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Abstract
Assuming hydrogen is charge neutral, CPT invariance demands that anti-
hydrogen also be charge neutral. Quantum anomaly cancellation also demands
that antihydrogen be charge neutral. Standard techniques based on measure-
ments of macroscopic quantities of atoms cannot be used to measure the
charge of antihydrogen. In this paper, we describe how the application of
randomly oscillating electric fields to a sample of trapped antihydrogen atoms,
a form of stochastic acceleration, can be used to place experimental limits on
this charge.

Keywords: antihydrogen, charge anomaly, CPT

1. Introduction

In 2010, antihydrogen atoms were trapped at CERN [1–4]. Since then, CERNʼs ALPHA
collaboration has reported initial experimental results on the two most commonly discussed
symmetry tests with antihydrogen: spectral tests of CPT [5]; and gravity freefall tests of the
weak equivalence principle [6]. Future experiments are expected to obtain much more precise
results [6–12].

A less commonly discussed test of fundamental symmetries concerns the electric charge of
antihydrogen. Assuming that atomic hydrogen (H) is itself charge neutral, CPT demands that
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antihydrogen also be charge neutral. While there do not appear to be extraordinarily precise
measurements on H itself, other normal-matter atoms and molecules are known to be neutral to
remarkable precision [13]: to about e10 21− for diverse species such as He, H2, and SF6, where e
is the elementary charge. The methods used in these studies are unsuitable for antihydrogen as
they require macroscopic quantities of atoms or molecules; to date, only about 500
antihydrogen atoms have been trapped and detected, and there are no prospects for trapping
macroscopic quantities. Charge neutrality of antimatter atoms, as well as of matter atoms, is also
expected from the condition for quantum anomaly cancellation, which is required for theoretical
consistency in quantum field theory [14].

ALPHA recently reported [15] a bound on the antihydrogen charge Qe of
Q ( 1.3 1.1 0.4) 10 8= − ± ± × − , where the first error arises from counting statistics, and the
second error is estimated based on systematic effects. This bound was based on a search for the
deflection of putatively charged antihydrogen atoms by an applied electric field. Here we
describe a different technique, related to stochastic acceleration [16, 17], to measure the charge.
This technique uses randomly time-varying electric fields to eject putatively charged
antihydrogen atoms from an ALPHA-style trap. Current measurements using this technique
[15] set a bound on Q of about 2 10 7× − , an order of magnitude looser than that found by the
deflection technique, but this stochastic acceleration technique can easily be extended to much
better precision, perhaps ultimately reaching 10 12− .

2. Apparatus

ALPHA traps antihydrogen atoms by producing and capturing them in a minimum-B trap [18].
The trap confines those anti-atoms whose magnetic moment Hμ ¯ is aligned such that they are
attracted to the minimum of the trap magnetic field B, and whose kinetic energy is below the
trap well depth, B B( )H Wall Centerμ | | − | |¯ . In ALPHA (see figure 1(a)), this magnetic minimum is
created by an octupole magnet which produces transverse fields of magnitude 1.54T at the trap
wall (R 22.3Wall = mm), and two mirror coils which produce axial fields of 1T at their centers.
The mirror coil centers are symmetrically located at distances z 137= ± mm from the trap
center at z = 0 (see figure 1(b)). These fields are superimposed on a uniform axial field of 1 T
produced by an external solenoid [19, 20]; taken together, they create a trap of depth 540 mK
[15].

The general methods by which anti-atoms were produced from antiprotons and positrons,
and then captured in the ALPHA trap, are described in [1–3, 21]; in this article we concentrate
only on the last two phases of the ALPHA experiment, where anti-atoms were first held in static
magnetic fields for times up to 1000 s, and then released from the minimum-B trap by gradually
turning off the octupole and mirror fields. The escaping anti-atoms were then detected with
about 60% efficiency [22] when they annihilated on the trap wall.

3. Charged particle deflection experiments

In the previously reported deflection experiments [15], the anti-atoms were subjected to electric
fields similar to those derived from the potential shown in figure 1(c). Together with the
magnetic field, these electric fields form a well in which the on-axis potential energy of an anti-
atom with a putative charge Qe is given by
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U z B z
QeE

k
z( ) ( ) , (1)

b
Hμ= −¯

where all energies are specified in units of kelvins, 0.67Hμ =¯ K/T is the normalized
antihydrogen magnetic moment [5], kb is the Boltzmann constant, and where we approximate
the electric field inside the trap by a constant value E. As B(z) has a minimum at z = 0, this well
also has a minimum at z = 0 when Q = 0. Consequently, the annihilations that result from the

Figure 1. Experimental summary. (a) A schematic of the antihydrogen production and
trapping region of the ALPHA apparatus, showing the cryogenically cooled cylindrical
Penning–Malmberg trap electrodes, and the mirror and octupole magnet coils. The
ALPHA positron source (not shown) is towards the right, and the Antiproton Decelerator
(not shown) is towards the left. (b) The on-axis magnetic field B as a function of z. (c)
Typical on-axis electrostatic potentials used in the prior [15] deflection-style
experiments. (d) Values of the electrostatic potential at r = 0 (black solid line) and at
r R0.6 13.6Wall= = mm (black dashed line) for a possible stochastic acceleration
measurement. Here, biases alternating between 350 V± are applied to consecutive
electrodes in the region between the magnetic field maxima; all other electrodes are kept
at 0 V. Also shown are the r = 0 and r R0.6 Wall= potentials when pairs of contiguous
electrodes are joined and alternated at 350 V± (orange dashed line and orange dashed-
dotted line). (e) Axial component of the electric field for the potentials in (d). (f) Radial
component of the electric fields for the potentials in (d), evaluated at r R0.6 Wall= .
Graphs (e) and (f) use the same line identification scheme as (d).
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last-phase magnet shutoff will be centered around z = 0. If Q 0≠ , then the well minimum will
shift [15] by an amount

z QE , (2)β∝Δ

where we approximate the magnetic field around the minimum as B z B z( ) 0
2β= + . To set

the deflection-based Q bound quoted above [15], ALPHA used measurements of the
experimental z〈 〉Δ, coupled with extensive computer simulations to determine equation (2)ʼs
scaling constant.

The scaling in equation (2) suggests three methods of tightening the bounds on Q.
(i) increasing E. Unfortunately, arcing and other experimental concerns limit any increase
in E to factors in the range of 2 to 4. (ii) Decreasing β. The increase in B(z) going from the
trap center to the trap axial ends, which is proportional to β, sets the trap depth. Currently,
the trap depth of 540 mK cannot be lowered without anti-atoms escaping because many of
the anti-atoms are only shallowly trapped [2, 23]. Laser cooling of the trapped anti-atoms
[24] has the potential to lower the anti-atom temperature to about 20 mK, which would
allow us to lower the post-cooling trap well depth to perhaps 30 mK without losing too
many anti-atoms; β would decrease correspondingly. (iii) Obtaining a better experimental
determination of the measured z〈 〉Δ. The error in z〈 〉Δ is set by counting statistics. ALPHA
utilized a sample of 386 anti-atoms collected over two years for its determination [15] of
Q. As the statistical error scales as the inverse square root of the number of samples, it
would be difficult to decrease this error without significantly increasing the trapping rate.
Taken together, these improvements have the potential to tighten the bound on Q by less
than a factor of one hundred. Consequently, it is worth investigating other methods to
determine Q.

4. Stochastic acceleration methodology

4.1. Charged particle ejection

The electric fields E effectively remove any inadvertently mirror-trapped antiprotons from the
system (cf table 1 of [23]). However, other particles, such as putatively charged antihydrogen
atoms, can also be ejected, and at a charge much less than the unit charge. For the potential in
the figure 1(c), the wells predicted by equation (1) will cease to exist for any anti-atom with a
Q 2 10 6| | ≳ × − . Further, anti-atoms with a charge below that required for the well to disappear,
i.e. Q0 2 10 6< | | < × − , will still be accelerated by the application of the electric fields. They
can be ejected if the extra increment of energy they gain is sufficient for them to climb over the
trap walls.

In the previously reported experiment [15], the fields were not static; they cycled between
potentials similar to the two shown in figure 1(c). Altogether, the fields underwent nine
transitions. (The first four transitions used half-strength fields). The transition timescales
(t 2 ms¯ ≈ ) were short compared to the anti-atom orbit timescales (typically 10 ms≲ ), and the
orbit timescales were comparable to the time intervals between transitions (12 ms). Thus, the
accelerations at each transition were non-adiabatic, and, at each transition, the anti-atoms
received a kinetic energy ‘kick.’ These kicks were effectively random; an individual kick might
have increased or decreased the anti-atomʼs energy. Depending on Q and the vagaries of the
stochastic process, the kicks might give the anti-atoms enough energy to escape the well. This
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process is illustrated by the simulation results in figure 2. Large numbers of anti-atoms were
ejected for large Q, small numbers for small Q, and very few anti-atoms were lost when Q = 0.
As approximately half of the simulated anti-atoms were lost at Q 2 10 7= × − , but
experimentally ALPHA observed trapped anti-atoms at the end of these cycles, ALPHA set
an experimental limit in the neighborhood of Q 2 10 7| | < × − for the anti-atom charge [15].
However, the absence of an absolute trapping rate measurement makes setting a precise limit
impossible for this current dataset using this methodology.

4.2. Experimental design

We propose [15, 25] to remedy this problem, and make an improved determination of Q, by
measuring the trapping rate with and without the application of stochastic electric fields.
Specifically, we would measure the number of anti-atoms remaining in the trap (by turning off
the trapping magnetic fields) per trapping attempt, or trial, after a set of acceleration cycles were
applied for a time ta, or else after the trap was kept quiescent (no accelerating fields) for the
same time ta. By ensuring that both types of trials hold the anti-atoms for equal times, we would
take into account any effects from vacuum annihilation or other anti-atom loss mechanisms. To
ameliorate the effects of long time drifts, we would alternate the two types of trials. If we were
to observe that the acceleration-on rate was lower than the acceleration-off rate, we could use
analytic or numerical means to estimate the Q that would cause the observed difference. If, as is
more likely, we observe no statistically significant difference between these rates, we could use
these same means to calculate the Q that would have caused a measurable difference; a good
criterion would be to find the critical Q which would cause half the anti-atoms to be lost. In
either case, this stochastic acceleration methodology would place a value or bound on Q.

Figure 2. Clearing simulation results. Simulated axial annihilation locations z versus
annihilation time for different values of Q: (a) Q 2 10 7= × − , (b) Q 3 10 8= − × − , and
(c) Q = 0. Each dot represents one annihilation. The colored vertical lines indicate the
start time for different manipulations: the half-strength clearing cycles begin at the
leftmost green line, the full-strength clearings cycles begin at the middle blue line, and
the final E field (used in the deflection measurement) is applied at the magenta rightmost
line. The multiple clumps in (a) and (b) reflect multiple oscillations of the anti-atoms in
the potential well of equation (1). The very small losses in (c) are due to the gradual
depopulation of the quasi-trapped states [1, 23, 26]. In (a), 54% of the charge is lost
from t = 0 to the end of the plot; in (b), 2.4% of the charge is lost; in (c), 0.3% of the
charge is lost.
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4.3. Approximate determination of Q

Let us take Φ±〈 〉Δ to be the typical electrical potential change experienced by an anti-atom
during one kick. Such a potential change would result in a center-of-mass kinetic energy change
of E QeKΔ Φ∼ ± 〈 〉Δ for an anti-atom with a charge Q. Following the classic random walk
scaling, the typical total energy gained after N kicks would be on the order of Q e NΦ| | 〈 〉Δ . If
this energy exceeds the trap depth UT, a condition approximately met if

Q
U

e N

1
, (3)T

Φ
≳

Δ

then the kicks will drive a typical anti-atom of charge Q out of the trap.

4.4. Advantages of stochastic acceleration

This stochastic acceleration methodology has several advantages over the deflection
methodology employed in [15, 25] and could ultimately lead to a much better bound. First,
instead of searching for a small average deflection, which requires hundreds of anti-atoms, the
stochastic acceleration methodology relies on the simpler observation that anti-atoms have
survived the acceleration cycles; thus, the test can reach statistical significance with only a few
tens of anti-atoms. Second, the deflection methodology requires that the electric field
everywhere point in the same direction over the entire length of the trap. The stochastic
acceleration methodology has no such requirement, and the potential can be inverted over a
short distance, resulting in much larger electric fields. For instance, if the potential oscillated
between that shown in figure 1(d), and its inverse, the average change in the field would be
approximately 10 V mm 1− , a 20-fold increase over the fields obtained from the potential in
figure 1(c). Third, and most important, we can improve the sensitivity of the measurement by
taking advantage of the N scaling of equation (3) on the number of acceleration cycles. As
anti-atoms can be held for a very long time [2], N can be very large. We note, however, that this
methodology does not yield the sign of any observed putative charge.

4.5. Numerical determination of Q

While we can analytically estimate the critical Q from equation (3), our estimate would rely on
a parameter, Φ〈 〉Δ, which can only be approximated analytically. Furthermore, the random-
walk-in-energy-space model on which equation (3) is based has faults, most obviously that it
would allow energies to become negative. Thus, we use numeric simulations to obtain a more
precise estimate of the critical Q. These simulations model the anti-atom equation of motion,

[ ]M
t

t Qe t t
r

B r E r r B r
d

d
( , ) ( , ) ( , ) , (4)

2

2 H μ= · + + ˙ ×¯
⎡⎣ ⎤⎦

where r is the center of mass position of the anti-atom, and tE r( , ) and tB r( , ) are the position
and time dependent electric and magnetic fields. For the low-field-seeking anti-atoms modeled
here, the magnetic moment Hμ ¯ and B are anti-aligned. Detailed descriptions of similar
simulations and various benchmarking tests have been given in prior publications [6, 15, 23].

The results of a typical simulation are shown in figure 3. The simulation ran for t 100 sa = for
anti-atoms with a putative charge of Q 5 10 10= × − , and with the 350 VΦ = ±Δ accelerating
potentials shown in figure 1(d). On average, the potentials were inverted every t 0.3 ms¯ = , but
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these switching times were randomized with a standard deviation of 60tσ μ=¯ s. (The reason
for the randomization, which follows a uniform distribution, will be discussed later.) During the
100 s that the simulation ran, approximately 93% of the anti-atoms were forced out of the trap and
annihilated on the trap wall. Figure 3(a) shows the z locations of these annihilations. Most of the
anti-atoms annihilated near the axial ends of the trap; either on the axial step present at the end,
or in the potential well ‘holes’ (see figure 4 of [27] or [28]) created by the interaction between
the octupole andmirror coils. As expected, figure 3(b) shows that deeply trapped anti-atoms (anti-
atoms with relatively little initial kinetic energy) take the longest to acquire enough energy
to escape the trap. figure 3(c) plots the cumulative escaped fraction as a function of time. At about
t 11.6 s1/2 = , half the anti-atoms have escaped. As the number of simulated anti-atoms is large
( 3000∼ ), the error in determining t1/2 is not large; using Greenwoodʼs formula [29, 30],
we can calculate the interval, t10.4 s 12.8 s1/2< < , where the true t1/2 can be found with at least
95% confidence.

As shown in figure 4, a large number of simulations similar to those in figure 3 can be
compiled into a parameter scan showing the fraction of anti-atoms that have escaped as a
function of their charge Q for a fixed ta. Alternately, a simulation parameter survey can be used
to find t1/2 as a function of Q, and the results compiled into figure 5.

From figure 5, we find numerically that Q and t1/2 scale as Q t( )1/2
0.56∝ − . This differs

slightly from the diffusive prediction of equation (3), which suggests Q t( )1/2
0.50∝ − . Part of the

difference between these two scaling relations stems from the hard upper energy cutoff assumed
in equation (3); in the analytic calculation, anti-atoms are assumed to annihilate immediately on
reaching the magnetic well depth UT. The simulations, however, show that there exist quasi-
stable orbits with total energy greater than UT. Anti-atoms on these orbits will remain trapped
for some time [2, 23, 26]. Evidence for these ‘quasitrapped’ anti-atoms can be seen in
figure 3(b), which shows that the final energies of many simulated anti-atoms are well above the

Figure 3. Typical simulation results. Stochastic acceleration simulation results for
Q 5 10 10= × − , 350 VΦ = ±Δ , t 0.3 ms¯ = , and t/ 0.2tσ ¯ =¯ . (a) The axial location z of
the annihilations shows that anti-atoms tend to escape near the octupole ends; particles
shown at t 100 s= correspond to anti-atoms that remain trapped after the end of the
acceleration cycles. (b) Shows the initial (blue pluses) and final (red xs) energies of the
anti-atoms when they annihilate on the trap wall. (c) Shows the cumulative distribution
function (CDF) of the probability of escape of the anti-atoms.
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trap depth of U 540 mKT = . If the simulations are prematurely halted when the anti-atoms’
energies exceed UT rather than when they annihilate on the trap wall, the simulation scaling
changes to Q t( )1/2

0.52∝ − , significantly closer to the analytic prediction [25]. The remaining
difference may be due to the lack of a zero bound in the analytic calculation, and the existence
of quasi-periodic orbits in the simulation.

Figure 4. Escaped fraction. Fraction of anti-atoms with assumed charge Q that have
escaped for t 500 sa = (black circles) and t 100 sa = (dark red squares.) The error bars
are determined from the CDF bounds in figure 3(c) and establish a 95% confidence
interval for the true escape probability. The other simulation parameters were

350 VΦ = ±Δ , t 0.3 ms¯ = , and t/ 0.2tσ ¯ =¯ .

Figure 5. Stochastic scaling. The acceleration time t1/2 for which half the anti-atoms
would be expelled as a function of Q, as found by simulation. Simulations are shown for
our standard trap conditions (black solid lines and diamonds; U 540 mKT = ,
t 0.3 ms¯ = ), with laser cooling (red dashed lines and circles; U 30 mKT = ,
t 1.3 ms¯ = and an anti-atom temperature T 20 mK= ), and with laser and adiabatic
cooling (blue dot-dashed lines and squares; U 3 mKT = , t 4 ms¯ = and an anti-atom
temperature T 2 mK= ). In all cases, the other simulation parameters were

350 VΦ = ±Δ , and t/ 0.2tσ ¯ =¯ , and the statistical error at each point is smaller than
the point symbol. Also shown are lines scaling as Q t( )1/2

0.56∝ − , which describes the
relationships between Q and t1/2. The critical Q can be found be setting t1/2 to the total
acceleration time ta, and then finding the corresponding Q.
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4.6. Comparison of stochastic acceleration with resonant and autoresonant acceleration

Since our stochastic acceleration scales with the square root of the number of acceleration
cycles, it is not as efficient as resonant or autoresonant (swept frequency) acceleration [31].
Unfortunately we cannot use either of the latter approaches. Resonant acceleration, i.e. simply
driving the anti-atoms with an electric field that oscillates at their predicted bounce frequency,
requires that a single frequency be resonant with all anti-atoms. While the anti-atoms do
undergo an approximately sinusoidal oscillation in z (see figure C1(a) in [23]), the frequency of
this oscillation is not unique. Numerical simulations show that the oscillation frequency
increases with energy; the system is ‘stiff.’ This would appear to make the system a candidate
for an autoresonant drive. However, autoresonance is best at capturing and exciting initially
stationary particles [32]. In our case, the anti-atoms are already excited and few would be
captured. Moreover, because of exchanges between parallel and perpendicular energy, the axial
oscillation frequency exhibits drifts and shifts (see figure 6 for examples in an undriven system).
Any anti-atoms that had been captured in a trapping bucket would quickly escape. While we
have made no formal study, the longitudinal motion generally appears to be chaotic in the long
term.

4.7. Stochasticity

Stochastic acceleration is essentially a random walk process, and thus requires an element of
randomness in the relation between the drive frequency and oscillation frequency. In many
cases, the already-present axial frequency shifts are sufficient. However, figure 6 shows that
there can be long lasting periods of frequency stability, particularly for low energy anti-atoms,
and the anti-atoms may not heat during these periods. To introduce additional randomness into
the system, we modulate t̄ by a random function with uniform distribution and standard
deviation tσ¯. Figure 7 plots the relation between t1/2, the median escape time and tσ¯. It shows that
while stochastic acceleration occurs even in the absence of this modulation, the escape time t̄
decreases as the modulation tσ¯ increases, reaching a plateau once tσ¯ is approximately 20% of the
switching time t̄ . Note that once randomization is introduced in the switching times, it is not
necessary to randomize the voltage levels between which the electrode potentials switch. On

Figure 6. Axial oscillation frequency. Typical axial oscillation frequencies for undriven
anti-atoms. Note that while the frequency generally appears chaotic, there are periods of
stability. This is particularly true for the frequency of low energy anti-atoms as is shown
by the green, bottom curve in this graph.
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average, doing so only reduces ΦΔ, thereby decreasing the energy kicks that the anti-atoms
receive, and reducing the acceleration.

4.8. Switching time

To obtain the shortest mean escape times, the switching time t̄ must be optimized to obtain the
best bound on Q. In an experiment running for a fixed total time ta, the number of inversions N
is inversely proportional to t̄ , thus suggesting a short t̄ . However, if t̄ is too short, anti-atoms
will not have time to respond to the electric field before the electric field is inverted, and the size
of the energy kick for each inversion will diminish. The optimal switching time is expected to
be comparable to the time it takes an anti-atom to traverse the distance between two oppositely
biased electrodes. For an anti-atom trapped near the top of a U 540 mKT = well and for the
standard electrode configuration, this time is about 0.3 ms. Note that this timescale is much
shorter than the orbital periods predicted by figure 6, as here the anti-atoms need only traverse
the distance between field reversals, typically between adjacent electrodes, not the entire trap.
(In the experiments to date, discussed in the Introduction, the fields did extend across the entire
trap, and the relevant time scale was the orbital bounce period.)

This optimal time is confirmed in figure 8, which graphs the relation between t1/2 and t̄ .
The optimal (shortest) t1/2 depends on the experimental configuration. ForU 540 mKT = and the
standard electrode configuration, the optimal t̄ is approximately 0.3 ms. As expected,
electrically joining adjacent electrodes (see figure 1(d)) doubles the optimal t̄ . Cooling the
anti-atoms by a factor of 100 increases the optimal t̄ by the expected factor of around 10. This is
unavoidable, but unfortunate because it decreases the number N of kicks that fit into a fixed
acceleration time ta. However, the benefits from the lower trapping potential outweigh the
disadvantages of the decreased number of kicks, and cooling is, on net, beneficial (see figure 5).
Fortunately, for a particular configuration, one does not have to hit the optimum exactly. For
U 540 mKT = and the standard electrode configuration, for example, the escape time t1/2 varies
by an acceptable factor of 2 over a mean switching time t̄ range that varies by a factor of around
3.

Figure 7. Switching time randomization. Median escape time t1/2 as a function of
normalized drive randomization time t/tσ ¯¯ , for Q 1 10 9= × − , 350 VΦ = ±Δ ,
t 0.3 ms¯ = .
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5. Conclusion

In earlier work, ALPHA established [2] that antihydrogen can be trapped for at least 1000 s;
with expected improvements to the vacuum, it is not unreasonable to assume that anti-atoms
could be trapped for 10 000 s. This would allow time for N 107≈ acceleration cycles;
simulations (see figure 5) then suggest that we could bound Q| | to 3 10 11× − . With laser cooled
anti-atoms at 20 mK [24] we could reduce the trapping potential to perhapsU 30 mKT = , while
still retaining most of the anti-atoms, and the bound would drop to 3 10 12× − . Adiabatic
expansion cooling of the anti-atoms might reduce their temperature by a further factor of ten,
yielding a bound around 10 12− . This bound approaches the limit where antihydrogen
polarization effects, studied in [25], need to be taken into account. Other systematic effects
are likely to be small, as the relevant experimental parameters (the applied electric potentials
and magnetic fields) are well controlled, and, from equation (3), expected to enter into the result
only linearly.

We note that the conducting tubes in which an anti-atom gravity experiment would take
place would exhibit anomalous ‘patch’ electric fields [15, 33], and this could cause a a
significant systematic error [34]. Indeed, a measurement of Q on the order suggested here may
be necessary for future precision gravity measurements [7, 8, 10, 12].

We also note that the charge anomaly of the antiproton, q e e/p| | −¯ , is known [35–37] to
be less than 7 10 10× − by measurements [38] on pHe¯ +, while the charge anomaly of the positron
[35, 39] is less well known: q e e( )/ 2.5 10e

8| − | < × −
+ , determined by measurements of the

positron cyclotron frequency and the positronium Rydberg constant [40]. Thus, under the
assumption that the positron and antiproton charges add exactly to form the charge of the

Figure 8. Switching time optimization. Median escape time t1/2 as a function of t̄ , for
anti-atoms heated with 350 VΦ = ±Δ , and t/ 0.2tσ ¯ =¯ for three experimental
configurations. The black circles correspond to Q 10 9= − and to potentials alternating
between contiguous electrodes like those shown in figure 1(d) by the black line; this is
the default configuration generally used elsewhere in this paper. The orange squares
correspond to the same Q, but with contiguous electrodes joined together and potentials
varying between pairs of electrodes, like those shown in figure 1(d) by the orange-dot
dashed line. In both these cases, the trap depth is U 540 mKT = . The blue diamonds
assume colder anti-atoms (T 2 mK= ) in a shallower trap (U 3 mKT = ), and
Q 5 10 11= × − .
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antihydrogen atom, an improved measurement of the antihydrogen charge would improve the
bound on the positron charge anomaly.
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