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Abstract

One of the major challenges in the development of prostate cancer prognostic biomarkers is the cellular heterogeneity in
tissue samples. We developed an objective Cluster-Correlation (CC) analysis to identify gene expression changes in various
cell types that are associated with progression. In the Cluster step, samples were clustered (unsupervised) based on the
expression values of each gene through a mixture model combined with a multiple linear regression model in which cell-
type percent data were used for decomposition. In the Correlation step, a Chi-square test was used to select potential
prognostic genes. With CC analysis, we identified 324 significantly expressed genes (68 tumor and 256 stroma cell expressed
genes) which were strongly associated with the observed biochemical relapse status. Significance Analysis of Microarray
(SAM) was then utilized to develop a seven-gene classifier. The Classifier has been validated using two independent Data
Sets. The overall prediction accuracy and sensitivity is 71% and 76%, respectively. The inclusion of the Gleason sum to the
seven-gene classifier raised the prediction accuracy and sensitivity to 83% and 76% respectively based on independent
testing. These results indicated that our prognostic model that includes cell type adjustments and using Gleason score and
the seven-gene signature has some utility for predicting outcomes for prostate cancer for individual patients at the time of
prognosis. The strategy could have applications for improving marker performance in other cancers and other diseases.
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Introduction

Prostate cancer is the most frequently diagnosed male cancer

and the second leading cause of cancer death in men in the United

States [1]. Radical prostatectomy is an effective option when the

cancer is localized to the prostate gland [2,3]. However, at the

time of diagnosis it is difficult to determine which patients harbor

aggressive disease that will recur after treatments designed to cure

and which are indolent and suitable for prophylaxis and other

strategies. Recurring disease commonly leads to metastasis, the

major cause of prostate cancer death [4,5]. Therefore, a major

current issue in clinical management is determining reliable

prognostic indicators that distinguish indolent cancer from those

that will recur. Classification systems such as the Kattan

nomograms [6], D’Amico classification [7], and CAPRA (Cancer

of the Prostate Risk Assessment) score [8] that incorporate the

measurement of several preoperative and postoperative clinical

markers can be used to predict the probability of recurrence after

radical prostatectomy. However, prostate cancer patients with

similar clinical and pathological features cannot be differentiated

by these classification systems as individual risk is not accurately

taken into account. Extensive previous efforts have attempted to

identify gene expression changes between aggressive cases and

indolent cases [9–11]. Standard analytical approaches, such as t-

test, significance analysis of microarray (SAM) [12] and linear

models for microarray data (LIMMA) [13], have been applied to

these studies. Few reproducible and clinically useful prognostic

biomarkers have emerged. One reason accounting for such

inconsistency across studies might be the heterogeneity in terms

of cell composition, i.e., the tissue samples used for assays were

usually mixture of various cell types with varying percentages [14–

16] as well as genetic heterogeneity of the polyclonal and

multifocal nature of prostate cancer. Therefore, the observed

gene expression changes among samples may be due in part to the

difference in cell composition of these samples [16]. Nevertheless,
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such composition heterogeneity is rarely taken into account in

biomarker studies because there has been no straightforward way

to deal with such variation through regular gene expression

analyses.

Here we investigate whether varying cell type composition plays

an important role in the identification of differentially expressed

genes. We developed a Cluster-Correlation Analysis model [17]

that incorporates a multiple linear regression model to consider

cell type composition for samples with known composition. We

show that this method may be used to identify differentially

expressed genes between biochemical relapse and non-relapse

patient samples after prostatectomy. Applying this approach we

observed more than three hundred gene expression changes and

categorized these into predominantly tumor cell expressed genes

or stroma cell expressed genes. We identified a subset of seven

tumor cell expressed genes that exhibited the most significant

changes and used these to derive a classifier. The classifier was

then tested on two independent Data Sets with high accuracy and

sensitivity. A classification model combing this seven-gene

signature with Gleason sum had even better prediction perfor-

mance. Our results provide novel insights into the development of

prostate cancer prognosis.

Materials and Methods

Prostate Cancer Patient Samples and Microarray Analysis
Data Set 1 was used for training. It contains 136 post

prostatectomy frozen tissue samples obtained from 82 subjects

by written informed consent as approved by the UCI Office

Research Administration Institutional Review Board (IRB). The

IRB specifically approved this study annually (HS#2005-4806).

All tissues were collected at surgery and escorted to pathology for

expedited review, dissection and snap freezing in liquid nitrogen.

The ‘‘top’’ and ‘‘bottom’’ sections of manually microdissected (see

Manual Microdissection) frozen tissues were used for tissue

composition determination. The rest sections of manual micro-

dissected frozen tissues were used for RNA preparation and

microarray hybridization. The tissue composition (tumor epithelial

cells, stroma cells, epithelial cells of BPH and dilated cystic glands)

was determined by members of a team of four pathologists three of

which are Board Certified while the forth is equivalently certified

(UK, FRCP) using methods described previously [15]. The

boxplot of tissue percentage data was provided is shown in Figure

S3. The resulting Microarray data have been deposited in the

Gene Expression Omnibus (GEO) database with accession

number GSE8218 [16]. Out of the 136 samples, 80 samples were

from biochemical relapsed patients, 50 samples from biochemical

non-relapsed patients with follow-up from 3 to 80 months, and 6

samples from normal subjects. Conventional clinical markers such

as Prostate Specific Antigen (PSA), post-prostatectomy Gleason

sum, age, pathologic stage, were also collected and presented in

Table S1 and S2.

Data Sets 2 and 3 are independent test sets. Data Set 2

[GSE25136 [18]] contained 79 samples consisting of 42 bio-

chemical non-relapsed and 37 biochemical relapsed samples. Data

Set 3 [GSE3325 [19]] consists of 13 samples classified as 4 benign,

5 primary, and 4 metastatic prostate cancer samples. In our study,

we treated the 4 benign and the 5 primary prostate cancer samples

as biochemical non-relapse samples and 4 metastatic prostate

cancer samples as relapse samples. The microarray platforms for

Data Set 2 and 3 are Affymetrix U133A and U133 plus 2.0,

respectively. The tissue components information was estimated

through CellPred software [16] due to lack of cell type percentage

information for the two independent Data Sets. Post prostatecto-

my Gleason sums, Disease Free Survival Times, age, pathologic

stage were collected and presented in Table S1 and S2.

Statistical Analysis
Cluster-Correlation analysismodel. We developed a novel

Cluster-Correlation (CC) analysis procedure [17] for the de-

termination of differential gene expression in various cell types.

The CC analysis is implemented in 2 steps, i.e., an unsupervised

cluster step and a correlation step (Figure S1).

The unsupervised cluster step is based on two principal

assumptions. Assumption 1, the observed gene expression values

such as by an expression array is the sum of the contributions from

different types of cells that made up the sample (Eqn. 1).

yi DZi~k~b0zpiTbkTzpiSbkSzei, ð1Þ

Where Zi is the cluster indicator for the ith sample, piT and piS are

known tumor and stroma percentages [16] for the ith sample, bkT
and bkS are tumor and stroma cell-type coefficients as determined

by the multiple linear regression result for the kth cluster, and ei is
the residual error. Each cell-type contribution is in turn due to the

product of the percentage of the cell type present and the

individual cell type expression coefficient for a given gene.

Assumption 2, the individual cell type expression coefficients bT
and bS for a given gene may vary by the biochemical outcomes of

the sample, e.g., biochemical recurrence status. Based on these

assumptions, the patient samples form a mixture distribution

which can be analyzed with the EM algorithm (Expectation-

Maximization) [20]. The EM algorithm finds the optimal solutions

through an iterative computation. The results of the EM algorithm

are two folds. First, samples were assigned to several clusters

(unsupervised) based on the expression values of each gene.

Second, we are able to determine the extent of expression of a gene

by tumor cells and by stroma cells.

In the correlation step, we selected genes for which relapse and

non-relapse cases were well distinguished by the unsupervised

clustering procedure. For each gene, we formed a 262 contin-

gency table with one dimension as the observed relapse status and

the other dimension as the unsupervised clustering result (cluster

identity). A Chi-square test was used to calculate p value for each

gene (each contingency table). The genes with p-values ,0.005

were selected as highly correlated between unsupervised and

observed cluster membership.

For the significant genes identified in the correlation step, we

determined whether their expression is predominantly expressed

in tumor cells and stroma cells. Two restricted models with respect

to tumor cells and stroma cells were defined. In the tumor

restricted model, we assume only bT varies with cluster member-

ship. In the stroma restricted model, we assume only bS varies with
cluster membership. The two restricted models were then

compared using Bayesian information criterion (BIC) [21]. The

model with the smaller BIC score is selected. Differences of 2 or

more between two BIC scores is considered as a strong indication

favoring one model over another [22].

The CC analysis algorithm and test data set are available on

http://www.pathology.uci. edu/faculty/mercola/UCISpecsHo-

me.html and may be applied to expression Data Sets given the

knowledge of the cell type distribution.

Statistical tools in R. A modified quantile normalization

function ‘‘REFnormalizeQuantiles’’ [14] was used to perform

normalization for Data Sets 2 and 3 by referencing Data Set 1.

Because the probe sets for the U133A platform is the subset of

Seven-Gene Signature for Prostate Cancer Prognosis
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those from the U133 plus 2.0 platform, we carried out the

normalization for the common probe sets of the two platforms.

Significant Analysis of Microarray (SAM) [12] of the ‘‘siggenes’’

package, implemented in R, was used to select the most significant

genes obtained from the two-step cluster analysis.

Prediction Analysis of Microarray (PAM) [23] of the ‘‘pamr’’

package, implemented in R, was used to develop a prognostic

classifier using a training set and the performance of the classifier

was tested using independent sets. Data Set 1 was treated as

a training set, and Data Sets 2 and 3 were treated as test sets.

An R-based web service, CellPred [16] available at http://

www.webarray.org was used to predict the cell composition

percentage of Data Sets 2 and 3 in order to identify tumor cell

enriched samples for testing of the classifier. Samples for testing

were chosen from Data Sets 2 and 3 using the criterion of .50%

tumor epithelial cell composition according to CellPred.

Immunohistochemistry data analysis. In order to validate

the cell type specificity of RNA expression predicted here, we

compared the cell type expression intensity, bT, with the

corresponding protein expression in tumor and stroma cells as

observed in the Human Protein Atlas (HPA; www.humanprotein.

atlas.org). Each HPA antibody was applied to single histology

sections from each of three normal subjects and two histology

sections from each of 12 prostate cancer patients thus generating

three high-resolution images for the normal cases and 24 high-

resolution images from the 12 cancer patients. All images were

downloaded thereby providing all pixel values of three color

channels. The level of protein expression is summarized using the

scale: red, strong; orange, moderate; yellow, weak; and white,

negative as provided by HPA. Two observers, a board certified

pathologist (DAM) and a second observer (XC) further categorized

the level of protein expression by adding moderate to strong, weak

to moderate, and very weak according to the IHC color intensity

and summarized the seven levels using an numeric code: 5, strong;

4, moderate to strong; 3, moderate; 2, weak to moderate; 1, weak;

0.5, very weak; and 0, negative. The protein expression levels in

tumor and stroma cells can be estimated based on the numeric

code for each image. We collected data for 71 antibodies related to

49 tumor cell expressed genes (no HPA antibodies were available

for the remaining 19 genes). We then selected 28 differentially

expressed antibodies between normal subjects and prostate cancer

patients for the correlation study (antibodies with no protein

expression change between normal subjects and prostate cancer

patients are considered as non-differentially expressed antibodies).

The 28 selected antibodies are related to 23 tumor cell expressed

genes. For each antibody, the protein expression level in tumor

and stroma is averaged across the 12 patient samples. All 672 IHC

observations were used.

Results

Development of a Prognostic Classifier
For the Cluster Correlation analysis, we selected 130 arrays of

prostate cancer samples obtained from Data Set 1, i.e. omitting the

remaining six normal samples. We assumed that the EM

algorithm of the CC analysis model would categorize the 130

samples into two expression clusters and treated the two expression

clusters as putative low risk and high risk groups (cf. Figure S1).

Then the Chi-square test was performed to measure the

association between the putative risk groups and the observed

biochemical relapse and non-relapse groups. 324 genes were

identified with p-values less than 0.005. The 324 genes were

further categorized into 68 predominantly tumor cell expressed

genes and 256 predominately stroma cell expressed according to

the BIC scores of tumor and stroma restricted models.

In our current study, we focus on investigating the tumor cell

expressed genes because the majority of the samples available for

independent testing considered below are tumor-enriched samples.

The 68 tumor cell expressed genes were considered as candidate

genes to develop a prognostic classifier based on their differential

gene expression between the observed relapse and nonrelapse

groups and the application of SAM. However, it would not be

appropriate to perform differential expression analysis of the

tumor component directly with all the 130 samples of Data Set 1

because the estimated tissue components showed a large variation

of the cell type composition percentage among these samples,

including samples with almost exclusively stroma. So we first

selected 23 samples with tumor cell percentage greater than 50%.

Among 23 selected tumor cell enriched samples, 11 samples are

non-relapse samples and 12 samples are relapse samples. Using the

68 genes as input to SAM, we identified the 7 most significant

genes between relapse and non-relapse groups where each p value

was ,0.002 (Table 1). The overall procedure of developing the

prognostic classifier is presented as a flow chart in Figure S1.

To validate the prediction accuracy, a PAM-based Seven-gene

Prognostic Classifier was generated in order to perform a cross-

validation test using the tumor-enriched samples in Data Set 1. For

the cross validation, we randomly selected 9 relapse and 8 non-

relapse tumor cell enriched samples as a training set leaving the

remaining 3 relapse and 3 non-relapse samples as a test set. The

PAM-based classifier was then tested on all possible rounds (36300

rounds) of the cross-validation with an average accuracy of 74%,

specificity of 72%, and sensitivity of 77%. These results indicate

that the Seven-gene Prognostic Classifier has high prediction

accuracy, specificity, and sensitivity following the cross validation

test and might be efficient for predicting outcomes of prostate

cancer patients from independent Data Sets.

Independent Testing of the Seven-gene Prognostic
Classifier
A major obstacle in developing clinically useful prognostic

profiles for prostate cancer has been a lack of generality across

data sets. We therefore tested the Seven-gene Prognostic Classifier

on samples drawn from two independent Data Sets (Materials and

Methods). However we previously observed that several of the

major available expression analysis data sets are very heteroge-

neous with respect to cell-type composition [16]. Test samples

were selected on the basis that they were composed of at least 50%

tumor cell content as judged by application of CellPred [16]. Forty

two and seven tumor cell enriched samples in Data Sets 2 and 3

respectively met the criterion. Each case was then categorized by

PAM using the 7-gene Prognostic Classifier. Table 2 shows the

results of the classification. The overall accuracy, specificity, and

sensitivity of the two test Data Sets were 71%, 65%, and 76%. To

further evaluate the power of the prognostic classifier, we

performed Kaplan-Meier survival analysis (Figure 1) (the Ka-

plan-Meier survival analysis was applied to Data Set 2 only

because Disease Free Survival Times is not available for Data Set

3. The comparison shows that the median relapse-free survival of

the patients in low risk group defined by the seven-gene prognostic

classifier was 35 months. 73% of patients in the high risk group

had disease recurrence within 5 years, whereas 63% of patients in

the low risk group remained relapse-free for at least 5 years. The

estimated hazard ratio for the low risk and high risk group was 2.6

with significant p value of 0.035 (logrank test).

We then examined whether any of the various clinical outcome

values, Gleason score, PSA, age, volume, T stage, N stage, and M

Seven-Gene Signature for Prostate Cancer Prognosis
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stage, had prognostic values that enhanced the performance of the

classifier. The seven genes together with each clinical outcome

were developed as new classifiers. In PAM analysis, the

contributions of clinical outcome and seven genes are the evenly

weighted. Only the post prostatectomy Gleason sum significantly

improved the results with a substantial decrease of p value from

0.035 to 0.009 by the logrank test. The inclusion of Gleason sum

with the seven-gene signature in the testing procedure using the

independent Data Set 2 improved the accuracy and sensitivity to

74% and 84% for Data Set 2 (only Data Set 2 was used for this

analysis due to the unavailability of Gleason sum for Data Set 3).

Two more observed relapse patients were categorized into the

high risk group. The Kaplan-Meier survival analysis (Figure 2)

shows that the median survival of the patients in the high risk

group defined by the seven-gene with post prostatectomy Gleason

sum prognostic classifier was 34.6 months. 75% of patients in the

high risk group had disease recurrence within 5 years, whereas

71% of patients in the low risk group remained relapse-free for at

least 5 years. The estimated hazard ratio for the low risk and high

risk group was 3.8 with a significant p-value of 0.009.

Finally we performed a multivariate Cox proportional hazards

regression analysis of the prediction made by our classifier in

combination with the clinical variables of age, pre-op PSA,

pathological stage, and surgical margin but not with the Gleason

sum which is included in our classifier. Only the p-value of the

prediction by our classifier approached the significant level

(p = 0.0686). The p-values of other ‘predictors’ are greater than

0.1. The results indicated that our classifier had better performance

in risk stratification.We added this result to text on page 12–13. The

result indicated that our classifier can better stratify risk.

Validation of 23 Protein Expressing Genes of the 68
Tumor Gene Set
In order to validate the methods used here for the identification

of tumor cell-specific expression, we compared the cell type

specific expression found for RNA, i.e., bT and bS, with that

observed for the respective protein expression in tumor and stroma

cells provided by the Human Protein Atlas (HPA) as a test of

whether the cell specific assignments of expression data were

accurate. All 68 genes identified here as tumor cell specific were

examined. We expected that the 68 genes identified here as tumor

cell specific would exhibit protein expression that is more highly

correlated with observed protein expression in tumor cells than in

stroma cells. The protein expression profiling was carried out using

the observed immunochistochemical (IHC) staining values ob-

served in HPA as described (Materials and Methods). We collected

data of 75 antibodies related to 49 of 68 tumor cell expressed genes

(no antibodies for the remainder 19 genes) and then selected the 23

of the 49 genes that exhibited differentially expressed antibody

intensities between normal subjects and prostate cancer patients

for the correlation study. For each antibody, the protein expression

level in tumor and stroma is averaged across the 12 patient

samples. In all 672 IHC observations were used.

The RNA gene expression contribution from tumor and stroma

was obtained from the CC analysis model for the 23 tumor genes.

In the correlation study, we measured the two correlations: gene-

protein expression correlation in tumor and gene-protein expres-

sion correlation in stroma. The results showed that the tumor

correlation yielded a Pearson correlation coefficient of 0.41 with

significant p value of 0.03 while the stroma correlation was

insignificant with correlation of 20.02 (p value of 0.92). For

comparison, a recent review paper [24] describing the correlation

between protein and gene expression for various organisms

including human showed that the correlation of 0.41 is compa-

rable to the highest correlation observed for homo sapiens (0.46,

Table 1. Seven-gene signature for prostate cancer prognosis.

Transcript name Gene Gene product name FC

221523_s_at RRAGD Ras-related GTP binding D 0.45

214527_s_at PQBP1 polyglutamine binding protein 1 2.08

208490_x_at HIST1H2BC///HIST1H2BE///HIST1H2BF///
HIST1H2BG///HIST1H2BI

histone cluster 1, H2bg///histone cluster 1, H2bf///histone cluster 1,
H2be///histone cluster 1, H2bi///histone cluster 1, H2bc

1.88

207016_s_at ALDH1A2 aldehyde dehydrogenase 1 family, member A2 0.49

213293_s_at TRIM22 tripartite motif-containing 22 0.54

209487_at RBPMS RNA binding protein with multiple splicing 0.49

221667_s_at HSPB8 heat shock 22 kDa protein 8 0.44

doi:10.1371/journal.pone.0045178.t001

Figure 1. Survival analysis for the seven-gene Classifier. Kaplan-
Meier estimates of survival time of 42 independent patients in Data Set
2 (GSE25136) according to the seven-gene Classifier.
doi:10.1371/journal.pone.0045178.g001

Seven-Gene Signature for Prostate Cancer Prognosis
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p,0.001). Figure S2 shows a scatterplot of protein expression

versus gene expression of our data. The correlation study

demonstrates that the 23 informative genes identified by our

proposed CC analysis model are indeed accurately identified as

tumor cell expressed genes.

Discussion

We hypothesized that more reliable cancer classifiers may be

identified if cell-type heterogeneity was taken into account. We

have developed a novel Cluster-Correlation analysis where the

variation caused by cell-type distribution is controlled through

multiple linear regression (MLR). The proposed CC analysis is

a new gene differential expression analysis. There are two major

features of the analysis (Figure S1). First, we incorporated known

cell-type percentage into the analysis, avoiding false identification

merely caused by varied cell type composition between tissue

samples. Second, we performed unsupervised clustering, avoiding

direct use of the biochemical recurrence information which is

often not definitive due to data censoring. The two exclusive

features make CC analysis better than traditional gene expression

analyses. In a previous study [17] we compared the CC analysis

model with traditional gene differential expression analyses such as

by SAM and LIMMA. The simulation results showed that the new

model outperformed the traditional gene differential expression

analyses in terms of sensitivity and specificity. In addition, when

these methods were applied to prostate cancer data, the CC

analysis can identify genes that are significantly enriched or

associated with prostate cancer related pathways such as the wnt

signaling pathway, ECM-receptor interaction, focal adhesion and

TGF- b signaling pathway [17].

By using the CC analysis model, we identified 68 tumor cell

expressed genes treated as candidate clinical biomarkers for

further investigation. The seven most significant tumor cell

expressed genes were identified by analyzing tumor cell enriched

samples using SAM. These seven genes were used in PAM to form

a classifier, which was subsequently validated on two independent

Data Sets. For these tests, we utilized test samples with .50%

tumor cell content as estimated by CellPhred. It is impossible to

get pure tumor samples due to the cell type heterogeneity intrinsic

to most Gleason histology patterns and due to varying degrees of

stroma and other elements with tissue samples selected for

microarray analysis of ‘‘tumors’’. By comparing the prediction

accuracy of selected samples with various tumor cell percentages

(samples with .10% tumor cell to .50% tumor cell), we

Table 2. Comparison of PAM-based gene classifier in two independent tests.

Date Set Gene classifier Sensitivity Specificity Accuracy

GSE25136 Seven-gene signature 76% (19 of 25) 59% (10 of 17) 69% (29 of 42)

Bismar gene signature 96% (24 of 25) 0% (0 of 17) 57% (24 of 42)

Glinsky gene signature 1 56% (14 of 25) 59% (10 of 17) 57% (24 of 42)

Glinsky gene signature 2 100% (25 of 25) 0% (0 of 17) 60% (25 of 42)

Glinsky gene signature 3 100% (25 of 25) 0% (0 of 17) 60% (25 of 42)

GSE3325 Seven-gene signature 75% (3 of 4) 100% (3 of 3) 86% (6 of 7)

Bismar gene signature 50% (2 of 4) 0% (0 of 3) 29% (2 of 7)

Glinsky gene signature 1 100% (4 of 4) 100% (3 of 3) 100% (7 of 7)

Glinsky gene signature 2 100% (4 of 4) 0% (0 of 3) 57% (4 of 7)

Glinsky gene signature 3 100% (4 of 4) 0% (0 of 3) 57% (4 of 7)

GSE25316 Seven-gene signature 76% (22 of 29) 65% (13 of 20) 71% (35 of 49)

+ GSE3325 Bismar gene signature 90% (26 of 29) 0% (0 of 20) 53% (26 of 49)

Glinsky gene signature 1 62% (18 of 29) 65% (13 of 20) 63% (31 of 49)

Glinsky gene signature 2 100% (29 of 29) 0% (0 of 20) 59% (29 of 49)

Glinsky gene signature 3 100% (29 of 29) 0% (0 of 20) 59% (29 of 49)

doi:10.1371/journal.pone.0045178.t002

Figure 2. Survival analysis for the seven-gene Classifier with
Gleason sum. Kaplan-Meier estimates of survival time of 42
independent patients in test Data Set 2 (GSE25136) according to the
seven-gene Classifier with the Surgical Pathology-determined Gleason
sum. The Gleason sum variable has the same weighting as each gene in
the determination of classification.
doi:10.1371/journal.pone.0045178.g002
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PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45178



determined that the best prediction was obtained when the tumor

cell percentage of a given sample was greater than 50%.

Therefore, the accuracy, sensitivity, and specificity of our in-

dependent testing result is likely an underestimate of the performance

that would be obtained using for purer tumor samples.

The major limitation of most previous biomarker detection

studies is that a single clinical Data Set was used for both signature

discovery and validation. Recently, the first study to perform

signature discovery and validation on independent data [25] used

a recurrence algorithm that resulted in a sensitivity of 68%. The

sensitivity was improved by incorporating PSA but only if the

segregation of relapse and non-relapse subgroups was defined in

the test data, which is similar to the strategy of previous studies –

discovery and validation on the same clinical Data Set. In contrast,

our seven-gene signature was first discovered by training data and

validated on independent Data Sets.

To further assess the performance of our seven-gene signature, we

carried out a PAM-based prediction comparison between our gene

signature and other gene signatures identified in other studies.

Table 2 shows the comparison of five different gene signatures – our

seven-gene signature, the Bismar gene signature [26], and the

Glinsky gene signatures 1–3 [25]. The results showed that our seven-

gene signature provided the best accuracy and the best balance

between sensitivity and specificity in independent tests.

In order to provide a comparison with an independent and

accurate predictor, we also utilized a classification system CAPRA

score [8] to determine the risk of recurrence for Data Set 1. The

result showed that the accuracy of CAPRA score is only 54%,

which is not comparable to the accuracy of our signature. This

discrepancy may represent distinction in features of our population

compared to the population used in the development of the

CAPRA Score [8].

In conclusion, the seven-gene prognostic signature is closely

associated with biochemical recurrence in patients after radical

prostatectomy. This signature suggests practical applications such

as stratification of patients according to risk in the trials of

adjuvant treatment and identification of targets for the de-

velopment of therapy for prostate cancer progression.
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