# ----------------------------------------------------------------------------

# Choices set 5 : Compare "best" choices from choice sets 1-4 ----------------

# ----------------------------------------------------------------------------

# Setup ----------------------------------------------------------------------

# "Best" choices from choice sets 1-4

cards.sets5.1 = bchoice.1_4.1

# Attributes of best cards

X.5.1 = data.matrix(subset(data.frame(attribdata[,3:12])

, (Card == bchoice.1_4.1[1,1])|(Card == bchoice.1_4.1[1,2])

|(Card == bchoice.1_4.1[1,3])|(Card == bchoice.1_4.1[1,4])

,-c(Card)),rownames.force = NA)

# Best Choices ---------------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.5.1 = prob.best(X.5.1,beta,1,4)
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# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.5.1 = draw.y(X.5.1,prob.5.1,1,4)

# Identify Best Choices

bchoice.5.1 = id.best(cards.sets5.1,Y.5.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

X.5.2 = remove.choicesX(Y.5.1,X.5.1)

cards.sets5.2 = remove.choicesS(Y.5.1,cards.sets5.1)

# 2nd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.5.2 = prob.best(X.5.2,beta,1,3)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.5.2 = draw.y(X.5.2,prob.5.2,1,3)

# Identify Best Choices

bchoice.5.2 = id.best(cards.sets5.2,Y.5.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.5.3 = remove.choicesX(Y.5.2,X.5.2)

cards.sets5.3 = remove.choicesS(Y.5.2,cards.sets5.2)

# 3rd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.5.3 = prob.best(X.5.3,beta,1,2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.5.3 = draw.y(X.5.3,prob.5.3,1,2)

# Identify Best Choices

bchoice.5.3 = id.best(cards.sets5.3,Y.5.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.5.4 = remove.choicesX(Y.5.3,X.5.3)
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cards.sets5.4 = remove.choicesS(Y.5.3,cards.sets5.3)

# Worst Choices --------------------------------------------------------------

bchoice.5.4=t(cards.sets5.4)

# RESULTS --------------------------------------------------------------------

# Display cards in order presented by choice set -----------------------------

cards.sets5.1

# Identify cards in order presented by choice set ----------------------------

Y.bw.5 = id.bestworst(Y.5.1,cards.sets5.1,bchoice.5.4)

# Display cards in ranked order by choice set --------------------------------

cards.ranked.5 = t(rbind(bchoice.5.1,bchoice.5.2,bchoice.5.3,bchoice.5.4))

# ACCOUNTING: Resolved Pairs -------------------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.5)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY ---------------------------------------------------------------

# To account for card ’wins’ derived from observed ’wins’ using the property of

# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

# ----------------------------------------------------------------------------

# Choices set 6 : Compare "worst" choices from choice sets 1-4 ---------------

# ----------------------------------------------------------------------------

# Setup ----------------------------------------------------------------------
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# "Worst" choices from choice sets 1-4

cards.sets6.1 = bchoice.1_4.4

# Attributes of best cards

X.6.1 = data.matrix(subset(data.frame(attribdata[,3:12])

, (Card == bchoice.1_4.4[1,1])|(Card == bchoice.1_4.4[1,2])

|(Card == bchoice.1_4.4[1,3])|(Card == bchoice.1_4.4[1,4])

,-c(Card)),rownames.force = NA)

# Best Choices ---------------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.6.1 = prob.best(X.6.1,beta,1,4)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.6.1 = draw.y(X.6.1,prob.6.1,1,4)

# Identify Best Choices

bchoice.6.1 = id.best(cards.sets6.1,Y.6.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

X.6.2 = remove.choicesX(Y.6.1,X.6.1)

cards.sets6.2 = remove.choicesS(Y.6.1,cards.sets6.1)

# 2nd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.6.2 = prob.best(X.6.2,beta,1,3)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.6.2 = draw.y(X.6.2,prob.6.2,1,3)

# Identify Best Choices

bchoice.6.2 = id.best(cards.sets6.2,Y.6.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.6.3 = remove.choicesX(Y.6.2,X.6.2)

cards.sets6.3 = remove.choicesS(Y.6.2,cards.sets6.2)

# 3rd Best Choices -----------------------------------------------------------
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# Construct Linear Predictor and Probabilities

prob.6.3 = prob.best(X.6.3,beta,1,2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.6.3 = draw.y(X.6.3,prob.6.3,1,2)

# Identify Best Choices

bchoice.6.3 = id.best(cards.sets6.3,Y.6.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.6.4 = remove.choicesX(Y.6.3,X.6.3)

cards.sets6.4 = remove.choicesS(Y.6.3,cards.sets6.3)

# Worst Choices --------------------------------------------------------------

bchoice.6.4=t(cards.sets6.4)

# RESULTS --------------------------------------------------------------------

# Display cards in order presented by choice set -----------------------------

cards.sets6.1

# Identify cards in order presented by choice set ----------------------------

Y.bw.6 = id.bestworst(Y.6.1,cards.sets6.1,bchoice.6.4)

# Display cards in ranked order by choice set --------------------------------

cards.ranked.6 = t(rbind(bchoice.6.1,bchoice.6.2,bchoice.6.3,bchoice.6.4))

# ACCOUNTING: Resolved Pairs -------------------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.6)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY ---------------------------------------------------------------

# To account for card ’wins’ derived from observed ’wins’ using the property of

# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)
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# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

# -----------------------------------------------------------------------------

# Choices set 7 : Compare "middle" choices from choice sets 1 and 2 -----------

# -----------------------------------------------------------------------------

# Setup ----------------------------------------------------------------------

# "Middle" choices from choice sets 1 and 2

cards.sets7.1 = matrix(cards.ranked.1_4[1:2,2:3], nrow=1, ncol=4)

# Attributes of best cards

X.7.1 = data.matrix(subset(data.frame(attribdata[,3:12])

, (Card == cards.sets7.1[1,1])|(Card == cards.sets7.1[1,2])

|(Card == cards.sets7.1[1,3])|(Card == cards.sets7.1[1,4])

,-c(Card)),rownames.force = NA)

# Best Choices ---------------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.7.1 = prob.best(X.7.1,beta,1,4)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.7.1 = draw.y(X.7.1,prob.7.1,1,4)

# Identify Best Choices

bchoice.7.1 = id.best(cards.sets7.1,Y.7.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

X.7.2 = remove.choicesX(Y.7.1,X.7.1)

cards.sets7.2 = remove.choicesS(Y.7.1,cards.sets7.1)

# 2nd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.7.2 = prob.best(X.7.2,beta,1,3)
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# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.7.2 = draw.y(X.7.2,prob.7.2,1,3)

# Identify Best Choices

bchoice.7.2 = id.best(cards.sets7.2,Y.7.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.7.3 = remove.choicesX(Y.7.2,X.7.2)

cards.sets7.3 = remove.choicesS(Y.7.2,cards.sets7.2)

# 3rd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.7.3 = prob.best(X.7.3,beta,1,2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.7.3 = draw.y(X.7.3,prob.7.3,1,2)

# Identify Best Choices

bchoice.7.3 = id.best(cards.sets7.3,Y.7.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.7.4 = remove.choicesX(Y.7.3,X.7.3)

cards.sets7.4 = remove.choicesS(Y.7.3,cards.sets7.3)

# Worst Choices --------------------------------------------------------------

bchoice.7.4=t(cards.sets7.4)

# RESULTS --------------------------------------------------------------------

# Display cards in order presented by choice set -----------------------------

cards.sets7.1

# Identify cards in order presented by choice set ----------------------------

Y.bw.7 = id.bestworst(Y.7.1,cards.sets7.1,bchoice.7.4)

# Display cards in ranked order by choice set --------------------------------

cards.ranked.7 = t(rbind(bchoice.7.1,bchoice.7.2,bchoice.7.3,bchoice.7.4))
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# ACCOUNTING: Resolved Pairs -------------------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.7)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY ---------------------------------------------------------------

# To account for card ’wins’ derived from observed ’wins’ using the property of

# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

# ----------------------------------------------------------------------------

# Choices set 8 : Compare "middle" choices from choice sets 3 and 4 ----------

# ----------------------------------------------------------------------------

# Setup ----------------------------------------------------------------------

# "Middle" choices from choice sets 1 and 2

cards.sets8.1 = matrix(cards.ranked.1_4[3:4,2:3], nrow=1, ncol=4)

# Attributes of best cards

X.8.1 = data.matrix(subset(data.frame(attribdata[,3:12])

, (Card == cards.sets8.1[1,1])|(Card == cards.sets8.1[1,2])

|(Card == cards.sets8.1[1,3])|(Card == cards.sets8.1[1,4])

,-c(Card)),rownames.force = NA)

# Best Choices ---------------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.8.1 = prob.best(X.8.1,beta,1,4)

# Draw Y as a Multinomial Response
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# Apply random multinomial function to each row of prob matrix

Y.8.1 = draw.y(X.8.1,prob.8.1,1,4)

# Identify Best Choices

bchoice.8.1 = id.best(cards.sets8.1,Y.8.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

X.8.2 = remove.choicesX(Y.8.1,X.8.1)

cards.sets8.2 = remove.choicesS(Y.8.1,cards.sets8.1)

# 2nd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.8.2 = prob.best(X.8.2,beta,1,3)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.8.2 = draw.y(X.8.2,prob.8.2,1,3)

# Identify Best Choices

bchoice.8.2 = id.best(cards.sets8.2,Y.8.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.8.3 = remove.choicesX(Y.8.2,X.8.2)

cards.sets8.3 = remove.choicesS(Y.8.2,cards.sets8.2)

# 3rd Best Choices -----------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.8.3 = prob.best(X.8.3,beta,1,2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.8.3 = draw.y(X.8.3,prob.8.3,1,2)

# Identify Best Choices

bchoice.8.3 = id.best(cards.sets8.3,Y.8.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.8.4 = remove.choicesX(Y.8.3,X.8.3)

cards.sets8.4 = remove.choicesS(Y.8.3,cards.sets8.3)
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# Worst Choices --------------------------------------------------------------

bchoice.8.4=t(cards.sets8.4)

# RESULTS --------------------------------------------------------------------

# Display cards in order presented by choice set -----------------------------

cards.sets8.1

# Identify cards in order presented by choice set ----------------------------

Y.bw.8 = id.bestworst(Y.8.1,cards.sets8.1,bchoice.8.4)

# Display cards in ranked order by choice set --------------------------------

cards.ranked.8 = t(rbind(bchoice.8.1,bchoice.8.2,bchoice.8.3,bchoice.8.4))

# ACCOUNTING: Resolved Pairs -------------------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.8)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY ---------------------------------------------------------------

# To account for card ’wins’ derived from observed ’wins’ using the property of

# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

# ----------------------------------------------------------------------------

# Choices sets 9+ : Resolve remaining pairs ---------------------------------

# ----------------------------------------------------------------------------

cards.sets.all = rbind(cards.sets1_4.1,cards.sets5.1,cards.sets6.1

,cards.sets7.1,cards.sets8.1)

118



Y.bw.all = rbind(Y.bw.1_4,Y.bw.5,Y.bw.6,Y.bw.7,Y.bw.8)

cards.ranked.all = rbind(cards.ranked.1_4,cards.ranked.5,cards.ranked.6

,cards.ranked.7,cards.ranked.8)

X.all = rbind(X.1_4.1,X.5.1,X.6.1,X.7.1,X.8.1)

# CHECK IF ADDITIONAL CHOICE SETS NEEDED -------------------------------------

# List unresolved pairs ------------------------------------------------------

checklist = listunresolvedpairs(resolvedpairs)

# If list of unresolved pairs is not empty then attempt to create more choice sets

if (length(checklist) != 0) {

# CREATE ADDITIONAL CHOICE SETS --------------------------------------------

repeat{

# Create a list of unresolved card pairs ---------------------------------

pairlist = listunresolvedpairs(resolvedpairs)

if (length(pairlist) == 0) {break}

# Input: list of pairs

# Output: new choice set

ncs.1=matrix(c(newchoiceset(pairlist)), ncol = 4)

# If new choice set contains a set of unique items

if (sum(duplicated(c(ncs.1))) == 0){

# Attributes of cards in new choice set

X.1 = data.matrix(subset(data.frame(attribdata[,3:12])

, (Card == ncs.1[1,1])|(Card == ncs.1[1,2])

|(Card == ncs.1[1,3])|(Card == ncs.1[1,4])

,-c(Card)),rownames.force = NA); X.1

# Best Choices -------------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.1 = prob.best(X.1,beta,1,4)

rowSums(prob.1)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.1 = draw.y(X.1,prob.1,1,4)

# Identify Best Choices

bchoice.1 = id.best(ncs.1,Y.1,1,4)
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# Remove best choices (Y.b_vec==0 for other than best choices)

# Convert obs matrix to a vector by row (use t())

ncs.2 = remove.choicesS(Y.1,ncs.1)

X.2 = remove.choicesX(Y.1,X.1)

# 2nd Best Choices ---------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.2 = prob.best(X.2,beta,1,3)

rowSums(prob.2)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.2 = draw.y(X.2,prob.2,1,3)

# Identify Best Choices

bchoice.2 = id.best(ncs.2,Y.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

ncs.3 = remove.choicesS(Y.2,ncs.2)

X.3 = remove.choicesX(Y.2,X.2)

# 3rd Best Choices ---------------------------------------------------

# Construct Linear Predictor and Probabilities

prob.3 = prob.best(X.3,beta,1,2)

rowSums(prob.3)

# Draw Y as a Multinomial Response

# Apply random multinomial function to each row of prob matrix

Y.3 = draw.y(X.3,prob.3,1,2)

# Identify Best Choices

bchoice.3 = id.best(ncs.3,Y.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.4 = remove.choicesX(Y.3,X.3)

ncs.4 = remove.choicesS(Y.3,ncs.3)

# Worst Choices ------------------------------------------------------

bchoice.4=t(ncs.4)
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# RESULTS ------------------------------------------------------------

# Display cards in order presented by choice set ---------------------

ncs.1

# Identify cards in order presented by choice set --------------------

Y.bw = id.bestworst(Y.1,ncs.1,bchoice.4)

# Display cards in ranked order by choice set ------------------------

cards.ranked = t(rbind(bchoice.1,bchoice.2,bchoice.3,bchoice.4))

# Update data of choice sets presented, best and worst choices

# and ranked choices

cards.ranked.all = rbind(cards.ranked.all,cards.ranked)

cards.sets.all = rbind(cards.sets.all,ncs.1)

Y.bw.all = rbind(Y.bw.all,Y.bw)

X.all = rbind(X.all,X.1)

# ACCOUNTING: Resolved Pairs -----------------------------------------

# Update resolved pair counts

resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY -------------------------------------------------------

# To account for card ’wins’ derived from observed ’wins’ using the

# property of transitivity, e.g., if 1>2 two times and 2>3 one time

# then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs

resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs

# which(): gives indices of matrix (by column) where == 0

unresolvedpairs_num = length(which(resolvedpairs==0))

} else if (sum(duplicated(c(ncs.1))) > 0) {break}

}
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}

# ----------------------------------------------------------------------------

# Score the winner of each combination of cards ------------------------------

# ----------------------------------------------------------------------------

# Remove "NAs" from count matrix diagonal for arithmetic

for (j in 1:16){

resolvedpairs.counts[j,j] = 0

}

# Setup an empty scoring matrix

scores = matrix(0, nrow = 16, ncol = 16)

# Score the combination of cards {i,j}

# To handle conflicting wins:

# Element scores[i,j] indicates whether or not (1/0) card i

# won or lost to card j by majority rule

# Card pairs that are unresolved get a score of 0.5

for (i in 1:15){

for (j in (i+1):16) {

denom = resolvedpairs.counts[i,j] + resolvedpairs.counts[j,i]

win_percent = resolvedpairs.counts[i,j]/denom

if (win_percent>0.5 & denom !=0){

scores[i,j] = 1

} else if (win_percent==0.5 & denom !=0){

scores[i,j] = 0.5

} else {

scores[i,j] = 0

}

scores[j,i]=1-scores[i,j]

}

}

# Check unsolved pairs and score as 0.5

for (i in 1:15){

for (j in (i+1):16) {

if (resolvedpairs[i,j]==0){ # card pair unresolved

scores[i,j] = 0.5

}

scores[j,i]=1-scores[i,j]

}

}
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# Count number of times a card beat other cards

Ycounts<-rowSums(scores, na.rm=TRUE)

# ----------------------------------------------------------------------------

# Return DCE data ------------------------------------------------------------

# ----------------------------------------------------------------------------

# Display unresolved pairs

unresolvedpairs = listunresolvedpairs(resolvedpairs)

# Convert X.all to a matrix

X.all = matrix(X.all, ncol=9)

output<-list(Y=Y.bw.all, cardsets = cards.sets.all, X=X.all, beta=beta

, ranked = cards.ranked.all, Yscores=Ycounts)

return(output)

}
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B.1.2 (002) Simulate Data - Random Effects.R

# Author: Anna Liza Antonio

# Developed using R version 3.3.1

# Contingencies: None

# Program Description --------------------------------------------------------

# The purpose of this code is to:

# Code to generate random effects to be used in script, "(003) Simulate Data.R"

# Load the Required Libraries ------------------------------------------------

library(MASS)

# Specifications of the Data ------------------------------------------------

nsubj = 100 # number of subjects

nattrib = 9 # number of attributes which describe each alternative

ndatasets = 1000 # number of datasets to generate

# Define means for multivariate normal distribution of heterogeneity --------

## Population Parameters

popbeta = c(1,.3,1,1.5,.75,1.25,.5,.02,.8) # example

popbetamat = matrix(rep(popbeta,nsubj), nrow = nsubj, ncol = nattrib, byrow=TRUE)

# Random Effects for Each Subject --------------------------------------------

# We generate nsubj*ndatasets rows of random effects and use every set of 100 rows

# in the matrix (beta) to generate each of the 1000 datasets

# Variance-covariance matrix for normal distribution of heterogeneity

a = 1 # example

resigma = matrix(c(rep(c(a, rep(0, nattrib)), nattrib-1), a), ncol = nattrib)

remean = c(0,0,0,0,0,0,0,0,0)

set.seed(1234)

rebeta = mvrnorm(n=nsubj, remean, resigma)

beta = popbetamat+rebeta # use random effects betas

# Save the data ----------------------------------------------------------------

write.csv(beta,file="truebetas_n100000.csv")
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Appendix C

Proofs

This appendix presents work completed prior to the development of the Bayesian hierarchi-

cal model for discrete choice data of Chapter 6.

Statement 1. If X is distributed according to a standard Minimum Extreme

Value, Type I Distribution(µ = 0 and β = 1), then −X is distributed according

to a Maximum Extreme Value, Type I Distribution (µ = 0 and β = 1).

Proof. The Gumbel (Extreme Value, Type I) distribution has two forms: the minimum

extreme value distribution and the maximum extreme value distribution. If X is a random

variable having the standard minimum extreme value distribution, then X has probability

density function

f(x) = exp(x) exp(− exp(x)) (C.1)

and the cumulative density function

F (X) = 1− exp(− exp(X)). (C.2)

If X is a random variable having the standard maximum extreme value distribution, then X

has probability density function

f(x) = exp(−x) exp(− exp(−x)) (C.3)
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and the cumulative density function

F (X) = exp(− exp(−X)). (C.4)

We now show that if X is a random variable having the standard minimum extreme

value distribution, then -X is a random variable having the standard maximum extreme

value distribution.

Let Y = -X. Then

FY (y) = F (Y ≤ y) = F (−X ≤ y) = F (X ≥ −y) (C.5)

= 1− F (X ≤ −y) (C.6)

= 1− (1− exp(− exp(−y))) (C.7)

= exp(− exp(−y)) (C.8)

and

fY (y) =
d

dy
Fy(y) (C.9)

=
d

dy
[1− (1− exp(− exp(−y)))] (C.10)

=
d

dy
(exp(− exp(−y))) (C.11)

= exp(−y) exp(− exp(−y)). (C.12)

Hence, we see that Y = -X is a random variable having the standard maximum extreme

value distribution.
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Statement 2. The probability that respondent i chooses alternative j as worst

alternative from a choice set containing n alternatives is

P (Yi = j) =
exp(−Vij)∑n
k=1 exp(−Vik)

. (C.13)

Consider the random utility model. If we assume that the random components of utility,

the εik’s, are iid with a standard Gumbel distribution (minimum) then the probability of

individual i choosing alternative j as worst or least preferred is

P (Yi = j) = P (Uij 6 Uik, for all k 6= j) (C.14)

= P (Vij + εij 6 Vik + εik, for all k 6= j) (C.15)

= P (−εik 6 Vik − Vij − εij, for all k 6= j). (C.16)

Then conditional on εij

P (Yi = j|εij) = P (−εik 6 Vik − Vij + εij, for all k 6= j) (C.17)

is the cumulative distribution for each εik evaluated at Vij − Vik + εij. Because the εik’s are

assumed to be independent, the cumulative distribution over all k 6= j is the product of the

individual cumulative distributions,

P (Yi = j|εij) =
n∏

k=1,k 6=j

P (−εik 6 Vik − Vij + εij). (C.18)

Then by Statement 1,

P (Yi = j|εij) =
n∏

k=1,k 6=j

exp{− exp[−(Vik − Vij − εij)]}. (C.19)

Because the εij’s are not given, the choice probability is the integral of P (Yi = j|εij) over

127



all values of εij weighted by the density, f(εij). Then

P (Yi = j) =

∫ ∞
−∞

P (Yi = j|εij)f(εij)dεij

=

∫ ∞
−∞

n∏
k=1,k 6=j

exp{− exp[−(Vik − Vij − εij)]}

· exp[−(−εij)] exp{− exp[−(−εij)]}dεij

=

∫ ∞
−∞

n∏
k=1,k 6=j

exp[− exp(Vij − Vik) exp(εij)]

· exp(εij) exp[− exp(εij)]dεij.

(C.20)

Let u = − exp(εij). Then du = − exp(εij)dεij and the limits change from εij = −∞ to u = 0

and εij =∞ to u = −∞. Now we have that

P (Yi = j) = −
∫ −∞
0

n∏
k=1,k 6=j

{
exp
[
u exp(Vij − Vik)

]}
exp(u)du (C.21)

=

∫ 0

−∞
exp
{
u
[
1 +

n∑
k=1,k 6=j

exp(Vij − Vik)
]}
du. (C.22)

Finally, if we let w = u
[
1 +

∑n
k=1,k 6=j exp(Vij − Vik)

]
, then

dw =
[
1 +

∑n
k=1,k 6=j exp(Vij − Vik)

]
du and the limits of integration change from u = 0 to

w = 0 and u = −∞ to w = −∞. We now have that

P (Yi = j) =
1

1 +
∑n

k=1,k 6=j exp(Vij − Vik)

∫ 0

−∞
exp(w)dw (C.23)

=
1

1 +
∑n

k=1,k 6=j exp(Vij − Vik)
(C.24)

=
1

1 + exp(Vij)
∑n

k=1,k 6=j exp(−Vik)
· exp(−Vij)

exp(−Vij)
(C.25)

=
exp(−Vij)

exp(−Vij) +
∑n

k=1,k 6=j exp(−Vik)
(C.26)

=
exp(−Vij)∑n
k=1 exp(−Vik)

. (C.27)
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Thus, the probability respondent i chooses alternative j as worst alternative from a choice

set containing n alternatives is given by the closed form expression,

P (Yi = j) =
exp(−Vij)∑n
k=1 exp(−Vik)

. (C.28)
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Statement 3. The probability of a preference order or full ranking for the rank

ordered logit model and the sequential best-worst logit is not the same for all

values of Vj = Xjβ.

Proof. Consider the alternatives A,B,C and D and suppose that A > B > C > D is the

observed preference order. Under the rank ordered logit model, the probability of observing

this preference order for a single respondent is

PROL =
exp(VA)∑

j∈{A,B,C,D} exp(Vj)

exp(VB)∑
j∈{B,C,D} exp(Vj)

exp(VC)∑
j∈{C,D} exp(Vj)

exp(VD)

exp(VD)
. (C.29)

Under the sequential best-worst logit model, the probability of observing the same preference

order is

PSBW =
exp(VA)∑

j∈{A,B,C,D} exp(Vj)

exp(−VD)∑
j∈{B,C,D} exp(−Vj)

exp(VB)∑
j∈{B,C} exp(Vj)

exp(−VC)

exp(−VC)
. (C.30)

If we assume that PROL = PSBW , then

exp(VA)∑
j∈{A,B,C,D} exp(Vj)

exp(VB)∑
j∈{B,C,D} exp(Vj)

exp(VC)∑
j∈{C,D} exp(Vj)

= (C.31)

exp(VA)∑
j∈{A,B,C,D} exp(Vj)

exp(−VD)∑
j∈{B,C,D} exp(−Vj)

exp(VB)∑
j∈{B,C} exp(Vj)

. (C.32)

After expanding the sums in the denominators and rearranging the terms we have that

exp(VC)(exp(−VB) + exp(−VC) + exp(−VD))(exp(VB) + exp(VC)) = (C.33)

exp(−VD)(exp(VB) + exp(VC) + exp(VD))(exp(VC) + exp(VD)). (C.34)

Using the distributive property and properties of exponents yields

exp(2VC − VB) = exp(VD). (C.35)
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If we equate exponents, then

2VC − VB = VD (C.36)

which implies that

VC =
VB + VD

2
. (C.37)

Thus, the probabilities of observing the observed preference order (A > B > C > D) under

the ROL and the SBW logit models are equivalent only in the case when VC is the arithmetic

average of VB and VD.

Example. Let VA = 4,VB = 3,VC = 2,VD = 1. So, VC = VB+VD
2

= 2. Then

PROL = 0.313 = PSBW . (C.38)

Now let VA = 4,VB = 3,VC = 2,VD = 1.5. So, VC = 2 is not equal to VB+VD
2

= 2.5. Then

PROL = 0.247 6= 0.252 = PSBW . (C.39)
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Appendix D

Additional Tables and Figures
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Figure D.1: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.2: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.3: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.4: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.5: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.6: Posterior mean estimates of relative importance± 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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