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Northern Eurasia Future Initiative (NEFI):
facing the challenges and pathways of
global change in the twenty-first century
Pavel Groisman1,9,30* , Herman Shugart2, David Kicklighter3, Geoffrey Henebry4, Nadezhda Tchebakova5,
Shamil Maksyutov6, Erwan Monier7, Garik Gutman8, Sergey Gulev9, Jiaguo Qi10,19, Alexander Prishchepov11,31,
Elena Kukavskaya5, Boris Porfiriev12, Alexander Shiklomanov13, Tatiana Loboda14, Nikolay Shiklomanov15,
Son Nghiem16, Kathleen Bergen17, Jana Albrechtová18, Jiquan Chen10,19, Maria Shahgedanova20,
Anatoly Shvidenko21, Nina Speranskaya22, Amber Soja23, Kirsten de Beurs24, Olga Bulygina25, Jessica McCarty26,27,
Qianlai Zhuang28 and Olga Zolina29

Abstract

During the past several decades, the Earth system has changed significantly, especially across Northern
Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in
a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future
Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing
environmental change, to inform societies and, thus, to better prepare societies for future developments. A
key principle of NEFI is that these developments must now be secured through science-based strategies co-
designed with regional decision-makers to lead their societies to prosperity in the face of environmental and
institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to
support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge.
It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI
science questions. To address these questions, nine research foci are identified and their selections are briefly
justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and
inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in
the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental
change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between
the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere
essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale
water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for
future human activities. Therefore, we propose that integrated assessment models are needed as the final
stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation
(Continued on next page)
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of economic decisions in response to changing environmental conditions and justification of mitigation and
adaptation efforts.

Keywords: Environmental changes, Northern Eurasia, Ecosystems dynamics, Terrestrial water cycle, Cryosphere
retreat, Extreme and inclement environmental conditions, Sustainable development, Land cover and land use
change, Integrated assessment models for decision-makers

Introduction
Northern Eurasia Future Initiative (NEFI) was con-
ceived at the Workshop “Ten years of Northern Eurasia
Earth Science Partnership Initiative (NEESPI): Synthesis
and Future Plans” hosted by Charles University in
Prague, Czech Republic (April 9–12, 2015). That event
was attended by more than 70 participants from Japan,
China, Russia, Ukraine, Kyrgyzstan, Kazakhstan, the
European Union, and the USA. The workshop included
an overview, synthesis presentations, and scientific vi-
sions for NEESPI in its transition to NEFI. These re-
sults (http://neespi.org/web-content/PragueWorkshop
SynthesisBriefing.pdf ) were delivered at a dedicated
open public Splinter Meeting at the European Geophys-
ical Union Assembly in Vienna, Austria (16 April
2015). On 20 May 2016, a NEFI White Paper was re-
leased for public consideration on the NEESPI website
and 4 months later, after accounting for numerous
comments and recommendations, it was finalized and
posted at http://nefi-neespi.org/. The current paper
presents the consensus of the future NEFI vision to ad-
dress the challenges facing the region and to develop
pathways to mitigate future problematic changes.
During the past 12 years, NEESPI has been quite suc-

cessful at conducting and advancing research within its
large geographical domain of Northern Eurasia (Fig. 1;
Groisman and Bartalev 2007). The NEFI research do-
main is the same. The NEESPI program accommodated
172 projects focused on different environmental issues
in Northern Eurasia. More than 1500 peer-reviewed
journal papers and 40 books were published during the
past decade (http://nefi-neespi.org/science/publicati
ons.html; Groisman et al. 2009, 2014; Groisman and Soja
2009). Several overview books further synthesized find-
ings (Gutman and Reissell 2011; Groisman and Lyalko
2012; Groisman and Gutman 2013; Chen et al. 2013;
Gutman and Radeloff 2016). While the initial duration
of the NEESPI research program was estimated to be
10-12 years, its momentum has exceeded original expec-
tations. In addition to accumulating knowledge and pub-
lishing scientific journal papers and books, NEESPI
scientists developed new observations, datasets, data
networks, tools, and models. As a result, a new research
realm emerged for studies in Northern Eurasia, and we
are now poised to apply these results to directly support

decision-making for various coupled environmental-
societal needs.
The past accomplishments are not the only driver for

the proposed NEFI initiative. Just as, or perhaps even
more importantly, NEFI will address two significant and
intertwined changes that have emerged. These are (1)
continued and exacerbated change in the global Earth
and climate system, and (2) societal change and stress
with a heightened need for mitigation and adaptation
approaches. With respect to the first, the global Earth
system has significantly changed, with the changes in
Northern Eurasia being substantially larger than the glo-
bal average (cf., Figs. 2 and 3). Subsequently, one NEFI
endeavor is to analyze this new state with its unexpected
novel features and distributions. These novel characteris-
tics include shifts of the seasonal cycle for various cli-
matic functions to changes in intensity, frequency, and
spatial patterns and temporal trends of extreme events.
These changes have already occurred, but their impacts
on (and feedbacks to) atmospheric, biospheric, cryo-
spheric, hydrologic, oceanic, and macro-socioeconomic
processes are ongoing.
The second significant change that NEFI will need to

address concerns the socio-economic dynamics in the
major nations of Northern Eurasia. These dynamics have
also dramatically changed, including the ability of societies
to withstand and adapt to the adverse manifestations of
the above-described environmental changes. Fundamental
to addressing this is the sound scientific understanding
and quantification of the amount of Earth system change
that societies are currently experiencing and may experi-
ence by the end of the twenty-first century. However, in
addition to understanding the scientific basis, communi-
ties (and even nations) have increasingly begun to inquire
about what mitigation and/or adaptation strategies are
possible for the upcoming decades. These types of ques-
tions need to be addressed differently, because societal
decision-making impacts the environment, which feeds
back to influence future societal decision-making. The
major anthropogenic causes of global change remain on-
going. Thus, the Earth science community and society in
general will need to be informed and prepared to assure a
sustainable future.
The results of scientific research, data, and models accu-

mulated during the past decade will allow us to build upon
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Fig. 1 The NEESPI study area is loosely defined as the region between 15° E in the west, the Pacific Coast in the east, 40° N in the south, and the Arctic
Ocean coastal zone in the north. On this map, green corresponds to vegetated lands. Light brown and yellow indicate sparse vegetation and arid areas,
respectively (Groisman et al. 2009). Major cities within the NEESPI domain and their names are shown by red dots and text in white inserts, respectively.
During the NEESPI studies, we expand the study domain occasionally to address the ecosystem in its entirety beyond the strict lat/long boundaries
(e.g., taiga and tundra zones in Fennoscandia or barren and semi-desert areas in China. The Dry Land Belt of Northern Eurasia is sketched on the map by a
dashed white line

Fig. 2 Global annual surface air temperature anomalies (°C) derived from the meteorological station data for the 1957–2016 period (Lugina et al. 2006,
updated). This time series is based upon the land-based surface air temperature station data with a processing algorithm developed 25 years ago by
Vinnikov et al. (1990). The reference period used for calculations of anomalies is 1951–1975. Dotted ovals in the figure show this reference period, the
new state of the global Earth system (+ 0.3° to 0.4 °C of the global temperature) with shift during the late 1970s and early 1980s, that manifested itself in
biospheric, oceanic, cryospheric, and atmospheric variables around the world (Reid et al. 2016), and the last period (since circa 2001), when impacts on the
Earth system (e.g., retreat of the cryosphere, Arctic warming, increasing dryness of interior of the continents) still need to be completely documented
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this knowledge to directly support decision-making activ-
ities that address societal needs in Northern Eurasia. Dur-
ing the last decade, substantial climatic and environmental
changes have already been quantified. While natural pro-
cesses (except the high amplitude of their variations) are
mainly the same as in other parts of the World, human fac-
tors and changes in land cover and land use in the NEFI
domain during the past decades were dramatic and unique.
Changes in the socio-economics of major nations in the re-
gion have ultimately transformed human-environment in-
teractions. This in turn has transformed regional land
cover and water resources towards conditions that endan-
ger or even overcome the resilience of natural ecosystems
(e.g., disappearing lakes and runoff diversions, deforest-
ation, degradation and abandonment of agriculture fields
and pasture; air, soil, and water pollution). These and pro-
jected changes will require expeditious direct responses on
behalf of human well-being and societal health in order to
move towards a sustainable future.
Therefore, the core motivation of NEFI is to best use

science to serve the decision-making process to maintain
Earth system health and to sustain society. In the next
two sections, we:

� Formulate three major science questions of global
concern associated with unique features of
Northern Eurasia,

� Formulate the major research foci for the next
decade that, as the NEFI Science Plan authors
believe, are of crucial importance to be addressed
expediently, and

� Examine and justify the issues related to these
research foci in more detail.

An approach to regional studies in Northern Eurasia
based on integrated assessment modeling is described
and justified in the last section of the paper. Because this
paper is an overview of a large amount of relevant find-
ings from the past decade, we also provide a comprehen-
sive list of references to those works.

Review
Three unique features of Northern Eurasia of global
concern and their related major science questions
To develop effective mitigation and adaptation strat-
egies, future NEFI activities will need to consider three
unique features of Northern Eurasia: (1) the sensitivity

Fig. 3 Seasonal temperature anomalies over Northern Eurasia (the NEESPI study domain) for the 1881–2016 period. The reference period used for
calculations of anomalies is 1951–1975. The annual anomaly for 2016 is + 2.0 °C. Linear trend estimates shown by dash lines are provided for
demonstration purposes only. Data source: archive of Lugina et al. (2006 updated)

Groisman et al. Progress in Earth and Planetary Science  (2017) 4:41 Page 4 of 48



of land surface characteristics to global change that feed-
back to influence the global energy budget; (2) potential
changes in the Dry Land Belt of Northern Eurasia (DLB)
that will have a large influence on the availability of
water for food, energy, industry, and transportation; and
(3) evolving social institutions and economies. Below, we
look at these features in more detail and suggest that
three major science questions emerge from this
examination.

Sensitivity of land surface characteristics to global change
The Arctic, Arctic Ocean shelf, and the boreal Zone of
Eurasia are areas of substantial terrestrial carbon storage
in wetlands, soil, boreal forest, terrestrial, and sea shelf
permafrost. From these emerge powerful carbon-
cryosphere interactions and variability that intertwine
with strong climatic and environmental changes (Fig. 4).
These interactions also can generate positive feedback to
Earth system changes via both biogeochemical (atmos-
pheric composition, water quality, plant, and microbial
metabolism) and biogeophysical impacts (surface albedo,
fresh water budget, and thermohaline circulation of the
World Ocean). These intertwined linkages and feedbacks
may increase the rate of global (or near-global) change
and/or increase uncertainties about that change. In turn,
this places the wellbeing of societies at risk if planned
mitigation and adaptation measures are not imple-
mented in a sound and timely fashion.
Thus, in future studies within Northern Eurasia, spe-

cial attention should be paid to the changes on the vola-
tile boundaries of the Arctic, boreal, and dry zones. The
highly variable components of the cryosphere (seasonal
snow cover) which are vitally controlled by components
that have been systematically changing (e.g., glaciers and
permafrost) should be recognized. The rates of change
due to catastrophic forest fires (Conard et al. 2002;
Goldammer 2013), dust storms (Goudie and Middleton
1992; Sokolik 2013), and controversial future methane
release from frozen ground in high latitudinal land and
shelf areas (Kirschke et al. 2013; Shakhova et al. 2013,
2015; Zhu et al. 2013; Ruppel and Kessler 2017) must be
accounted for or ameliorated.
Based on the above, the first Major Science Question

is “How can we quantify and project ecosystem dynam-
ics in Northern Eurasia that influence the global energy
budget when these dynamics are internally unstable (e.g.,
operate within narrow temperature ranges), are interre-
lated and have the potential to impact the global Earth
system with unprecedented rates of change?”

Water availability and the dry land belt of Northern Eurasia
The interior of the Earth’s largest continent is mostly cut
off from water vapor transport from the tropics by
mountain ridges and plateaus spread across the central

regions of Asia, thus creating the Dry Land Belt of
Northern Eurasia (DLB; Fig. 1). The DLB is the largest
dry area in the extratropics and may be expanding
northward (Shuman et al. 2015; Fig. 4) as it has done in
past millennia (Chen et al. 2008, 2010; Kozharinov and
Borisov 2013). Parts of the DLB are quite densely popu-
lated (e.g., Northern China, Central Asia) and have
fertile land. For example, the Pannonian Lowland and
the black soils in Ukraine and European Russia provide
substantial grain export to the global market.
However, the DLB has strong physical limitations in

the production of crops. It has a very limited fresh water
supply, which is highly dependent upon irregular extra-
tropical cyclones (mostly from the North Atlantic) and a
shrinking regional cryosphere. Increases in evapotrans-
piration arising from increases in warm season tempera-
tures and expansions of the growing season in the DLB
are generally not compensated by precipitation increase.
Further, changes in the spatio-temporal shifts in
precipitation pattern increase the probability of various
unusual or extreme events affecting the livelihoods of re-
gional societies and their interactions with the global
economy (e.g., Henebry et al. 2013; Chen et al. 2015).
This region is a source of dust storms that can adversely
impact the environment, climate, and human well-being
(Darmenova et al. 2009).
Arising from these considerations, the second Major

Science Question is “What are the major drivers of the
ongoing and future changes in the water cycles within
the regions of Northern Eurasia with insufficient water
resources (i.e., DLB and its vicinity)?” In addressing this
question, future studies should examine how changes in
the water cycle will affect regional ecosystems and soci-
eties, and how these changes will feedback to the Earth
system and the global economy.

Evolving social institutions and economies
Institutional changes in Northern Eurasia that have
taken place over the past few decades have led to large
changes in the socio-economic fabric of the societies in
the region, affecting land use and the natural environ-
ment (cf., Lerman et al. 2004). One overarching chal-
lenge has been the transition from command-driven to
“transitional” and more market-driven economics in the
countries of Northern Eurasia. This phenomenon has
occurred at different rates, with differing levels of suc-
cess, and often with societal costs. This has created un-
expected economic and environmental problems but
also opportunities (Bergen et al. 2013; Gutman and
Radeloff 2016). Environmental changes and their related
problems include massive agricultural land abandon-
ment (Alcantara et al. 2013; Griffiths et al. 2013; Wright
et al. 2012), inefficient and illegal forest logging
(Kuemmerle et al. 2009; Knorn et al. 2012; Newell and
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Simeone 2014), degradation of cultivated and pasture
lands (Ioffe et al. 2012; Chen et al. 2015, 2015), growing
water deficits and drought (especially in the DLB and

new independent states), and the spread of human-
induced fires (Soja et al. 2007; McCarty et al. 2017).
Many of these outcomes have become important

Fig. 4 Vegetation distribution under present climate conditions and equilibrium vegetation distribution under future climate conditions (scenarios)
over Northern Eurasia in current climate and by the year 2090 as calculated by the RuBCliM ecosystem model (developed by modifying the SibCliM
ecosystem models, Tchebakova et al. 2009, 2010, 2016) using an ensemble of Canadian (CGCM3.1), UK (HadCM3), and French (IPCLCM4) GCM outputs
for the B1 and A2 scenarios for the IPCC Fourth Assessment Report (Core Writing Team 2007), where greenhouse gases induced global warming of
3–5 °C and 6–8 °C, respectively, by 2090 (Tchebakova et al. 2016)
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concerns with policy implications at the national and
intergovernmental levels. Opportunities emerge mostly
with advances of warmer climate conditions northward
(agriculture benefits at high latitudes, better transporta-
tion conditions in the Arctic Seas; Tchebakova et al.
2011). Other opportunities are institutional, such as co-
operation between nations and non-profit organizations
in attempting to implement forestry certification.
Furthermore, the countries of Northern Eurasia with

these “transitional” economies are playing an increas-
ingly important role in the world economic system.
Thus, they face further challenges in highly competitive
economic conditions under the additional stresses of
climatic, environmental, and internal societal change.
For countries and/or regions with resource-rich lands
and low population (e.g., Russia, Kazakhstan, Mongolia,
and Turkmenistan), their development continues to de-
pend on natural resources inclusive especially of timber,
oil/gas, mining, fisheries, agriculture, and hydropower
(Bergen et al. 2013). Other countries (e.g., China and
Japan) with very large populations and strained or lim-
ited resources (such as available domestic timber in
China or Japan) may be strong consumers of natural re-
sources from elsewhere in Northern Eurasia (Newell and
Simeone 2014).
Considering the triad “climate – environmental –

socio-economic impacts,” past NEESPI investigations
sufficiently embraced regional climate diagnostics and,
to a somewhat lesser extent, diagnostics of environmen-
tal and ecosystem characteristics. However, the socio-
economic impacts of variability and/or systematic
changes in climate and environmental variables are still
poorly defined. This makes it difficult to effectively plan
for the future or to accurately interpret prospective ac-
tions based on existing model experiments. These
model-based projections of climate and environmental
changes still have to be attributed to and associated with
the mid-term and long-term strategies for the develop-
ment of different sectors of the economy including agri-
culture and grazing, forestry, fisheries, mining, energy,
and on-shore and off-shore infrastructure development.
This will be an important NEFI endeavor.
The third Major Science Question is “How can the

sustainable development of societies of Northern
Eurasia be secured in the near future (the next few de-
cades)? In addressing this question, future studies
should examine how societies can overcome the “tran-
sitional” nature of their economic, environmental, and
climatic change challenges, and resolve counterpro-
ductive institutional legacies.

Major research foci: why do they matter?
During the preparation and review of the NEFI Science
Plan, the directions of future research over Northern

Eurasia have been analyzed in light of the new informa-
tion gained from past NEESPI activities, the apparent
need to advance further in these directions addressing
the latest dynamics of environmental and socio-
economic changes, and the unique features of Northern
Eurasia that are of global concern. Nine major research
foci have been identified as NEFI priorities (listed in no
specific order):

1. Influence of global change, with a focus on warming
in the Arctic;

2. Increasing frequency and intensity of extremes
(e.g., intense rains, floods, droughts, wildfires) and
changes in the spatial and temporal distributions of
inclement weather conditions (e.g., heavy wet
snowfalls, freezing rains, untimely thaws, and peak
streamflow);

3. Retreat of the cryosphere (snow cover, sea ice,
glaciers, and permafrost);

4. Changes in the terrestrial water cycle (quantity and
quality of water supply available for societal needs);

5. Changes in the biosphere (e.g., ecosystem shifts,
changes in the carbon cycle, phenology, land-cover
degradation and dust storms);

6. Pressures on agriculture and pastoral production
(growing supply and demand, changes in land use,
water available for irrigation, and food-energy-water
security);

7. Changes in infrastructure (roads, new routes,
construction codes, pipelines, risks with permafrost
thawing, air, water, and soil pollution);

8. Societal adaptations and actions to mitigate the
negative consequences of environmental changes
and benefit from the positive consequences; and

9. Quantification of the role of Northern Eurasia in the
global Earth and socioeconomic systems to advance
research tools with an emphasis on observations and
models.

Socio-economic research challenges are the top prior-
ity for several of these foci. These challenges have not
been overlooked in the past but have not been addressed
satisfactorily in the NEESPI domain, nor indeed globally.
The introduction of the Future Earth research objectives
is a response to this gap (http://www.futureearth.org/).
There is an urgent need to incorporate socio-economic
studies into regional programs by linking the findings of
diagnostic and model-based climate and environmental
analyses with the requirements for the regional infra-
structure, which arise from the detailed treatment of
socio-economic conditions.
We are establishing this strategy as the foundation for

the Northern Eurasia Future Initiative (NEFI) and expect
that it will bridge climate and environmental studies
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with the economic consequences of the observed
changes. This will spur advances in physical sciences to
better quantify observed and projected climate and en-
vironmental changes and improve economic analyses of
impacts. This new strategy will directly benefit many
stakeholders and end-users. It will provide them with
recommendations and assessments going far beyond
those based exclusively on the analysis of climate and
environmental variables. It will also provide them with a
new suite of modeling tools and new data sets to enable
much better and smarter decision-making. Furthermore,
this strategy will provide a strong feedback on further
planning of climate and environmental studies, pointing
to the parameters, phenomena, and mechanisms which,
so far, have not been studied and quantified to a full ex-
tent. This will make it possible to revisit and compre-
hensively review the 12-year NEESPI legacy in order to
transform conventional climate and environmental met-
rics to those relevant for building more effective eco-
nomic strategies and risk assessments.
Below, we examine and justify the issues related to

the above nine major research foci in more detail,
and in the final section propose an integrated assess-
ment modeling approach that would allow NEFI to
eventually address them as best as current technology
and knowledge will support.

Research focus 1: global change and the Arctic
Global changes are ongoing and until the causes of these
changes are eliminated or mitigated, there are no expec-
tations that they will slow down (Intergovernmental
Panel on Climate Change (IPCC) 2014; Barros et al.
2014; Karl et al. 2015; see also Fig. 2). Regionally, the
temperature changes in Northern Eurasia have been
among the largest (Blunden and Arndt 2015, 2016).
Additionally, there are special reasons to list the changes
in the Arctic among major concerns for future environ-
mental well-being in the extratropics. This small sliver
of the globe (the zone north of 60° N occupies only 7%
of the globe surface) plays an important role in the

global climate. Its air temperature changes during the
past decade were unprecedented for the period of instru-
mental observations (Fig. 5, left) and well above the 2 °C
warming threshold set by the recent United Nations
Climate Change Conference (30 November–12 December
2015, Paris, France).
There are two major consequences of Arctic warming:

(a) changes in the Arctic sea ice and (b) changes in the
meridional gradient of air temperature. The Arctic has
become increasingly closely interlinked with the polar
atmosphere with the ongoing retreat and thinning of the
sea ice (Fig. 5, right; Renner et al. 2014). The depletion
of sea ice increases the heat and water vapor exchange
with the atmosphere, especially during the cold season
(i.e., from mid-September through early June), affecting
weather, climate, and the water cycle across the extratro-
pics and, possibly, over the entire hemisphere (Drozdov
1966; Newson 1973; Groisman et al. 2003, 2013; Arctic
Climate Impact Assessment 2005; AMAP 2011; Bulygina
et al. 2013). There are direct practical implications for
transportation, regional infrastructure development and
maintenance, and fisheries (AMAP 2011; Farré et al.
2014; Strategic Assessment of Development of the Arctic
2014; Streletskiy et al. 2015).
The Arctic is closely interlinked with the North Atlantic

Ocean. Together they control the World Ocean
thermohaline circulation, which provide most of the
cold water influx into the deep ocean. They define the
climate of the northern extratropics (especially the re-
gions adjacent to the North Atlantic) due to intense
meridional heat and mass exchange of the atmosphere
with the ocean in the Atlantic Sector of the Arctic and
the subsequent transport of air masses inside the conti-
nents. This exchange is modulated by variations of the
Arctic Oscillation, a large-scale mode of climate vari-
ability, also referred to as the Northern Hemisphere an-
nular mode (Thompson and Wallace 1998). All
together, they create strong deviations from the zonal
temperature distribution (for example, compare the
climate of Edinburgh, Scotland, UK with Churchill,
Canada, and Yakutsk, Russia) and are highly volatile.

Fig. 5 Left: annual surface air temperature anomalies (°C) area-averaged over the 60° N–90° N latitudinal zone (Lugina et al. 2006, updated). Right: September
Arctic sea ice extent, SIE, 106 km2 (US National Snow and Ice Data Center, Boulder, CO, USA website, http://nsidc.org/data; date of retrieval; 30 December
2015). For possible change in 2016, see Gannon (2016). Linear trend estimates shown by dash lines are provided for demonstration purposes only
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Relatively small deviations of the oceanic salinity and
sea ice distribution in the northernmost Atlantic may
affect the deep water formation process with adverse
global consequences for oceanic circulation
(Gulfstream) and climate of the extratropics (LeGrande
et al. 2006). The ongoing decrease of the meridional
temperature gradient in the cold season (Groisman and
Soja 2009) may weaken westerlies, causing cold winter
outbreaks in the interior of the continent, larger
meandering of the cyclone trajectories over the extra-
tropics (Francis and Vavrus 2012), and increasing prob-
ability of blocking events (Lupo et al. 1997; Semenov
2012; Mokhov et al. 2013; Schubert et al. 2014) that
can devastate regional agriculture through the combin-
ation of harsh winters and summer heatwaves (Wright
et al. 2014).

Research focus 2: frequency and intensity of extremes
There is already evidence of climate-induced change
across Northern Eurasia during the past few decades
(Soja et al. 2007; Groisman and Gutman 2013; Rimkus
et al. 2013; Shvidenko and Schepaschenko 2013;
Valendik et al. 2014) with southern regions being par-
ticularly vulnerable to climate change and fires
(Malevsky-Malevich et al. 2008). First, there has been an
increase in rainfall intensity and prolonged no-rain pe-
riods (summarized in Groisman et al. 2013; see also Zhai
et al. 2004 and Chen and Zhai 2014), which at times
may occur in the same region. Second, an increase in
extraordinary temperature anomalies has been accom-
panied by summer droughts (Barriopedro et al. 2011; Lei
2011; Lupo et al. 2012; Bastos et al. 2014; Horion et al.
2016). Third, cold outbreaks and/or thaws have
increased during winter (Arctic Climate Impact Assess-
ment 2005; Groisman et al. 2016). Fourth, an increase in
the frequency of large and severe wildfires has occurred
(Conard et al. 2002; Soja et al. 2007; Kukavskaya et al.
2013; Shvidenko and Schepaschenko 2013). Finally, in-
tense dust storms have occurred (Xi and Sokolik 2015a).
Official Russian statistics on “dangerous meteorological
phenomena” (DMP), which are events that caused sig-
nificant damage to the national economy and vital activ-
ities of the population, report that seven years of the last
decade (2006–2015) had the largest numbers of DMP
(from 385 to 467). The impacts of these events often ex-
tend far beyond Northern Eurasia, sending aftershocks
into global markets and raising concerns about global
food security (Loboda et al. 2016).
There are also changes in the spatial and temporal dis-

tribution of inclement weather conditions (e.g., heavy
wet snowfalls, freezing rains, rain on snow, untimely
thaws and peak streamflow) that, while not being ex-
tremes per se, substantially affect societal well-being and
health (e.g., freezing events, Bulygina et al. 2015;

Groisman et al. 2016) or indirectly impact the regional
water budget (e.g., the influence of winter thaws and/or
early snowmelt on the water deficit of the following
growing season, Bulygina et al. 2009, 2011; Groisman
and Soja 2009). Societal consequences of changes in the
frequency and intensity of these extreme and inclement
events have become an urgent task to address for the
entire Earth Science research community (Forbes et al.
2016). In this regard, it is not enough to report and/or
to project changes in characteristics of these events but
also to develop a suite of strategies for resilient re-
sponses to new climate conditions that are forthcoming
and/or have an increased higher probability than was
previously expected.
Extreme events that affect the biosphere and their

temporal and spatial changes represent a special focus
for NEFI studies. Wildland fire is the dominant disturb-
ance agent in the boreal forests, which are in turn the
largest global reservoir of terrestrial carbon (Pan et al.
2011; Parham et al. 2014; Gauthier et al. 2015). While
fire plays a critical role in maintaining the overall forest
well-being through regulating ecosystem functioning,
productivity, and health, extreme fire events and chan-
ging fire regimes intensify the impacts of climate change
and variability on ecosystem states and deliver a suite of
powerful feedbacks to the climate system. These events
heighten the interactions among the biosphere, atmos-
phere, and climate systems by affecting carbon balances,
hydrologic regimes, permafrost structure, modifying pat-
terns of clouds and precipitation, and radiative forcing
by changing surface and planetary albedo (Rogers et al.
2015). Wildfires, in general and particularly during ex-
treme events, also have a direct adverse impact on hu-
man health, pose a considerable threat to life and
property, and impose a substantial economic burden.
A typical feature of the current fire regime is increasing

frequency and severity of mega-fires, defined as fires that
involve high suppression costs, property losses, natural re-
source damages, and loss of life (Williams 2013). These
fires may cause the irreversible transformation of the for-
est environment for a period that exceeds the life cycle of
major forest-forming species (Sukhinin 2010; Shvidenko
et al. 2011; Fig. 6). Mega-fires of the last decade have led
up to a two-fold increase in the share of crown and peat
fires. Post-fire dieback in the area of mega-fires as a rule
exceeds 50%. A substantial part of post-fire areas may be-
come unsuitable for forest growth for hundreds of years.
For instance, such areas in the Russian Far East (RFE) are
estimated to cover tens of million hectares (Shvidenko et
al. 2013). The increasing aridity of the climate provokes
outbreaks of harmful insects that could envelope large
areas, for example, the outbreak of Siberian silk moth
(Dendrolimus superans sibiricus) which enveloped an area
of about 10 × 106 ha in 2010. Human- and climate-
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induced change in disturbance regimes is currently acting
in concert to force ecosystems to move more quickly
towards a new equilibrium with the climate (van den Werf
et al. 2010; Soja et al. 2007).
Severe fires, driven by anomalous weather conditions,

are increasingly becoming the new norm across Russia. In
the past 15 years, extreme fires have been reported across
nearly all large geographic regions, including very remote
zones (e.g., Yakutia in 2002) and densely populated regions
(European Russia in 2010). Fire weather (temperature,
precipitation, relative humidity and wind speed) in recent
decades (2003–2012) is much more dangerous than in an
earlier decade (1984–1993). In Fig. 6, at the stages from b
to i, forests might have the possibility to recover with (1)
the absence of repeated disturbances; and (2) implementa-
tion of forest management mitigation efforts with in-
creased resources for the most severe cases. However, if
the recent tendencies of fire weather continue, the survival
of the forest biome in its present boundaries is not pos-
sible (Tchebakova et al. 2009).
In 2008, smoke and related emissions from early sea-

son fires associated with agricultural/clearing in the
country of Kazakhstan, in the Transbaikal region, and

the Russian Amur Oblast (oblast is a large administrative
division in Russia) were observed in the Arctic. On
reaching the Arctic, this early season ash deposition
could result in more rapid snow and ice melting, further
altering albedo impacts on the ice sheet (Warneke et al.
2009). In 2010, the Moscow region experienced a record
drought and the hottest summer in Russian recorded
history (42 °C), which resulted in extreme fires that
burned in previously drained peatlands. This lethal com-
bination of natural and human forcings resulted in mon-
etary losses of 3.6 × 109 $US (by other estimates up to
10 × 109 $US) and the death of nearly 56,000 people
(Guha-Sapir 2010). In the spring of 2015, anomalous
weather caused extensive and severe fires in Siberia that
destroyed 1200 houses in 42 settlements and resulted in
36 deaths and hundreds of injuries in the Republic of
Khakassia (Valendik et al. 2015). Similarly, fires in the
Transbaikal region resulted in the loss of more than 240
houses in 18 settlements, the death of 11 people, and
more than 30 people injured (Kukavskaya et al. 2016).
Wildfires are uncommon in Eastern Europe and

European Russia (Krylov et al. 2014), but anthropogenic
fires in agricultural areas, including croplands and

a

b

c

e

i

d

ji

f

g

Fig. 6 Examples of fire-induced forest transformations in the light-coniferous (Scots pine and larch) forests of southern Siberia when logging
and plantation are done. a Unburned forest. b Forest burned by low-severity fire with high trees survival. c Forest burned by high-severity fire
with high tree mortality. d Repeatedly burned forest with all trees killed and almost all organic layer consumed. e Logging after post-fire tree
mortality. f Repeatedly burned and logged forest site, with little to no tree regeneration, dominated by tall grasses. g Plantation of Scots pine
on a repeatedly disturbed site with no natural regeneration. i Burned plantation. j The “question” mark indicates sites where management
activities may alter these disturbance trajectories in unknown ways (Kukavskaya et al. 2016)
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pastures, are widespread (Soja et al. 2004; Dubinin et al.
2011; McCarty et al. 2017; Derevyagin 1987). Romanenkov
et al. (2014) noted that a peak of satellite fire detections
occurs in cropland areas in Russia, Baltic countries,
Belarus, Ukraine, and Kazakhstan directly after the snow
melt in the spring (indicating field preparation) and after
agricultural harvests in the fall. Agricultural burning is a
source of short-lived climate pollutants like black carbon
(McCarty et al. 2012) and methane (McCarty et al. 2017).
However, prescribed fire in forests, grasslands, or crop-
lands is either illegal or not reported by national agencies
in Lithuania, Belarus, or Russia (Narayan et al. 2007).
Efforts to organize reliable monitoring of such fires from
space are warranted.

Research focus 3: retreat of the cryosphere
The cryosphere in the montane regions of Northern
Eurasia is represented by three components: (i) seasonal
and perennial snow pack; (ii) glaciers; and (iii) permafrost.
The cryosphere retreat has a continent-wide spatial scale
with temporal scales that vary from the century to millen-
nia for glaciers and permafrost, to seasonal for snow cover
extent (Shahgedanova et al. 2010, 2012, 2014; Aizen et al.
2007; Bulygina et al. 2011; Gutman and Reissell 2011; Sorg
et al. 2012; Chen et al. 2013; Groisman and Gutman 2013;
Nosenko et al. 2013; Khromova et al. 2014; Blunden and
Arndt 2015; Farinotti et al. 2015; Syromyatina et al. 2014,
2015; Fausto et al. 2016).
This retreat affects (a) continental energy balance

changes due to decreases in surface albedo, increases in
heat flux into the upper surface layers, and earlier spring
onsets and longer growing seasons; (b) the depletion of
the continental water storage accumulated during the
past millennia in ground ice with the subsequent desic-
cation of lands that rely upon water supply from glacial
melt and permafrost thaw; and (c) large-scale biosphere
changes (Fig. 4) especially prominent in regions where
the cryosphere is intrinsically linked with the survival/
dominance of major species within biomes (e.g., larch
forest over the permafrost areas in northern Asia).

The most prominent snow cover changes are observed
in the late spring (Fig. 7a) while the total duration of
seasonal snow on the ground is decreasing, there are
days/periods, when snow maximum water equivalent
and maximum snow depth have been increased over
most of Russia (Bulygina et al. 2009, 2011, updated).
Note that the strong systematic increase in spring tem-
peratures in Northern Eurasia (Fig. 3) was apparently
enhanced by positive snow cover feedback.
Changes in the extent and mass balance of glaciers are

important primarily because of their impact on water re-
sources. Yet, while there is extensive information about
glacier area change, less is known about changes in gla-
cier volume and mass, either observed or projected.
Within the domain of Northern Eurasia, assessments of
changes of glacier mass on a regional scale are available
for the Tien-Shan mountain system using Landsat and
Corona satellite imagery which provided data on volume
change (e.g., Pieczonka and Bolch 2015) and Gravity
Recovery Satellite Experiment (GRACE) data (e.g.,
Farinotti et al. 2015). The latter provides data on changes
in ice mass and is therefore directly relevant to the assess-
ment of water resources. Yet for regions other than the
Tien-Shan, the uncertainty of measurements using
GRACE remains very high and often exceed the measured
signal (Jacob et al. 2012). In other regions, changes in the
mass and volume of ice are characterized using traditional
glaciological surveyors’ pole measurements of mass
balance at the benchmark glaciers (World Glacier
Monitoring Service 2015). Geodetic mass balance for
smaller areas is based on using in situ geodetic measure-
ments, aerial photography and high-resolution satellite
imagery (e.g., Shahgedanova et al. 2012), and ground-
penetrating radar (GPR) measurements performed both in
situ and from the air (e.g., Kutuzov et al. 2015). This last
method appears to be promising, particularly in combin-
ation with ice thickness modeling, e.g., the recently devel-
oped glacier base topography model, 2nd version
(GLABTOP2; Linsbauer et al. 2012).
Within Northern Eurasia, the contemporary glaciation

reaches its maximum extent in the mountains of Central

a b c

d

Fig. 7 Manifestations of the cryosphere retreat. a Spring snow cover extent anomalies over Eurasia (Blunden and Arndt 2016). b Number of
newly emerging thermokarst lakes in West Siberia during the 1973–2013 period (Polishchuk et al. 2015). c-d Altai Mountains on the boundary of
Russia, China, and Mongolia; Kozlov glacier in 1906 and 2013, respectively (Syromyatina et al. 2015)
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Asia. In the Tien-Shan alone, according to different esti-
mates, glaciers occupy between 15,400 and 16,400 km2

(Sorg et al. 2012). The Altai Sayan Mountains and the
Caucasus Mountains are other important centers of con-
temporary montane glaciation with a combined glacier
area of approximately 1550 km2 (Aizen 2011) and
1350 km2 (Shahgedanova et al. 2014), respectively.
Smaller centers of contemporary glaciation occur in the
Polar Urals, mountains of eastern Siberia (e.g., Kodar,
Chersky, and Suntar-Kayata), and Kamchatka
(Khromova et al. 2014). Across all these regions, with
the exception of the coastal glaciers of Kamchatka
(Khromova et al. 2014), glaciers are retreating although
regional variations in retreat rates are observed both be-
tween and within the mountainous systems (Kutuzov
and Shahgedanova 2009; Narama et al. 2010; Sorg et al.
2012; Shahgedanova et al. 2010). When observations
allow, the retreat of glaciers can be documented at the
century scale (cf., Fig. 7c, d). In the first decade of the
twenty-first century, the retreat rates increased to
1% year−1, e.g., across most of Tien-Shan and Djungarskiy
Alatau (Severskiy et al. 2016; Sorg et al. 2012; Farinotti et
al. 2015; Pieczonka and Bolch 2015). In addition to gla-
ciers, the ongoing climate warming has already affected
the ground ice of these mountain ecosystems (Jin et al.
2000, 2007; Marchenko et al. 2007; Wu et al. 2013).
Across the Caucasus, the glaciered area has been

shrinking at a slower rate of 0.4–0.5% year−1 (Shahgeda-
nova et al. 2014). Changes in the extent of glaciers of
northeastern Siberia and the Urals are often more diffi-
cult to quantify because of the small size and cloudy
summer weather which make it difficult to obtain suit-
able satellite imagery. However, analysis of glacier
change in the Kodar Mountains shows both a strong loss
of glacier area, as high as 0.9% year−1 between the 1960s
and 2010 (Stokes et al. 2013), and a strong loss of glacier
volume and negative mass balance (Shahgedanova et al.
2011). Glaciers of the Polar Urals have lost nearly half of

their area since the 1950s and exhibited negative mass
balance (Shahgedanova et al. 2012).
It is difficult to believe that the temperature increases

over montane areas of Central Asia and Caucasus will
not affect the extent of the regional cryosphere unless
there is a concurrent two-digit percentage increase in re-
gional precipitation. Analyses of cyclonic activity over
Central Asia do not show sizeable changes in the total
cyclone numbers, and there are some increases in their
variability. Furthermore, the number of deep cyclones,
which are already rare here, has decreased in the last
decade (Fig. 8). Thus, the countries comprising this re-
gion should be prepared to confront potential problems
with water availability for montane agricultural fields
and pastures.
Permafrost and associated periglacial landforms can

store large quantities of fresh water in the form of ice
(30–70% by volume, Bolch and Marchenko 2009) to buf-
fer the loss of glacial mass. The impact of a declining
cryosphere on water resources varies among the regions.
While the impact is predicted to be moderate in the
northern Caucasus, which receives ample precipitation
(Lambrecht et al. 2011), it is likely to be stronger in arid
regions such as southern Caucasus and Central Asia. In
particular, the mountains and plateaus of Central Asia
have been in the spotlight of cryosphere research be-
cause they are a major regional source of fresh water for
surface runoff, groundwater recharge, hydropower
plants, community water supply, agriculture, urban in-
dustry, and wildlife habitat. Central Asia is categorized
as a water-stressed area where projected climate change
could further decrease streamflow and groundwater re-
charge (Core Writing Team 2007).
It is anticipated that under the current climate warm-

ing trend, the recession of glaciers in Central Asia will
accelerate, leading to a temporary increase of runoff dur-
ing the dry season. The studies of the observed and pro-
jected changes in discharge suggest that the peak flow

Fig. 8 Annual number of deep cyclones with sea surface atmospheric pressure in its center less than 980 hPa entering sector [45° N–50° N 60° E–90°
E] that encompasses Central Asia according to ERA-interim reanalysis (Archive of Tilinina et al. 2013, updated)
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might have already been reached and will continue for the
next decade (Hagg et al. 2006, 2013; Shahgedanova et al.
2016). However, on longer time-scales (> 50 years), the
crucial dry season glacier runoff will be substantially re-
duced, as glaciers will lose most or all of their ice storage.
In the same period, the melt of ground ice (initially
trapped and accumulated in the permafrost) could be-
come an increasingly important source of freshwater in
the region. Currently few projections of future climate
using regional climate modeling exist for Central Asia
(Mannig et al. 2013; Shahgedanova et al. 2016). While all
existing simulations project an increase in air temperature
for the region, there is substantial disagreement among
the models on the future trends in precipitation.
In the last 30–40 years, observations have indicated a

warming of permafrost in many northern regions with a
resulting degradation of ice- and carbon-rich permafrost.
Increases of permafrost temperatures observed in
Northern Eurasia and North America have resulted in
the thawing of permafrost in natural, undisturbed condi-
tions in areas close to the southern boundary of the
permafrost zone (Romanovsky et al. 2010, 2017). Most
of the permafrost observatories in Northern Eurasia
show its substantial warming since the 1980s. The mag-
nitude of warming has varied with location, but was typ-
ically from 0.5 to 3 °C. In the regions where permafrost
surface is already “warm” (i.e., where its temperature is
close to the freezing point: Arctic shelf seas, riverbeds,
edges of the present permafrost boundaries), such warm-
ing causes multiple changes in the terrestrial hydro-
logical cycle, land cover, and man-made infrastructure
(Pokrovsky et al. 2012; Shvidenko et al. 2013; Shiklomanov
et al. 2017). The close proximity of the exceptionally ice-
rich soil horizons to the ground surface, which is typical
for the arctic tundra biome, makes tundra surfaces ex-
tremely sensitive to the natural and human-made changes
that resulted in the development of processes such as
thermokarst, thermal erosion, and retrogressive thaw
slumps that strongly affect the stability of ecosystems and
infrastructure (see “Research focus 7: changes in infra-
structure”). Figure 7b shows the number of newly
emerging thermokarst lakes in West Siberia which in-
dicate the rate of degradation there of the upper layer
of the permafrost. A main aim of the future NEFI ef-
forts related to permafrost is to evaluate its vulner-
ability under climate warming across the permafrost
regions of the northern and high-elevation Eurasia
with respect to ecosystems stability, infrastructure,
and socioeconomic impact. A second aim is to esti-
mate the volume of newly thawed soils, which could
be a potential source or sink of an additional amount
of carbon in the Earth system.
During the NEESPI studies of the past decade, the

cryosphere retreat and its major manifestations were

documented (Fig. 7) and it was shown that this
process plays a critical role in environmental changes
across Northern Eurasia.

Research focus 4: changes in the terrestrial water cycle
The mountains of Northern Eurasia cut its landmass off
from the major sources of water supply from the tropics.
Even in the regions of “sufficient” moisture, this suffi-
ciency is secured not by an abundance of water, but rather
by suppressed evapotranspiration during the lengthy cold
season, soil insulation from the atmosphere by seasonal
snow cover, and by external water supply from cryospheric
storage. The rest of the water is provided through unstable
atmospheric circulation (e.g., cyclones). Changes caused
by global warming can decrease and/or redistribute water
supplies from the cryosphere, increase the vegetation
period, and affect the water vapor transport from the
oceans into the continental interiors where both absolute
changes and variation in the water vapor transport are of
great consequence. Both natural ecosystems and human
activities rely upon the stability of the water supply.
Looming changes include (a) depletion of relatively stable
water sources (cryosphere; Khromova et al. 2014), (b) an
already unstable water source (atmospheric circulation)
becoming even more variable (Schubert et al. 2014), and
(c) a longer and warmer period for vegetation growth
(“greening”) increasing the biospheric water demand (Park
et al. 2016). Given these, it becomes clear that changes in
the terrestrial water cycle across Northern Eurasia can ad-
versely affect the well-being of local societies as well as the
world economy.
There is ample evidence of changes in the terrestrial

water cycle across Northern Eurasia (AMAP 2011;
Barros et al. 2014; Fig. 9), including reduced snow cover
(Brown and Robinson 2011; Callaghan et al. 2011a;
AMAP 2011, 2017), intensifying spring melt (Bulygina et
al. 2011), increasing river flow (Shiklomanov and Lam-
mers 2009, 2013; Georgiadi et al. 2011, 2014a, 2014b;
Georgiadi and Kashutina 2016; Holmes et al. 2015), dis-
appearance of lakes (Smith et al. 2005; Shiklomanov et
al. 2013) lengthened ice-free period in lakes and rivers
(Shiklomanov and Lammers 2014), degradation of
permafrost (Streletskiy et al. 2015), and melting of gla-
ciers (Velicogna and Wahr 2013; Duethmann et al.
2015) among others.
River flow is a dynamic characteristic that integrates

numerous environmental processes and aggregates their
changes over large areas. River runoff plays a significant
role in the fresh-water budget of the Arctic Ocean and
its water supply especially during low flow seasons (fall-
winter). Ocean salinity and sea ice formation are critic-
ally affected by river input (Rawlins et al. 2009). Changes
in the fresh water flux to the Arctic Ocean can exert sig-
nificant control over global ocean circulation by
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affecting the North Atlantic deep water formation with
irreversible consequences for Northern Hemisphere cli-
mate (Peterson et al. 2002; Rahmstorf 2002; Fichot et al.
2013). Eurasia contributes 74% of the total terrestrial
runoff to the Arctic Ocean. The total annual discharge

of six large Eurasian rivers increased from 1936 to 2010
by approximately 210 km3- more than the annual dis-
charge of the Yukon River (Shiklomanov and Lammers
2011), with a new historical maximum in 2007 (Fig. 10;
Shiklomanov and Lammers 2009; Holmes et al. 2015).

Fig. 9 Changes in the surface water cycle over Northern Eurasia that have been statistically significant in the twentienth century; areas with more
humid conditions (blue), with more dry conditions (red), with more agricultural droughts (circles and ovals), and with more prolonged dry
episodes (rectangles) (Groisman et al. 2009, updated). In the westernmost region of this map (Eastern Europe), blue and red rectangles overlap
indicating “simultaneous” (although in different years) increases of heavy rainfall frequency and of occurrences of prolonged no-rain periods

Fig. 10 Top panel: annual precipitation and surface air temperature in Siberia (east of the Ural Mountains, excluding Chukotka) from 18 Siberian
stations and reanalysis fields. Lower panel: total annual river discharge to the Arctic Ocean from the six largest rivers in the Eurasian Arctic for the
observational period 1936–2014 (Holmes et al. 2015) and annual minimum sea ice extent for 1979–2014 (source of the sea ice extent data: US
National Snow and Ice Data Center, Boulder, CO, USA website, http://nsidc.org/data)
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River discharge into the Arctic Ocean is a highly ef-
fective conveyor in transporting continental heat across
Eurasia (Nghiem et al. 2014) under a warming climate
with increasing temperatures (Fig. 2). Eurasian rivers
with immense watersheds, particularly the Severnaya
Dvina, Pechora, Ob, Yenisei, Lena, and Kolyma Rivers,
provide a massive flux of warm waters into the Arctic
Ocean or peripheral seas contributing to melt sea ice in
spring and summer. The massive river energy flux to the
Arctic Ocean carries an enormous heating power of
1.0 × 1019 J/year for each 1 °C of the warm river waters
above freezing, which is equivalent to the power release
from detonation of 2.5 × 109 TNT/°C/year (Nghiem et
al. 2014). With increased water temperatures (Lammers
et al. 2007) and longer ice-free periods of the Arctic riv-
ers (Shiklomanov and Lammers 2014), the role of river
heat input is increasing and must be incorporated in sea
ice prediction and projection models. These changes of
river discharge in Northern Eurasia have a predictive po-
tential to force Arctic change at interannual to decadal
timescales and beyond (Richter-Menge et al. 2012).
The Northern Eurasian freshwater cycle has been an

important focus of ongoing research, and a great deal of
work has been carried out to understand the increases
in the river discharge to the Arctic Ocean and to identify
whether or not the regional hydrological system is accel-
erating (e.g., Smith et al. 2007; White et al. 2007; Rawlins
et al. 2010; Holmes et al. 2013). Although a variety of
theories have been put forward, the physical mechanisms
driving the observed runoff changes are not yet fully
understood. Comprehensive analyses of water balance
components (Rawlins et al. 2005, 2010; Serreze et al.
2006; Shiklomanov et al. 2007), human impacts
(McClelland et al. 2004, 2006; Yang et al. 2004; Adam et
al. 2007; Shiklomanov and Lammers 2009; Zhang et al.
2012a), and hydrological modeling experiments (Bowling
and Lettenmaier 2010, Troy et al. 2012) have not revealed
a clear cause of the observed increase in river discharge.
Precipitation in the Eurasian pan-Arctic, which is the
most important water balance component for the runoff
generation, does not show a significant change to support
the observed increasing trend in river flow (Adam and
Lettenmaier 2008; Groisman et al. 2014).
In contrast, the increase in air temperature across the

pan-Arctic has been widely and consistently documented
(Overland et al. 2014), and it is expected to continue
with the higher rates in the future (Barros et al. 2014).
The air temperature rise leads to significant changes in
the regional cryosphere including spring snow cover re-
treat, less frozen soil in the winter season, deeper annual
thaw propagation in the permafrost zone (deeper active
layer), and melting of glaciers. Several local or regional
studies have shown the important influence of changes in
different cryospheric components including permafrost

thaw (Davydov et al. 2008; Woo 2012; Streletskiy et al.
2015), glacier melt (Bennett et al. 2015), less thickness of
seasonally frozen soil (Markov 1994, 2003; Frauenfeld et
al. 2004; Frauenfeld and Zhang 2011; Shiklomanov et al.
2017), and river ice on river runoff generation (Gure-
vich 2009; Shiklomanov and Lammers 2014). How-
ever, it is not clear from these studies how these
locally observed changes will interact among each
other and with spatially varying precipitation changes
to affect the river flow over the entire region and the
freshwater flux to the ocean. There is also consider-
able uncertainty about how these local changes will
scale up to regional and continental scale impacts.
Terrestrial evaporation and transpiration (evapotrans-

piration) are the components of the terrestrial hydro-
logical cycle that are the most difficult to measure given
few direct observations (Speranskaya 2011, 2016). Near-
surface air temperatures are increasing, and one can ex-
pect that the evaporation from wet land surfaces should
increase. However, the near-surface wind speeds over
the entire territory of Russia have been decreasing in the
past several decades (Bulygina et al. 2013 updated to
2016; such studies have not been completed for other
parts of Northern Eurasia), and this may reduce the air-
surface water vapor exchange. Furthermore, most
Northern Eurasian land surfaces are not “wet” so a
temperature increase does not automatically induce an
increase in evaporation. Opposite processes may prevail
due to evaporation suppression by dry upper soil layer
(Golubev et al. 2001). Thawing of permafrost and less
seasonally frozen ground can significantly change under-
ground hydrological pathways. This will lead to an in-
crease in ground flow, higher runoff during the cold
season and, correspondingly, to a decrease in total
evapotranspiration. Finally, future ecosystem shifts can
dramatically change the vegetation composition (Fig. 4)
and the transpiration rate of the new communities can
induce further fundamental changes to the regional
water cycle. All of the processes above suggest that
changes in this component of the hydrological cycle are
not trivial and should be assessed within new models
that properly account for the interactions among the at-
mosphere, soil, and biosphere. Large-scale geochemical
and geophysical runoff changes (biological and inorganic
matter transports) also should be considered.
Recently, there were a number of assessments of

trends in the discharge from glaciered catchments of
Central Asia. A detailed review of changes in river dis-
charge in the Tien-Shan has been provided by Unger-
Shayesteh et al. (2013) who reported contrasting trends
for its different sectors including increasing summer
runoff in the northern and inner Tien-Shan, and de-
creasing summer runoff in the central and western
Tien-Shan and at the lower elevations in the inner Tien-
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Shan. More recently, Shahgedanova et al. (2016)
reported an increase in discharge from the glaciered
catchments unaffected by human activities in the
northern Tien-Shan using homogenized long-term re-
cords. Positive trends in the discharge from the head-
water catchments of the Tarim River were reported by
Duethmann et al. (2015), Krysanova et al. (2015), and
Kundzewicz et al. (2015) who also attributed these
changes primarily to the increasing glacier melt, but
highlighted their inability to quantify water withdrawal
and its contribution to the long-term trends as a limita-
tion of these studies.
It is important to recognize that the increases in dis-

charge due to glacier melt (if any) have been a tempor-
ary relief for water resources in the interior regions of
Central Asia and Caucasus. In these regions, water
stored in the cryosphere is limited and, if the current
tendencies of the cryosphere depletion persist, they will
result in severe water deficits in future decades. There-
fore, it is time to begin preparations to mitigate and/or
adapt to these deficits beforehand by developing man-
agement routines for water preservation and responsible
consumption as well as by modifying agriculture and
pastoral practices accordingly.
Accelerated climate- and anthropogenic-induced

changes in the hydrological cycle raise societal concern
because changes in the water level, streamflow, snow,
ice, and frozen ground have pronounced effects on local
and regional economies and the well-being of the North-
ern Eurasian residents. In particular, there may be im-
mediate implications for water supply, irrigation, energy
production, navigation, land and water transport, and
structural engineering.
Presently, changes of the hydrological regime in

Northern Eurasia are producing more and more fresh-
water input to the Arctic Ocean. The changes in river
discharge, along with the sea ice decline, and higher pre-
cipitation over the ocean may exert a significant control
over the North Atlantic meridional overturning (thermo-
haline) circulation with potentially dramatic conse-
quences for climate of the entire Northern Hemisphere.
Accordingly, we should expand our knowledge to better
understand these hydrological processes, to better pro-
ject possible extreme events, and better adapt to ongoing
and upcoming environmental changes.

Research focus 5: changes in the biosphere
Ecosystems in Northern Eurasia are subjected to the im-
pacts of climate change and human activities over the
entire sub-continent. In the northern part on sites with
permafrost, anthropogenic changes are primarily due to
oil and gas exploration and extraction, mining, and in-
frastructure development. Further south, timber harvest
(along with oil/gas) is predominant in the boreal and

temperate forest zones, as are agricultural and pastoral
activities in the forest-steppe and steppe zones. In-
dustrial development often leads to the physical destruc-
tion of landscapes, changes of the hydrological regime,
and widespread contamination of air, soil, and water
(Derome and Lukina 2011; Baklanov et al. 2013).
Climate-induced changes in terrestrial ecosystems trans-
form important ecosystems and their services, which in
turn, require an adjustment in business planning, nature
conservation, forest management, agricultural practices,
and regional economic policies to mitigate or adapt to
these changes. The Siberian Taiga and Far East zones to-
gether comprise the largest part of the world’s most
intact remaining boreal forests (Potapov et al. 2008).
It is now recognized that the RFE in particular is
home to unique ecosystems and biodiversity (Newell
and Wilson 2004).
In the long term, terrestrial ecosystems function in a

dynamic balance with the states of climate, water re-
sources, the lithosphere, and cryosphere. When these
four driving forces change, ecological systems also begin
to change. Currently, significant changes in forest area
and composition are predicted to occur within a few fu-
ture decades (see Fig. 4 and discussion). Ongoing
climate change already impacts the ecosystems of
Northern Eurasia and may provide hints for projecting
future changes. These impacts are manifold and relate to
diverse features of ecosystem states and behavior like
health, productivity, resilience, change of natural dis-
turbance regimes, major biogeochemical cycles, among
many others (Kharuk et al. 2017).
Forests disturbed within the last 30 years account for

approximately 75 × 106 ha (9%) of Russian forests
(Loboda and Chen 2016). Dendrochronological data
show that fire frequency has been increasing in different
parts of Russia throughout the twentieth century
(Voronin and Shubkin 2007; Kharuk et al. 2016). Recent
satellite-based assessments show that the rates of forest
disturbance have increased further since 2000 compared
to the pre-2000 era across all forest biomes with the lar-
gest increase from 1.2 to 2.2 × 106 ha year−1 in Eastern
Siberia associated with an increase in fire occurrence
(Loboda and Chen 2016). The average extent of burnt
area during the last 15 years over Russia is estimated at
10–13 × 106 ha year−1 with the post-fire forest mortality
rate of 1.76 × 106 ha year−1 (Krylov et al. 2014; Bartalev
et al. 2015). In the future, the frequency and extent of a
fire occurrence in boreal forests are expected to rise fur-
ther under the projected scenarios of climate change by
anywhere from 25 to 50% (Flannigan et al. 2000, 2013)
to 300–400% (Shvidenko and Schepaschenko 2013;
Abbot et al. 2016) with an accompanying 50% increase
in fire weather severity. These, in turn, are likely to re-
sult in large-scale ecosystem shifts. For example, an
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increase in fire frequency is expected to lead to the dis-
appearance of the pure Siberian pine stands in southern
Siberia and the replacement of Siberian pine forests by
Scots pine stands in the northern regions (Sedykh 2014).
Repeated disturbances have resulted in substantial de-
creases in fuel loads and led to soil erosion, overheating,
the absence of nearby seed sources, and the proliferation
of tall grasses. As a result, the lack of natural post-fire
regeneration of forests has led to their conversion to
steppe vegetation (Kukavskaya et al. 2016; Fig. 6). Based
on the analysis of satellite vegetative indices combined
with ground-based data, repeated fires have been found
to have the most negative impact on reforestation, for-
cing the failure of post-fire regeneration in more than
10% of the forested area in the south-western part of the
Transbaikal region (Shvetsov et al. 2016). Furthermore,
Flannigan et al. (2013) project that cumulative fire sever-
ity would increase three times and fire season length
could increase by 20 days by 2091 for Northern Eurasia.
Thus, there is an urgent need for planning adaptive for-
estry and fire management activities designed specifically
for the regions that take into account trends in condi-
tions and local features (climatic, forest-vegetation, so-
cial, technical, and economic).
While productivity of forests at the continental level has

increased during the last few decades at a rate of 0.2–0.3%
per year due to increasing temperature and lengthening of
the growth period, there are large territories with decreas-
ing productivity (Schaphoff et al. 2015) and enhanced
mortality of trees. This mirrors the general condition for
the entire boreal belt (Allen et al. 2010). The forests over
large territories in different regions of Northern Eurasia
are exposed to substantial dryness, particularly those
which are dominated by dark coniferous tree species
(Shvidenko et al. 2013) resulting in increased water stress
and impacts of forest pests and pathogens. Increasing cli-
mate aridity has caused the morphological structure of
forests to change (Lapenis et al. 2005). High variability of
climate and an increase in the frequency and severity of
long dry and hot periods (heat waves) impact forest health
and the productivity of ecosystems in a visibly negative
way (Bastos et al. 2014; Gauthier et al. 2015). Impacts of
seasonal weather on net primary production and soil het-
erotrophic respiration is ecosystem/soil type and biocli-
matic zone specific (Shvidenko and Schepaschenko 2014;
Mukhortova et al. 2015).
Influences of climate changes on vegetation are pri-

marily manifested in the alteration of the basic biogeo-
chemical functions—first of all, the exchange rates of
water vapor and carbon dioxide between plant ecosys-
tems and the atmosphere. When ecosystems respond to
changes in ambient temperature and moisture condi-
tions, the direct response can be quite rapid. For ex-
ample, an increased frequency and duration of droughts

result in a transformation of the functional role of wet-
lands to be a source rather than a sink of CO2 for the at-
mosphere (Bohn et al. 2013; Olchev et al. 2013, 2013).
Sustainability of the forest carbon sink under changing

climate is a serious concern, given the huge task of limit-
ing the growth of atmospheric greenhouse gases (GHG)
concentrations to levels adopted under the Paris
Agreement of 2015 (http://ec.europa.eu/clima/policies/
international/negotiations/paris_en). The global growth
of CO2 in the atmosphere is significantly compensated
by the terrestrial biosphere sequestering 2 to 4 Pg of car-
bon every year as evidenced globally from atmospheric
composition measurements (Le Quéré et al. 2015).
Atmospheric inverse models (Dolman et al. 2012) esti-
mate the sink, which amounts to less than 4% of global
net primary production, to be disproportionally allocated
to high and mid latitudes of the Northern Hemisphere,
including Northern Eurasia. This result is especially con-
vincing when atmospheric observations over Northern
Eurasia are used (Stephens et al. 2007; Maksyutov et al.
2013; Jiang et al. 2012, 2016; Saeki et al. 2013).
Terrestrial biosphere models and long-term atmospheric
observations (Graven et al. 2013) reveal an increase of
biospheric CO2 seasonal exchange during the past few
decades that are driven by rising temperatures and at-
mospheric CO2 concentrations. Maintaining the size of
the carbon sink in Northern Eurasia into the twenty-first
century under the negative impacts of increased
droughts and fires requires basically the same measures
as those needed for sustaining forestry, namely, fire pro-
tection and efficient forest management (Hurtt et al.
2002, 2011; Shvidenko et al. 2013). Despite the high level
of natural and human-induced disturbances, the ecosys-
tems of Northern Eurasia currently serve as a net sink of
carbon up to 0.5–0.6 Pg C year−1 (Dolman et al. 2012)
with about 90% of this sink occurring in forested land-
scapes. However, Fig. 11 shows that large areas of dis-
turbed forests, basically on permafrost, have already
become a carbon source.
Current biosphere models predict diverse responses

based on the acceleration of the carbon cycle by future
climate change. A significant change is expected for eco-
systems on permafrost, but many important features of
ecosystems at high latitudes are not adequately incorpo-
rated in these models. For the permafrost-region in
Russia, current estimates indicate that the end-of-the-cen-
tury release of organic carbon from the Arctic rivers and
collapsing coastlines may increase by 75% (Gustafsson et
al. 2011). The carbon loss from wildfires may increase
substantially (Shvidenko et al. 2013). The expected
changes of ecosystems in permafrost regions include
forest decline over large regions from changes in the
hydrological regime and increasing water stress (Fig. 4).
Still, it is not clear whether northern forest ecosystems will
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reach a tipping point, but this is very likely under regional
warming above 7 °C (Gauthier et al. 2015; Schaphoff et al.
2015). The uncertainty of such a prediction is high. How-
ever, it is very likely that the permafrost region will be-
come a carbon source to the atmosphere by the end of
this century, regardless of which warming scenario is used.
Purposeful forest management could substantially slow
down this process (Abbot et al. 2016).
Logging is an important disturbance factor in many

forest areas of Northern Eurasia (Achard et al. 2006;
Gauthier et al. 2015). Logged sites are usually highly sus-
ceptible to fire due to a combination of high fuel loads
in leftover debris and accessibility for human-caused ig-
nition (Loboda and Csiszar 2007; Loboda et al. 2012).
These sites typically experience higher severity fires than
do unlogged forests, and these fires can spread to adja-
cent areas (Ivanov et al. 2011; Kukavskaya et al. 2013).
In the dry lands, clear-cut logging accelerates the con-
version from forest or forest-steppe to steppe vegetation.
Throughout the Taiga zone, timber harvesting (Bergen

et al. 2008), and possibly human-exacerbated forest fires
(Kasischke et al. 1999) are major contributors to change
in the ecological systems of Northern Eurasia. Forest
harvest in Russia as a whole, and in particular in Siberia
and the RFE has changed over the past 50 years with
high harvest rates characterizing the late Soviet era
(Peterson et al. 2009). After the dissolution of the
former Soviet Union, these rates dropped to less than
to 100 × 106 m3 (Bergen et al. 2008) although more
recently they have partially rebounded. The early

Soviet era saw an emphasis on harvest from western
Russia. Since the 1980s, the greater development of
logging in Siberia and the RFE was spurred by declin-
ing western Russia reserves, incentives to establish in-
dustry in the eastern reaches of Russia and
agreements with Japan (in 1968 and 1974) for forestry
infrastructure development in Siberia/RFE. Most re-
cently (and in the foreseeable future), trade in eastern
regions is influenced by increasing demand from
China (Fig. 12), with significant potential to adversely
impact the health and intactness of Siberian and RFE
forests in particular (Bergen et al. 2013; Newell and
Simeone 2014).
Predictions of the future distribution and state of eco-

systems in Northern Eurasia vary considerably (Gustafson
et al. 2011, 2011; Tchebakova and Parfenova 2012, 2013),
with remaining large uncertainties in the vegetation
dynamics. Progress in dynamic vegetation observations
and modeling in North Eurasia has become more visible
with the recent availability of high-resolution remote sens-
ing data on topography, plant phenology, biomass, and
soil wetness (Kharuk et al. 2017; Tchebakova et al. 2016,
2016). However, more efforts will be needed to expand the
new data capabilities into lowlands and tundra regions.
Study results from the region suggest that further glo-

bal warming will put at risk the sustainability of forest
and forest landscapes (Gauthier et al. 2015; Schaphoff et
al. 2015; Fig. 4). As mentioned earlier in this paper,
models predict substantial shifts of vegetation to the
north with forest steppe and steppe expected to be

Fig. 11 Carbon sources and sinks by full carbon account of Russian terrestrial ecosystems (average for 2007–2009). Units of sinks and sources are
g C m−2 year−1 (Shvidenko and Schepaschenko 2014)
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dominant across large southern territories of the present
forest zone (Schaphoff et al. 2006; Tchebakova and Par-
fenova 2012). However, the changes in climatic condi-
tions during the last several decades have occurred too
rapidly for vegetation structure to completely adjust to
the new conditions. The immediate response of vegeta-
tion cover to changes of climatic variables can be quite
rapid, but the recovery can be characterized to occur
over a longer time frame with significant delay. When
the climate changes shift a region to conditions outside
of the range of dominant species, the past and current
seed dispersal rates (Udra 1988) are slower than the mi-
gration rate needed for vegetation to alter its compos-
ition to one appropriate to the predicted climate change.
A similar conclusion was reached based on compari-

sons of palynological data and radio-carbon dating in
Western Europe (Huntley and Birks 1983) and in the
European part of Russia (Velichko 2002; Velichko et al.
2004). It has been shown that under warming during the
first half of the Holocene, the expansion rate of the ma-
jority of tree species was 200–300 m/year although the
rate did reach 500–1000 m/year for pioneer species
(birch and aspen). Similar estimates of the expansion
rate of the boreal and temperate tree species in the early
Holocene (from 100 to 1000 m/year) have been obtained
from palynological data (Higgins and Richardson 1999;
Tinner and Lotter 2001; Higgins and Harte 2006).
The results of paleoclimatic and paleogeographical re-

constructions of the past epochs can be useful (as ana-
logues) for prediction of the possible changes of the
vegetation cover due to the projected change of climate
conditions in the twenty-first century. Numerous refugia
(areas with species that are different from the surround-
ing dominant ecosystems/populations) provide clues to
the boundaries of the past ecosystems and also show the

level of their resilience to a changing environment. Many
global and regional paleoclimatic reconstructions have
been compiled for various warming and cooling periods
of the Late Pleistocene and Holocene (Velichko 2002).
According to available paleogeographical data, the thermal
maximum of the Holocene (about 6–5.5 ka BP) could be
considered as an analogue of the climatic conditions for
the middle of the twenty-first century and the optimum of
the last Interglacial (Mikulino-Eemian-Sangamon, Stage
5e of the deep-sea oxygen curve, about 125 ka BP) period
could be considered as a paleo analogue for the end of the
twenty-first century (Velichko et al. 2004). Still, it is not
clear how much dispersal rates may accelerate under cli-
mate change, but it is very likely that the southern parts of
the forest zone will be under very high risk, and the
potential loss or decline of southern taiga forests will not
be compensated for by increasing forest area beyond the
current northern tree line.
Ecosystem changes in the present forest zone of

Northern Eurasia may be quite rapid due to simultaneous
effects of climate change that is among the largest over
the planet (Fig. 3; Blunden and Arndt 2015, 2016) and of
anthropogenic factors such as logging (Fig. 12), air, soil,
and water pollution, and man-induced fires (see “Research
focus: frequency and intensity of extremes”). First of all,
the feedbacks from these changes directly affect the eco-
system services to societies of the region and, thus, their
well-being. Secondly, the biogeochemical feedbacks of the
carbon cycle changes in the forest and tundra zones of
Northern Eurasia and its Arctic shelf seas may go far be-
yond the continent after the release of methane and CO2

from large carbon storage in forest, wetlands, and frozen
soil to the atmosphere due to biomass decomposition,
fires, and thawing (Friedlingstein et al. 2006; Shvidenko et
al. 2011, 2013; Gao et al. 2013; Gauthier et al. 2015;

Fig. 12 Major export markets for Russian forest products 1960—2009 (archive of Newell and Simeone 2014; data source European Forest Institute 2014)
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Shakhova et al. 2015; Ruppel and Kessler 2017). These
types of feedbacks affect the rates of global Earth system
change and, therefore, represent a global concern.
In Central Europe, air pollution has been recognized

as a key threat for forest ecosystems since the second
half of the twentieth century. At the end of the twentieth
century, sulfur and nitrogen depositions in Europe con-
nected with lignite combustion and the high concentra-
tion of industry reached their highest levels. Thereafter,
the deposition of S decreased by > 80% (Schöpp et al.
2003), with concurrent reductions in NH3 and NOx

(Kopáček and Posch 2011). The decrease of SO2 emis-
sions in Czechia has been one of the most pronounced
(Vestreng et al. 2007) and is believed to have profound
consequences for ecosystem biogeochemistry (Oulehle
et al. 2011). This reduction in pollution has to be contin-
ued and its monitoring remains an important task.
Norway spruce (Picea abies) is a tree species sensitive

to air pollution. Thus, Norway spruce forests in the
mountains of Central and Eastern Europe have been se-
lected for regional studies of the interaction of climate
and socio-economic drivers (Campbell et al. 2004;
Mišurec et al. 2016; Kopačková et al. 2014, 2015). Since
1994, a network of 15 small forested watersheds
(GEOMON) was established in Czechia to understand
the forest response to air pollution. Since then,
GEOMON has provided a testbed for exploration of
element cycling on a watershed scale using modern re-
mote and proximal sensing methods (Fottová 1995;
Oulehle et al. 2008).

Research focus 6: pressure on agriculture and pastoral
production
The temperate and steppe zones of East Europe are a
breadbasket for a large part of Northern Eurasia
(Swinnen et al. 2017). However, under pressure of grow-
ing population, the nations of these zones will need to
invest in climate-smart agricultural techniques to sustain
or continue to improve agricultural yields and livestock
production given forecasted climate change. “Climate-
smart” agricultural systems are resilient to climate
change and offer carbon and GHG emissions mitigation
potential without compromising productivity, food se-
curity, and the livelihoods of those working in the agri-
cultural sector. So far, Iizumi and Ramankutty (2016)
found that statistically significant increases in wheat
yields in Ukraine were explained by improved agro-
climatic conditions, i.e., warmer and longer growing sea-
sons, and not by management strategies.

Land abandonment and recultivation During the past
quarter-century, land abandonment in the Northern
Eurasia region has been associated with fundamental
changes in agricultural production and land use caused

by the breakup of the Soviet Union in 1991 (Lerman et
al. 2004). The guaranteed markets and subsidized pro-
duction from the Soviet era, particularly in the livestock
sector and less productive agricultural land, were lost.
This caused an unprecedented drop in fodder-crop
production, plummeting livestock numbers (Schierhorn
et al. 2014), decline in grain yields (Trueblood and
Arnade 2001), increased fallow periods (de Beurs and
Ioffe 2014), and widespread agricultural land abandon-
ment (Alcantara et al. 2012, 2013; Prishchepov et al.
2012; Griffiths et al. 2013; Lieskovský et al. 2015).
According to official statistics, approximately, 59 Mha of
farmland were abandoned from 1991 to 2000 across the
post-Soviet countries (Fig. 13). A large portion of this
change occurred in Russia. Two generalized trajectories
of change resulted from this perturbation of 1991 and its
subsequent effects up to the present: (1) some former
agriculture lands have been taken out of production and
have become reforested, and (2) others were temporarily
taken out of production but have been later recultivated
and/or otherwise put back into production under
different ownership, management, or other socio-
economic processes.
With regards to the first trajectory, overall, the aban-

doned agricultural fields in Eastern Europe and Russia
are driving an increase of forest cover, and have become
a terrestrial carbon sink at the global scale over the late
twentieth and early twenty-first centuries (Kuemmerle et
al. 2011; Schierhorn et al. 2013; Kurganova et al. 2014,
2015). By 2010, approximately 5 Mha of new forests
were observed on former agricultural fields in Eastern
Europe that were cultivated during the Soviet era
(Potapov et al. 2015). In the temperate zone, abandoned
fields are often slowly but steadily encroached by shrubs
and forests. Varying levels and timing of abandonment
of agricultural lands were observed at the landscape level
in three Landsat scene case study sites over the period
1975–2001 in the Siberian Taiga zone (Bergen et al.
2008), with most consistent decreases in agricultural
land areas after 1990.
After the dissolution of the Soviet Union and subse-

quent cessation of the state subsidies for collective agricul-
ture, large areas of less productive croplands were either
abandoned (Alcantara et al. 2012, 2013; Prishchepov et al.
2012) or the fallow periods increased (de Beurs and Ioffe
2014). Potapov et al. (2015) reported that 32% of total for-
est regrowth between 1985 and 2012 was due to afforest-
ation of former agricultural lands. However, afforestation
of abandoned croplands is currently not included in the
official forestry reports (Potapov et al. 2012), and the legal
status of these lands remains uncertain.
The second trajectory which centers on land recultiva-

tion is more complex. First, agriculture abandonment
rates varied across all of the former-USSR countries and
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were mediated by national and regional policies regard-
ing support of agriculture (Prishchepov et al. 2012), as
well as access to new markets (de Beurs and Ioffe 2014).
One of the lowest rates of abandonment was observed
where land reforms were successfully completed in a
short period (Poland) or, in an alternate case, where they
were absent (Belarus). Strong regional differences were
also observed within countries. For example, Ioffe et al.
(2012) looked at the contrasting situation of Kostroma,
an oblast in the north of European Russia and Samara,
an oblast in southern European Russia. In the northern
oblast, agriculture is now limited and in retreat beyond
relatively small-scale operations in suburbia, while in
Samara, the agricultural activity now appears to be sus-
tainable, albeit on a somewhat less extensive spatial scale
than in the past.
After 2000, a partial recultivation of abandoned lands

has been observed, which is primarily driven by adjust-
ment of agricultural policies and growing prices for agri-
cultural commodities (de Beurs and Ioffe 2014; Estel et
al. 2015; Meyfroidt et al. 2016; Smaliychuk et al. 2016).
However, recultivation rates have been compensated by
ongoing agricultural land abandonment—reaching 60 Mha

by 2013 for three largest post-Soviet agricultural nations
(Fig. 13). From 2000 to 2010, grain yields increased (True-
blood and Arnade 2001; Liefert et al. 2010). In southern
Russia where the physical attributes, location, and human
resources are best positioned to support agricultural activ-
ity (e.g., in Stravropol’ Krai), there is growth potential for
agriculture (Kattsov et al. 2012). Here, there is evolving
specialization of former socialized farms in response to
market conditions. In Stavropol’, this involves a shrinkage
of animal husbandry and a consequent release of surplus
labor, increased levels of absentee (corporate) ownership of
farmland in the more favorable locations, decoupling of
the economic fate of successful large farms from deficient
local municipal budgets, and an expansion of non-Russian
ethnic communities in the countryside (Ioffe et al. 2014).
Dynamics of cultural landscapes in European countries

of the former Soviet Bloc can also be characterized by
two opposite processes—intensification and extensi-
fication (Fjellstad and Dramstad 1999; Bičík et al. 2015).
Intensification occurs when cropping intensity or livestock
stocking increases on some land. This may be accompan-
ied by abandonment of other, more marginal cropland,
pastures, or rangeland. In contrast, extensification occurs

Fig. 13 Changes in sown areas across the former Soviet Union (Russia, Ukraine, and Kazakhstan) from 1990 to 2013; areas of abandoned sown
areas for this period are 40 Mha in Russia (Rosstat 2016); 5.4 Mha in Ukraine (Ukrstat 2014); and 13 Mha in Kazakhstan (Kazstat 2014)
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when more cropland or pastures are needed so that
additional natural lands are converted to agriculture.
Land abandonment in Central and Eastern Europe
since the 1950s has resulted from a complex multi-
dimensional process with environmental, ecological,
economic, and social consequences (Kuemmerle et al.
2008; Keenleyside and Tucker 2010). Detailed informa-
tion about abandoned lands is missing from European
national land resource statistics.
The combined abandonment-reforestation and

abandonment-recultivation trajectories potentially pro-
vide future options for both biofuel production and
cropland expansion. The Northern Eurasian region rep-
resents a great potential to boost agricultural production
(Schierhorn et al. 2014), and also to provide other eco-
system services on abandoned lands. However, climate
change and socio-economic and political development
may substantially limit such opportunities (Meyfroidt et
al. 2016). The future of some abandoned lands is uncer-
tain due to the fluctuation of prices for agricultural com-
modities, growing interest in biofuel production, and
development of national food security programs by the
successors of the former Soviet Union. In some post-
Soviet countries (e.g., Ukraine), land reforms are not yet
completed to this date (2017), limiting recultivation of
abandoned lands. Adverse demographic conditions in
Eastern Europe associated with an exodus of the rural
population (Nikodemus et al. 2005; Prishchepov et al.
2013) and the depopulation of rural areas in China (Liu
et al. 2010) may trigger additional land abandonment. Be-
cause of limited institutional and economic ability to
adapt to changing weather patterns, the increase of wea-
ther extremes represents a real threat for future agricul-
tural production in Northern Eurasia. This may reduce
the possibility to close existing yield gaps (Dronin and
Kirilenko 2010; Lioubimtseva and Henebry 2012;
Schierhorn et al. 2014; Horion et al. 2016). Last but not
least, the observed increases in cropping intensity (de
Beurs and Ioffe 2014) without adequate application of
fertilizers may reduce soil fertility and diminish yields.
With respect to the above, the importance of socio-

economic factors in land use is paramount. For example,
the level of institutional suppression in two major crop-
producing nations of the former Soviet Union, Ukraine
and Russia, during the last 60 years of the Soviet period
was so high, that the former Soviet Union imported
grain in the last two decades of its history. Conversely,
in recent years, even after the massive land abandon-
ment in the 1990s, these two nations have become the
second and third major wheat exporters globally.

Agriculture and pastoral production in the DLB
Spanning 25–125° E and 24–55° N across 17 countries
(Fig. 1), the DLB is the largest contiguous dryland in the

extratropics. The region has served as the historical trade
route between the Chinese East and the Mediterranean
West, combining the Persian Royal Road and the Silk
Road. The Silk Road was and is an important international
trade route between China and the Mediterranean. Histor-
ically, the Silk Road has experienced major expansions
and geopolitical conflicts among cultures and religions,
political and institutional shifts including the collapse
of the Soviet Union (Hostert et al. 2011). Especially in
the last millennium, resource extractions (e.g., oil),
rapid land use change (e.g., urban and agricultural ex-
pansion), climatic change, and natural disturbances
(e.g., dust storms) have driven change in the region.
The increased demand for meat and dairy products
have produced strong pressure on agro-pastoral lands
where transitional economies with frequent institu-
tional shifts, water resource scarcity and climate condi-
tions interact to alter DLB ecosystems and societies.
The geopolitical systems are diverse, but most countries
in the region are either developing or transitional econ-
omies with great demands for meat and dairy produc-
tion (Ojima and Chuluun 2008).
While climate projection models agree that the DLB

will become much warmer over the rest of the century,
there is little agreement and considerable uncertainty
about future precipitation patterns for the region. The
Fifth IPCC Assessment Report (AR5; IPCC 2014) stated
with high confidence that the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) generation of models
could project temperature distribution at a regional scale
better than the previous generation of models. However,
the AR5 report states with “a medium confidence” that
there had been no improvements in model performance
for precipitation. Moreover, global and regional climate
models are seriously challenged by the rugged terrain
found in much of the DLB (Parfenova et al. 2013; Lu et
al. 2009; John et al. 2013, 2016).
Over the past three decades, the DLB has gone

through several major changes that drive regional agri-
cultural and pastoral land changes. First, the regional
population has increased at a moderate rate similar to
the global population trend. But some areas, especially
around urban agglomerations in the East Asian part of
the DLB, have increased more rapidly resulting in
greater pressure on agricultural and pastoral lands (Qi et
al. 2012, 2012; Kraemer et al. 2015). Second, there have
been profound institutional shifts in the agricultural sec-
tor, primarily in post-Soviet Central Asia where the
newly independent states have disparate natural resource
endowments. To balance food security with commod-
ities for export, these new nations have shifted their agri-
cultural priorities (for example, replaced high water
demanding cotton by wheat) that have altered regional
water demands—resulting in agricultural abandonment
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in some locations and intensification in others (Wright
et al. 2012; de Beurs et al. 2015; Kraemer et al. 2015).
Observations and biosphere models suggest that cli-

mate change is producing shifts of the ecotones in the
drylands of Asia (Groisman and Soja 2009; Tchebakova
et al. 2016). The northward movement of the tree line
and the changing dynamics of cover types, such as
shrublands and savannas in the grassland matrix, alter
feedbacks to carbon, water, and energy balances. Warm-
ing trends along with land use and land cover change
(LULCC) could substantially modify the carbon balance
and biodiversity of the Eurasian Steppe. Natural and an-
thropogenic factors act in concert amplifying one an-
other. Consequences of reckless land use and general
drying of the continental interiors include water scarcity,
lowered water quality, soil salinization from agriculture
intensification, and the disappearance of lakes/rivers due
to reduced snow packs, glacier loss, and aggressive fresh
water extraction (Klein et al. 2012).
The region has also experienced a rapid transform-

ation in land cover. Grasslands have been converted
to croplands in Central Asia and in portions of East
Asia. Changes from cropland to vacant land have ac-
companied the collapse of the Soviet Union as farms
were abandoned en masse (Lioubimtseva and Henebry
2009; Chen et al. 2015; Fig. 13). The net gain in car-
bon sequestration due to abandonment of croplands
is offset by grassland degradation from the increased

grazing pressures following dramatic increases in land
privatization (e.g., herding policy on the Mongolia
Plateau, Chen et al. 2015), and increased food
demands (Qi et al. 2012).
LULCC has simultaneously occurred at an alarming

scale across the DLB. A transition matrix based on the
Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type Product (MCD12Q1) be-
tween 2001 and 2012 revealed that shrublands and sa-
vannas (i.e., steppe) show a high degree of turnover
across the entire region, at 38% for shrublands and 73%
for savannas, respectively (Fig. 14). Regionally, shrub-
lands and savannas showed a greater turnover (77 and
89%, respectively) during the decade, with East Asian
and Central Asia at 47 and 88%, respectively, and the
Middle East at 39 and 54%, respectively. Similarly, crop-
lands and cropland/natural vegetation mosaics have high
turnover in East Asia (53 and 72%, respectively), in Central
Asia (49 and 66%, respectively), and in the Middle East (25
and 73%, respectively). Barren and water cover types repre-
sent about 35 and 1% of total land area, respectively, but
showed a 15 and 18% turnover across the region, respect-
ively. Intensive use of exposed barren areas has escalated
dust storms, drought severity, and water shortages (e.g.,
Xuan et al. 2000; Chen and Liu 2014). Worse yet, in the
Fifth IPCC Report, Barros et al. (2014) predicts that this
water-limited region will experience a warming trend sig-
nificantly higher than the global mean, which would alter

Fig. 14 Land cover change from 2001 to 2012 based on MODIS LC products for the three regions within DLB
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summer and winter precipitation patterns and increase the
frequency of extreme climate events with longer, more in-
tense, and more frequent summer heat waves. Cook et al.
(2016) reports that, since 1998, the drought in the eastern
Mediterranean Levant region (Cyprus, Israel, Jordan,
Lebanon, Palestine, Syria, and Turkey) is the worst
drought of the past nine centuries. Furthermore, the
LULCC in DLB is expected to be significantly higher in
the upcoming decades than now (Kelley et al. 2015; Chen
et al. 2017), jeopardizing the regional stability and sustain-
ability of the DLB. All of these factors along with its land-
locked geographic location make DLB a hotspot for the
scientific community concerned with negative conse-
quences of ongoing global change.
By shifting C stocks in soils and vegetation, both

abandonment and intensification strongly impact the
regional carbon budget. For instance, the total extra
C sink in abandoned croplands in Kazakhstan
(12.9 Mha) over 1991–2010 is estimated to be nearly
31 ± 2 Mt. C year−1, which could compensate annually
for about 49% of the current fossil fuel emissions in
this country (Kurganova et al. 2015). Most countries
within the DLB implemented various reform policies
to promote economic growth while improving quality
of life. The new governance and policies increased
GDPs, but at the same time resulted in shifting food

demands, moving towards more processed, high pro-
tein animal products, which can drive increases in
grasslands-based livestock production (Chen et al.
2015, 2015).
A regional land use change analysis using MODIS data

suggests differential land use change across the DLB
(Fig. 15) with cropland abandonment in the west (zoom
windows at the bottom) and expansion in the east (zoom
windows at right) are driven primarily by shifts in gov-
ernance and economic development. Therefore, the DLB
has seen increasing demands for food quantity and qual-
ity as well as decreasing food production, resulting in
unbalanced pressure on agricultural and pastoral lands
(Chen et al. 2015, 2015).
From the perspective of cultural and social norms, the

Asian part of DLB shares similarities in history of no-
madic herding lifestyles and in geographic proximity.
Totaling 8.82 million km2, Central Asia, Mongolia, and
Northern China includes the largest land-locked coun-
tries (Kazakhstan and Mongolia) and has been influ-
enced by some of the most severe geopolitical,
biophysical, and socioeconomic disturbances affecting
societies and simultaneously their livestock, a major
source of food in the region. The region’s total livestock
of 209.16 million animals in 1992 increased to 278.3 mil-
lion in 2011 (33.1% increase). However, livestock in

Fig. 15 Land use and land cover change in the Asian part of the DLB without steppe regions of Siberia from 2001 to 2012 (Qi et al. 2012, 2012
updated). Two zoomed windows show the land use and land cover changes between 2001 and 2012 in a the Central Asia around the
Uzbekistan and b southern border of the Gobi Desert around Lanzhou, China
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Kazakhstan and Kyrgyzstan decreased substantially (by
43.8 and 34.1%, respectively) likely due to the collapse of
the Soviet Union. Empirical relationships among ecosys-
tem production, population density, gross domestic pro-
duction, and land use remain intrinsically connected
even with major policy shifts (such as the collapse of the
Soviet Union or the new status of China within the World
Trade Organization (Chen et al. 2015, 2015). The under-
lying mechanisms responsible for these consistent
relationships, as well as their dynamics, remain unknown.
Food security in the Central Asian part of the DLB

critically depends on the water availability from the
mountains, especially given the drying, browning, and
brightening trends that characterize the region during
the past 15 years (de Beurs et al. 2015). Some countries
started taking practical measures by constructing reser-
voirs in order to ensure their economic development.
These actions will have short-term benefits, but esti-
mates of contemporary and future water resources that
will originate from the high mountain cryosphere at the
regional scale are needed to develop long-term adapta-
tion and mitigation strategies. These estimates will be
used for socio-economic vulnerability assessments of the
benefits to local communities whose livelihood depend
on the quantity and seasonality of water discharges from
the Central Asian mountains with respect to regional
and national priorities. This specific objective will re-
quire the blending of geosciences with social sciences to
evaluate the role of high-elevation ice storage in perma-
frost and glaciers for levels of vulnerability and the resili-
ence of mountain and downstream ecosystems along
with their inhabitants.

Research focus 7: changes in infrastructure
In the previous sections, we mostly describe environ-
mental and climatic changes in Northern Eurasia in re-
cent decades. They have affected infrastructure of the
region. In particular, the Arctic and Siberia have been
substantially affected by the permafrost changes and its
impact on man-made infrastructure (e.g., buildings, fac-
tories, mines, bridges, roadways, and pipelines). In the
boreal zone, gradual onset of drier climate conditions ac-
companied with more frequent wild fires endangers hu-
man settlements, silviculture, and agriculture. In the
DLB, a general depletion of already scarce water re-
sources affects the general well-being of all population
groups, and all aspects of human activity. These
climate-related impacts on the infrastructure have been
compounded by the marked social, economic, and insti-
tutional changes over Northern Eurasia during the past
three decades. Therefore, this section is devoted mostly
to the socio-economic changes attributable to the dra-
matic political and economic transformations that have
affected infrastructures of Northern Eurasia.

In Russia, these transformations have been most pro-
nounced in its Arctic regions where regional welfare
critically depends upon the well-being of the entire
country (e.g., Stammler 2005; Forbes et al. 2009;
Kumpula et al. 2011; Pelyasov 2011; Hitztaler and
Bergen 2013; Andrew 2014). Here, several socio-
economic processes are major anthropogenic drivers of
environmental change since the 1960s. These include
migration, urbanization, and industrialization (e.g.,
Heleniak 2010, 2014). Ongoing and projected climate-
induced changes in natural systems will impact the hu-
man environment with direct, immediate implications
for land use, the economy, subsistence, and social life.
Although some climatic changes may be economically

beneficial (e.g., decrease in climate severity and associ-
ated heating costs, longer navigation season), other
changes negatively impact the natural environment, both
traditional and non-traditional sectors of the economy,
and the regional socioeconomic conditions. Overall,
these climatic-induced changes in natural conditions
exert additional pressure on the marginal environments
of Eurasian Arctic, which are already stressed by human
activities (Fondahl 1996; Crate 2006; Forbes et al. 2009).
For example, infrastructure development and climate
change are interacting in complex ways to alter perma-
frost over large areas of the Eurasian Arctic (Shur and
Goering 2009; Polishchuk and Polishchuk 2013, 2014).
Communities, urban environments, and industrial infra-
structure built on ice-rich soils can be catastrophically
affected by thawing permafrost (Streletskiy et al. 2012;
Shiklomanov and Streletskiy 2013; Shiklomanov et al.
2017). Simultaneously, permafrost thawing, caused by
both climate and infrastructure changes, affects natural
landscapes and ecosystems (Raynolds et al. 2014;
Khrustalev and Davidova 2007; Khrustalev et al. 2011).
Permafrost thawing and its associated impacts on nat-

ural and built environments have been identified as pri-
ority issues for all Arctic regions (Walker and Pierce
2015). Due to unprecedented levels of urban and indus-
trial development, this problem is most pronounced for
the Arctic regions of Northern Eurasia.
The Taiga ecoregion of Northern Eurasia has also seen

dramatic pendulum-like shifts in population, infrastruc-
ture, and forest resource use between the late Soviet,
early post-Soviet, and the present-day eras. Over this
time span, additional changes in the ecosystems driven
by climate factors have also been accompanied by mul-
tiple severe wildfire years. Siberia’s population expanded
by 9 million people (23.5 to 32.5 million) between the
years 1959 to 1989; a similar trend occurred in the RFE.
This was due in large part to state incentives encour-
aging settlement of these eastern reaches of the Soviet
domain. Thus in these ‘peripheral’ regions away from
the ‘center’ (Moscow and St. Petersburg), population
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growth was strongly a product of in-migration and not
intrinsic population growth.
With the relatively sudden withdrawal of state-

supported programs, this situation precipitated signifi-
cant shifts in population and natural resource use in the
immediate post-Soviet era (Voinova et al. 1993; Bergen
et al. 2013). Driven by significant economic hardship,
subsequent population out-migration began ~ 1990,
which pervaded East Siberia and the RFE and has only
recently been lessening. In addition to high rates of mi-
gration out of the regions altogether, residents also mi-
grated within the regions from rural areas to the few
main cities, resulting in a more urban population.
During the final three decades of the Soviet era, the

forestry sector sustained high rates of timber production
in Siberia. Some of this timber was exported to Japan
based on official agreements with Japan in 1958 and
1974 (Mathieson 1979) and, in the last decades, to China
(Fig. 12). This brought investments in infrastructure.
Despite the otherwise successful commitment of the
Federal Forest Service to scientific forestry including the
creation of forest inventory and an exceptional scientific
knowledge (Kukuev et al. 1997), late Soviet-era forest
harvest itself was surprisingly inefficient (Shvidenko and
Nilsson 1994). Immediately after political dissolution in
1991, total harvest volumes significantly declined across
Russia to approximately 175 million m3 compared to ap-
proximately 400 m3 in 1989 (Bergen et al. 2013). Signifi-
cant growth did not occur again in the forest industry
until approximately 2009.
As governance and institutions have regrouped after

the early post-Soviet transition era, new or renewed de-
velopments in forest and energy sectors have emerged.
Resource use in the taiga of Siberia and the RFE is influ-
enced by its proximity to China, Japan, and Korea. These
countries have (a) some of the world’s highest human
population density numbers, (b) either naturally limited
or depleted forest resources, and (c) far-reaching global-
industrial and trade conglomerates (Crowley 2005;
Bergen et al. 2013). Thus, in Russia, the geographic loca-
tion of forest exploitation is shifting to eastern reaches
that can easily supply and transport logs to the growing
Asian market (Newell and Simeone 2014). This occurs
both through legal forest management and harvest but
also through illegal harvest (Vandergert and Newell 2003).
Siberia and the RFE Taiga regions are also rich in oil,

gas, and minerals, i.e., natural resources which are of
great current economic and strategic importance.
Within Russia, there may be a greater shift in oil and gas
extraction to East Siberia and the RFE given that the his-
toric large oil reserves of Western Siberia are thought to
be approximately 75% tapped (Dienes 2004). The
Eastern Siberia-Pacific Ocean pipeline has recently been
completed, along with a spur directly into Northern

China. Most significantly, Russia sees its energy sector
as a strategic central pillar to its re-establishment as a
global economic power (Dienes 2004; Hashim 2010).
Thus, it is likely that energy extraction and associated
infrastructure will increase.
Communities in the Asian part of DLB are poised be-

tween dry and cold weather conditions. Their position is
precarious in the face of multiple forces: climatic varia-
tions, extremes, and their changes; environmental deg-
radation and loss of ecosystem services; globalization of
markets; rapid population growth and changes to demo-
graphic structure; out-migration of the young and able
segments of society with the subsequent brain drain and
remittances to the left-behind families. Rural dryland
communities in Central and East Asia face further chal-
lenges and opportunities due to the lingering conse-
quences of the institutional upheaval and uncertainty
following the end of the Soviet Union, China’s market
reforms and increasing regional influence of China. The
DLB region has a low population, but the population is
rapidly increasing. The total population in Central Asia
and Mongolia in 1992 was 54.05 million. In 2011, it in-
creased to 67.09 million, a 24.1% increase over the
20 year period. As might be expected, this population in-
crease is coupled with rapid urbanization, agricultural
development, and desertification (caused by heavy graz-
ing) across Central and East Asia. The average regional
increase of urban population from 1992 to 2011 was
27.3% with the largest increases occurring in China and
Tajikistan (both of ~ 50%) and the lowest increase occur-
ring in Kazakhstan (6.4%). In contrast, there is a 10.1%
decrease in urban population in Mongolia.
Along with drastic changes in economics, institution,

and governance, land use in the dryland Asia region in-
cludes the improvements of major infrastructures, which
have facilitated the transition of these nations. An obvi-
ous example is the region-wide installation of mobile
communication facilities enabling information exchanges
for effective and efficient communications. A second
major infrastructure improvement is the development of
transportation networks including aviation, railways, and
highways across the region that enabled more efficient
logistics management and distribution of goods within
countries as well as trade across countries.
A crucial infrastructure factor in these DLB regions is

a rapid rate of urbanization (Koch and Valiyev 2015). In
particular, real estate development in the decade of the
2000s has led to major lateral expansion as well as ver-
tical build-up that have transformed small cities into
major metropolises. For example, in Kazakhstan, the
extent of the Almaty urban agglomeration has in-
creased substantially as observed by the dense sampling
method (DSM) (Nghiem et al. 2009) using NASA satel-
lite scatterometer data in 2000–2009 (Fig. 16). With the
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capability to track urban change in three dimensions
(Nghiem and Small 2016), DSM results also reveal the
significant vertical build-up as observed in the Almaty
urban core area with a fast growth rate of approxi-
mately 7% per year in terms of the total volume of
building structures in the 2000s (Fig. 17). Such an over-
heated urbanization rate may result in an excessive
building supply that surpasses the building occupancy
rate and thereby may turn the real estate boom into a
bust.
In Northern China, tremendous urban development

quadrupled Beijing urban extent observed by DSM in
the 2000s and brought along severe air pollution as a
consequence (Jacobson et al. 2015). Similarly, in the

DLB cities such as the complex of Xiangfang, Nangang,
and Harbin have experienced multi-fold lateral expan-
sion and significant vertical build up shrouded in smog
due to soaring air pollution from coal combustion and
the petrochemical industry (Huang et al. 2016).
Mongolia has also undergone rapid urbanization similar
to that of many cities in Northern China, resulting in
serious air pollution problems caused by automobiles
and industrialization (Batmunkh et al. 2013). In any case,
the rapid urban transformation exerts a high demand for
rapid infrastructure development, such as road networks
not only for intra-urban but also for inter-urban con-
nectivity to support the commercial and industrial activ-
ities for the increasing population.

Fig. 16 Almaty urban region in Kazakhstan from DSM satellite observations in 2000 (left) and 2009 (right), translucently draped over 3D topography.
Red represents main urban areas, transitioned into orange for urban area with less development, then to yellow for suburban, and finally to green for
rural/natural/wilderness areas. Blue indicates surface water (lakes, reservoirs, etc.). Astounding expansion of the Almaty urban extent occurred between
2000 and 2009

Fig. 17 Dramatic increase in the total building volume corresponding to the real estate boom since 2000 in an area of ~ 6 km2 centered in the
urban extent of Almaty in 2009 seen in red in the right panel of Fig. 16. Error bars show the accuracy of regional averaged values (columns) and
incorporate together errors of the observation and area-averaging methods used. The linear trend line indicates the mean rate of the building
volume increase during the study period and its comparison with error bars shows that the changes are clearly seen beyond the noise generated
by observations and the averaging procedure
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Complex interactions among a rapidly changing cli-
mate and the continuously evolving social, economic,
and political systems in Northern Eurasia require an in-
tegrative approach for studying the cumulative effects of
infrastructure and climate change on high-latitude
social-economic and natural systems. This research
should focus on assessing the vulnerability of communi-
ties, industries, and ecosystems and should aim at devel-
oping adaptation and mitigation strategies and plans for
the sustainable development of the Arctic infrastructure.
The high latitudes of Eurasia, the largest and most dy-
namically complex northern region, can serve as a basis
for developing effective climate mitigation policies and
adaptation measures for global circumpolar north. The
observed disparity of changes among the DLB countries
hints that the socioeconomic factors define the resilience
of these countries to ongoing changes and not so much
the climatic factors.

Research focus 8: societal feedbacks in response to
environmental changes
In the distant past, humans reacted to environmental
changes passively—they migrated away from environments
that became adverse or unsustainable. Nowadays, many
societies are equipped with tools and resources to with-
stand the negative consequences of environment change,
to some extent. Common approaches to addressing
adverse environmental changes include irrigation, con-
struction of dams and dikes, diversion of water streams,
large-scale geo-engineering projects (e.g., reforestation),
mandatory ecological standards to curb pollution, more ef-
fective agronomic practices and robust crops, new con-
struction codes, and the application of ecological expertise
to each new large development.
Planning is also now beginning to be practiced to re-

duce the adverse impact of disasters associated with en-
vironmental changes and to increase the resilience of
the communities at risk. Implementation of these activ-
ities has associated costs and requires careful planning
based upon numerical experiments with models that
realistically describe processes of environmental
changes in all their complexity and interactions. It
should also consider disruptive effects of environmental
hazards given the uncertainty of the future environ-
ment state and the trend of increasing frequency of loss
events and damage produced by disasters and creeping
environmental crises globally (Fig. 18) and also region-
ally (Porfiriev 2001, 2016). The need for a suite of such
models is more urgent when the risks of negative con-
sequences of environmental change are higher
(Porfiriev 2012, 2013, 2014).
Human activities have been the drivers of certain on-

going environmental changes. It is important to
recognize the loop: societal feedbacks in response to

these changes may facilitate the recurrence of disasters
or cause a second cycle of inadvertent environmental
change if the response misses the target or is ill-
designed. For instance, reforestation may cause more in-
tense rainfall and dykes may increase flood peaks.
Curbing industrial development may negatively impact
human well-being and overall societal resilience. This
means that studies of the impact of environmental
changes on societies and the development of adaptation
and mitigation measures in response to their detrimental
consequences should be accompanied by thorough as-
sessments of the “end state” resulting from the environ-
mental changes and the actual and projected societal
response to these changes. This can be implemented only
by mainstreaming all these kinds of impacts and feedbacks
into comprehensive Earth system and integrated assess-
ment models (see the next section of this paper).

Research focus 9: quantification of the role of Northern
Eurasia in the global earth and socioeconomic system
Northern Eurasia is a key part of the global Earth and
socioeconomic systems. It occupies a substantial portion
of the land surface of the Earth (19%) and 60% of land
surface north of 40° N. Northern Eurasia is where some
of the largest climatic, environmental, and socio-
economic changes have occurred during the past cen-
tury. In many aspects, changes here presage the rates of
global change including global temperature rise (cf.,
Fig. 3 versus Fig. 2). The strength of the snow cover-
temperature biogeophysical feedback, biogeochemical
feedback due to depletion of the surface and upper soil
layer carbon and frozen ice storages (Fig. 7; Romanovsky
et al. 2010, 2010; Schepaschenko et al. 2013; Shakhova
et al. 2015), atmospheric dust load from extensive DLB
desert areas (Lioubimtseva and Henebry 2009, Sokolik
2013; Sokolik et al. 2013), and atmospheric pollution
from industrial development (Lu et al. 2010) and from
boreal forest fires (Soja et al. 2007) affect the global cli-
mate and environment. Large areas of natural and an-
thropogenic land cover change are closely related to the
interaction of the cryosphere and terrestrial hydrology
change (Tchebakova et al. 2009; Zhang et al. 2011,
Mátyás and Sun 2014; Fig. 4) with human activities (Qi
et al. 2012, 2012; Chen et al. 2013, 2015; Horion et al.
2016, Figs. 12 and 15). The importance of these changes
and associated impacts on Northern Eurasia and poten-
tial feedbacks to the global Earth and socioeconomic
systems may be quantified using models.

Global change modeling for Northern Eurasia
As discussed in the previous sections, Northern Eurasia
is comprised of a complex and diverse set of physical,
ecological, climatic, and human regional systems, which
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interact among themselves and can have potentially im-
portant feedbacks on the evolution of the global Earth
and human systems. At the same time, the region has
experienced dramatic climate, environmental, and socio-
economic changes, which leads us to argue that studying
the fate of Northern Eurasia needs to be placed in the
context of global change modeling (i.e., the modeling of
the coupled human and Earth systems at the global
scale) and include interactions with other regions of the
globe. In this section, we review past and ongoing mod-
eling studies over Northern Eurasia and provide new ap-
proaches for integrated modeling for Northern Eurasia.

Past and ongoing modeling studies over Northern Eurasia
Many models have been developed and used to study
various components of the Earth system with a focus on
Northern Eurasia. Monier et al. (2017) provides an over-
view of recent and ongoing modeling studies over
Northern Eurasia and identifies the many ecological and
geophysical processes comprising Earth system dynamics
(i.e., the hydrological cycle, soil thermal dynamics, wild-
fires, dust emissions, carbon cycle, terrestrial ecosystem
dynamics, climate and weather, sea ice) and the human

dimensions (i.e., demography, risk management ad-
dressed, agriculture, forestry, water management)
addressed by the Northern Eurasia modeling commu-
nity. Because of the major role of Northern Eurasia in
the global land system, they find that most studies focus
on the land processes (i.e., land and water carbon cycle,
energy balance) or on the fate of the land system under
climate change (permafrost thawing, agriculture, wild-
fire). They also find that most studies focus on a single
component of the Earth system, with generally little at-
tention placed on interactions and feedbacks, and with
climate change being imposed. Nonetheless, Monier et
al. (2017) identify a few studies that try to integrate vari-
ous aspects of the Earth system, in terms of scale, tele-
connection or global feedbacks, and processes, as well as
other studies focusing on integrated systems where mul-
tiple disciplines overlap, such as modeling studies of
water management (Shiklomanov et al. 2013) or land
management (Gustafson et al. 2011, 2011; Kuemmerle et
al. 2011, 2011, 2014; Lebed et al. 2012; Loboda et al.
2012; Robinson et al. 2013; Shuman et al. 2013a; Blya-
kharchuk et al. 2014). This growing effort to integrate
existing models through scale, processes, and feedback

a

b

Fig. 18 The frequency (a) of and monetary losses (b) from the major natural and environmental disasters across the globe. Source: Munich Re-insurance
NatCatSERVICE (http://www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html)
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has translated into more coordinated and multidiscip-
linary research projects by NEESPI scientists along
with the development and integration of models that
can interact with each other, including weather and
aerosol physics, permafrost, and terrestrial hydrology
with water management, the carbon and water cycles,
land carbon and atmospheric transport modeling, and
biospheric and climate information (Table 1).

Modeling studies focusing on a specific component of
the Earth system have provided valuable insight into
processes controlling their behavior and the direct im-
pact of climate change. Meanwhile, more integrated
modeling studies have been useful for identifying and
quantifying potential interactions and feedbacks among
various components of the Earth system and societal ac-
tivities associated with environmental changes over

Table 1 Non-exhaustive list of modeling studies with a focus on Northern Eurasia. The list is sorted by specific aspects of the Earth
and human systems. Some studies are listed under several aspects of the Earth and human systems. From Monier et al. (2017
updated)

Specific aspects of the Earth
and human systems

References to modeling studies with a focus on Northern Eurasia

Agriculture
(crop modeling, economics)

Dronin and Kirilenko 2010; Gelfan et al. 2012; Iizumi and Ramankutty 2016; Magliocca et al. 2013; Peng et al. 2013;
Schierhorn et al. 2014, 2014; Tchebakova et al. 2011

Air quality
(aerosols, ozone, pollen, dust)

Baklanov et al. 2013; Darmenova et al. 2009; Lu et al. 2010; Siljamo et al. 2013; Sofiev et al. 2013; Soja et al. 2004;
Sokolik et al. 2013; Xi and Sokolik 2015a, 2015b

Carbon (in land and water) Bohn et al. 2013, 2015; Cresto-Aleina et al. 2015; Dargaville et al. 2002, 2002; Dass et al. 2016; Dolman et al. 2012;
Gao et al. 2013; Glagolev et al. 2011; Gustafson et al. 2011; Hayes et al. 2011, 2011, 2014; John et al. 2013;
Kicklighter et al. 2013, 2014; Kim et al. 2011; Koven et al. 2011; Kuemmerle et al. 2011, 2011; Kurganova et al. 2014, 2015;
Lu et al. 2009; McGuire et al. 2010; Mukhortova et al. 2015; Narayan et al. 2007; Olchev et al. 2009, 2013; Rawlins et al. 2015;
Rossini et al. 2014; Sabrekov et al. 2014, 2016; Saeki et al. 2013; Schaphoff et al. 2015; Schierhorn et al. 2013;
Schulze et al. 2012; Shakhova et al. 2013, 2015; Shuman and Shugart 2009; Shuman et al. 2013a; Yue et al. 2016;
Zhang et al. 2012b; Zhao et al. 2009; Zhu et al. 2013, 2014; Zhu and Zhuang 2013; Zhuang et al. 2013

Climate Anisimov et al. 2013; Arzhanov et al. 2012, 2012; Miao et al. 2014; Monier et al. 2013; Onuchin et al. 2014;
Shahgedanova et al. 2010; Shkolnik and Efimov 2013; Volodin 2013; Volodin et al. 2013; Zuev et al. 2012

Cryosphere
(snow, glaciers, sea ice)

Callaghan et al. 2011a, 2011b; Farinotti et al. 2015; Hagg et al. 2006; Klehmet et al. 2013; Loranty et al. 2014;
Mokhov et al. 2013; Pieczonka and Bolch 2015; Shahgedanova et al. 2010; Shakhova et al. 2015;
Sokratov and Shmakin 2013; Sorg et al. 2012

Demography Heleniak 2015

Energy balance Brovkin et al. 2006; Gálos et al. 2013; Loranty et al. 2014; Olchev et al. 2009; Oltchev et al. 2002; Tchebakova et al. 2012

Hydrological cycle Bowling and Lettenmaier 2010; Cresto-Aleina et al. 2015; Gelfan 2011; Georgiadi et al. 2010, 2014a; Hagg et al. 2006;
Karthe et al. 2015; Khon and Mokhov 2012; Kicklighter et al. 2013; Klehmet et al. 2013; Kuchment et al. 2011;
Liu et al. 2013, 2014, 2015; McClelland et al. 2004; Motovilov and Gelfan 2013; Novenko and Olchev 2015;
Olchev et al. 2009, 2013; Oltchev et al. 2002, 2002; Osadchiev 2015; Rawlins et al. 2010; Serreze et al. 2006;
Shiklomanov et al. 2013; Shiklomanov and Lammers 2013; Shkolnik et al. 2017; Sorg et al. 2012; Streletskiy et al. 2015;
Troy et al. 2012; Zhang et al. 2011

Land-use change Blyakharchuk et al. 2014; Chen et al. 2017; Griffiths et al. 2013; Gustafson et al. 2011; Hayes et al. 2011;
Hitztaler and Bergen 2013; Kicklighter et al. 2014; Kraemer et al. 2015; Kuemmerle et al. 2009; Meyfroidt et al. 2016;
Peterson et al. 2009; Prishchepov et al. 2013, 2017; Robinson et al. 2013; Schierhorn et al. 2013, 2014, 2014;
Smaliychuk et al. 2016; Zhang et al. 2015

Infrastructure Shiklomanov and Streletskiy 2013; Shiklomanov et al. 2017; Stephenson et al. 2011; Streletskiy et al. 2012

Nitrogen Kopáček et al. 2012; Kopáček and Posch 2011; Oulehle et al. 2012; Zhu and Zhuang 2013; Zhuang et al. 2013

Permafrost Euskirchen et al. 2006; Gao et al. 2013; Gouttevin et al. 2012; Hayes et al. 2014; MacDougall and Knutti 2016;
Marchenko et al. 2007; Shakhova et al. 2013, 2015; Shkolnik et al. 2012; Streletskiy et al. 2012, 2015; Zhang et al. 2011

Terrestrial ecosystems
characteristics

Cresto-Aleina et al. 2013; Kopačková et al. 2014, 2015; Lapenis et al. 2005; Lebed et al. 2012; Li et al. 2016;
Shuman et al. 2013a, 2013b; Shuman and Shugart 2012; Ziółkowska et al. 2014

Vegetation shifts Gustafson et al. 2011; Jiang et al. 2012, 2016; Khvostikov et al. 2015; Kicklighter et al. 2014; Li et al. 2014;
Macias-Fauria et al. 2012; Novenko et al. 2014; Schaphoff et al. 2015; Shuman et al. 2015; Soja et al. 2007;
Tchebakova et al. 2009, 2010, 2016, 2016; Tchebakova and Parfenova 2012; Velichko et al. 2004

Weather
(i.e., extreme events)

Barriopedro et al. 2011; Meredith et al. 2015; Mokhov et al. 2013; Schubert et al. 2014; Shkolnik et al. 2012

Wildfire Balshi et al. 2007; Dubinin et al. 2011; Gustafson et al. 2011; Kantzas et al. 2013; Loboda and Csiszar 2007;
Malevsky-Malevich et al. 2008; Narayan et al. 2007; Park and Sokolik 2016; Schulze et al. 2012; Soja et al. 2004;
Tchebakova et al. 2009, 2012; Vasileva and Moiseenko 2013

Zoology Bragina et al. 2015; Kuemmerle et al. 2011, 2014; Ziółkowska et al. 2014
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Northern Eurasia. However, most studies of climate
change impacts rely on standard socio-economic and cli-
mate change scenarios, thus limiting the possibility of
conducting integrated studies. A common experimental
design for these studies is to prescribe climate change
and to examine the varied response of a particular com-
ponent of the Earth system (Rosenzweig et al. 2014). In
such an approach, many potential global and regional
feedbacks that can have major implications for the cli-
mate system, both in Northern Eurasia and globally, are
overlooked. The development of effective climate mitiga-
tion and adaptation strategies for Northern Eurasia de-
pends on understanding how environmental conditions
may evolve in the region within the context of global
change, including the influence of feedbacks and poten-
tial thresholds (i.e., “tipping points”). Fortunately, model-
ing frameworks have already been developed to study
these issues (see the next section), and they could be im-
proved to better represent the important aspects of the
Earth system that are unique to Northern Eurasia.

New approaches to integrated modeling for Northern Eurasia
Earth System Models (ESMs; Brovkin et al. 2006, 2013;
Friedlingstein et al. 2006; Arora et al. 2013; Eby et al.
2013; Zickfeld et al. 2013; Koven et al. 2015; Zaehle et
al. 2015) have been developed by coupling together
unique Earth system component models (e.g., atmos-
phere, land, cryosphere, oceans). These provide an ideal
modeling framework to investigate interactions and
feedbacks among these components as well as the im-
pact of changes in Northern Eurasia on the global Earth
system. For example, in an ESM, carbon emissions from
land-use change in Northern Eurasia may increase at-
mospheric carbon dioxide concentrations to influence
climate, the uptake of atmospheric carbon dioxide by
oceans to influence ocean acidification, and the uptake
of atmospheric carbon dioxide by land vegetation in the
future. ESMs provide tools to investigate the response of
the system to changes in external forcings that not only
affect each of the components individually but also the
interactions among them. For example, climate change
impacts cannot be examined without considering the
role of human activity. In current ESMs, however, there
is a simple representation of the influence of human ac-
tivity on earth system components. Anthropogenic ef-
fects related to industrial, residential, and agricultural
activities may be represented by simply prescribing an
input of greenhouse gases into the atmosphere. More so-
phisticated ESMs might also use prescribed changes in
land use across the globe to simulate the effects of
spatial and temporal variations in albedo, sensible and
latent heat fluxes, and greenhouse gas fluxes on regional
and global energy budgets. In these ESM studies, the
simulated human activity is determined solely by

prescribed policies without any consideration about how
feedbacks from changing environmental conditions
might modify these activities in the future. For example,
the land use change prescribed in CMIP5 simulations is
driven solely by socio-economic considerations and does
not account for climate change impacts on land prod-
uctivity (Hurtt et al. 2011).
Because ecological and social systems are interdepend-

ent and constantly co-evolving, their non-linear behavior
is difficult to predict. Taking into account that human
well-being and ecosystem integrity are fundamentally
linked, these processes must be managed in a way that
implies balancing economic capacity, environmental in-
tegrity, and resilience to future changes (Jones et al.
2013; DeLucia 2015). For this reason, another major ef-
fort has been put into the linkage between models of hu-
man activity, including the global economy, global trade,
demography, technologies, and user preferences—which
are essential to study the potential impacts of humans
on the environment—and models of the physical climate
system, generally simplified compared to ESMs. These
models are known as integrated assessment models and
allow economic decisions to respond to changing envir-
onmental conditions to support mitigation and adapta-
tion efforts (IAMs; Rotmans et al. 1990; Alcamo et al.
1994; Weyant et al. 1996; Prinn et al. 1999; Sokolov et al.
2005, 2009; van Vuuren et al. 2006, 2007; Riahi et al. 2007;
Hijioka et al. 2008; Melillo et al. 2009, 2016; Wise et al.
2009; Reilly et al. 2012; Hallgren et al. 2013; Prinn 2013;
Nelson et al. 2014, 2014; Sue Wing et al. 2015).
IAMs have been at the core of the Representative

Concentration Pathways (RCPs, van Vuuren et al. 2011),
a set of socio-economic and emission scenarios, includ-
ing socio-economic change, technological change, en-
ergy and land use, and emissions of greenhouse gases
and air pollutants, developed for the climate modeling
community in support of the IPCC AR5.
More recently, major efforts have focused on develop-

ing models with a detailed representation of all compo-
nents of the coupled Human-Earth system, by coupling
IAMs with ESMs, or essentially replacing the simplified
representation of the climate system in IAMs with
ESMs. Such models can provide novel insights into the
complex issue of global change by accounting for an ex-
haustive number of feedbacks among the components of
the Earth system and of the human system.
Figure 19 shows an example of a coupled human-

Earth system model, with three pathways for feedbacks
between the two systems. The first pathway includes the
human activity model providing emissions of greenhouse
gases, aerosols, and other precursors of atmospheric pol-
lution, thus providing the footprint for both future cli-
mate change and air quality, with a feedback on the
human system through health impacts. The second
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pathway centers on land, with the human activity model
making decisions on land use change based on natural
ecosystem productivity and crop yield. Finally, the third
pathway centers on water, with the Earth system model
computing basin-wide geophysical water resources and
the irrigation demand from crops, and the human system
model making economically based decisions on water
availability for irrigation, with competition from municipal
and energy use. The global and regional climate would in
turn be affected by land use and land cover change and ir-
rigation, through both emissions of greenhouse gases,
changes in albedo and in the hydrological cycle.
At the frontier of integrated assessment modeling, a

number of issues have emerged that can be better exam-
ined with the ongoing development of coupled human-
Earth system models for Northern Eurasia (Monier et al.
2017) and include the following:

� The food-energy-water (FEW) nexus. While the
FEW is a global issue and major efforts are

underway to improve its representation in models of
the coupled human-Earth system, it also has unique
characteristics over Northern Eurasia that require
specific improvements for such models to be useful,
including thermokarst dynamics, permafrost
degradation, scarcity of human infrastructure, varied
levels of agricultural development and management
practices, locally diverse hydrological conditions
associated with complex biomes, and climate
interactions.

� The air quality and health nexus. In addition to the
traditional anthropogenic precursor emissions
associated with the industry, energy and
transportation sectors, or biogenic emissions of
precursors, Northern Eurasia experiences varied and
complex sources of air pollution, including wildfires,
crop residue burning, and dust. Accounting for
these sources of pollutants, specific to Northern
Eurasia, along with the transport of pollutants to
and from surrounding countries, to quantify the

Fig. 19 An example schematic of an integrated assessment model (IAM) that couples a human activity model and an Earth system model (ESM)
with a focus on three feedback pathways: health, land use change, and water resources (from Monier et al. 2017). See text for details
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economic impact of future changes in air
pollution in the region can prove key to
accurately inform policy responses for Northern
Eurasia.

� The new transnationalism of natural resources. The
more porous international borders that have
emerged after the dissolution of the former Soviet
Bloc have considerable implications for Northern
Eurasia’s natural resources. In particular, forest
resources, but also oil and gas, are at the nexus of
regional demand due to uneven distributions within
the countries of Northern Eurasia. Understanding
and developing levels of sustainable use will have
implications ranging from local human livelihoods
to the global carbon budget. Integrated models will
need to include local, regional and, now, even
international drivers and consequences of these
coupled human-natural systems pertaining to
natural resources.

� The opening of new Arctic trade routes. New trade
routes emerging as the result of the shrinking of
Arctic sea ice extent could result in the ability of the
timber industry and energy exploration to reach
remote areas like Siberia. The development of
infrastructures to respond to these new economic
opportunities, including potential population
migration within Northern Eurasia and from
neighboring regions, will face challenges such as
with climate-driven permafrost degradation or the
disappearance of temporary roads constructed over
frozen lakes and rivers. Investigating the fate of
Northern Eurasia as these new trade routes emerge
will require a detailed regional coupled human-Earth
system model.

As with any model activity, the representation of inter-
actions and feedbacks among Earth system components
and societal activities in Northern Eurasia can be im-
proved within models, in order for these models to ad-
dress such emerging issues. Insights gained from
previous and ongoing efforts by the NEESPI/NEFI re-
search community, such as those on the unique features
and processes of Northern Eurasia described above,
could be incorporated to guide these model improve-
ments to create a new generation of coupled human-
Earth system models to study the role of Northern
Eurasia on global change. For example, most ESMs do
not have a representation of permafrost dynamics, which
is important for Northern Eurasia as the presence of
permafrost affects the availability of soil moisture and
the timing and magnitude of runoff (which are import-
ant for the FEW nexus), the ability to support buildings
and other infrastructure (which is important for the
socio-economic development of remote regions in

Siberia as Arctic trade routes open up after the sea ice
retreat), and vegetation primary production rates and
decomposition rates of organic matter (which influence
the ability of the landscape to provide food, energy, and
timber and impact the timing, extent, and severity of
wildfires, which in turn, impact air quality and health).
In addition, the degradation of permafrost might also be
associated with several important tipping points includ-
ing those related to water availability and the release of
land carbon to the atmosphere. The representation of
permafrost dynamics in ESMs could strongly benefit
from an improved representation of soil thermal dynam-
ics, as influenced by water, ice, organic matter and soil
texture in the soil profile, and of the surface insulating
layer and its modification by snow cover, moss, litter, or
wildfires. Furthermore, we suggest that to improve key
processes relevant to Northern Eurasia in ESM and
IAM, like permafrost degradation, a stronger involve-
ment of the Northern Eurasia modeling community and
local stakeholders is needed.

Conclusions
The major goal of this paper is to introduce the reader
to the present challenges in Northern Eurasia and to
outline the pathways forward to address these challenges
in the coming decades. In doing so, we have provided
the reader with a sample of exemplars of NEESPI’s ac-
complishments. The science questions of the “Northern
Eurasia Future Initiative” or NEFI derive from an urgent
need to incorporate and expand our knowledge of the
consequences of human and social dimensions in asses-
sing current and future change in Northern Eurasia.
Across this region, the future strongly depends upon this
incorporation and the amelioration of environmental
change, the effects of these changes on human societies,
and bridging the considerable gaps in research
procedures, capacity for prediction, and in time- and
space-scales that complicate the integration of human
dynamics with environmental dynamics.
When the embryonic NEESPI project began over a

decade ago, there were concerns that a program span-
ning Eurasia involving scientists from multiple disci-
plines based in a score of nations with complex and
sometimes opposing diplomatic missions could have
been a failure. However, there were several significant
factors that brightened and opposed such a dark fore-
cast. Truly, interdisciplinary interactions among engaged
scientists who tackled a shared problem are a remark-
able glue for holding research projects together, and they
proved that creativity can prosper in “bottom-up” re-
search programs. The role of Northern Eurasia as a re-
cipient and generator of planetary climatic change is an
important “big question” that captures the imagination
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of many scientists and transcends disciplines, cultures,
languages, and national politics. It is also a challenge
whose unraveling requires teams working together
openly in earnest and in good faith. The consequences
of environmental and socio-economic change in North-
ern Eurasia that may spread well beyond its boundaries
have been simply too dire to leave them unstudied and,
generally speaking, unknown. NEESPI was born to re-
verse the situation by elucidating both negative and
beneficial aspects of these changes to inform societies
and, thus, better prepare them for resilient future devel-
opment. An objective of NEFI is that this development
must now be secured by science-based strategies pro-
vided to regional decision-makers at different levels that
will lead their societies to prosperity.
Northern Eurasia has undergone significant environ-

mental change, having experienced warming in the past
few decades that already exceeds the 1.5 to 2.0 °C warm-
ing limits adopted as a target at the United Nations
Climate Change Conference (30 November−12
December 2015, Paris, France). Several aspects of this
warming are manifested in changes in the regional en-
ergy and hydrological cycles, which affect and interact
with the biosphere and with socio-economic activities.
These changes are multifaceted. Some of them seem and
are inevitable (e.g., ecosystems’ shift, glacial retreat and
permafrost thawing, increased fire regimes, the new state
of the regional environment); however, it is imperative
they are acknowledged and comprehended. Some of
these changes, particularly if their consequences are ad-
verse for human well-being, can be reversed, moderated,
or mitigated—hopefully to levels that will completely or
substantially negate their undesirable impacts. These lat-
ter instances include proactive and sometimes quite
expensive interventions in water management, forestry
and agricultural practices, environmental protection,
infrastructure and urban planning, and resource con-
sumption. In any case, the scientist’s duty is to
propose and justify strategies for resilient future de-
velopment in the region. “To justify” is a key word
here. Scientists must strive to know the Earth system
in its functional entirety to develop the tools neces-
sary to project the future state in response to natural
and societal impacts, as well as to estimate the overall
consequences of the realization of these scenarios on
human wellbeing.
To these ends, we have formulated three major science

questions to be answered by NEFI:

1) How can we quantify and project ecosystem
dynamics in Northern Eurasia when these dynamics
may be internally unstable, are controlled by
components that have been systematically changing,
and have a potential to impact the global Earth

system with unprecedented rates of change over the
next few decades?

2) What are the major drivers of the ongoing and
future changes in the water cycles of Northern
Eurasia and how will their changes affect regional
ecosystems and societies, and feedback to the Earth
system and global economy?

3) How can the sustainable development of societies of
Northern Eurasia be secured in the near future by
overcoming the ‘transitional’ nature of their
economics, environmental and climatic change
challenges, and by disentangling restrictive
institutional legacies?

To address these science questions, nine research foci
are identified and their selection has been briefly justi-
fied in this paper. These research foci are (1) global
change influence, particularly warming in the Arctic; (2)
increasing frequency and intensity of extremes and
changes in the spatial and temporal distributions of in-
clement weather conditions; (3) retreat of the cryo-
sphere; (4) changes in the terrestrial water cycle; (5)
changes in the biosphere; (6) pressures on agriculture
and pastoral production; (7) changes in infrastructure;
(8) societal actions to mitigate the negative conse-
quences of environmental change and to benefit from
the positive consequences; and (9) quantification of the
role of Northern Eurasia in the global Earth and socio-
economic systems to advance research tools with an em-
phasis on observations and models. The socio-economic
research challenges are integral to and a top priority for
these research foci.
Taking into account the numerous powerful feedbacks

between the Earth and human systems in Northern Eur-
asia, we propose to employ integrated assessment
models (IAMs) at the final stage of this global change
assessment. The purpose of these IAMs is to couple
Earth system component models with the result being a
functioning integrated Earth system model. Simultan-
eously, models of the human system that represent the
global economy, global trade, demography, technologies,
and user preferences will be incorporated. These will
provide support to economic and societal decision-
makers, so they are able to thoughtfully respond to
changing environmental conditions to support mitiga-
tion and adaptation efforts. Development of IAMs which
include detailed representation of all components of the
human-Earth coupled system to account for the exhaust-
ive number of feedbacks among these components is the
overarching goal of NEFI global change research. These
models will provide information and guidance to
decision-makers in their efforts to secure sustainable
and prosperous societal development and resilience-
based ecosystem stewardship in Northern Eurasia.
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Finally, Northern Eurasia presents a range of complex
human and environmental systems varying from modern
industrial societies to traditional indigenous cultures, all
undergoing significant social and environmental change.
Certainly, the continuing transformation of the former
USSR, China, Mongolia, and Eastern Europe represents
one of the largest and most profound social changes of
recent decades. Through NEFI, the work in Northern
Eurasia is moving to more effectively address shared
goals with interdisciplinary programs at the global level.
The research record that will stand as the basis from
which to launch NEFI is a logical consequence of the ac-
complishments of NEESPI. This situation and the need
for progress is critical. Now is the time to press forward
with this opportunity. The challenge lies before us.
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