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Introduction to cancer and nutrition

Cancer is the leading cause of death worldwide. In 2018 
alone, over 1.7 million people were diagnosed with cancer 
and over 600,000 deaths have resulted from this disease.1 
From 1999 to 2015, the overall incidence of cancer decreased 
by 2.2% in men and remained stable in women, yet the mor-
tality rate for both has only decreased slightly to 1.8% and 
1.4% respectively.2 These modest improvements in out-
comes could be attributed to improvements in cancer thera-
pies and detection; however, it is tempting to speculate that 
greater improvements could be achieved if the therapeutic 
effects of diet on cancer are considered.

The last decade seems to have witnessed a surge of inter-
est in the role of diet and its effects on cancer metabolism. 
This interest is at least partly ignited by the rapid increase in 
the prevalence of obesity in the United States. Between 2015 
and 2016, the National Health and Nutrition Examination 
Survey demonstrated 39.8% of adults and 18.5% of youth 
were obese.3 A prospective study of over 900,000 adults in 
the United States showed a significant proportional increase 
between obesity and mortality risk from multiple cancers, 
including of the esophagus, colon and rectum, liver, gall-
bladder, pancreas, kidney, prostate, breast, uterus, cervix, 
and ovary.4 With the high prevalence of obesity in the United 

States, many investigators have sought to investigate the 
effects of excessive nutritional intake on the outcomes of 
cancer patients.

In general, cancer therapies target the hypermetabolic state 
of cancer cells to primarily destroying rapidly dividing tumor 
cells. However, rapidly dividing normal cells are also affected 
by anti-neoplastic therapies. As our understanding of tumor 
proliferation and apoptosis within individual cancers expands, 
investigators have been making significant strides to create 
targeted immunotherapies that will eliminate the bystander 
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effect seen with traditional chemotherapy such as neutropenia, 
mucositis, renal failure, and cardiac dysfunction. The first 
example of immunotherapy was developed by Milstein and 
Kohler in 1970. Then, in 1997, rituximab, a monoclonal CD20 
antibody, became available as a targeted treatment for non-
Hodgkin’s lymphoma and has since become a widely utilized 
therapeutic option due to its short-lived side effects that can be 
managed medically for 3–6 months.5 While targeted therapy 
remains the goal of oncologists and patients alike, investiga-
tors are interested in how lifestyle modifications, such as die-
tary pattern, can impact tumor physiology and clinical 
outcomes. The advent of personalized medicine, precision 
cancer medicine, or “theranostics” further supports a depar-
ture from broad algorithmic interventions and instead focuses 
on the matrix of a specific patient’s oncogenomic, pharmacog-
enomic, epigenetic, historical, and lifestyle characteristics. 
Nutritional status and diet are increasingly seen in this concep-
tion as significant matrix variables in predicting risk for dis-
ease, and response to intervention.

The role of diet in cancer metabolism is certainly an area 
of popular interest. The American Institute for Cancer 
Research and the World Cancer Research Fund estimates 
that 30%–40% of cancers can be prevented by healthy die-
tary regimens, improved physical activity, and maintenance 
of appropriate body weight.6 While “prevention” is likely an 
overstatement, reduction of risk does appear to be supported 
by the evidence. It has been shown in epidemiological stud-
ies of breast cancer, prostate cancer, and colon cancer that 
migration to different countries influences overall risk of 
the development of these cancers, leading to hypotheses that 
changes in dietary habits may alter cancer risk. Kolonel 
et al.7 demonstrated in 1980 that first-generation Japanese 
women had a threefold increase in breast cancer compared 
to Japanese woman living in Japan. It has been postulated 
that this difference may be partially explained by the switch 
from a primarily plant-based diet to a high-fat, high-sugar 
diet. Similarly, the mortality rate from stomach cancer in 
European migrants to Australia decreased in parallel with 
the length of time migrants stayed in Australia, but risk of 
colorectal cancer increased proportionally to the length of 
stay.8 Prostate cancer studies have shown similar results 
where certain lifestyle factors are associated with the pro-
gression of malignancy.9 These epidemiologic studies sug-
gest that changes in lifestyle and dietary influences play a 
role in determining the risk of various cancers.

At the time of cancer diagnosis, many patients inquire 
about how lifestyle modifications can slow their tumor pro-
gression. Calorie restriction (CR) is a well-established die-
tary intervention for preventing cancer and increasing 
lifespan in experimental animal models.10 In a prostate can-
cer xenograft mouse model, CR alone was shown to decrease 
final tumor weight, plasma insulin, and insulin-like growth 
factor (IGF)-1 levels and increase apoptosis, overall sug-
gesting that decreasing caloric intake may reduce tumor 
proliferation.11 In human studies, a 15% caloric reduction 
over 4 years demonstrated a sustained reduction in plasma 

growth factors and hormones, which have been associated 
with increased risk of cancer.10,12 The CALERIE study 
revealed that it was feasible for patients to comply with a 
25% CR intervention over a 2-year period and later showed 
a reduction in markers of oxidative stress, which may inhibit 
cancer proliferation.13,14 Another diet of interest is the vegan 
diet, which has been shown to decrease tumor markers and 
inhibit tumor cell growth in prostate cancer studies.15 
Optimization of dietary regimens has thus gained attention 
as a lifestyle modification that individuals may undertake to 
alter their risk of the development of malignancies.

Certain malignancies have well-documented associations 
with lifestyle habits, such as lung cancer with smoking and 
mesothelioma with asbestos exposure.16,17 Although primary 
prevention of tumorigenesis is a shared goal by patients and 
oncologists alike, the majority of cancers do not have clear 
risk factors, thus posing challenges in educating patients 
about the proper exposures to avoid. With regard to lifestyle 
modifications and cancer risk, the general dietary guidelines 
published by the American Cancer Society advocate for the 
avoidance of excess weight gain, consumption of a primarily 
vegetarian-based diet, and limited intake of alcohol, red 
meat, and processed foods.18,19 Here, we present a review of 
the expansive literature on the interactions between nutri-
tion, diet, and the course of malignant neoplasms.

Cancer metabolism

Cachexia is an integral component of involuntary weight 
loss in the setting of disease-associated wasting. It is further 
and still broadly defined as an inflammatory-associated 
wasting of protein, particularly skeletal muscle, and loss of 
energy stores. Cytokines and hormones, such as leptin, insu-
lin, several interleukins, and growth factors, elicited in dis-
ease and as principal mediators of inflammation may in 
effect tilt physiology toward catabolic breakdown of tissue 
presumably in service of mobilizing critical nutrients for 
central nervous system and aspects of immune function.20

Cachexia has been shown to be associated with cancer-
related mortality; however, no consistently effective therapies 
have been developed to prevent or hamper its progression.20 
Even for patients who are able to eat—appetite suppression or 
anorexia is a common cachexia symptom—and efforts to 
improved nutrition often offer little respite.21 It is interesting to 
speculate that underreporting of cachexia as a “contributing 
cause of death” has perennially affected the primacy placed on 
research and funding of this enormously pervasive process.

As a special case, cancer-induced cachexia is described as 
a multifactorial metabolic disorder seen in 50% of cancer 
patients.22 The exact mechanisms remain unclear, but it is 
thought to be typified by an increase in energy expenditure, 
hepatic gluconeogenesis, fat lipolysis, and skeletal muscle 
proteolysis leading to progressive weight loss throughout 
therapy.23,24 Further complicating this phenomenon, as noted 
previously, is that this auto-catabolic process is not reversed 
by total parental nutrition or supplements.25 It is important to 
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note that the relationship between tumor phenotype to host 
genotype likely results in heterogeneity in the degree of 
cachexia between individuals with the same malignancy.

Even prior to diagnosis, most cancer patients will experi-
ence a significant degree of catabolism leading to both mus-
cle and adipose depletion, in contrast to the predominant 
wasting of adipose tissue in anorexic patients.26 This differ-
ence may be due to the change in resting energy expenditure 
(REE), which is defined as the amount of energy expended 
by a person at rest. A recent meta-analysis of 27 studies com-
paring 1453 cancer patients to 1145 control patients shows 
that, on average, the REE of cancer patients was 9.66% 
higher than that of controls.27 It is important to note that dif-
ferent malignancies are known to have varying degree of 
metabolism, and one study found marked REE variation 
among different cancer groups (p < 0.001).27 For example, 
Burkitt’s lymphoma has a doubling time of 24 h,28 while 
Hodgkin’s lymphoma has a doubling time of 29 days.29 
Therefore, the specific type of cancer may have large effects 
on the overall metabolism within the patient.

It was first described in 1927 by Otto Warburg et al.30 that 
tumors cells demonstrate an aberrant metabolic pathway that 
contributes to excessive catabolism. In normal tissues via oxi-
dative phosphorylation, one molecule of glucose is able to 
produce 36 adenosine triphosphate (ATP) molecules, which 
are the intracellular energy used to drive cellular processing. 
Cells also have an alternative pathway known as glycolysis, 
which utilizes one molecule of glucose to produce just two 
ATP molecules. In a phenomenon known as the Warburg 
effect, tumor cells selectively upregulate key regulators of gly-
colysis, such as hypoxia-induced factor-1α (HIF-1α).31 HIF-
1α drives three main processes: (1) increased expression of 
glucose transporter-1 (GLUT-1) leading to increased glucose 
availability for glycolysis;32 (2) increased pyruvate dehydro-
genase kinase production leading to increased conversion of 
lactate to pyruvate and decreased production of acetyl CoA 
necessary for the Krebs cycle (produces one ATP and three 
nicotinamide adenine dinucleotide (NADH));33 and (3) 
increased lactate dehydrogenase production leading to 
increased conversion of lactate to pyruvate, which serves as 
the primary substrate for gluconeogenesis in the liver.31 
Increased lactate acid production via glycolysis is also released 
systemically, where it undergoes gluconeogenesis in an ATP-
consumptive process known as the futile lactate–glucose 
shunt, or Cori cycle.34 Overall, these processes promote an 
overall energy deficient state, leading to lipolysis and prote-
olysis and eventually cachexia. A recent in vivo study with 
human pancreatic cancer cells in athymic mice reveals that the 
Warburg effect was present in the complex system of a live 
animal, thus further supporting these proposed mechanisms of 
cancer-induced cachexia.24 After 90 years since the Warburg 
effect was proposed, it remains unclear if the Warburg effect 
acts independently or if physiologic interactions in response to 
the Warburg effect drive cancer-induced cachexia.

Systemic inflammation that occurs during tumor prolif-
eration is thought to contribute to cachexia.35 Elevation in 

pro-inflammatory markers, such as C-reactive protein and 
fibrinogen, has been positively correlated with the degree of 
muscle wasting in cancer and chronic disease.36,37 Cytokines, 
including tumor necrosis factor-alpha (TNF-α), interleukin-
1(IL-1), and interleukin-6 (IL-6), contribute to persistent 
inflammation and increase rates of gluconeogenesis, lipoly-
sis, and proteolysis.38 TNF-α also stimulates the expression 
of uncoupling proteins 2 and 3 (UCP2/3) in cachectic skele-
tal muscle, due to UCP’s mediated proton leakage, and 
decreases the coupling of respiration to ADP phosphoryla-
tion, thereby generating heat instead of ATP from brown 
fat.37,39 In fact, IL-6 levels have been found to be elevated in 
cachexic patients when compared with patients who main-
tained their weight during therapy.37 These mechanisms have 
been replicated in animal studies, where IL-6 blockade in 
mice leads to attenuation of protein degradation40 and TNF-
α blockade decreases catabolism in rat models.41,42

The role of neuropeptides in inducing anorexia during a 
catabolic state is emerging as a major contributing factor to 
cancer-induced cachexia. There appears to be an imbalance 
between appetite-stimulating molecules, such as neuropep-
tide P (NYP), melanin-concentrating hormone, orexins, 
endogenous opioids, and cannabinoids compared with appe-
tite suppressant molecules such as serotonin, peptide YY, 
cholecystokinin, leptin, and insulin.43 The role of neuropep-
tide Y is of special consideration as it is produced primarily 
in the hypothalamus and has a robust feeding stimulatory 
effect. Overstimulation with NYP leads to obesity in rats, in 
addition to decreased energy expenditure and reduced brown 
fat thermogenesis.43 However, NYP injection into rats with 
sarcomas showed a reduction in feeding behavior, and a sep-
arate study revealed that rats with malignancies demon-
strated a reduced release of NYP, suggesting that tumors may 
induce neurohormonal changes that decrease feeding activ-
ity and compound weight loss in cancer patients.44–46

Another hormone of interest is leptin, a protein primarily 
produced in white and brown adipocytes that is responsible 
for peripheral signaling to reduce appetite and increase 
energy expenditure.47 While decreased food intake normally 
suppresses leptin production, anorexia has been associated 
with increased leptin levels in adipose tissue and plasma.48,49 
Multiple authors have reported low or undetectable circulat-
ing leptin levels in cancer patients, suggesting a degree of 
leptin dysregulation.50 Elucidating the mechanisms behind 
neurohormonal dysregulation of leptin may provide insight 
into further therapeutic options in the future.

Anti-metabolic drugs and their impact 
on nutritional deficiencies

Cancer chemotherapy regimens target rapidly dividing cells 
by either inhibiting DNA or protein synthesis or restricting 
essential micronutrients, thus leading to cellular death. Further, 
studies show that between 30% and 90% of patients have 
inadequate dietary regimens.51,52 Chemotherapy, along with 
poor nutritional intake during treatment, is a great concern for 
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patients and physicians. Chemotherapies that affect the nutri-
tional status of patients include anti-metabolites, such folate, 
purine, and pyrimidine analogs, in addition to platinum-based 
drugs. Due to the broad mechanism of action of these drugs, 
many organ systems are adversely affected.

Methotrexate is an anti-metabolite folate analog that is 
used in standard therapy protocols for leukemia, lymphoma, 
and osteosarcoma.53–55 Methotrexate leads to cellular death 
by acting as a dihydrofolate inhibitor, which is responsible 
for the conversion of dihydrofolate to tetrahydrofolate. 
Inhibition of tetrahydrofolate formation reduces the availa-
bility of one-carbon fragments necessary for the production 
of purines and the conversion of deoxyuridylate to thymi-
dylate for DNA synthesis and cell reproduction. Although 
rapidly dividing malignant cells are most affected by inhibi-
tion of DNA synthesis, other rapidly proliferating cells are 
affected as well, such as hematopoietic and epithelial cells, 
thus leading to myelosuppression and mucositis.56 Due to 
these side effects, a leucovorin “rescue” is performed 24 h 
after methotrexate is administered. Leucovorin is a deriva-
tive of tetrahydrofolic acid, which does not require dihydro-
folate reductase activity and thus “rescues” the healthy cells 
by allowing for de novo DNA synthesis to resume.57 
Although methotrexate is associated with favorable mortal-
ity outcomes in combination with other chemotherapies, it is 
difficult to predict one’s toxicity after treatment. Therefore, 
dose reductions are often necessary due to severe side effects 
from inhibition of DNA synthesis and cellular proliferation.

5-Fluorouracil (5-FU) is a competitive inhibitor of thymi-
dylate synthase, which blocks thymidine synthesis and inhib-
its DNA and RNA replication.58 5-FU is widely used in 
colorectal, breast, and head and neck cancers.58 Interestingly, 
increased intracellular folate levels increase thymidylate syn-
thase levels, thereby enhancing the inhibitory effects of 5-FU. 
This interaction between metabolites suggests that optimal 
nutrition can improve chemotherapy effects in specific cancer 
groups.59,60 Gemcitabine has a similar mechanism of action 
with 5-FU; however, it is a prodrug that, when phosphoryl-
ated, interrupts DNA synthesis and inhibits DNA repair, 

leading to cellular death.56 In pancreatic cancer, it has been 
shown that intravenous omega-3 fatty acids, along with gem-
citabine, improve quality of life scores with regard to chemo-
therapy-induced side effects.61 The relationship between 
targeted supplementation and chemotherapy optimization 
suggests that optimized nutrition and reduction of chemother-
apy effects could be dependent on specific treatment 
regimens.

Platinum-based chemotherapy drugs such as cisplatin, 
carboplatin, and oxaliplatin are used in the treatment of can-
cers such as testicular, ovarian, and lung cancer, in addition 
to osteosarcoma and neuroblastoma.62 After the platinum-
based drug is incorporated into the cell using copper trans-
porters, it binds at the N7 position of guanine, causing 
cross-linking between adjacent guanine. This leads to failed 
DNA repair mechanisms and eventually cellular apopto-
sis.63 Two studies in patients with solid tumors showed that 
selenium supplementation, when given during cisplatin 
therapy, reduced myelosuppression and nephrotoxicity, sug-
gesting that optimal levels of selenium could aid in the tox-
icity profile related to platinum-based therapies. It was not 
reported whether mortality or relapse rates were affected by 
this type of supplementation, and thus, more studies are 
warranted to elucidate these data (Table 1).64,65

Dietary approaches

Western diet

Environmental and lifestyle factors, including diet, are 
hypothesized to influence risk of malignancy.66 In the United 
States, the vast majority of Americans consume a Western 
diet, which consists of a high intake of fats, processed meat, 
dairy, and carbohydrates and low intakes of fiber.67 This 
composition has been associated with broadly negative 
impacts on glycemic load, fatty acid composition, micronu-
trient and macronutrient composition, sodium intake, and 
fiber content, all of which have been suggested to contribute 
to tumorigenesis.68 Since the diet is a modifiable risk factor 

Table 1.  Chemotherapy and nutritional deficiencies.

Chemotherapy Mechanism of 
chemotherapy

Type of malignancy Nutritional 
deficiencies

Nutritional 
supplementation

Methotrexate Antifolate metabolite Leukemia
Lymphoma
Osteosarcoma

Folic acid Folic acid

5-Fluorouracil
Gemcitabine

Competitive inhibitor 
of thymidylate 
synthase

Colorectal
Breast
Head and neck
Pancreatic

– Intravenous omega-3 
(with gemcitabine; 
single-study evidence)

Cisplatin
Carboplatin
Oxaliplatin

Cross-linking 
between adjacent 
guanine

Testicular
Ovarian
Lung
Osteosarcoma
Neuroblastoma

Selenium (with cisplatin)
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in many of the diseases we see today, the interaction between 
how diet may modify cancer risk is an important area of 
emerging research.

It is postulated that the shift to the Western diet among 
many countries may be a contributing factor to the apparent 
increase in chronic diseases, including hypertension, coro-
nary artery disease, hyperlipidemia, and osteoporosis.68 
Over the last few decades, the Western diet has been epide-
miologically associated with an increased incidence of 
many cancers, including prostate cancer,67 breast cancer,69 
colorectal cancer,70 among many others.71 Specifically, one 
study concluded that a Western diet showed an overall 
odds ratio of colon cancer risk of 1.88 when compared 
with individual who consumed higher intakes fruits, veg-
etables, and grains combined with a lower intake of red/
processed meats.72 Another study found that those who 
followed a Western diet had an increased risk of prostate 
cancer, with an odds ratio of 1.34 compared with those 
who consumed healthier diets of fish, poultry, and whole 
grains.67 These large cohort studies suggest that dietary 
pattern has a substantial impact on risk of developing vari-
ous malignancies. Despite large samples, hypotheses 
should be tempered by the clinical reality that there are 
many antecedent and intervening variables that may con-
found conclusions.

Nevertheless, specific dietary regimens have gained 
increased interest as potentially effective adjuvant interven-
tions to traditional cancer therapies. Here, we will discuss 
some of the more prominent dietary approaches, the evidence 
behind the respective elements, and the principal limitations.

CR

Introduction.  CR is defined as a reduction in dietary intake 
by approximately 30%, to improve metabolic profile, with-
out causing malnutrition.73,74 It has been postulated to be a 
potentially powerful dietary intervention that could be inte-
grated into a patient’s cancer therapy due to results showing 
an increased life span and decreased risk of chronic and age-
related diseases, including cancer, type II diabetes, and 
cardiovascular disease.75 The mechanism behind CR stems 
from the concept that excessive adiposity from obesity can 
increase levels of oxidative stress, inflammation, and growth 
factors, which all may have promotive effects on tumorgen-
esis.76 Thus, the negative net energy resulting from CR may 
lead to decreased inflammation and growth factor produc-
tion, thus suppressing the neoplastic activity of the tumor 
cells. As such, the utility of CR is gaining momentum as a 
powerful option to improve the efficacy and augment the 
response of current anti-neoplastic therapies.

Proposed mechanism.  CR has been shown to exert its effects 
on tumor progression through altered levels of various 
growth factors. The most well-studied growth factor is IGF-
1, which upregulated by growth hormone and acts with other 
anabolic hormones to upregulate energy metabolism and 

proliferation.77 In murine models, CR has been shown to 
reduce IGF-1 by about 30%–40% in mice.78 Conversely, 
mice with growth hormone deficiency are shown to have low 
IGF-1 levels associated with delayed incidence of lung ade-
nocarcinoma.79 Interestingly, in a cohort of Laron dwarfs, 
who are individuals with an autosomal recessive mutation in 
growth hormone receptor and are also IGF-1 deficient, none 
of the patients with dwarfism had a history of cancer while 
9%–24% of family members developed a wide variety of 
malignancies.80 In stark contrast, patients with acromegaly, 
who have chronically elevated IGF-1 levels, have been 
shown to have an increased risk of colon cancer.81 Furthering 
this theory is that infusion of growth hormone or IGF-1 in 
mice reverses the protective effects of CR against mononu-
clear cell leukemia development and progression.10,82 IGF-1 
has a role in the proliferation profile of several malginancies, 
and CR may be a preventive and/or complementary approach 
for reducing a known tumor-stimulating growth factor.

IGF-1 is primarily involved in the regulation of two major 
pathways that coordinate cellular proliferation and growth: 
Ras/MAPK (mitogen-activated protein kinase) and phos-
phatidylinositol 3-kinase (PI3K)/protein kinase B (AKT; 
Figure 1). Activation of Ras/MAPK promotes transcription 
factors involved in cellular growth, while activation of PI3K/
AKT decreases apoptosis.83 CR has been shown to decrease 
serum levels of IGF-1, thereby causing downregulation of 
both the Ras/MAPK and PI3K/AKT pathways, which inhibit 
both tumor growth and development.73 In addition, CR has 
been shown to improve insulin sensitivity via downregulation 
of IGF-1 levels and improve glucose tolerance.84 Thus, CR 
may promote insulin sensitivity leading to decreased serum 
blood glucose and decreased IGF-1 levels, which may miti-
gate one of the mechanisms driving cancer cell proliferation.

The utility of CR may be further enhanced when comple-
mented with local cytotoxic therapy. Targeting the primary 
tumor with local radiation, in combination with CR, is 
hypothesized to alter the molecular profile of the tumor.85 
Indeed, mice receiving an IGF-1R inhibitor, to replicate CR, 
along with radiation therapy, required a longer period to 
develop breast cancer metastasis to the lung and had 
increased overall survival.85 A report shows that chloroquine, 
in combination with cell starvations, induces a greater degree 
of growth arrest and cell death compared with either treat-
ment used in isolation in melanoma, glioma, and fibrosar-
coma cells.86 This synergistic potential of CR is an especially 
powerful tool that may better the outcomes of patients 
receiving standard therapies.

Another growth factor associated with obesity is leptin, a 
hormone produced by white adipose tissue that activates cell 
proliferation and affects angiogenesis, carcinogenesis, and 
cytokine production.87 CR has been shown to decrease leptin 
release while increasing serum levels of adiponectin, another 
growth hormone found to improve insulin sensitivity and pro-
mote anti-inflammatory and anti-proliferative properties.88 
As stated previously, leptin may have proliferative and angio-
genic effects to promote cancer progression. Since CR may 
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decrease serum leptin levels,89 this concept has been applied 
to breast cancers, where it has be shown that leptin may have 
pro-carcinogenic effects via modulation of signaling path-
ways responsible for tumor proliferation.90 Further, a meta-
analysis found that elevated leptin levels may play a 
significant role in the metastasis of breast cancer.91 Since lep-
tin receptors have been found to be overexpressed in breast 
tumors compared to normal breast tissue,92 leptin inhibition 
has gained attention as a powerful new target in breast cancer 
therapy.93 Overall, CR may be utilized as an adjuvant in 
patients with cancer due to its effects on serum leptin levels.

CR also targets the mechanism of autophagy to inhibit 
tumor proliferation. Autophagy is a catabolic process of 
self-eating in response to starvation and stress which in 
theory could increase tumor cell death, thus inhibiting 
tumor proliferation.94 It is utilized by non-cancerous cells 
to promote the recycling of cellular components required to 
maintain homeostatic function. Stressors, such as exposure 
to metals, hypoxia, sepsis, and chemotherapy, induce oxi-
dative damage that may harm organelles, especially mito-
chondria; thus, autophagy provides the mechanism to 
degrade defective organelles, remove misfolded proteins, 
and digest non-critical cellular components as an alterna-
tive energy source to repair critical proteins.94 It has been 
found that CR may further promote autophagy and assist 

with maintenance of homeostasis in the exposure to stress.95 
The balance of autophagy is under the influence of the 
AMP-activated protein kinase (AMPK)/mammalian target 
of rapamycin (mTOR) axis.73 IGF-1 has been shown to 
activate mTOR, which promotes cellular proliferation and 
inhibits autophagy, while AMPK inhibits mTOR. CR has 
been shown to activate AMPK, thereby inducing systemic 
autophagic activity.73 While the role of autophagy in benign 
cells is well established, the function of autophagy in can-
cerous cells is unclear. An upregulation of autophagy in 
surrounding stromal cells, in the context of decreased 
autophagy in cancerous cells, has been proposed to be both 
tumor suppressive and promotive.94,96 Conversely, some 
propose that established cancer cells instead may upregu-
late autophagy during CR, thus promoting evasion of TNF-
α-induced apoptosis and cellular survival.73 Further 
research behind the underlying effects on the proliferation 
pathways is essential to better understand how CR-induced 
autophagy contributes to tumorigenesis.

Angiogenesis and inflammation have been shown to be 
related to tumor proliferation, and CR has been shown to mod-
ule these processes to exert anti-neoplastic effects. CR has 
been shown to decrease expression of plasminogen activator 
inhibitor 1 (PAI-1)97 and vascular endothelial growth factor 
(VEGF)74,98 which are cytokines that promote angiogenesis, 

Figure 1.  Dietary effect on proliferation pathways associated with cancer. Dietary interventions have been shown to affect the 
complex interaction between proliferation and apoptotic pathways. IGF-1, a growth factor that acts as an anabolic hormone to 
upregulate energy metabolism and proliferation, has been thoroughly studied in numerous cancer models. Activation of Ras/MAPK 
promotes transcription factors involved in cellular growth. Conversely, the PI3K/AKT pathway decreases apoptosis via mTOR inhibition 
of autophagy. Caloric restriction, intermittent fasting, and the ketogenic diet have been shown to decrease IGF-1 levels, thereby 
inhibiting both Ras/MAPK and PI3K/AKT proliferation pathways. Caloric restriction and intermittent fasting have also been shown 
to directly inhibit the mTOR pathway, thereby relieving the inhibition of the autophagy pathway to result in apoptosis. Conversely, 
intermittent fasting has been shown to activate AMPK, which inhibits mTOR from halting autophagy in rapidly growing cancer cells. 
Finally, the ketogenic diet inhibits the mTOR and IGF-1 pathways and promotes ketosis, which reduces the availability of glucose and 
leads to the reliance on the HMP shunt over oxidative phosphorylation. The deprivation of glucose in the ketogenic diet creates an 
environment where non-malignant cells are able to utilize ketones to survive during ketosis, while cancer cells are “starved” of an 
energy source stemming from a lack of glucose availability.
MAPK: mitogen-activated protein kinase; PI3K: phosphatidylinositol 3-kinase; AKT: protein kinase B; HMP: hexose monophosphate; IGF: insulin-like 
growth factor; mTOR: mammalian target of rapamycin; AMPK: AMP-activated protein kinase; AMP: adenosine monophosphate.
The numbers indicate references with additional information about the dietary interaction and metabolic pathway interactions.
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thereby allowing for metastatic spread of tumor cells. CR also 
decreases levels of chronic inflammation by reducing absolute 
quantity of adipose tissue.99 When adipocytes are present in 
excess, they risk hypoxia and necrosis from insufficient perfu-
sion.100 Free fatty acids may escape from necrotic tissue and 
release inflammatory cytokines such as nuclear factor kappa B 
(NF-κB), a transcription factor that induces gene expression 
for cellular proliferation and metastasis, or COX-2, which 
increases production of inflammatory lipid metabolites.101 CR 
has shown to be a potent inhibitory modulator of tumorigene-
sis via inhibition of angiogenesis and inflammation.

Limitations.  It is important to consider the patient’s baseline 
nutritional status, stage of therapy, and recommendations 
from the primary oncologist and registered dietitian prior to 
incorporating any dietary intervention. One of the primary 
concerns with CR is the risk of cachexia. Extreme cachexia 
has been associated with alterations between the patient’s 
immune system and metabolic state.73 Since CR requires a 
decrease in caloric intake, patients who have already experi-
enced significant weight loss due to therapy, vomiting, diar-
rhea, or anorexia may not be ideal candidates to incorporate 
CR into their overall treatment plan. In addition, CR may 
require several months for effects to be observed in 
patients,102 thus potentially exacerbating further weight loss 
in patients who may already be significantly underweight 
and at risk for malnourishment. In addition, some physicians 
may advise against CR as certain chemotherapy regimens 
are already associated with patient-driven CR due to nausea 
and anorexia. As a result, the practicality of CR has been dif-
ficult to assess since oncology patients are generally advised 
to increase food intake to combat therapy-induced weight 
loss.103 Therefore, other dietary interventions, such as inter-
mittent fasting (IF), fasting-mimicking diets, or ketogenic 
diets (KDs), which have lower potential for weight loss, 
have been explored as alternative forms of dietary interven-
tions in cancer therapy.

Due to the concerns surrounding extreme weight loss in 
at-risk patients, CR mimetics have been proposed as an 
alternative to provide the beneficial effects of CR without 
inducing cachexia. CR mimetics are supplements or medi-
cations that take advantage of the beneficial effects described 
during CR without dietary restriction.73 For example, met-
formin is a common type 2 diabetes medication which acti-
vates the AMPK (5’ AMPK) pathway and increases insulin 
sensitivity in a similar fashion to the proposed CR mecha-
nism described above that has been linked to anti-neoplastic 
activity.104 Metformin is a relatively safe medication; how-
ever, common side effects include hypoglycemia. Another 
drug of interest is rapamycin, an antibiotic and immunosup-
pressive drug that inhibits mTOR, which has been shown to 
delay cancer progression, extend life span, and increase the 
sensitivity of certain cancers to chemotherapy and radiation 
therapy.105 Common side effects of rapamycin include 
hypertriglyceridemia, increased risk of infection, diabetes-
like symptoms, and hypertension.106 Given these promising 

results, a wide variety of CR mimetics are currently under 
development to affect tumor metabolism and sensitize 
tumors to standard and emerging cancer therapies.73 Of 
note, side effect profiles should be considered prior to start-
ing any medications as their risk may vary widely based on 
the patient’s medical history.

IF

Introduction.  IF has been used as a dietary regimen for acute 
and chronic diseases worldwide.103 IF is a dietary regimen 
that includes the complete cessation of caloric intake for a 
period of time, generally from 16 up to 120 h, followed by a 
refeeding period. During the refeeding period, a person is not 
restricted to certain food groups or amount of food they can 
consume.103 In murine models, IF has been shown to improve 
the efficacy of chemotherapy regimens used in breast cancer, 
melanoma, neuroblastoma, pancreatic cancer, and colorectal 
cancer.107 Interestingly, IF has been shown to protect healthy 
cells against chemotherapy damage and stress resistance as a 
“protective effect,” therefore decreasing off-target side 
effects of standard chemotherapy regimens.107,108 Therefore, 
the utility of IF has emerged as a possible adjuvant dietary 
therapy to decrease tumor proliferation and improve thera-
peutic tolerance.

Proposed mechanisms.  The primary benefit of IF is based on 
the physiological mechanisms that occur during starvation. 
During first 10 h of starvation, the body will utilize con-
sumed food and stored glycogen for energy primarily in the 
liver. Upon depletion of liver glycogen stores, muscle and 
adipose tissues are broken down to supply energy through an 
alternative pathway. Amino acids are produced via break-
down of muscle and fatty acids via breakdown of adipose 
tissue. Fatty acids can further be broken down into ketone 
bodies, which can be used as an energy source by most tis-
sues except the brain.109 Clearly, acute periods of starvation 
induce a drastic change in the metabolic state of the body and 
has shown to play a role in cancer models.

During fasting, where there is a cessation of caloric 
intake, normal cells will reallocate energy away from ana-
bolic and regenerative pathways toward maintenance path-
ways due to resource limitation, which may limit the growth 
potential of cancerous cells.107 This overall decrease in anab-
olism is thought to lead to a protective state known as a phe-
nomenon termed differential stress resistance (DSR).110,111 
Unfortunately, neoplastic cells are incapable of inhibition of 
oncogenes, such as Ras/Raf/MAPK, phosphatase and tensin 
homolog (PTEN), and PI3K, which are the primary drivers 
of malignant proliferation cellular profiles (Figure 1).107,111 
Together, IF may be a mechanism of protecting the healthy 
cells from transformation into malignant cells and resistance 
against treatment-related toxicity.

The differential stress response is manifested through 
several molecular mechanisms. IF has been reported in lit-
erature to delay tumor progression and increase effectiveness 
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of chemotherapy against a variety of cancers, including mel-
anoma, glioma, and breast cancer.107 This sensitization of 
tumor cells to chemotherapy is thought to be related to the 
decreased circulation of growth factors and changes in 
plasma levels of nutrients that sensitize cells to toxic ther-
apy.112 Specifically, IF has been shown to decrease insulin 
and growth hormone levels, which lead to decreased IGF-1 
levels thus reducing the activation of the Ras/MAPK and 
PI3K pathways.113,114 In addition, IF has been shown to acti-
vate AMPK (5’ AMPK), which inhibits cellular proliferation 
and protein synthesis, activates glycolysis and fatty acid oxi-
dation, and induces autophagy.115,116 IF has also been shown 
to increase activation of caspase-3, which is a crucial media-
tor of programmed cellular death that is selectively upregu-
lated in malignant cells.107 IF has multiple molecular 
mechanisms that appear to have a complex role in cancer 
metabolism and further studies will be needed to elucidate 
key pathways.

Murine and human studies have shown that IF may reduce 
the toxicities from chemotherapy and improve clinical out-
comes. Specifically, a case series found that fasting before 
and after chemotherapy can selectively enhance toxicity of 
chemotherapy drugs to various malignancies, including the 
breast, esophagus, and prostate.117 One study found that fast-
ing cycles combined with cyclophosphamide reduced breast 
tumor size to less than half of what was seen with fasting or 
chemotherapy alone. This same study also saw that combi-
nation of low serum glucose with chemotherapy promoted a 
20-fold increase in DNA damage in breast and melanoma 
cancer cells, greater than what was seen with each treatment 
in isolation.107 Another study shows that starvation of mice 
for 24 h before and after chemotherapy selectively sensitizes 
cancer cell lines to oxidative stress from doxorubicin and 
cyclophosphamide.108 Thus, multiple studies have shown 
that there may be a synergistic effect between IF and specific 
chemotherapies, suggesting that particular cancer types may 
benefit more from adjuvant dietary interventions such as IF.

Severe side effects from chemotherapy can limit a patient’s 
ability to receive the full course of their treatment regimen; 
thus, some investigators have sought to study the potential 
ways that IF could decrease the severity of these side effect 
profiles. In a murine model, mice that underwent IF for 48–
60 h had lower rates of toxicity to etoposide than mice that 
were allowed to eat ad libitum.108,118 In two human cohorts, IF 
was well tolerated as well and showed significant decrease in 
chemotherapy-related side effects, such as weakness, fatigue, 
and nausea,117 while another study showed less gastrointesti-
nal (GI) upset from therapy.119 Together, these studies suggest 
that IF may improve side effect profiles, allowing the indi-
vidual to better tolerate a complete chemotherapy regimen 
without delays in care or dose reduction, thereby potentially 
promoting the effectiveness of their therapy.

Limitations.  The main concern about IF is the potential for sig-
nificant weight loss. Many cancer patients experience nausea, 
vomiting, diarrhea, loss of appetite, or depression which can 

lead to malnutrition in this already at-risk population.119 Stud-
ies have suggested that IF may need to be extended to at least 
24 h and potentially up to 48 h, to see the protective effects 
described above.103 In contrast to an overall reduction in 
caloric intake which is used in CR, IF has the potential to lead 
to malnourishment, given the strict caloric limitations.73,103 
With that in mind, the extended duration of IF may not be pos-
sible for some patients for various reasons, including baseline 
weight and nutritional status prior to diagnosis, particular can-
cer diagnosis, current chemotherapy regimens being used, and 
their individual risk for nutritional deficiencies. Therefore, the 
cost/benefit of IF should be assessed on an individual basis 
with the treating oncologist, registered dietitian, and patient to 
determine if IF is safe and feasible. Overall, preliminary 
results suggest that IF is well tolerated by most patients but the 
risk of severe weight loss cannot be ignored.

KD

Introduction.  The KD is a high-fat, moderate-protein, and 
low-carbohydrate diet. Recently, the KD has gained popular-
ity as a method to promote weight loss and reduce risk for 
various chronic diseases,120 including metabolic diseases 
such as GLUT-1 deficiency and pyruvate dehydrogenase 
complex deficiency.121 Most notably, the KD has been used 
for over 80 years as an effective adjuvant therapy for chil-
dren suffering from refractory epilepsy122,123 and, more 
recently, it is being explored with diabetes and cancer.124–126

The foundation of the KD is an emphasis on higher fat 
consumption with moderate to low protein content and very 
low carbohydrate intake, with a ratio of fat:carbohydrate and 
protein around 3:1 or 4:1 in order to drastically decrease cir-
culating glucose, which is thought to be the primary energy 
source of the rapid dividing malignant cells.126 This dramatic 
shift away from glucose as the primary energy supply to 
ketosis which is the breakdown of adipose tissue via fatty 
acid oxidation leading to ketone body formation is known as 
dietary ketosis.127 Ketosis has been hypothesized to inhibit 
tumor proliferation while still providing sufficient energy for 
peripheral tissue.126,127 Moreover, CR and KD have been 
found to dramatically decrease tumor cell proliferation 
through the inhibition of the IGF-1 pathway (Figure 1);128,129 
however, the degree of weight loss may potentiate cancer-
related cachexia.103,119 This has led to the KD being explored 
as an alternative dietary regimen that shifts the metabolic 
processes away from tumor growth while avoiding CR and 
prolonged periods of fasting.

Proposed mechanism.  The proposed effectiveness of the KD 
relies on the many metabolic differences between normal 
cells and cancer cells, especially in the metabolism of glu-
cose. As a review, under normal oxygen-rich conditions, glu-
cose is broken down to pyruvate via glycolysis, which is then 
converted to acetyl CoA. Acetyl CoA enters the mitochon-
dria to initiate the citric acid cycle and the electron transport 
chain in a process known as oxidative phosphorylation to 
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produce energy for the body in the form of adenosine triphos-
phate or ATP (36 ATP per one glucose molecule). This pro-
cess is driven by the availability of glucose and is the most 
efficient mechanism of energy production in the body. Mito-
chondria with preserved function tightly regulate cellular 
energy production via these processes, and the majority of 
ATP is produced through oxidative phosphorylation. This is 
the primary mechanism by which all cells in our body receive 
energy for growth and metabolism and cancer cells are no 
exception. It is has been suggested that tumor cells may have 
mitochondrial DNA mutations that drive cells to utilize the 
oxidative phosphorylation pathway, leading to an increase in 
reactive oxygen species production and oxidative stress as a 
subsequent by-product of aerobic metabolism.130

In the absence of oxygen, pyruvate is instead converted to 
lactate for energy production via non-oxidative pathways 
such as ketosis, which produces far less ATP than oxidative 
phosphorylation (two ATPs per one glucose molecule). ATP 
is essential for driving the metabolic machinery in all cells, 
especially for malignant cells. Since malignant cells require 
more ATP, it has been postulated that if one can decrease 
excess glucose intake, then the glycolytic pathways will pre-
vail and essentially “starve” the malignant cells, leading to 
cellular death. This has led to the idea that a KD may aid in 
“starving” malignant, thus reducing or preventing cellular 
proliferation pathways.

Malignant cells are thought to utilize a unique metabolic 
pattern termed the Warburg effect, where anaerobic glycolysis 
is preferably utilized instead of oxidative phosphorylation for 
ATP production, regardless of oxygen status.131 As described 
above, a diet low in carbohydrates will result in an initial 
increased rate of glucose metabolism forcing the cells to uti-
lize glycolysis as their primary energy source. This is thought 
to be beneficial to the patient as malignant cells are rapidly 
dividing and thus require glucose to more efficiently produce 
energy to drive their anabolic metabolism. Some studies have 
shown that glucose uptake and lactate release by tumors is 30- 
to 43-fold that of non-malignant cells, suggesting that tumor 
cells will utilize both pathways, including ketosis, to compen-
sate for lack of glucose availability for oxidative phosphoryla-
tion (Figure 1).126,132 In addition, to address the lack of glucose, 
malignant cells rely heavily on the hexose phosphate pathway 
(HMP shunt),133 which converts glucose 6-phosphate, an 
intermediate in glycolysis, to the cofactors nicotinamide ade-
nine dinucleotide phosphate (NADPH) and ribose 5-phos-
phate to detoxify organic peroxides and mitigate oxidative 
damage.130

The KD seeks to shift the metabolism toward ketosis to 
limit anabolism, therefore inhibiting growth and prolifera-
tion pathways in malignant cells. When glucose is limited, 
the body is forced to utilize stored adipose tissue instead of 
glucose for ATP production. After prolonged periods of 
glucose restriction, the body preferentially enters ketosis 
where fat is metabolized via fatty acid oxidation to produce 
ketone bodies including β-hydroxybutyrate, acetone, and 

acetoacetate. Ketone bodies are then converted to acetyl 
CoA for use in the citric acid cycle for ATP production.126 
This is an important underlying principal in the KD, where 
glucose availability is limited, creating an environment 
where non-malignant cells are able to utilize ketones to sur-
vive during ketosis, while cancer cells are “starved” of an 
energy source due to a lack of glucose availability.

Thus, the KD may selectively increase oxidative stress 
in cancer cells through two mechanisms. First, malignant 
cells are dependent on glucose metabolism for the produc-
tion of glucose 6-phosphate, which is converted to detoxi-
fying cofactors via HMP shunt. Without glucose, the source 
of cofactors to reduce reactive oxygen species is elimi-
nated, thereby inducing oxidative stress in malignant 
cells.126 Second, forced fatty acid oxidation in the KD pro-
vides energy that is primarily utilized by non-malignant 
cells since cancerous cells are poor metabolizers of ketones. 
Together, the KD decreases the substrate for the most effi-
cient energy production in the cell via a significant reduc-
tion in glucose availability while concurrently promoting 
oxidative stress in malignant cells by removing the source 
for detoxifying cofactors.

There are a wide variety of studies that illustrate the pos-
sible anti-neoplastic effects of the KD.134,135 A review article 
evaluated the effects of KD on tumor growth and survival 
time in animal models. The majority of the papers revealed a 
beneficial effect seen across a variety of tumor types includ-
ing prostate, gastric, neuroblastoma, and lung.136 More spe-
cifically, in a colon carcinoma murine model, mice fed with 
a ketogenic formula showed cancer suppression compared 
with mice fed with regular diets. Interestingly, there was a 
significant negative correlation between blood ketone con-
centration and tumor weight. Adverse effects were not noted. 
The investigators postulated that elevated blood ketone lev-
els may have anti-tumor effects by promoting maintenance 
of body weight and muscle mass leading to a reduction of 
inflammation.137 Another mouse model with neuroblastoma 
xenografts shows a significant decrease in neoplastic growth 
when exposed to low-dose chemotherapy in combination 
with a KD diet.138 Despite the evidence of anti-neoplastic 
activity of the KD in animal models, the data in humans are 
lacking (Table 1).135

Limitations.  Despite the promising effects of the KD, this 
regimen risks potential side effects including lethargy, nau-
sea, and vomiting, in addition to hypoglycemia.126 These side 
effects are not universal but could limit one’s ability to adhere 
to the KD. In addition, the high fat content of KD may not be 
well tolerated by some individuals, with some studies show-
ing long-term increases in serum total cholesterol139 along 
with renal damage.140 In addition, some patients experience 
progressive bone mineral content loss; however, this is likely 
multifactorial, given the use of steroids and various chemo-
therapies, in addition to gender discrepancies, that may con-
tribute to bone loss.141 Although some propose that the KD 
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can lead to weight loss,129,142 more recent data suggest that the 
KDs may actually prevent cachexia and maintain body 
weight.137 Regardless, more studies are needed to further 
illustrate the utility and adverse effects of the KD (Table 2).

Other dietary regimens under 
exploration

Mediterranean diet

The Mediterranean diet (MedD) has gained attention as a 
healthy diet to reduce the risk of cancer. Schwingshackl and 
Hoffmann143 provide a comprehensive review on the pro-
posed beneficial effects of the MedD on overall risk of can-
cer. The MedD is common in countries bordering the 
Mediterranean Sea. It is defined by a high consumption of 
plant-based foods, whole grain products, vegetables, fruits, 
nuts, and legumes along with a regular intake of fish and 
seafood, while eggs and red/processed meats are limited. 
Alcohol consumption is moderate, with a preference for red 
wine, and olive oil serves as a predominant form of fat.143

The supposed protective effects of the MedD are not due 
to any single dietary component but rather the cumulative 
pattern. Higher fruit and vegetable consumption affects 
inflammation, redox reactions, and various metabolic pro-
cesses that may exert anti-cancer effects and promote healthy 
weight management.144 Whole grains contain phytic acids 
and fiber that bind and neutralize carcinogens in the GI 
tract.145 Olive oil contains polyphenols, which contribute 
anti-inflammatory and anti-oxidant effects.146 The role of 
dairy products is uncertain and may increase risk of prostate 

cancer,147 but calcium and protein in dairy may also illicit 
anti-neoplastic effects.148 The MedD reduces intake of red 
meats, which are pro-inflammatory and pro-oxidative.149 
The benefits of alcohol are controversial since the evidence 
with moderate consumption and cancer risk is mixed.150,151 
Evidently, the MedD is a complex diet with numerous com-
ponents that may exert individual effects on cancer protec-
tion and cancer risk.

Overall, there was an observed inverse association 
between adherence to MedD and cancer mortality. The 
strongest results were seen in colorectal cancer,143 with 
smaller associations seen in cancers of the breast, gastric, 
liver, gallbladder, head and neck, and prostate.143,152 While 
results are promising, exact interpretation is difficult since 
there is no clear-cut definition of an MedD since it varies 
from region to region based on ethnic, cultural, religious, 
and economic factors. Again, this is because the MedD is not 
a discrete regimen, but rather a collection of food practices 
seen in populations that border the Mediterranean Sea.153 As 
such, future studies might focus on identifying a more ana-
lytically illuminating definition of the MedD that may help 
delineate its putative beneficial effects.

Japanese diet

Individuals from Japan have a lower incidence of various 
cancers, especially those termed fat-related cancers of the 
colon, breast, prostate, and ovary.154 Inhabitants of Okinawa, 
who historically consume significantly fewer calories than 
those living on the main islands, have lower death rates from 
cancer and other chronic conditions compared with Japanese 

Table 2.  Comparison of dietary interventions.

Dietary intervention Benefits Limitations

Western diet None Low nutritional density
Associated with prostate, 
breast, and colorectal cancer
Associated with chronic diseases

Caloric Restriction Reduction in oxidative stress, inflammation, and 
growth factors (i.e. IGF-1 and Ras/MAPK)
Improved insulin sensitivity and glucose tolerance
Decreased leptin levels
Promotes autophagy
Decreased angiogenesis

Excessive weight loss
Risk of cachexia
Risk of malnutrition

Intermittent fasting Associated with improved chemotherapy-associated 
side effects
Improved insulin sensitivity and glucose tolerance
Decreased growth factors (i.e. IGF-1 and Ras/MAPK)
Decrease anabolic metabolism (termed differential 
stress resistance)
Increased AMPK

Excessive weight loss
Risk of cachexia
Risk of malnutrition

Ketogenic diet Increased ketosis
Decreased inflammation and growth factors (i.e. IGF-1)
Inhibition of tumorigenesis
Utilization of Warburg effect
Selective increased oxidative stress in cancer cells

Weight loss
Hypoglycemia, nausea, vomiting, 
and lethargy
Increase in serum cholesterol
Progressive bone loss

IGF-1: insulin-like growth factor-1; MAPK: mitogen-activated protein kinase; AMPK: 5’ adenosine monophosphate–activated protein kinase.
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living in the main lands.155 For Japanese individuals who 
moved from Japan to Hawaii, the incidence of stomach can-
cer decreased while the rates of breast, colon, and prostate 
cancer increased in just one generation.156 In the last 40 years, 
the incidence of colon cancer has increased 9.4 times for 
males and 4.7 times for females as Japanese have adopted a 
more Western dietary pattern.157

The lower incidence of malignancies is thought to stem 
from the makeup of the traditional Japanese diet, which is 
characterized by a low intake of fats and oils, along with a 
low intake ratio of n-6 polyunsaturated fatty acids (PUFAs) 
versus n-3 PUFAs.154 In addition, other components of the 
Japanese diet, such as higher intake of vegetables and dietary 
fiber, may contribute to the lower cancer rates.158 Of interest 
is miso soup, which contains wakame, a vegetable rich in 
fucoxanthin that may have protective effects against gastric 
cancer.159 Japanese individuals also demonstrate a higher 
intake of green tea, which is rich in flavonoids and may have 
anti-oxidant effects.160 Soy products contain isoflavones and 
saponins that may have similar beneficial effects.161 Together, 
these individual components of the Japanese diet are hypoth-
esized to establish the protective roles of this dietary regimen 
in cancer risk.

A precise characterization of a Japanese diet is difficult to 
achieve, and just why it is associated with lower incidence of 
malignancies has been puzzling. Regardless, further studies 
are warranted to elucidate possible mechanisms behind its 
apparent protective effects.

Vegan diet

A vegetarian diet removes any meat, poultry, and fish from 
one’s diet. A vegan diet further removes all animal products, 
including dairy or eggs.162 Overall, vegan diets are high in 
fiber, magnesium, folic acid, iron, and vitamin C and E, and 
low in overall calories, saturated fats, zinc, calcium, vitamin 
D, and vitamin B12.163 The vegan diet has been associated 
with a wide variety of health benefits, including lower risk of 
cardiovascular disease, obesity, and type II diabetes.164 Of 
special interest in this review is the lower risk of cancer in 
patients who follow a vegan diet.

There are several proposed mechanisms for the protective 
anti-neoplastic effects of a plant-based diet. The body mass 
index (BMI) of individuals who follow a vegan diet is much 
lower;163 thus, the risk of obesity-related cancers, such as 
colorectal, breast, and prostate cancers, is decreased. In addi-
tion, vegan diets consist of a higher proportion of fruits and 
vegetables, which contain phytochemicals and anti-oxidants, 
in addition to fiber, flavonoids, and vitamin C, which are all 
proposed to have protective effects against the development 
of malignancy.165–167 Of important consideration is the 
increased intake of phytochemicals, which are abundant in 
plants, and the decreased intake of red/processed meats. In 
animal models and in vitro studies, phytochemicals have 
been shown to induce apoptosis, arrest cell growth, and 
decrease angiogenic potential, though beneficial effects have 

not been shown to be consistent across studies.168,169 Red 
meat has been strongly associated with the development of 
colorectal cancer,170 in addition to malignancies of the esoph-
agus, liver, and lung.149 Another characteristic of a vegan diet 
includes high consumption of legumes, which may decrease 
risk of prostate cancer.171 A differentiating factor between the 
vegetarian diet and vegan diet is the absence of eggs in the 
latter, which have been associated with an increased risk of 
pancreatic cancer.172 Evidently, the cumulative effects of the 
vegan diet, due to food items that are consumed in abundance 
and food items that are avoided, contribute to the potentially 
anti-cancer properties of this dietary regimen.

Overall, following a vegan diet appears to provide a vari-
ety of health benefits. Although the literature is deficient in 
clinical trials that assess the relationship between plant-
based diets and cancers, data thus far suggest that vegan and 
vegetarian diets are nonetheless protective against cancer, 
with a net 10%–12% reduction in overall cancer risk.173 As 
such, further research is warranted to explore the utility of a 
vegan diet as a lifestyle modification for cancer prevention.

Conclusion

Expert nutrition groups have issued clinical guidelines for nutri-
tional treatment of cancer patients. These guidelines state that 
patients should undergo nutrition screening and assessment and 
receive early nutrition intervention to improve outcomes. 
However, it appears that there has been an absence of innova-
tive or clinically meaningful techniques. So, where are we 
really? With unprecedented sophistication in molecular biology, 
investigational oncology, and computational power, clinical 
medicine in general and oncologic nutrition in particular have 
failed to achieve meaningful progress for patients. A casual sur-
vey indicates virtually every major “comprehensive cancer 
center” has a page on cancer nutrition support. The American 
Cancer Society’s “Nutrition for People with Cancer” website 
page declares, “Nutrition is an important part of cancer treat-
ment. Eating the right kinds of foods during and after treatment 
can help you feel better and stay stronger.” While the internet 
material is, of course, intended for patients, its quixotic but 
superficial character speaks volumes. Upon review of the web-
site information and firsthand assessment of clinical reality, it 
may be reasonably concluded that there is a strong conventional 
wisdom that the pathology of cancers can result in malnutrition, 
that cancer treatments often result in malnutrition, and that 
chronic undernutrition and overnutrition can have an impact on 
either accelerating or reducing cancer risk or tumor burden 
(Table 2).
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