
UNIVERSITY OF CALIFORNIA
Santa Barbara

Sigma Delta Stream Computation: A New Paradigm for
Low Power and High Resolution Feedback Control

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Joseph Sam Poverelli

Committee in Charge:

Professor Forrest Brewer, Chair

Professor Joao Hespanha

Professor Katie Byl

Professor Li-C. Wang

March 2020

The Dissertation of
Joseph Sam Poverelli is approved.

Professor Joao Hespanha

Professor Katie Byl

Professor Li-C. Wang

Professor Forrest Brewer, Committee Chairperson

December 2019

Sigma Delta Stream Computation: A New Paradigm for Low Power and High Resolution

Feedback Control

Copyright © 2020

by

Joseph Sam Poverelli

iii

This dissertation is dedicated to my children. May they surpass me in all ways.

iv

Acknowledgments

Without the help of many people, this work would never have been completed. I first

would like to express my deepest gratitude to my adviser and mentor Forrest Brewer. Forrest

always believed in me even when I doubted myself and I will always have great respect for him.

I would like to thank Li-C Wang, Katie Byl, and Joao Hespanha for serving on my committee,

imparting knowledge, and having patience with me. To my wife Stephanie for taking good care

of our children and offering constant encouragement. To my father and late mother who always

have been supportive in everything I do. I would also like to thank my fellow lab mates Merritt,

Kunal, Carrie, Prashansa, David, and Aditya for all of their help, encouragement, and banter.

I also have many thanks to give to Val de Veyra for all her help on the administrative side of

things. My friends Kyle, Wade, Ben, and others are also of special note as they provided me

with comradery and emotional support. Finally, I owe thanks to Fifth Gait Technologies and

Wyatt Technologies for keeping me employed and fed during this time. Thank you all so much.

v

Curriculum Vitæ
Joseph Sam Poverelli

Education

2019 Ph.D. in Electrical and Computer Engineering (Expected), University

of California, Santa Barbara.

2012 M.S. in Electrical and Computer Engineering, University of California,

Santa Barbara.

2009 B.S. in Electrical Engineering, University of California, Santa Barbara.

Publications

Arya, K.; Poverelli, J.; Brewer, F., "Ongoing challenges in automated cyberphysical cross-

domain design," International Conference on Computing, Networking and Communications

(ICNC), 2013., pp. 341-347, Jan 2013

doi: 10.1109/ICCNC.2013.6504106

Poverelli, J.; Brewer, F., "Direct Σ∆ Bitstream Processing for High Performance Feedback

Control," IEEE Conference on Control Technology and Applications (CCTA), 2019., pp.

444-449, Aug 2019

doi: 10.1109/CCTA.2019.8920720

vi

Abstract

Sigma Delta Stream Computation: A New Paradigm for Low Power

and High Resolution Feedback Control
by

Joseph Sam Poverelli

This dissertation describes a design and analysis methodology for Σ∆ bitstream filters

and controllers in digital hardware. These circuits emulate continuous linear time invariant (LTI)

models and directly process Σ∆ encoded bitstreams produced by Σ∆-based data converters.

Since these converters are oversampled, there is a natural opportunity for clocking at the over-

sampling rate allowing for multiplierless, low latency designs. Direct processing of bitstreams

also eliminates lowpass filtering and decimation necessary for conventional bit-parallel DSP.

Combined, these changes reduce the hardware resources by more than an order of magnitude in

FPGA implementations, with similar improvements in power overhead. MASH techniques (used

extensively in data converters) are developed to allow for substantive improvement in resolution

or reduction of the oversampling rate. These results have very substantive implications in the

design of low-complexity, high performance controllers. In particular, these techniques can obvi-

ate conventional DSP augmented designs allowing for robust control in applications unreachable

with current technology.

vii

Contents

Acknowledgments v

Curriculum Vitae vi

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivations . 1

1.1.1 Limitations in Conventional Discrete Control Algorithms 5
1.1.2 High Resolution Data Conversion . 7

1.2 Direct Σ∆ Processing for High Performance Control 9
1.3 Contributions and Thesis Outline . 11

Bibliography 12

2 Σ∆ Encoded Pulse Density Modulated Signals 14
2.1 Pulse Density Modulation . 14
2.2 Σ∆ Modulators . 19

2.2.1 Σ∆ Linearized Model . 21
2.2.2 1st and 2nd Order Noise Shaping Representations 26

2.3 Conditions for Accurate Σ∆ Bitstream Encoding 28
2.3.1 Code Noise . 28
2.3.2 Limit Cycles . 32

2.4 Conclusion . 33

Bibliography 33

3 Performance, Design, and Optimization of the Σ∆ Controller Architecture 35
3.1 Mathematical Tools and Assumptions . 36

3.1.1 Shift-based Bitstream Design . 41
3.1.2 Direct State-Space Filter . 42
3.1.3 Assumptions on Filter/Controller Architecture 43

3.2 Σ∆ Filter Architecture . 44

viii

3.3 Σ∆ Filter Design and Performance Metrics . 46
3.3.1 Design by Emulation . 46
3.3.2 Dynamic Range Scaling of State Variable Integrators 48
3.3.3 Coefficient Sensitivity . 51
3.3.4 Noise Analysis . 54

3.3.4.1 Input Σ∆ Representation Noise Propagation 54
3.3.4.2 Output Σ∆ Representation Noise Propagation 55
3.3.4.3 Output Noise Propagation due to Scaling Coefficient Rounding . 57
3.3.4.4 Noise Floor in Integrator Sections due to Σ∆ Representation Noise 60

3.4 Filter Bitwidth Optimization . 63
3.4.1 Choosing Filter Bitwidths . 65

3.5 Design Example . 67
3.6 Previous Work . 69
3.7 Conclusions . 69

Bibliography 70

4 High Resolution Σ∆ Controller Designs 73
4.1 Multistage Noise Shaping (MASH) Σ∆ Modulation 74

4.1.1 MASH Σ∆ for Direct Signal Processing 79
4.2 MASH Σ∆ Filter Architecture . 81
4.3 MASH Σ∆ Controller Design and Performance Metrics 85

4.3.1 Choosing Filter Bitwidths . 86
4.4 Design Example . 87
4.5 Conclusion . 89

Bibliography 89

5 Implementation and Realization of Σ∆ Filters 91
5.1 Pragmatic Issues in Σ∆ Filter Design and Simulation 92

5.1.1 Accurate PSDs and Related Estimations 92
5.1.2 Calculating SNR . 93
5.1.3 Transfer Function Estimation . 94
5.1.4 Matlab/Simulink, Xilinx System Generator, and Vivado 95
5.1.5 Design of Conventional Comparison Filter 96

5.2 Σ∆ Filter Resource and Power Utilization . 97
5.2.1 Single Stage Designs . 97

5.2.1.1 Lowpass Filter Designs . 97
5.2.1.2 Bandpass Filter Designs . 102

5.3 MASH Σ∆ Filter Implementation . 105
5.3.1 The Relative Size of Things . 110

5.4 Conclusion . 111

Bibliography 112

ix

6 Σ∆ Based Digital Control 113
6.1 Control Specific Advantages of Σ∆ Filters . 113

6.1.1 Controller Latency . 114
6.2 Adapting Output Feedback Control Designs for Σ∆ Based Implementations . . . 115

6.2.1 Scaling of Controllers . 115
6.2.2 Set-point Tracking . 116
6.2.3 LQG Regulation . 117
6.2.4 H∞ Control Design . 119

6.3 MIMO Configurations . 120
6.4 Motivation Examples . 124

6.4.1 Inverted Pendulum . 124
6.4.2 AFM Cantilever Q-Control . 128

6.5 Conclusions . 133

Bibliography 133

7 Conclusions 136
7.1 Future Work . 137

7.1.1 Design Partition and Cascade Realizations 137
7.1.2 Modulated (non-baseband) Controllers and Filters 138
7.1.3 Nonlinear Control . 138

Bibliography 141

x

List of Figures

1.1 Conventional Embedded Σ∆ Control Loop . 3
1.2 ADC Architecture Resolution vs. Throughput . 8
1.3 Typical Σ∆ ADC Architecture . 9
1.4 Embedded Σ∆ Control Loop . 10

2.1 Pusle Density Modulated Sinusoid Signal . 15
2.2 Anatomy of PDM Signal PSD . 16
2.3 a) Continuous Time and b) Discrete Time Σ∆ Modulators 20
2.4 Σ∆ Quantizer Linearization . 22
2.5 Linearization of 2nd Order Σ∆ . 22
2.6 1st and 2nd Order Discrete Σ∆ Modulators . 26
2.7 1st and 2nd Order Σ∆ STF and NTF Bode Plot 27
2.8 PDM Codes vs Signal Amplitude for OSR = 16 30
2.9 SNR vs OSR and Amplitude . 31

3.1 5-bit Fixed Point Pole Locations for Direct Form IIR Filter 38
3.2 Shift Based Σ∆ Filter Architecture . 41
3.3 Σ∆ State Space Filter Architecture . 42
3.4 Sigma Delta IIR Filter . 44
3.5 Sigma Delta Filter Node . 45
3.6 Sigma Delta Filter Node Bitwidths . 66
3.7 Filter Magnitude Response (OSR = 64, ENOB = 12) 68

4.1 MASH Power Spectral Density . 75
4.2 Conventional 2 Stage MASH . 75
4.3 Ideal MASH 2-2 SNR vs OSR . 78
4.4 Proposed 2 Stage MASH . 79
4.5 Double Differentiator Circuit . 80
4.6 MASH Σ∆ Embedded Control System . 81
4.7 MASH IIR Filter . 81
4.8 Discrete MASH Σ∆ Circuit . 82
4.9 MASH IIR Filter Node . 83
4.10 MASH 2-2 Coefficient Selector Circuit . 84
4.11 MASH Σ∆ Filter Node Bitwidths . 87
4.12 Filter Magnitude Response and Error . 88

xi

5.1 Insufficient Sample PSD Effects . 95
5.2 Magnitude Response and Error for Shift Based Bandpass Filter Design 96
5.3 Lowpass Filter (4th order, OSR=64, ρLP1) . 98
5.4 Lowpass Filter (4th order, OSR=32, ρLP2) . 99
5.5 Lowpass Filter (4th order, OSR=32, ρLP3) . 99
5.6 Bandpass Filter (6th order OSR=32, ρBL1) . 103
5.7 Bandpass Filter (6th order OSR=32, ρBP2) . 104
5.8 MASH Bandpass Filter (6th order OSR=64, ρBL1) 107
5.9 MASH Bandpass Filter (6th order OSR=64, ρBL2) 107
5.10 MASH Bandpass Filter (8th order OSR=64, ρBL2) 108

6.1 Reference Tracking Embedded Σ∆ Controller . 116
6.2 RTL Diagram of Reference Tracking Σ∆ Controller 117
6.3 LQG Regulator System Diagram . 118
6.4 H∞ Controller Diagram . 120
6.5 MIMO Configuration with Parallel Output . 121
6.6 MIMO Configuration with Σ∆ Encoded Output 122
6.7 Σ∆ Output Half-Bridge Drive . 123
6.8 MIMO Configuration with Pulse Width Modulated Output 124
6.9 Inverted Pendulum on a Cart . 125
6.10 Pendulum Controller FPGA Implementation . 127
6.11 Pendulum Controller Time Simulation . 127
6.12 AFM Cantilever Q Control Loop Implementation 129
6.13 AFM Continuous, Discrete, and Σ∆ Q-Controller Magnitude Response 130
6.14 AFM Σ∆ Q-Controller Magnitude Response . 131

7.1 Two Phase Oscillator Circuit . 139
7.2 Two Phase Oscillator Simulation . 140

xii

List of Tables

2.1 DC Σ∆ Input and Corresponding Bitstream Output 32

3.1 Design Parameters of Σ∆ Filter . 67
3.2 Filter Design Parameters . 68

4.1 Design Parameters of MASH Σ∆ Filter . 88
4.2 Filter Design Resource Usage . 89

5.1 Band-pass Shift Filter FPGA Resource Utilization 96
5.2 Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs = 60
db) . 101
5.3 Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60
db) . 101
5.4 Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs = 60
db) . 102
5.5 Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60
db) . 104
5.6 Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60
db) . 105
5.7 Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs =
60 db) . 105
5.8 MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz,
Rs = 60 db) . 108
5.9 MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz,
Rs = 60 db) . 109
5.10 MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz,
Rs = 60 db) . 110

6.2 Σ∆ Q Controller Fixed Point Parameters . 131
6.1 Σ∆ Q Controller Parameters . 131

xiii

Chapter 1

Introduction

1.1 Motivations

Digital embedded controllers have become indispensable in modern life. Practically

every modern convenience makes use of embedded digital control in order to improve perfor-

mance, cost, and reliability. Lithium Ion batteries, for instance, contain an embedded charge

controller running on a micro-processor to manage complex charging profiles that improve ca-

pacity and longevity as well as preventing cell detonation. The advent of digital technology has

made embedded processors extremely inexpensive with the consequence that the vast majority of

embedded controllers are implemented in software. Despite the effectiveness of micro-controllers

in implementing complex control inexpensively, there are performance limitations that impair

the ability to be a viable implementation solution for many applications requiring low latency

and/or high bandwidth.

Software based control on a micro-controller requires several thousands of processor in-

structions to service interrupts and perform loop iterations. At practical clock rates, the latency

at which a micro-controller can sample data, process a control algorithm, and update the control

output is on the scale of tens of microseconds at best. For applications that require bandwidths

above tens of kilohertz, digital signal processors (DSPs) are required. Having hardware archi-

tectures that are designed for high throughput and high bandwidth computation, DSPs are able

1

to reduce the latency of digital control implementations to hundreds of nanoseconds. The price

for the reduced latency, however, is a substantial increase is component cost, as well as drastic

increase in power consumption to the point where mobile (battery based) implementations are

often impossible.

For control applications requiring bandwidths of a megahertz or more, the current

options are logic-based hardware control using field programmable gate arrays (FPGAs) or

continuous control implemented with analog components. Applications such as micro-electro-

mechanical-systems (MEMS) and atomic force microscopy require very high bandwidth con-

trollers, due to the small device scale. [59] FPGA programmable logic can accommodate com-

plex controller designs that can run at hundreds of megahertz with the downside of being high

cost and requiring high power consumption. Analog components on the other hand, can achieve

control bandwidths of greater than hundreds of megahertz but have a litany of issues. These

issues include controller hardware inflexibility, high cost, low reliability, high noise, and high

sensitivity to parameter variations and drift which contribute to the complexity of such designs

[7]. All of these issues contribute to the high cost of constructing controllers for low-latency

systems. This is particularly onerous for MEMS devices where the base cost could be quite low

due to economies of manufacturing scale.

This thesis presents an alternative strategy for implementing low complexity, low power,

low latency, continuous time performance controllers in digital logic. The control implementa-

tion strategy does this by directly processing high resolution, high bandwidth Σ∆ encoded

bitstreams. Both inputs and outputs can be encoded as sigma-delta bitstreams leading to in-

expensive composability and a substantial reduction of communication costs. Additionally, the

potential for stable operation in adverse environments is enhanced as this representation is not

place sensitive (bit-weighted) and is inherently incremental. Thus, such controllers are candi-

dates for satellite and high reliability applications as well as extreme low power (IOT) scenarios.

Σ∆ converters are the premier data converter for high resolution, medium bandwidth applica-

tions. They are inexpensive, exceptional linear, and produce a compact oversampled bitstream

representation as their natural outputs. This work allows direct connection between Σ∆ con-

2

verters and the controller hardware without need to perform parallel data conversion and thus

eliminates the associated overhead and latency.

These ideas can be made more concrete by by means of controller block signal flow

diagram. The signal chain samples an underlying continuous phenomena and converts it to a

discrete signal representation, processes the sampled data via the discrete control law, and then

converts the output sampled data back into an analog actuation signal. Such a signal chain is

depicted in Figure 1.1.

Figure 1.1: Conventional Embedded Σ∆ Control Loop

As shown above, the signal chain is comprised of the following components:

• Physical Process: This is the physical process that is intended to be controlled.

• Sensors/Transducers: Sensors and transducers are the components that convert a physical

phenomenon (e.g. sound waves, pressure, displacement, etc.) to an electrical signal such

as Voltage. These devices can range from microphones to accelerometers.

• Analog to Digital Converter (ADC): The ADC converts as electrical signal, typically a

Voltage, into a series of time sampled discrete binary values.

• FPGA, DSP, µController: The control law in implemented discretely in a processing ele-

ment such as a digital signal processor or µcontroller or in discrete hardware inside of an

3

FPGA. For the DSP and µcontroller, the control law is written in a low level programming

language such as C in order more closely manage the binary mathematics that underlie

the control law.

• Digital to Analog Converter (DAC): The DAC converts a discrete binary value into an

electrical signal such as a Voltage.

• Actuator: The actuator is the component that physically interacts with the outside world.

These could be motors, voice coils, electromagnets, etc. and are driven by the output of

the DAC.

For a general embedded control system, each component is indispensable in the implementation

of the control algorithm. However, proper care must be taken by the design engineer in choosing

components that will meet or exceed the required closed loop performance constraints. For ex-

ample, two of the most important considerations when selecting components are that of sampling

frequency and resolution. ADCs, for instance, come in several varieties that have trade-offs in

sampling frequency/bandwidth and resolution. For loops that require both high resolution and

high bandwidth, finding an appropriate ADC may be expensive or outright impossible given

the system constraints. In these cases analog controllers are used despite their issues regarding

additional noise, environmental degradation, and hardware non-flexibility.

Currently, embedded digital control systems suffer pervasive limitations due to the

digital algorithm implementation structured around processing 2’s compliment signal represen-

tations at rates not far from Nyquist bounds. The reason for doing so is the intuitive simplicity

of the time-shift/Z-transform model and is reinforced by the control design software (both sys-

tem level and implementation) making this assumption. The ubiquity of these models and tools

builds expectations of latency, complexity, and power consumption into the design methodol-

ogy. Indeed, the view of many control engineers is that increasing the sampling bandwidth

substantially beyond Nyquist adds complexity and expense as well as decreasing the stability

of the implementation. This view is supported by classical analysis of coefficient resolution ver-

sus sampling rate, again given the time-shift implementation paradigm. In this thesis, simple

controllers are implemented that exploit the inherent oversampling of the input ADC. Based on

4

digital integrators instead of time-shift operators, the new designs offer latencies on the scale of

the oversampling clock period while demonstrating enhanced stability and relaxation of coeffi-

cient resolution. (As an example, a high-order bandbass filter can be directly implemented as a

single filter element in contrast to composed bi-quad elements made to accommodate coefficient

sensitivity at high sample rates). A side benefit of this methodology allows the removal of all

hardware multipliers from the design allowing for substantive hardware power and complexity

savings, without any latency cost.

1.1.1 Limitations in Conventional Discrete Control Algorithms

While DSPs and FPGAs have made digital control extremely viable in regards to the

synthesis of complex control algorithms, there are a number of challenges that limit practical

performance. Perhaps the most detrimental aspect of conventional controller designs is the of

discrete shift operator constructions. This model is one where a the next controller state x

depends on a function f of current values of x and input u at time index k which can be written

as

x (k + 1) = f (x (k) , u (k))

For the linear system variety, the Z-transform is the primary tool for analysis and frequency

domain design. The shift operator and Z-transform constitute the predominant paradigm in

discrete time controller design, analysis, and implementation. Although it may seem shocking,

shift operator based controllers are actually poorly suited to implement controllers that require

high performance in terms of simultaneous latency and resolution.

Consider the continuous time state space controller model

ẋ = Ax+Bu

y = Cx+Du

5

where x ∈ Rn, y ∈ Rm, u ∈ Rk, A ∈ Rn×n,B ∈ Rn×k,C ∈ Rm×n,D ∈ Rm×k, and n,m, k ∈ Z+.

Applying a zero-order hold discretization method with a defined sampling period ∆, the discrete

shift operator based equivalent model becomes

x+ = Azx+Bzu

y = Czx+Dzu

where

Az = eA∆

Bz =

ˆ ∆

0

eA(t−τ)Bdτ

Cz = C

Dz = D

Now suppose that one were to reduce ∆ to a small value analogous to significantly increasing

the sampling frequency. As the sampling period approaches zero the state transition matrix Az

becomes

lim
∆→0

Az = lim
∆→0

eA∆ = I

The implication here is that for fast sampling controllers, the state transition matrix Az ap-

proaches the identity matrix and imposes the issue of the system poles (i.e. the eigenvalues of

Az) gravitating to z = 1 on the real axis in the complex plane. System poles approaching a limit

point on the stability boundary makes the overall control algorithm extremely sensitive to small

perturbations in the controller coefficients. Stated another way, the controller requires extremely

accurate coefficients to differentiate between the separate pole values. Unfortunately, embedded

control systems, whether they are implemented on a DSP, FPGA, or other device, operate on

quantized signal and coefficient values. The allowable number of bits to represent a number in

real discrete controller implementations is limited, which in turn, limits the achievable sampling

rate.

6

The sensitivity problem associated with shift-based control algorithms leads to con-

trollers that are relatively complex requiring larger, more powerful, and more expensive com-

ponents to implement. Perhaps the most tragic pitfall of the shift-based controller design is

that it disincentives control designers from creating digital controllers that operate at higher

bandwidths. Abstractly, controlling any system with lower latency should result in higher

performance control. This valid intuition is not supported by the inherent singularity of the

Z-transform as bandwidths increase. These issues are in the mathematical model, not in the

physical reality. In the case of MEMs devices, where system time scales are significantly smaller

due to the down scaling of physical size, high bandwidth is a must. This points to constructing

a mathematical model efficiently supporting high bandwidth operation.

1.1.2 High Resolution Data Conversion

The sampling frequency of the digital controller will largely be determined by the

physical time constants of the physical process itself. Typically, the sample frequency is chosen

to be an order of magnitude higher than the highest frequency component of the physical process.

After a sampling frequency has been chosen, it is also necessary to choose the resolution of the

overall control system. Many factors can determine the required resolution such as system

steady-state error bounds or the resolution the front end sensors/transducers. Once the the

resolution has been found the first component of the embedded signal chain can be chosen, the

analog to digital converter.

Analog to digital converters come in a variety of architectures each of which has its

own trade offs. The most popular ADCs are the Dual-Slope ADC, the Successive Approxima-

tion/Pipeline ADC, the Σ∆ ADC, and the Flash ADC. When it comes the performance metrics

of throughput (i.e. sample per second) and resolution, each ADC type occupies a different area

in that two dimensional performance space. As can be seen in Figure 1.2, the various ADC

types have different trade off in resolution and speed.

7

Figure 1.2: ADC Architecture Resolution vs. Throughput

In this work, we focus on Σ∆ ADC which is an oversampled converter whose output is

a high speed stream of 1s and 0s. For high resolution and medium throughput requirements, Σ∆

data conversion is the premier encoding strategy for high performance applications [1]. As such,

it find ubiquitous employment in many devices who directly supply the bitstream encoding

(so-called PDM or pulse-density-modulation in this use). Everything from ADCs to MEMs

microphones to class D amplifier stages currently exist on the market which directly produce or

make use of Σ∆ encoded bitstream signals [10, 11, 6]. However, most designers treat bitstreams

as a liability or burden which is demonstrated through how bitstreams are typically converted

immediately to a sampled parallel representation.

Typical Σ∆ ADCs have an architecture shown in 1.3. On the front end is the Σ∆

converter itself which converters the analog signal input to that of an oversampled bitstream of

ones and zeros. The bitstream is then lowpass filtered (usually 3rd-order integration) and then

decimated to close to the Nyquist Bandwidth in order to convert the bitstream into a bit-parallel

number representation. The bit-parallel number is then read out through an interface port, such

as a serial peripheral interface (SPI) port, to a processing unit, such as a µcontroller, DSP, or

FPGA.

8

Figure 1.3: Typical Σ∆ ADC Architecture

The reason for the conversion is so that the data fits the conventional design paradigm;

2’s compliment numbers running at Nyquist rates are easy to understand and design around while

alternatives are not widely known. Bitstreams, on the other hand, are difficult to understand;

they run at an oversampled rate and the amplitude/information of the signal is not apparent by

merely inspecting the waveform. Indeed, in practice, the bit-representation noise is 50x times

the signal amplitude. Despite the initial unintuitive nature of the bitstream, it will be shown

that controllers with resolutions beyond 24-bits can be easily created directly from bit-stream

data.

1.2 Direct Σ∆ Processing for High Performance Control

Through understanding the fundamental limitations imposed by the conventional signal

chain and controller algorithm design, we now come to the question of whether or not we can

supplant the conversion and interface logic and process Σ∆ encoded bitstreams directly. The

answer to this quandary is a resounding yes and the primary exploration of this thesis.

Consider the embedded Σ∆ controller loop shown in figure 1.4. The diagram illustrates

a signal chain where the bitstream from the front end ADC is routed directly to a purpose built

controller and whose output is another Σ∆ encoded bitstream. The output bitstream can at

this point be a simple one bit DAC (e.g. a half bridge driver stage). The advantages of such

9

a configuration are obvious. For starters, gone is the lowpass filtering and decimation of the

bitstream leaving a simple one bit interface. The output of the controller is a one bit interface

as well with both streams running at the oversampled clock rate. Not only is input and output

interface complexity greatly reduced, but so is the controller latency. What is not seen in the

diagram is that the controller will run at the oversampled clock rate in the FPGA fabric as

well, creating a signal chain that has significantly reduced latency. As a consequence, controller

bandwidth and stability margins increase substantially.

Figure 1.4: Embedded Σ∆ Control Loop

Another advantage obfuscated in the diagram is the complexity of the controller itself.

As will be shown later chapters, the resource complexity of the controller in the FPGA fabric

is substantially reduced compared to its conventional counterparts due to the simplification

of arithmetic operations on one bit wide signals as opposed to multibit wide 2’s compliment

representations. The reduction in hardware complexity means that smaller, lower power, and

less expensive FPGAs (or ASICs) can be used for implementations. This is due to the elimination

of multipliers (the single largest digital component) from these designs.

10

1.3 Contributions and Thesis Outline

This dissertation presents a methodology for the optimized hardware design of Σ∆

controllers for use in embedded FPGA and ASIC systems. Σ∆ controllers are discrete circuits

which emulate continuous time transfer functions and whose input and output are Σ∆ encoded

binary bitstreams. The following contributions will be made in the remainder of the document:

1. Σ∆ Controller Design and Noise Analysis: For this contribution, the discrete Σ∆ Con-

troller architecture will be described in great detail at the register transfer level (RTL)

with attention given to choosing bitwidths in the internal signal paths of the circuit. Rep-

resentation noise associated with Σ∆ encoded signals and the noise injection from these

components are accurately modeled with an appropriate linear noise transfer function

(NTF) model.

2. MASH Σ∆ Controllers: As a means to increase the overall resolution of a Σ∆ controller

beyond what is possible with a single stage modulator, multistage noise shaping (MASH)

Σ∆ converters will be introduced into the discrete controller architecture. By making

modest modifications to the original controller circuitry, MASH based controllers have the

capacity to achieve very high resolution at lower clock rates in comparison to the single

stage designs. MASH based controllers can also be clocked at significantly lower rates to

achieve the same resolution as the original single stage design. Details on how to design

the MASH controller circuitry will be presented as well as an appropriate noise analysis.

3. Controller Optimization: Taking quantization noise and coefficient quantization/transfer

function deviation into account, a convex optimization strategy is proposed for reducing

the number of bits required for the internal signals of the controller architecture. The

optimizer in turn reduces the number of flip flops required for the controller state. Given

a controller design, coefficients and internal signal bitwidths are adjusted in order to meet

noise and transfer function deviation metrics set by the designer.

4. Implementation and Resource and Power Analysis: Given a Σ∆ controller design, it will

be shown how to implement the circuit in an FPGA. Various designs will be presented that

11

range in filter order, clock frequency, and resolution in order to assess the compactness

and efficiency of the Σ∆ controller architecture. It will also be demonstrated that the

designs can indeed fit within small low power FPGAs that lack any internal digital signal

processing resources.

The remainder of this thesis is arranged as follows: Chapter 2 focuses on modeling and char-

acterization of Σ∆ bitstreams. A linear frequency model of the modulator dynamics will be

presented as well as how to use a power spectral density estimate of the bitstream to quantify

the resolution of the encoding. Nonlinear phenomena that degrade the quality of the bitstream

will also be explored as well as how to mitigate their effects. In chapter 3, the hardware de-

scription of the Σ∆ controller architecture is described. A design and performance analysis

is presented as well in addition to an optimization strategy that reduces the number of bits

required in the internal signals of the circuit. Chapter 4 expands on the architecture of the pre-

vious chapter by adapting it to process multistage noise shaping Σ∆ encoded input and output

signals for high resolution controller applications. Chapter 5 delves into the hardware imple-

mentation of the controller architectures presented in the previous two chapters particularly in

regards to FPGA design. In chapter 6, various controller/filter examples will be implements

based on various design criteria and compared for resolution, power, and FPGA resource usage.

The final chapter will illustrate several motivating control examples that take advantage of the

high performance and low complexity of the Σ∆ controllers and show that these controllers offer

a superior implementation compared to conventional embedded controller designs.

Bibliography

[1] N. N. Cikan and M. Aksoy. Analog to Digital Converters Performance Evaluation Using

Figure of Merits in Industrial Applications. In 2016 European Modelling Symposium (EMS),

pages 205–209, Nov 2016.

[2] M. B. Coskun, H. Alemansour, A. G. Fowler, M. Maroufi, and S. O. R. Moheimani. Q Con-

trol of an Active AFM Cantilever With Differential Sensing Configuration. IEEE Transac-

tions on Control Systems Technology, pages 1–8, 2018.

12

[3] G. C. Goodwin, R. H. Middleton, and H. V. Poor. High-speed digital signal processing and

control. Proceedings of the IEEE, 80(2):240–259, Feb 1992.

[4] D.A. Johns and D.M. Lewis. Sigma-delta based IIR filters. In Circuits and Systems, 1991.,

Proceedings of the 34th Midwest Symposium on, pages 210–213 vol.1, May 1991.

[5] Y. Matsuya, K. Uchimura, A. Iwata, et al. A 16-bit oversampling A-to-D conversion

technology using triple-integration noise shaping. IEEE Journal of Solid-State Circuits,

22(6):921–929, Dec 1987.

[6] Maxim Integrated. MAX98356: PDM Input Class D Audio Power Amplifier, July 2013.

Rev. 1.

[7] P Murphy, M Xie, Y Li, et al. Study of digital vs analog control. In Power Electronics

Seminar Proceedings (CPES Center for Power Electronics Systems), pages 203–206, 2002.

[8] Chiu-Wa Ng, Ngai Wong, H. Kwok-Hay So, and Tung-Sang Ng. Direct sigma-delta mod-

ulated signal processing in FPGA. In Field Programmable Logic and Applications, 2008.

FPL 2008. International Conference on, pages 475–478, Sept 2008.

[9] R. Schreier and G.C. Temes. Understanding Delta-Sigma Data Converters. Wiley, 2004.

[10] STMicroelectronics. MP34DT05-A: MEMS audio sensor omnidirectional digital micro-

phone, April 2019. Rev. 4.

[11] Texas Instruments. ADS1204: Four 1-Bit, 10MHz, 2nd-Order Delta-Sigma Modulators,

February 2009.

[12] X. Wu and R. M. Goodall. One-bit processing for digital control. IEE Proceedings - Control

Theory and Applications, 152(4):403–410, July 2005.

13

Chapter 2

Σ∆ Encoded Pulse Density

Modulated Signals

This thesis is predicated on the notion of performing signal processing upon pulse den-

sity modulated (PDM) signal representations. This implies that provisions for both efficient

input and output of PDM encoded stream data must be supported. PDM is a one bit wide

oversampled bitstream signal typically produced from a Σ∆ modulator circuit and used exten-

sively in analog to digital converter architecture designs. These bitstreams have a variety of

unique properties such as frequency dependent representation noise that must be understood

and characterized for effective use in arithmetic circuits. This chapter will describe PDM sig-

nals, how they are characterized and modeled, their drawbacks and limitations, and under what

conditions Σ∆ modulators may be directly used as PDM encoders for embedded control loop

implementations.

2.1 Pulse Density Modulation

Pulse density modulation is a signal representation in the form of a stream of bits; ones

and zeros. Whereas the information in an analog signal or a discrete parallel bit word sample

14

(i.e. 2’s complement) is contained within the amplitude, the information of a PDM signal is

contained within the density of bits over a finite window of time. Take for instance the discrete

sinusoidal signal and its PDM counterpart in figure 2.1.

Figure 2.1: Pusle Density Modulated Sinusoid Signal

As can be seen in the figure, the density of ones increases when the sinusoidal amplitude

is closer to max amplitude while the density of zeros increases when the sinusoidal amplitude

is closer to minimum amplitude. While PDM bitstreams are a sequence of ones and zeros, the

binary bit values of the stream can be interpreted in one of two ways:

• Bipolar: Suppose a discrete signal x [n] is bounded in amplitude on the interval [−A, A]

where A is the maximum magnitude of x [n]. Then a 1 in the corresponding PDM encoded

signal of x [n] represents a value of A and a 0 represents a value of −A.

• Unipolar: Suppose a discrete signal x [n] is bounded in amplitude on the interval [0, A]

where A is the maximum magnitude of x [n]. Then a 1 in the corresponding PDM encoded

signal of x [n] represents a value of A and a 0 represents a value of 0.

In this work, PDM signals will be interpreted as bipolar in order to take advantage of the

symmetry of the representation and ability to simply represent negative values.

Given a PDM signal, it may become useful to demodulate the bitstream in order to

recover the original pulse code modulated (PCM) signal. To first order, the original signal can be

obtained via discrete integration of the bitstream. Suppose a bitstream signal q [n] ∈ [−A, A].

Its PCM counterpart can be obtained by

x [n] =
1

∆

n∑
k=−∞

q [k]

15

where ∆ is the sampling period of the oversample rate. While simply integrating may not pro-

vide the best demodulation technique as opposed to high order lowpass filtering, it does hint at

the fact that the signal information in q [n] is contained within the baseband component. To

better understand how to make use of bitstream signals and preserve their information, one must

first understand how they are characterized. When encoding signals with PDM bitstreams, it is

appropriate to ask questions about whether or not the bits are making an accurate representa-

tion. In particular, it is important to understand the nature of both the signal representation

and the implicit noise inherent in representing a signal as a PDM bitstream. In the time domain,

there is great difficulty in determining what the average value of the bitstream is at any given

moment; one must first filter the bitstream to reveal its analog counterpart. However, in the

frequency domain, the question becomes much clearer.

The power spectral density (PSD) of a PDM signal is the principle representation in

which to analyze and characterize a bitstream as its signal and noise power versus frequency.

The PSD reveals characteristics about a bitstream such as the signal it is encoding, the quality

of the signal, and the distribution of the noise inherent in the representation. The anatomy of

a power spectral density of a pulse density modulated signal can be seen in figure 2.2.

Figure 2.2: Anatomy of PDM Signal PSD

16

The PSD pictured is that of a PDM encoded discrete sinusoidal signal with a funde-

mental frequency of fsig. The signal component can be seen as a spike at fsig . Perhaps the

most striking aspect of the PSD is the shape of the noise floor. The noise floor of the signal is

flat in the lower frequencies up to fB which corresponds to the input resolution of the encoded

discrete signal or noise-floor associated with the input analog signal. (Abstractly, there is no

lower bound on the PSD noise at low frequencies if sufficiently large resolution is used). In the

higher frequencies, from fB to fs/2, the noise floor increases dramatically and saturates the

power spectrum. The concentration of noise power in the higher frequencies is a hallmark of

PDM signals and is in fact a by-product of the feedback correction nature of the encoder. That

is, the high frequency noise is inherent in the representation but is pushed out of the signal band

(i.e. frequencies below fB) and into the representation noise band (i.e. frequencies above fB).

The quality of pushing or shaping the representation noise into high frequencies allows PDM

bitstreams to achieve a very high quality encoding at the cost of the higher oversampled rate fs

versus the desired signal bandwidth fB . Since the over-sampled signal is a binary bit-stream,

it admits a variety of simple computation mechanisms all operated at the oversampled clock

(sample) rate. The large ratio fs/ (2fB) allows for very low noise representation of the desired

signal band, while the binary nature of the output admits single threshold (hence very linear)

ADC. It is for this reason that analog sigma-delta converters are the ubiquitous solution for

high-resolution analog signal conversion, at any rate allowing a reasonable over sampling ratio.

In this thesis, the characterization of a PDM bitstream will be derived from its power

spectral density. Thus is it necessary to formally introduce a variety of definitions and concepts

that will aid in their proper use in later chapters:

• Signal Band: The signal band is the frequency range1 from DC to fB which signal com-

ponents can exist without the contamination of high levels of background noise.
1It is not strictly necessary for the signal band to be base-band and modulated converters exist, however,

the design of computation schemes for such designs is relegated to future work. In this work, we shall assume
based-band conversion.

17

• Representation Noise Band: The representation noise band is the frequency range from fB

to fs/2 where the representation noise is pushed and dominates the signal spectral density.

• OSR: The oversample ratio (OSR) is the defined as the ratio between the oversampling

frequency fs and the Nyquist frequency 2fB

OSR =
fs

2fB

where fB is the signal bandwidth.

• SNR: The signal to noise ratio (SNR) is defined as the ratio between the signal power

µ2
x and the noise variance σ2

n in the signal band from DC to fB . The ratio is commonly

expressed in units of decibels by

SNR (dB) = 10log10

(
µ2
x

σ2
n

)

Both µ2
x and σ2

n can be computed directly from the power spectral density of the PDM

signal by integrating over the corresponding spectral density of the signal band fB . The

noise variance for example can be computed by

σ2
n =

ˆ fB

−fB
Sn (f) df

where Sn (f) is the noise power spectral density. The SNR provides a metric for the quality

of the encoded bitstream signal.

• SINAD: The signal to noise and distortion ratio is defined as the ratio between the signal

power µ2
x and the noise variance σ2

n plus the distortion variance σ2
d in the signal band from

DC to fB . This ratio is commonly expressed in units of decibels by

SNR (dB) = 10log10

(
µ2
x

σ2
n + σ2

d

)

18

Distortion can manifest as undesired frequency components in the power spectral density

which lower the overall quality of the signal.

• ENOB: The effective number of bits (ENOB) is a measure of how many bits of signal

information are contained in the bitstream signal based on given SNR or SINAD. The

ENOB can be calculated by

ENOB =
SINAD − 1.76

6.02

which is derived from and a direct comparison to Nyquist rate pulse code modulated

encodings. [50]

The above definitions and concepts provide a basis for the complete characterization of PDM

signals that will be used throughout this thesis. It will become evident in later chapters that

utilizing PDM signals in signal processing and control-centric hardware implementations requires

the ability to maintain the shape and form of their PSD’s for high quality computations. In fact,

there will be many times when a signal must first be encoded into a PDM in the first place in

order to change representations when it is convenient to do so. The circuit to do the conversion

from analog/PCM to PDM encoding, the workhorse of this thesis, is the Σ∆ modulator.

2.2 Σ∆ Modulators

The Σ∆ modulator is the converter/encoder circuit that transforms an analog or pulse

code modulated signal into a high resolution bitstream of 1’s and 0’s. While most widely utilized

in analog to digital converter architectures, they also find use in digital to analog converters as

well as discrete applications such as phase lock loops [20]. By making use of oversampling and

noise shaping, Σ∆ modulators are able to create high SNR/ENOB PDM bitstream signals. This

section will introduce and explain the Σ∆ theory of operation.

When designed for the purpose of analog to digital conversion, Σ∆ modulators come in

two varieties: analog and discrete. Figure 2.3 illustrates block diagrams of discrete and analog

Σ∆ ADC modulators with common blocks such as the loop filter, quantizer, and DAC. The

19

primary difference between the two is where the discrete sampling takes place; in front of the

modulator for discrete and before the quantizer for analog. At the circuit level, the loop filter

of the discrete modulated is implemented with a switched capacitor architecture. The analog

loop filter can be implemented with gm-C, active RC, LC, or other circuit architectures [50].

(a) Continuous Time Σ∆

(b) Discrete Time Σ∆

Figure 2.3: a) Continuous Time and b) Discrete Time Σ∆ Modulators

Discrete Σ∆ modulators can be modeled as a discrete piece-wise affine (PWA) system

with bimodal dynamics. Consider the following Σ∆ modulator PWA model

x+ =

AΣ∆x+BΣ∆u+ f1 ∀x1 ≥ 0

AΣ∆x+BΣ∆u+ f2 ∀x1 < 0

q =

1 ∀x1 ≥ 0

−1 ∀x1 < 0

20

where AΣ∆ ∈ Rn×n, x, BΣ∆, f1, f2 ∈ Rn, n ∈ Z+and q ∈ [−1, 1]. The nonlinear discontinuous

nature of the dynamics imposed by the affine term fi makes the modulator difficult to directly

analyze and establish performance metrics. As will be seen shortly, the shape of the representa-

tion noise in Figure 2.2 is highly dependent upon the input signal to the modulator and requires

that it hold to various limitations in order to produce a high quality signal encoding. To better

ascertain the mysteries of the bitstream, it becomes necessary to fabricate a more tractable

method for modeling its behavior.

2.2.1 Σ∆ Linearized Model

While the dynamics of Σ∆ modulators are highly nonlinear, there are key assumptions

about the nature of the quantization noise which make the analysis more tractable. In order to

characterize Σ∆ encoded bitstreams and estimate their performance, one must have a simple

way of modeling the modulator dynamics. Fortunately, a simple model of the Σ∆ modulator

can be derived by making key assumptions about the nature of its one bit quantizer.

Treating the one bit quantizer as an additive noise source, the dynamics of the Σ∆

modulator can be analyzed as a linear dynamic system with a stochastic noise input. The

invocation of a linear dynamic Σ∆ model is a well known and widely used technique and has

been presented by authors such as Temes and Schreier in [50]. The linearization of the quantizer

can be seen in Figure 2.4 while the linearization transformation of a discrete Σ∆ modulator can

be seen in figure 2.5.

21

Figure 2.4: Σ∆ Quantizer Linearization

Figure 2.5: Linearization of 2nd Order Σ∆

22

The linearized model allows one to modify the nonlinear state space dynamics of a

modulator into the linear two input one output model:

x+ = AΣ∆x+BΣ∆u+Bee

q = CΣ∆x+ e

where e is the additive quantization noise input, AΣ∆ ∈ Rn×n, x, BΣ∆, Be ∈ Rn×1, CΣ∆ ∈

R1×n, e, q ∈ R, and n ∈ Z+. Taking the z transform of the linear time domain state space

model above, the two following transfer functions from u to q and from eq to q can be found as

STF (z) =
Q (z)

U (z)
= CΣ∆ (zI −AΣ∆)

−1
BΣ∆

NTF (z) =
Q (z)

E (z)
= CΣ∆ (zI −AΣ∆)

−1
Be + 1

The signal transfer function, or STF, is the transfer function from the input to the

output of the sigma delta without the addition of quantization noise. The noise transfer function,

or NTF, is the quantization noise input to the output of the sigma delta without the signal

component. The overall output response of Σ∆ modulator can be found by

Q (z) = STF (z)U (z) +NTF (z)Eq (z)

which allows the information to be split between a signal component and representation noise

component. The concept of separable signal and noise components is paramount to formulating

the power spectral density in order to ascertain the performance of the modulator. To estimate

the PSD of the signal output the following assumption about the quantization noise are made:

1. The quantization error eq [n] is a wide sense stationary, white Gaussian random process.

2. The quantization error eq [n] is uncorrelated with itself and and the input sequence of the

Σ∆ modulator.

23

3. The probability-density function of the quantization error ρ (eq) is uniform over the entire

quantization range
[
− q2 ,

q
2

]
.

ρ (eq) =

1
q |eq| ≤ q

2

0 |eq| > q
2

where q is the quantization step.

While these assumptions are not always true, they do give a reasonable description of the actual

quantization noise properties inherent in the nonlinear model for small and large amplitude

signals with ample frequency content. From here, under these assumptions and the linear model,

the PSD of the modulator output can be estimated.

Based on assumption that ρ (eq) is uniform over the quantization range
[
− q2 ,

q
2

]
, we

can find the mean of eq as

ēq = E {eq} =

∞̂

−∞

eqρ (eq) deq =
1

q

q/2ˆ
−q/2

eqdeq = 0

and the variance of eq as

σ2
e = E

{
(eq − ēq)2

}
=

∞̂

−∞

e2
qρ (eq) deq =

1

q

q/2ˆ
−q/2

e2
qdeq =

q2

12

Due to the assumption that the noise is white, the nominal quantization noise power σ2
e is

spread out uniformly over the entire frequency space. The power spectral density of the additive

quantization noise input is thus

Se (f) =
σ2
e

fs

and

Se (f) =
σ2
e

fs
=

q2

12fs
=

1

3fs

for a unipolar single bit quantizer (i.e. q = 2).

24

At this point, the filtering of Se (f) through the noise transfer function NTF (f) must

be taken into account. The noise transfer function NTF (f) shapes the power spectral density

of the additive quantization noise which leads to a noise power over the signal band to be found

by the equation

σ2
Σ∆ =

fbˆ

−fb

Se (f) |NTF (f)|2 df

Typically, NTF (f) � 1 in the signal band and NTF (f) ≈ 1 in the representation

noise band. The noise transfer dynamics thus attenuate signal band noise energy and push

the vast majority of the noise energy into high frequencies. This is called noise shaping. The

signal transfer function STF (f) on the other hand is typically unity gain in the frequency band

allowing the signal to pass through while suppressing the representation noise. This leads to a

very high SNR in the signal band of the PSD.

In order to characterize the performance of the modulator, sinusoidal inputs are gen-

erally chosen to calculate signal to noise ratios for individual frequency components. Supposing

a sinusoid signal with period T and amplitude A, its average power over the signal band can be

found by

µ2
x =

1

T

ˆ T

0

(
Acos

(
2πt

T

))2

dt =
A2

2

Having the average noise power of a sinusoidal input at any frequency depend only upon the

amplitude of the signal allows a convenient way of calculating SNR as given by

SNRdB = 10 · log10

(
µ2
x

σ2
Σ∆

)
In principle, the SNR should remain constant in the signal band for a sinusoid at any frequency

for a given modulator.

25

2.2.2 1st and 2nd Order Noise Shaping Representations

The noise transfer function of the Σ∆ modulator defines the noise shaping that mani-

fests in the passband of the bitstream signal. To have a sharper noise transfer function is to have

a potentially higher signal to noise ratio. The shape of the noise transfer function corresponds

to the order of the modulator or rather the number of delay elements that exist in the loop.

The first and second order discrete Σ∆ modulators shown in figure 2.6, consists of one

and two accumulators respectively as well as a 1 bit quantizer in the feedforward path.

(a) 1st Order Discrete Σ∆ (b) 2nd Order Discrete Σ∆

Figure 2.6: 1st and 2nd Order Discrete Σ∆ Modulators

By imposing the linear additive noise model on the 1st and 2nd order modulators it

becomes straightforward to derive their signal and noise transfer finctions. For the 1st order

modulator the STF and NTF are

STF (z) = z−1

NTF (z) = 1− z−1

while for the 2nd order modulator, the STF and NTF are

STF (z) = z−1

26

Figure 2.7: 1st and 2nd Order Σ∆ STF and NTF Bode Plot

NTF (z) =
(
1− z−1

)2
Figure 2.7 shows the Bode plot of the signal and noise transfer functions for the 1st and

2nd order modulators. As stated earlier, the signal transfer function for a discrete modulator is

unity gain across the signal band while the noise transfer functions are akin to high pass filters.

The first and second order noise shaping shown in Figure 2.7 have slopes of 20 dB/decade

and 40 dB/decade respectively. Higher order modulators with higher order noise shaping can

achieve even steeper noise shaping but there is a catch. Σ∆ converters of third or higher order

tend to become unstable with quickly varying input signals [50]. Specifically, a second-order

modulator is unconditionally stable given a bound on input magnitude and the magnitude of

the input time derivative (i.e. simple bandwidth limitation). For 3rd-order, a similar bound

is required on the second derivative of the input as well. This does not translate to a simple

band-stop filter so higher order modulators require substantial care in design [68].

27

The stability of the modulator is very important to the quality of the Σ∆ bitstream;

if the modulator becomes unstable, the bitstream conversion can be wildly inaccurate. The

reason for instability is due to the increase phase added by the additional integrators in the

converter architecture. If an input is injected that is out of phase with the feedback from

the one bit quantizer, the Σ∆ accumulators will begin to become unbounded and produce an

incorrect bitstream coding of the input signal. It is well know that for third or higher order

modulators, higher SNRs can be achieved, but only for more constrained input signals that have

more slowly changing values. Second order modulators on the other hand can achieve 14 to 16

ENOB for modest OSRs of 128 to 256 and are stable over a wide class of input signals making

them a practical choice for high quality encodings without having to worry too much about the

modulator stability. For the reasons previously stated, the second order modulator model will

used in the remainder of this thesis for bitstream encoder analysis and circuit architecture.

2.3 Conditions for Accurate Σ∆ Bitstream Encoding

While the linear model of the Σ∆ modulator is fairly accurate for a wide class of input

signals, there are a two cases in which it will be difficult for a modulator to produce an accurate

bitstream encoding. The two causes of potential encoding issues for Σ∆ modulators are code

noise and limit cycles. By taking the two issues into account, steps can be taken to ensure that

bitstream encodings maintain their accuracy and noise shaping.

2.3.1 Code Noise

The first major pitfall of PDM signals is that the number of bitstream codes that exist

to represent a particular continuous value become more and more sparse as amplitudes approach

the maximum and minimum limits. Originally introduced as “code noise” by Lindquist [18], the

reality of limited codes has the ability to significantly reduce the signal to noise ratio of high

amplitude signals.

To demonstrate the deleterious effects of code noise, suppose a PDM signal with a signal

bandwidth of fb and an oversample ratio of OSR. In order for the PDM signal to accurately

28

encoded a discrete or analog signal at its highest rate of change, it has, at the minimum, an

OSR number of bits to do so. This puts a constraint on the Σ∆ modulator to settle and find a

code in at least an OSR number of clock cycles. How fast a Σ∆ encoder settles depends upon

its dynamics. Intuitively, higher order Σ∆ modulators have increased closed loop phase delay

due to their addition integrators and as such reduce their ability to react to large amplitude and

or quickly changing inputs.

Consider a PDM bitstream representation of all 1’s (i.e. ...11111111111...) which is the

code for a signal at maximum signal amplitude A. It becomes apparent that there is only one

code to represent a maximum signal amplitude of A. Likewise an encoding of ...00000000000...

is the only code that represents a signal amplitude of −A. When it comes to encoding a value

that falls within the range [A, −A], it will necessitate a k number of bits to be 1’s out of a stream

of OSR bits. The number of codes that exist in this context can be determined by invoking the

binomial coefficient

COSRk =

(
OSR

k

)
=

OSR!

k! (OSR− k)!
codes

Again, for a maximum value of A (k = OSR) and minimum value of −A (k = 0), the number

of codes is

COSR0 = COSROSR = 1 code

For k = 1 and k = OSR− 1, the number of codes is

COSR1 = COSROSR−1 = OSR codes

In contrast, a mid-range signal value of zero (k = OSR/2), which has an equal number of 1’s and

0’s, has

COSROSR/2 =
OSR!

(OSR/2)!2
codes

For OSR = 16, there are 12870 possible codes for a mid-range value of zero and only

one code for a maximum value of A which illustrates a vast imbalance in the code density over

29

the representation space. Figure 2.8 shows the density of codes over the entire amplitude range

[A, −A] for an OSR of 16.

Figure 2.8: PDM Codes vs Signal Amplitude for OSR = 16

To make matters worse, only a small subset of the 2OSR number of possible codes over

an OSR length bitstream are possible for a given Σ∆ encoder. This means that while there may

be an N number of codes to represent a certain signal amplitude, the dynamics of the modulator

and the value of its present state prevent it from reaching every single one. Figure 2.9 shows a

contour plot of SNR vs OSR and sinusoidal input amplitude for the 2nd order Σ∆ modulator

shown in figure 2.6.

30

Figure 2.9: SNR vs OSR and Amplitude

In above plot, the input signal used to estimate the SNR is a sinusoid with a frequency

of 3/4fB . The contour plot shows what one would expect; an increase in SNR with an increase

in OSR and amplitude. However, SNR rolls off precipitously as the amplitude approaches its

maximum value. This roll-off demonstrates the decreased ability for the modulator to find the

correct code for a quickly varying signal (relative to the Nyquist rate) at the sparse extremes

of the representation space. The graph also shows that SNR rolls off lower in the amplitude

range for lower OSR values. Again, a lower OSR means less time for the modulator to find the

correct code for a given input signal amplitude and hence the roll off begins relatively sooner in

the amplitude range.

To ensure that the bitstream encoding does not fall prey to code noise, one can simple

limit the amplitude of the input signal to the modulator. In the case of the discrete second

order modulator, the SNR vs OSR plot suggests that one could limit the input signal maximum

amplitude to roughly 90% of the full scale input of the modulator. Doing so would ensure that

31

the required codes for encoding a signal range of [0.9 ·A, −0.9 ·A] are not sparse and difficult

for the modulator to find in time.

2.3.2 Limit Cycles

The primary source of distortion in the power spectral density of a Σ∆ encoded pulse

density modulated constant (D.C.) signal is that of a limit cycle which manifest as repeating se-

quences in the output bitstream. Limit cycles create spurs that show up in the PSD and increase

the integrated noise variance used to estimate the signal to noise ratio due to the distortion. As

such, limit cycles are unwanted artifacts that reduce signal integrity by introducing frequency

components that are not present in the input signal of the Σ∆ encoder.

Consider the first and second order Σ∆ encoders with the various DC input values and

corresponding bitstream outputs in Table 2.1

DC Input Value Bitstream Output
0 (1st Order) ...0101010101010101...
0 (2nd Order) ...0011001100110011...

+1/2 (1st Order) ...0111011101110111...
+1/2 (2nd Order) ...0110111101101111...
-3/4 (1st Order) ...1000000010000000...
-3/4 (2nd Order) ...1000000100000000...

Table 2.1: DC Σ∆ Input and Corresponding Bitstream Output

From the table, it is apparent that the corresponding limit cycle bitstream pattern is a

function of the modulator dynamics. The repeating sequences will show up as peaks, or tones, in

the power spectral density which add to the overall distortion and degrade the SNR. Typically,

low frequency signals will be more apt to produce limit cycles as the modulator will have more

time to find the proper bitstream code. In any case, limit cycles produce tones that are not

welcome and reduce the overall SNR of the signal.

The answer to suppressing limit cycles is dithering. By adding a minute amount of

noise to the input of a Σ∆ converter, one can effectively scramble the least significant bits of

the converters state registers so that repeating sequences are eliminated. Several works detail

32

methods of dithering such as additive shaped least significant bit dithering on the Σ∆ input

[16, 14, 22, 15, 17, 19].

It may often be the case however that additive dithering to a Σ∆ modulator is com-

pletely unnecessary. In most embedded control system applications, the physical system and the

process of measuring a signal of interest will already include a noise floor. The noise floor can

be attributed to such things as thermal noise or uncertainty in the front end transducer. This

natural noise floor in of itself will randomize the lower bits of the Σ∆ converter state and quell

any limit cycle that may be produced. In later chapters, a natural noise floor will be assumed

on the front end of the embedded signal chain and will be specified in any practical examples.

2.4 Conclusion

This chapter presents a means to accurately model and characterize Σ∆ bitstream

signals for use in the remainder of the thesis. A linear model of the discrete Σ∆ modulator

was presented based on assumptions made of the single bit quantizer noise. The power spectral

density estimation based on the linear modulator model has been introduced in order to accu-

rately predict the quality, or SNR, of the bitstream. Issues that may invalidate the linear model

approximation which include code noise and limit cycles have been addressed with suggestions

on how to mitigate their performance degradation of the bitstream. In the following chapter,

the linear quantization noise modular model will be used in order to design and characterize a

filter architecture that directly process bitstream encodings.

Bibliography

[13] Jose De la Rosa and Rocio Del Rio. CMOS Sigma-Delta Converters: Practical Design

Guide. CMOS Sigma-Delta Converters: Practical Design Guide, pages i–xxviii, 03 2013.

[14] B. Fitzgibbon, K. O’Neill, A. Grannell, et al. A spur-free MASH digital delta-sigma mod-

ulator with higher order shaped dither. In 2009 European Conference on Circuit Theory

and Design, pages 723–726, Aug 2009.

33

[15] B. Fitzgibbon, S. Pamarti, and M. P. Kennedy. A Spur-Free MASH DDSM With High-

Order Filtered Dither. IEEE Transactions on Circuits and Systems II: Express Briefs,

58(9):585–589, Sept 2011.

[16] K. Hosseini and M. P. Kennedy. Architectures for Maximum-Sequence-Length Digital

Delta-Sigma Modulators. IEEE Transactions on Circuits and Systems II: Express Briefs,

55(11):1104–1108, Nov 2008.

[17] M. P. Kennedy, B. Fitzgibbon, and K. Dobmeier. Spurious tones in digital delta sigma

modulators with pseudorandom dither. In 2013 IEEE International Symposium on Circuits

and Systems (ISCAS2013), pages 2747–2750, May 2013.

[18] C. S. Lindquist. Code noise in delta-sigma modulators. In Conference Record of Thirty-

Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284),

volume 2, pages 1012–1016 vol.2, Nov 1998.

[19] H. Mo and M. P. Kennedy. Masked Dithering of MASH Digital Delta-Sigma Modulators

With Constant Inputs Using Multiple Linear Feedback Shift Registers. IEEE Transactions

on Circuits and Systems I: Regular Papers, 64(6):1390–1399, June 2017.

[20] M. H. Perrott, M. D. Trott, and C. G. Sodini. A modeling approach for /spl Sigma/-/spl

Delta/ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE

Journal of Solid-State Circuits, 37(8):1028–1038, Aug 2002.

[21] R. Schreier and G.C. Temes. Understanding Delta-Sigma Data Converters. Wiley, 2004.

[22] J. Song and I. Park. Spur-Free MASH Delta-Sigma Modulation. IEEE Transactions on

Circuits and Systems I: Regular Papers, 57(9):2426–2437, Sept 2010.

[23] X. Wu and R. M. Goodall. One-bit processing for digital control. IEE Proceedings - Control

Theory and Applications, 152(4):403–410, July 2005.

34

Chapter 3

Performance, Design, and

Optimization of the Σ∆ Controller

Architecture

Oversampled PDM signals provide an inexpensive encoding mechanism for time de-

pendent signals. In this chapter, direct processing strategies are described to implement high

performance filters/controllers using such streams for both input and output. Despite the ubiq-

uitous utility of Z-transform and time-shift techniques in digital filters, it will be shown that

they are of little use to construct filters based on PDM representations. In particular, operations

between time-shifted oversampled streams require expensive trains of delay elements (since the

stream is high rate) and unfortunately have extremely poor coefficient sensitivity and stability

characteristics.

Instead, filters based on integrators and direct implementation of state-space variables

will be described. Since the PDM representation is binary, filter coefficient scaling is simplified

to the selection of a multi-bit constant or its complement to add to the integrator input. In

this way, very efficient filters can be constructed without the multiplier scaling elements that

are the cornerstone of conventional digital signal processing. Given the 50 years of continual

35

improvement in the performance of digital systems, operation at the oversampling rate is prac-

tical for such rates easily exceeding 1 GHz, leading to very high resolution filters with practical

bandwidths exceeding 10MHz using these techniques. (In later chapters, we will show how to

improve this to 50MHz and beyond).

While the architecture of PDM and integrator based filters has been proposed else-

where, here we use the nature of the PDM representation and the sensitivity characteristics of

the architecture to construct an optimizing algorithm minimizing the coefficient and integrator

bit-widths subject to performance constraints. This minimizes the component (logic) footprint

as well as the design power needed to implement the filter. Further, since the filter architecture

latency is measured in small numbers of oversample periods, the filter latency is extremely low,

enhancing its utility in feedback control applications.

In this chapter, a Σ∆ controller architecture that emulates transfer functions will be

presented along with its register transfer level (RTL) design. The Σ∆ controller architecture

will directly process bitstreams at the oversample rate and achieve near continuous time LTI

control performance while having an extremely small multiplierless design that is both low

power, low latency, and high resolution. In order to gauge performance, a novel quantization

noise analysis and model will be presented in order to determine the output SNR of the controller

logic ensemble. A metric for estimating transfer function variation due to coefficient quantization

will be included as well. Using both the noise model and the transfer function variation estimate,

a convex optimization scheme will be invoked in order to minimize the number of state register

bits needed to construct the Σ∆ controller while still meeting user defined performance metrics

and goals. The chapter will conclude with an example transfer function design which will outline

the performance and capability of the Σ∆ controller architecture.

3.1 Mathematical Tools and Assumptions

Filters are a fundamental building block in embedded signal processing systems. Their

ability to discriminate between and select designated frequency components from signals makes

them indispensable in numerous applications ranging from telecommunications to control sys-

36

tems. In particular, the linear time invariant (LTI) variety are of great importance as they

emulate transfer functions and can be implemented using simple mathematical operations such

as addition, multiplication, and delays. Due to the relative ease of design and simple implemen-

tation, linear time invariant filters are extremely popular and have found great success in real

time embedded signal processing and control applications.

The current paradigm in discrete filter design revolves around shift based algorithms.

The shift operator q can be defined as

qx (k∆) = x (k∆ + ∆)

where k ∈ Z≥0 is the discrete time step, ∆ ∈ R is the sampling period, and x ∈ R is a state

variable, and serves as the fundamental basis for storing filter state in discrete filter designs.

Direct filtering of oversampled bitstream signals implies running filter computations

at the oversampled rate. In conventional signal processing and control implementations based

on the forward shift operator q, sampling at rates much higher than the underlying system

dynamics can lead to issues of ill conditioning and stability [62]. Consider the continuous time

state space filter representation

ẋ = Acx+Bcu

y = Ccx+Dcu

where x ∈ Rn, y ∈ Rm, u ∈ Rk, Ac ∈ Rn×n, cB ∈ Rn×k, Cc ∈ Rm×n, Dc ∈ Rm×k, and

n,m, k ∈ Z≥0. If one were to discretize the state transition matrix Ac using the zero order hold

method and take the limit of the sampling period ∆ as it approaches zero, the result would be

lim
∆→0

Aq = lim
∆→0

eAc∆ = I

That is, as the sampling period approaches zero, the poles of the filters converge to z = 1 on the

unit circle in the complex plane. In fixed point realizations where the coefficients of a filter are

represented with finite precision, the possible locations of filter poles in the unit circle stability

region of the Z domain become sparse in and around the real axis. Figure 3.1 illustrates this

37

effect for a fourth order lowpass filter while increasing the sample rate from 1kHz to 10kHz. As

can be seen the poles and zeros converge quickly. What is more disturbing is that the black dots

represent the quantization points for 5 bit coefficients in the filter.

Figure 3.1: 5-bit Fixed Point Pole Locations for Direct Form IIR Filter

Notice that z = 1 is not a possible location within the unit circle for complex conju-

gate poles with distinct complex components. As sampling rates increase, discerning between

distinct complex conjugate poles requires larger coefficient bitwidths leading to ever expanding

logic implementations. Without, large coefficient bitwidths, the filter will experience severe fil-

ter magnitude and phase response deviations as well as the potential for instability. It seems

counter intuitive that as the sample rate increases the numerical stability of the fixed point filter

38

implementation decreases, but must it be so? For oversampled bitstream processing where the

resolution of the representation increases as the sampling period converges to zero, a different

filter operator is required that does not increase the coefficient sensitivity to the point of ab-

surdity. Thankfully, an alternative to the shift operator exists that mitigates these issues: the

δ-operator.

The δ-operator is a difference based operator defined as

δx (k∆) ,
x (k∆ + ∆)− x (k∆)

∆

which is analogous to a discrete derivative approximation. Taking the limit of δx (k) as the

sampling period approaches zero we have

lim
∆→0

δx (k∆) = lim
∆→0

x (k∆ + ∆)− x (k∆)

∆
=
dx

dt

which demonstrates the operators ability to approximate continuous time dynamics with an

increase in sampling frequency. The attractiveness of the δ-operator to emulate continuous

dynamics is made more clear when using it as a basis for a linear dynamic system model.

By imposing a piece-wise input to the continuous variation of constants formula asso-

ciated with the continuous time state space model, one can obtain the discrete δ state space

representation written as

δx =Aδx+Bδu

y =Cδx+Dδu

where

39

Aδ =
eAc∆ − I

∆

Bδ =
1

∆

ˆ ∆

0

eAc(t−τ)Bcu (τ) dτ

Cδ = Cc

Dδ = Dc

Again, the main advantage of the δ based model is the ability for it to converge to continuous

time dynamics with an increase in sampling frequency. This property can be demonstrated by

taking the limit as the sampling period approaches zero of the state transition matrix Aδ. Doing

so gives

lim
∆→0

Aδ = lim
∆→0

eAc∆ − I
∆

= Ac

demonstrating that δ system dynamics do indeed converge to their continuous time counterpart.

The discrete δ-operator based model avoids the singularity approach imposed by high sampling

rates. Given oversampling rates of 500, this leads to very substantial improvements in coefficient

sensitivity and hence design overhead [44, 33]. This effect is not seen in conventional DSP designs

based on the shift operator which are very susceptible to coefficient round-off error. For every

fixed point multiplication that exists in a filter implementation, the product must be rounded

to a fixed bitwidth which creates a source of noise in the filter structure. The culmination of

all round-off noise sources creates a significant increase in the output noise floor of the filter,

especially as the order of the filter increases. For this reason, high order filters in practice are

implemented as a series of second and first order sections so the multiplier quantization noise

does not obfuscate the actual signal information [34].

The δ operator as a basis for filter implementation is key in the construction of bit-

stream filters because it effectively filters the associated high frequency representation noise and

attenuates it in branch nodes of filter architectures. The properties of the delta operator make

it a suitable basis for construction in oversampled bit-serial filter designs. By taking great care

40

in the design of bitstream filters, it is not only possible to achieve low complexity and power

and high performance designs, but it also provides an opportunity to solve problems that are

not readily addressable with conventional DSP.

3.1.1 Shift-based Bitstream Design

In an attempt to create filters that have bitstream input and outputs, it will necessitate

a Σ∆ modulator in loop on the output of the implementation. The shift based Σ∆ filter

architecture shown in figure 3.2 illustrates a naive attempt to create multiplierless filter that

directly processes bitstreams.

Figure 3.2: Shift Based Σ∆ Filter Architecture

Based on the direct form II transposed filter topology, the structure has the nice feature

that each coefficient multiply points into the filter allowing for a single feedforward and feedback

path. By placing a Σ∆ encoder in the loop, the filter can achieve a multiplierless design via

single feedforward and feedback single bit signals. Unfortunately, the Σ∆ encoder introduces

its own dynamics into the filter which cause undesirable effects.

Using the linear model of the Σ∆ modulator the transfer function for the second order

shift based Σ∆ filter can be written as

Y (z)

U (z)
=

(
b0 + b1z

−1 + b2z
−2
)
STFΣ∆ (z)

1 + (a1z−1 + a2z−2)STFΣ∆ (z)

41

As can be seen, the signal transfer function shows up in the denominator. Suppose that the

signal transfer function is that of a general second order modulator with STFΣ∆ (z) = z−1. The

introduction of a delay in the signal path adds phase delay and an extra pole in the denominator

creating significant distortion in the transfer function response and in many cases instability.

As an example, consider the case when a1 = 1.6 and a2 = 0.8. For the discrete controller, these

coefficient values correspond to poles of 0.8 ± 0.4j. By placing a Σ∆ modulator in the loop

with a single delay signal transfer function, the poles of the filter become 0.2225±1.3223j and

0.4449 which are a significant departure from the desired poles and render the filter unstable.

Coupled with the numerical stability issue of fast sampling and the extra pole added by the

output modulator, shift based versions of a Σ∆ filter are destined to fail.

3.1.2 Direct State-Space Filter

On the other hand, there is the δ operator which eliminates the numerical stability

issues of its shift counterparts. One could implement a state space direct form of a filter and

add discrete Σ∆ modulators in appropriate places where necessary to create a multiplier free

design. Such a design would look like something in figure 3.3.

Figure 3.3: Σ∆ State Space Filter Architecture

The issue with the state space direct form is that it requires N+1 discrete Σ∆ mod-

ulators for each state variable with N being the order of the filter. More modulators means

more complexity as well as more noise which could substantially reduce the effectiveness of the

design SNR performance. Fortunately there is a canonical filter topology that serves as a great

42

compromise between performance and complexity and is based on a modified δ operator direct

form II transposed structure.

3.1.3 Assumptions on Filter/Controller Architecture

In preparation for design and of the Σ∆ based filter/controller hardware platform,

there are a variety of assumption about the conditions of the environment it is to accommodate.

The assumptions on the controller are the following:

1. The controller is a single-input single-output, linear time-invariant, and minimal (being

both observable and controllable) state space realization or proper rational transfer func-

tion.

2. Second order Σ∆ encodings are used in all bitstream paths and have a noise transfer

function of

NTFΣ∆ (f) =
(
1− e−j2πf

)2
where f is frequency in Hertz and j =

√
−1.

3. The input to the filter/controller is bounded not only in magnitude but also in frequency.

(a) An input u to the controller is scaled such that

u (t) ∈ [−0.9, 0.9], ∀t

This is to avoid distortion due to code noise discussed in chapter 2.

(b) The input to any Σ∆ modulator must be band limited such that the gain crossover

frequency of the closed loop is less than the control bandwidth fB of the Σ∆ encoded

bitstream. This is to ensure stability of the in loop Σ∆ modulators.

With these assumptions, it can be ensured the filter will operator in the desirable way without

running into any edge constraints that would compromise stability and performance.

43

yΣΔ...

...

...

10s

β0-β0

1
m m

10s

β1-β1

1
m m

10s

βn-1-βn-1

1
m m

10s

βn-βn

1
m m

-α1α1

01 s
1

mm

-αn-1αn-1

01 s
1

mm

αn -αn

01 s
1

mm

>> ΔK1
-1>>ΔKn-1

-1

u
1

1

Multibit

1-bit

Figure 3.4: Sigma Delta IIR Filter

3.2 Σ∆ Filter Architecture

This section describes the discrete hardware architecture of the Σ∆ filter. A register

transfer level diagram of the filter architecture can be seen in figure 3.4. This structure is very

similar to the δ direct form II transposed structure presented in [52] with the main difference

being that there now exists a discrete Σ∆ modulator after the filter output and before the

feedback path. Although not shown, the input to the filter structure is also a Σ∆ encoded

bitstream typically supplied by a front end Σ∆ ADC making both the input and feedback paths

one bit wide.

Having both a 1-bit feedforward and feedback path has the advantage of allowing one

to use multiplexers to implement the filter coefficient gains rather than using comparatively

large 2’s complement digital multipliers. In this case, the coefficients switch back and forth,

according to the driving bitstream, between their positive and negative values. The output of a

multiplexer implemented coefficient in conjunction with the dithering effect of the Σ∆ bitstream

create, on average, the same low frequency product that would be obtainable with a conventional

fixed point multiply operating at Nyquist sampling rates. Without the need of multipliers the

entirety of the Σ∆ filter architecture can be constructed from just multiplexers, adders, registers,

and bitshifts which includes the output Σ∆ modulator. Multiplierless filter design thus has an

additional advantage of being considerably more compact in terms of circuit resources than their

fixed point counterparts.

44

At the heart of the Σ∆ filter architecture is the filter node shown in figure 3.5. This

is a point in the circuit in which corresponding coefficient scalings are added to the bit-shifted

output of the previous node and accumulated in a discrete integrator. The inverse of the δ

operator, which forms the basis for the model design, is implemented via the discrete integrator

and a bitshift. In this paper, the scaled δ operator ∆k̃−1
n−1 gain will only be considered to

occur after the accumulator. Since the coefficient gains, the output of the previous node, and

the accumulator feedback share the same summation node, each signal can assume the same

quantization step which sets the number of fractional bits in the representation. Choosing the

proper number of fractional bits for each filter node will be discussed later in the chapter.

Figure 3.5: Sigma Delta Filter Node

It should also be noted that multiplexer switched filter coefficient gains do not require

any rounding and truncation scheme associated with the product as with conventional bit parallel

multipliers. The bitstream is simply scaled by the coefficients and the multiplexer multibit

outputs are the same size as the coefficients themselves. This is a very important advantage to

having 1-bit feedforward and feedback paths due to the fact the coefficient multiply truncation

and rounding is eliminated. In conventional filtering, high order sections of filters are not used

due in part to the accumulation of coefficient round-off noise. The problem is exacerbated

45

in shift operator based design while delta operator design are significantly more insensitive to

coefficient round-off noise [53, 51, 39, 33]. As we shall see in Chapter 5, these problems are

mostly eliminated in this architecture.

3.3 Σ∆ Filter Design and Performance Metrics

The Σ∆ filter architecture presented in the previous section has the capability of im-

plementing nearly any δ-domain transfer function. In this section, the process of adapting a

continuous time filter model to map into the Σ∆ filter structure and apply appropriate scaling

is discussed.

3.3.1 Design by Emulation

Design by emulation is a popular technique in which a discrete filter is formulated via

the discrete transformation of a continuous time filter design. Typically, controllers and filters

are designed in the continuous domain and thus the design of a Σ∆ filter will begin with a

continuous representation. The synthesized continuous time filter/controller can be described

by the state space model

ẋ = Acx+Bcu

y = Ccx+Dcu

where x ∈ Rn, y ∈ R, u ∈ R, Ac ∈ Rn×n, Bc ∈ Rn, Cc ∈ Rn, Dc ∈ R, and m,n ∈ Z+. The

corresponding δ based model

δx = Aδx+Bδu

y = Cδx+Dδu

can be realized by using the relations

46

Aδ =
eAc∆ − I

∆

Bδ =
1

∆

ˆ ∆

0

eAc(t−τ)Bcu (τ) dτ

Cδ = Cc

Dδ = Dc

where ∆ is the sampling period. The discrete δ based transfer function Hδ(δ), which emulates

the input-output dynamics of the original continuous filter state spaced model, is constructed

from the state space model as

Hδ(δ) = Cδ(δI −Aδ)−1Bδ +Dδ =
N (δ)

D (δ)

where

N (δ) = βδ0 + βδ1δ
−1 + · · ·+ βδn−1δ

−(n−1) + βδnδ
−n

=

N∑
i=0

βδiδ
−i

D (δ) = 1 + αδ1δ
−1 + · · ·+ αδn−1δ

−(n−1) + αδnδ
−n

= 1 +

N∑
i=1

αδiδ
−i

It should be noted here that the choice in ∆ depends on the input bitstream and the

amount of information content it contains. As previously discussed, the sample rate directly

effects the effective number of bits contained in the bitstream encoding over a given bandwidth.

Typically ∆ will be set by a front end ADC or transducer to achieve the desired SNR/ENOB

bitstream performance as described in chapter 2.

47

While the δ based state space model represents the correct dynamics of the filter, the

matrices need to be altered in order to fit the filter model to the architecture layout of the Σ∆

filter. The process of mapping the original state space model can be done with the structural

transformation similarity transform T0 given by

T0 =

[
An−1
δ T1 An−2

δ T1 . . . AδT1 T1

]

where

T1 =

Cδ

CδAδ
...

CδA
n−1
δ

−1

0

0

...

1

as derived in [52]. Using the similarity transform T0, the state space matrices of the δ model

becomeÃδ = T−1
0 AδT0, B̃δ = T−1

0 Bδ, and C̃δ = CδT0. The ∼ indicates the application of

the structural transformation to the filter model. As the name implies, the similarity transform

converts the state space equations to those that describe the filter structure but leaves the overall

filter dynamics unchanged, that is

H(δ) = C̃δ(δI − Ãδ)B̃δ +Dδ

The structural transformation of the state space representation is important as it will allow the

upcoming analysis of the internal filter dynamics at specific nodes in the filter.

3.3.2 Dynamic Range Scaling of State Variable Integrators

Within the architecture of the Σ∆ filter are the state variable integrators that imple-

ment the δ−1 operation that the dynamics are based upon. Given an arbitrary set of transfer

function coefficients, it may well be the case that the transfer function from the input to the ith

state variable xi is poorly scaled. In the scenario that the scaling of a state variable integrator

48

is sufficiently small, the relevant signal information will be muddled with the noise floor. To

maximize the SNR at each filter node, the internal integrators must be scaled appropriately.

By introducing scaling coefficients k1through kN that succeed the discrete δ−1 opera-

tors, the filter can be scaled at the output of the discrete integrators. The scaling matrix TS

defined as

Ts = diag
[
k−1

1 , (k1k2)
−1
, . . . , (k1k2 . . . kn)

−1
]

can be introduced to augment the overall state space matrices as Ã′δ = T−1
s T−1

0 AδT0Ts, B̃
′
δ =

T−1
s T−1

0 Bδ, and C̃
′
δ = CδT0Ts. Here the ’ indicates that scaling has been applied. As a result

of the scaling, the filter coefficients become αδi = αik1k2 · · · kn and βδi = βik1k2 · · · kn. The

overall filter transfer function

H(δ) = C̃
′
δ(δI − Ã

′
δ)B̃

′
δ +Dδ

using the transformed and scaled matrices contains the same dynamics as the non-transformed

and non-scaled transfer function. While the input and output dynamics remain the same, the

internal dynamics change substantially once the scaling coefficients are chosen.

Choosing the scaling coefficients begins with defining the transfer function from the

input u to the ith integrator output xi. Letting

fi (δ) =
xi (δ)

u (δ)

49

the transfer functions from the input to the ith state integrator can be written as

f (δ) = [f1 (δ) · · · fn (δ)]
T

=
(
δI − Ã′δ

)−1

B̃
′
δ

=
(
δI − T−1

s T−1
0 AδT0Ts

)−1
T−1
s T−1

0 Bδ

=
(
T−1
s T−1

0 (δT0Ts −AδT0Ts)
)−1

T−1
s T−1

0 Bδ

= ((δI −Aδ)T0Ts)
−1
Bδ

= T−1
s T−1

0 (δI −Aδ)−1
Bδ

From here, a proper measure of the f (δ) gain is required to make an appropriate choice for k1

through kN . The p-norm for discrete δ based filters defined as

∥∥∥∥H(
ejω − 1

∆
)

∥∥∥∥
p

=

 1

2π

π̂

−π

|H
(
ejω − 1

∆

)
|pdω

1/p

is the measure that will be used to determine the internal gain of the filter structure. For this

paper, the∞-norm will be used for scaling which will ensure that the fixed point filter integrators

do not overflow. To utilize the full dynamic range of each variable and maximize its SNR, the

following relation should be made

||f(δ)||∞ = T−1
s ||T−1

0 (δI −Aδ)−1
Bδ||∞

=

[
1 · · · 1

]T

such that each integrator node is normalized. The scaling coefficients in Ts can then be found

using back substitution.

In implementing the scaling coefficients in the filter structure, it is advantageous to

continue the multiplierless theme of the architecture. Rather than fixed point multiplies, the

scaling coefficients can be chosen as a power of two multiply/divide (i.e. a bit shift). Since

50

the magnitude of the signal is constant after each multiplexer coefficient (it merely switches

between its positive and negative value based on the Σ∆ bitstream) we can scale the input from

the previous integrator stage so that the∞-norm is equal to the max value of the summed coef-

ficients to maximize dynamic range at each signal node. To reduce the overall filter architecture

complexity, the scaling coefficients should be adjusted according to

k̃i =
2blog2∆·k−1

i c

∆

Doing so will render the ∆ · k−1
i multiplication after the state registers a power of two. The

multiplication can thus be implemented with a bit shift. Rounding after each scaling shift will

be assumed from here on. At this point, the filter coefficients are completely described with the

appropriate scaling and can be used in further analysis to establish noise gain and register and

coefficient bitwidth selection for the modified Σ∆ filter architecture.

3.3.3 Coefficient Sensitivity

To construct a fixed point filter, it becomes necessary to quantize the filter coefficients.

For two’s compliment representations the coefficients will have a bitwidth bw = bi+bf +1 where

bi is the integer bits and bf are the fractional bits. Doing so however, introduces deviations into

the transfer function response. To choose the correct quantization of filter coefficients in order

to bound the induced transfer function error, the filter sensitivity must be analyzed.

To choose the coefficient bitwidths, the the sensitivity of the transfer function must be

evaluated for small deviations in the filter coefficients in order to bound the induced variation.

Let the sensitivity of a transfer function G(δ) with respect to a parameter m be defined as

SG(δ)
m (δ) =

∂G(δ)

∂m

Using the sensitivity measure SG(δ)
m (δ), an estimate for the transfer function response deviation

εm (δ) with respect to a parameter deviation δm takes the form of εm (δ) = δmS
G(δ)
m (δ).

51

Applying the previously defined sensitivity measure to the feedback and feedforward

coefficients α̃ and β̃, the sensitivity functions with respect to the ith element of α̃ and β̃ coeffi-

cients can be written as

S
H̃
′
Σ∆(δ)

αi (δ) =
∂H̃

′

Σ∆(δ)

∂αi

= H̃
′

Σ∆(δ) ·
[
TTs T

T
0

(
δI −ATδ

)−1
CTδ

]
S
H̃
′
Σ∆(δ)

βi
(δ) =

∂H̃
′

Σ∆(δ)

∂βi

= TTs T
T
0

(
δI −ATδ

)−1
CTδ

S
H̃
′
Σ∆(δ)

β0
(δ) =

∂H̃
′

Σ∆(δ)

∂β0

= Cδ (δI −Aδ)−1
AδT0

[
1 0 · · · 0

]T
+ 1

As can be seen in the filter node diagram in figure 3.5, the αi and βi coefficient multiplexers see

the same summation node. It is appropriate then that both coefficients are quantized to the same

level. By combing the coefficient sensitivities at each node, a sensitivity matrix, SH̃
′
Σ∆(δ) (δ),

can be formulated as

52

SH̃
′
Σ∆(δ) (δ) =

S
H̃
′
Σ∆(δ)

0 (δ)

S
H̃
′
Σ∆(δ)

1 (δ)

S
H̃
′
Σ∆(δ)

2 (δ)

...

S
H̃
′
Σ∆(δ)

N (δ)

T

=

S
H̃
′
Σ∆(δ)

β0
(δ)

S
H̃
′
Σ∆(δ)

β1
(δ) + S

H̃
′
Σ∆(δ)

α1 (δ)

S
H̃
′
Σ∆(δ)

β2
(δ) + S

H̃
′
Σ∆(δ)

α2 (δ)

...

S
H̃
′
Σ∆(δ)

βN
(δ) + S

H̃
′
Σ∆(δ)

αN (δ)

T

At this point it is of interest to find the variation of the ideal transfer function magni-

tude, ∆
∣∣∣H̃ ′Σ∆(ejω)

∣∣∣, with respect to ∆qi changes in the ith numerator and denominator coeffi-

cients. The overall magnitude of the transfer function sensitivity SH̃
′
Σ∆(δ)

i

(
ejω
)
is

∣∣∣∣SH̃′Σ∆(δ)
i

(
ejω
)∣∣∣∣ =

∣∣∣∣∣S
∣∣∣H̃′Σ∆(ejω)

∣∣∣
βi

(ejω) + S

∣∣∣H̃′Σ∆(ejω)
∣∣∣

αi (ejω)

∣∣∣∣∣
≤
∣∣∣∣SH̃′Σ∆(ejω)
βi

(ejω) + S
H̃
′
Σ∆(ejω)

αi (ejω)

∣∣∣∣
The right hand side of the above inequality can be used as a conservative estimate for

∣∣∣∣SH̃′Σ∆(δ)
i

(
ejω
)∣∣∣∣.

An approximation to the transfer function variation can then be computed by

∆
∣∣∣H̃ ′Σ∆ (δ)

∣∣∣ ≤ ∆q0

∣∣∣∣SH̃′Σ∆(δ)
β0

(δ)

∣∣∣∣
+

N∑
i=1

∆qi

[∣∣∣∣SH̃′Σ∆(δ)
βi

(δ) + S
H̃
′
Σ∆(δ)

αi (δ)

∣∣∣∣]

or more compactly as

53

∆
∣∣∣H̃ ′Σ∆ (δ)

∣∣∣ ≤ ∣∣∣SH̃′Σ∆(δ) (δ)
∣∣∣∆q

where ∆q =

[
∆q0 ∆q1 · · · ∆qN

]T
is a vector quantization levels at each filter node. The

transfer function magnitude variation, ∆
∣∣∣H̃ ′Σ∆ (δ)

∣∣∣, due to coefficient quantization will later be

used as a performance metric for choosing the appropriate quantization levels of the filter nodes

with the overall Σ∆ filter architecture.

3.3.4 Noise Analysis

The noise analysis of the Σ∆ filter differs from conventional analysis in two distinct

ways. First, there is the inherent representation noise associated with the input and output

bitstreams that are injected into the filter. Second, there are no fixed point coefficient multiplier

products that need truncation. For the Σ∆ filter, noise is injected into the circuit that propagates

to the output from three separate sources:

1. The representation noise of the input Σ∆ encoded bitstream to the filter output.

2. The additive representation noise of the output Σ∆ modulator to the filter output.

3. The coupling coefficient round-off quantization taking place after each discrete integrator.

As previously stated, there is no round-off quantization noise due to coefficient multiplies since no

fixed point multipliers exist in the filter architecture; scaling coefficients are selected as power

of two bitshifts. It is possible then to create third order or higher filters without coefficient

multiply round-off quantization noise drowning out the signal information at each stage of the

filter.

3.3.4.1 Input Σ∆ Representation Noise Propagation

Representation noise from the input Σ∆ follows the same path as the input signal to

the filter output. That is, the input representation noise is filtered by the transfer function

H̃
′

Σ∆ (δ). Let NTFΣ∆1
(δ) be the noise transfer function of the input modulator where the

54

quantizer noise has a spectral density of ηΣ∆1 and f be frequency in Hertz. The output noise

variance injected by the input Σ∆ modulator, σ2
Σ∆1

, is given by

σ2
Σ∆1

=

fBˆ

−fB

ηΣ∆1

∣∣∣NTFΣ∆1
(f)
(
H̃
′

Σ∆(f) + ∆H̃
′

Σ∆(f)
)∣∣∣2 df

≤
fBˆ

−fB

ηΣ∆1

[∣∣∣NTFΣ∆1
(f)H̃

′

Σ∆(f)
∣∣∣2 +

∣∣∣NTFΣ∆1
(f)∆H̃

′

Σ∆(f)
∣∣∣2] df

=

fBˆ

−fB

ηΣ∆1

[
H̃
′∗
Σ∆(f)NTF ∗Σ∆1

(f)NTFΣ∆1(f)H̃
′

Σ∆(f)
]
df

+ ∆

 fBˆ

−fB

ηΣ∆1

[
S∗ (f)NTF ∗Σ∆1

(f)NTFΣ∆1
(f)S (f)

]
df

∆q

Note here that the transfer function deviation, ∆H̃
′

Σ∆(f), is taken into account when quantiz-

ing the internal bitwidths of the filter. The overall output variance contributed by the input

bitstream representation noise is

σ2
Σ∆1

= σ2
nom1

+ ∆T
q HΣ∆1

∆q

where

σ2
nom1

= ηΣ∆

fBˆ

−fB

H̃
′∗
Σ∆(f)NTF ∗Σ∆1

(f)NTFΣ∆1(f)H̃
′

Σ∆(f)df

and

HΣ∆1
= ηΣ∆

fBˆ

−fB

S∗ (f)NTF ∗Σ∆1
(f)NTFΣ∆1

(f)S (f) df

3.3.4.2 Output Σ∆ Representation Noise Propagation

Representation noise from the output Σ∆ is injected at the quantizer noise input of

the digital output modulator to the filter output. The transfer function, E (δ), from the output

55

Σ∆ quantizer noise input to the output of the filter is

E (δ) = (Ã
′
δ, Ao

[
1 0 · · · 0

]T
, C̃
′
δ, 1)δ

= CδT0Ts
(
δI − T−1

s T−1
0 AδT0Ts

)−1×

T−1
s T−1

0 AδT0TsK

[
1 0 · · · 0

]T
+ 1

= CδT0Ts

[
T−1
s T−1

0 (δIT0Ts −AδT0Ts)
−1
]
×

T−1
s T−1

0 AδT0

[
1 0 · · · 0

]T
+ 1

= Cδ (δI −Aδ)−1
AδT0

[
1 0 · · · 0

]T
+ 1

where Ao = Ã
′
δK and K = diag

(
k̃1 k̃2 · · · k̃N

)
. As a result of coefficient quantization,

E (δ) will vary slightly from its ideal formulation. The sensitivity of E (δ) must be taken into

account then when calculating the output noise variance estimate.

The sensitivity function SE(δ)(δ) of E (δ) can be defined as

SE(δ) (δ) =

S
E(δ)
0 (δ)

S
E(δ)
1 (δ)

S
E(δ)
2 (δ)

...

S
E(δ)
N (δ)

T

=

0

S
E(δ)
α1 (δ)

S
E(δ)
α2 (δ)

...

S
E(δ)
αN (δ)

T

where

SE(δ)
αi (δ) =

∂E(δ)

∂αi
=
δ−iE(δ)

D (δ)

56

The transfer function magnitude deviation of E (δ) can then be written as

∆ |E (δ)| ≤
N∑
i=1

∆i

∣∣∣SE(δ)
αi (δ)

∣∣∣
LetNTFΣ∆2 (δ) be the noise transfer function of the output modulator where the quantizer noise

has a spectral density of ηΣ∆2
. The output noise variance injected by the input Σ∆ modulator,

σ2
Σ∆1

, is given by

σ2
Σ∆2

=

fBˆ

−fB

ηΣ∆ |NTFΣ∆2
(f) (E (f) + ∆E(f))|2 df

≤
fBˆ

−fB

ηΣ∆

[
|NTFΣ∆2 (f)E (f)|2 + |NTFΣ∆2 (f) ∆E (f)|2

]
df

=

fBˆ

−fB

ηΣ∆

[
E∗ (f)NTF ∗Σ∆2

(f)NTFΣ∆2
(f)E (f)

]
df

+ ∆T
q

 fBˆ

−fB

ηΣ∆

[
SE(δ)∗ (f)NTF ∗Σ∆2

(f)NTFΣ∆2
(f)SE(δ)(δ)

]
df

∆q

or more compactly as

σ2
Σ∆2

= σ2
nom2

+ ∆T
q HΣ∆2

∆q

where

σ2
nom2

= ηΣ∆

fBˆ

−fB

E∗ (f)NTF ∗Σ∆2
(f)NTFΣ∆2

(f)E (f) df

and

HΣ∆2
= ηΣ∆

fBˆ

−fB

SE(δ)∗ (f)NTF ∗Σ∆2
(f)NTFΣ∆2

(f)SE(δ)(δ)df

3.3.4.3 Output Noise Propagation due to Scaling Coefficient Rounding

The third source of noise in the Σ∆ filter structure is from the rounding that occurs

directly after the scaling coefficient bitshift implementations. Again, a rounding scheme is

57

assumed in order to maintain a zero bias. It is also assumed that the rounding noise can be

modeled as an additive white Gaussian source. Under that assumption, the spectral density of

the rounding noise is

ηki(f) =
σ2
e

fs
=

∆2
qi

12 · fs

where σ2
e is the noise variance of the additive rounding noise source.

To begin finding the total noise contribution from the scaling coefficient rounding, the

transfer functions from the additive rounding noise inputs ek1to the output y must be found.

Taking note of the fact that the noise input for k1 shares the same summation node as that of

β0,the transfer function g0(δ) = y(δ)
ek1(δ)

can be found as

g0 (δ) = (Ã
′
δ, Ao

[
1 0 · · · 0

]T
, C̃
′
δ, 1)δ

= CδT0Ts
(
δI − T−1

s T−1
0 AδT0Ts

)−1×

T−1
s T−1

0 AδT0TsK

[
1 0 · · · 0

]T
+ 1

= CδT0Ts

[
T−1
s T−1

0 (δIT0Ts −AδT0Ts)
−1
]
×

T−1
s T−1

0 AδT0

[
1 0 · · · 0

]T
+ 1

= Cδ (δI −Aδ)−1
AδT0

[
1 0 · · · 0

]T
+ 1

The output noise variance σ2
k1‘

contributed by the rounding of the k1 scaling coefficient can then

be found as

σ2
k1‘

=

fBˆ

−fB

ηek1
(f) |g0 (f)|2 df

58

Similarly, the transfer function from ekito the output y shares the same summation

node as α̃i and β̃i. The transfer function gi(δ) = y(δ)
eki(δ)

can be found as

g (δ) =

[
g1 (δ) · · · gN (δ)

]T
=

[
C̃
′
δ

(
δI − Ã′δ

)−1
]T

=
[
CδT0Ts

((
δT−1

s T−1
0 I − T−1

s T−1
0 Aδ

)
T0Ts

)−1
]T

=
[
Cδ
(
δT−1

s T−1
0 I − T−1

s T−1
0 Aδ

)−1
]T

=
[
Cδ
(
T−1
s T−1

0 (δI −Aδ)
)−1
]T

=
[
Cδ (δI −Aδ)−1

T0Ts

]T
= TTs T

T
0

(
δI −ATδ

)−1
CTδ

where the total output noise variance σ2
ki‘

for the ith scaling coefficient rounding can written as

σ2
ki‘ =

fBˆ

−fB

ηeki (f) |gi−1 (f)|2 df

Taking all rounding contributions into consideration, the total output variance from

scaling coefficient rounding σ2
k can be written as

σ2
k = ∆T

q

 fBˆ

−fB

(
1

3fs

)
g∗k (δ) gk (δ) df

∆q

σ2
k = ∆T

q Hk∆q

where

gk (δ) =

[
g0 (δ) g1 (δ) · · · gN−1 (δ) 0

]T

59

and

Hk =

fBˆ

−fB

(
1

3fs

)
g∗k (δ) gk (δ) df

The total filter output noise propagation from all noise sources can be written as:

σ2
total = σ2

Σ∆1 + σ2
Σ∆2 +

n∑
k=1

σ2
ki

3.3.4.4 Noise Floor in Integrator Sections due to Σ∆ Representation Noise

The representation noise from the input and output Σ∆ modulators is an effect that

propagates itself throughout the internal nodes of the Σ∆ filter architecture. Once a Σ∆ mod-

ulator architecture and OSR have been selected, the representation noise sets a fixed noise floor

in all parts of the filter. Decreasing scaling coefficient round-off noise is therefore limited to

the floor set by the representation noise of the input and feedback Σ∆ modulators. Reducing

the quantization level ∆qi for the fixed point representation in the ith filter node will increase

the overall size of the filter circuitry without any reduction in overall internal filter noise. It is

therefore prudent to select ∆qibased on the condition

σ2
ki ≥ σ

2
xi−1Σ∆

where σ2
ki

is in band quantization noise variance due to scaling coefficient rounding and σ2
xi−1Σ∆

is the in band noise variance due to the input and feedback Σ∆ modulators at the ith integrator

node. The in band quantization noise from the rounding that occurs after each integrator stage

coupling coefficient is

σ2
ki =

∆2
qi

12 ·OSR

It is a fact that σ2
xi−1Σ∆ puts a limit onto how small one can make σ2

ki
through choosing

the quantization step size ∆qi (i.e. σ2
ki
≮ σ2

xi−1Σ∆). The bound on the size of ∆q can be written

as

60

σ2
ki
≥ σ2

xiΣ∆

∆2
qi

12·OSR ≥ σ
2
xiΣ∆

∆2
qi ≥ 12 ·OSR · σ2

xiΣ∆

∆qi >
√

12 ·OSR · σ2
xiΣ∆

To calculate σ2
xiΣ∆, the transfer function from the input and output Σ∆ modulator

noise input to the state variables must be derived. For the input modulator to the ith integrator

state, the transfer function is

fxΣ∆1(δ) = [fx1Σ∆1 (δ) · · · fxnΣ∆1 (δ)]
T

=
(
δI − Ã′δ

)−1

B̃
′
δ

=
(
δI − T−1

s T−1
0 AδT0Ts

)−1
T−1
s T−1

0 Bδ

=
(
T−1
s T−1

0 (δT0Ts −AδT0Ts)
)−1

T−1
s T−1

0 Bδ

= ((δI −Aδ)T0Ts)
−1
Bδ

= T−1
s T−1

0 (δI −Aδ)−1
Bδ

and the transfer function from the output modulator to the ith integrator state can be written

as

61

fxΣ∆2
(δ) = [fx1Σ∆2

(δ) · · · fxnΣ∆2
(δ)]

T

= (δI − Ã′δ)AO
[

1 0 · · · 0

]T
=
(
δI − T−1

s T−1
0 AδT0Ts

)−1
T−1
s T−1

0 AδT0TsK
−1

[
1 0 · · · 0

]T
=
(
T−1
s T−1

0 (δT0Ts −AδT0Ts)
)−1

T−1
s T−1

0 AδT0TsK
−1

[
1 0 · · · 0

]T
= ((δI −Aδ)T0Ts)AδT0TsK

−1

[
1 0 · · · 0

]T
= T−1

s T−1
0 (δI −Aδ)−1

AδT0TsK
−1

[
1 0 · · · 0

]T
The noise variance at each node integrator stage due to the input and output modulators with

respective noise transfer functions NTFΣ∆1 (f) and NTFΣ∆2 (f) can then be calculated as

σ2
xiΣ∆1

= ηe(f)

ˆ fB

−fB
|fxiΣ∆1

(f)NTFΣ∆1
(f)|2 df

σ2
xiΣ∆2

= ηe(f)

ˆ fB

−fB
|fxiΣ∆2(f)NTFΣ∆2 (f)|2 df

where

ηe(f) =
σ2
e

fs
= (3fs)

−1

The total noise variance at each integrator stage due to the input and output Σ∆

representation noise is

σ2
xiΣ∆ = σ2

xiΣ∆1
+ σ2

xiΣ∆2

where

62

σ2
xΣ∆ =

σ2
x1Σ∆

σ2
x2Σ∆

...

σ2
xnΣ∆

Having calculated σ2

xΣ∆, the lower bound on the quantization steps of the filter will be

∆q >
√

12 ·OSR · σ2
xΣ∆

and can be used in determining the size of the fixed point signals in the filter architecture.

3.4 Filter Bitwidth Optimization

At this stage in the Σ∆ filter design, the filter coefficients and signal paths of the

discrete hardware must be quantized. Using the quantization noise and coefficient sensitivity

metrics derived above, one could naively choose the quantization levels, ∆q, that would meet a

given noise and sensitivity constraint, but perhaps one could do better. Given a noise and sensi-

tivity constraint, it is possible to write an optimization routine that maximizes the quantization

levels so that minimum number of fractional bits are required to represent the coefficients and

state register values. This has the additional advantage of taking into account the slight errors

introduced in other stages by selected resolutions.

By drawing on the principals of convex optimization [24], the following optimization

strategy seeks to minimize internal bitwidths of the filter architecture by maximizing the quan-

tization levels:

63

maximize cT∆q (objective function)√
Hk∆q ≤

√
γnoise − σ2

nom1
− σ2

nom2
(quantization noise bound)∣∣∣SH̃′Σ∆(fd) (fd)

∣∣∣∆q � ρ (fd) (sensitivity bound)√
12 · fB · σ2

xΣ∆�∆q � 1 (∆q range bound)

where c =

[
1 1 · · · 1

]
. The objective function of the optimization routine relies on the

quantization noise and sensitivity bounds of the filter as well as the value limit imposed by

the representation noise floor created by the input and output Σ∆ modulators. There are two

performance bounds chosen by the designer in this model:

1. The noise bound γnoise ∈ R≥0 which sets the upper bound on the resolution of the filter

over the specified signal band.

2. The magnitude sensitivity bound ρ (f) ∈ Rn which sets an upper bound on the magnitude

variation of the filter across the specified signal band.

Steps taken to construct this optimization routine require first that the frequency band of

interest (typically from DC to fB) be discretized so that a convex optimization solver can solve

the problem over a discrete set of points. Creating a discretized vector of frequencies fD will be

in the form

fD =

[
f0 f1 · · · fM

]
where M is the number of samples.

Next, fD must be used to create the sensitivity matrix
∣∣∣SH̃′Σ∆(fd) (fD)

∣∣∣ for use in the

sensitivity bound of the filter. The resulting matrix will be of the form

64

∣∣∣SH̃′Σ∆(fd) (f)
∣∣∣ =

∣∣∣∣SH̃′Σ∆
01 (f0)

∣∣∣∣ ∣∣∣∣SH̃′Σ∆
02 (f1)

∣∣∣∣ · · · ∣∣∣∣SH̃′Σ∆

0K (fM)

∣∣∣∣∣∣∣∣SH̃′Σ∆
11 (f0)

∣∣∣∣ ∣∣∣∣SH̃′Σ∆
12 (f1)

∣∣∣∣ · · · ∣∣∣∣SH̃′Σ∆

1K (fM)

∣∣∣∣∣∣∣∣SH̃′Σ∆
21 (f0)

∣∣∣∣ ∣∣∣∣SH̃′Σ∆
22 (f1)

∣∣∣∣ · · · ∣∣∣∣SH̃′Σ∆

2K (fM)

∣∣∣∣
...

.
...

|SN1 (f0)| |SN2 (f1)| · · · |SNK (fM)|

Now the performance bounds must be chosen by a designer. For the transfer function

sensitivity, ρ (fD) must be chosen to put an upper bound on the transfer function variation that

the filter design would tolerate. The bound vector will be in the vector form of

ρ (fD) =

[
ρ (f0) ρ (f1) · · · ρ (fM)

]
The last performance bound to chose in the output noise bound of the filter γnoise.

The noise bound puts an upper bound on the maximum tolerable noise level on the output of

the filter over the frequency range fD. For a required output ENOB of 14 for instance, the

bound should be chosen in absolute terms to be γnoise = 1e− 8.

3.4.1 Choosing Filter Bitwidths

When it comes to assigning bitwidths to the interior signal paths of the Σ∆ filter

architecture, there are two considerations that must be made: the bitwidths of the coefficients

and the bitwidths of the state registers. Since the numerical representation of these values will

be in two’s compliment form, each value will consist of a bitwidth Bw ∈ Z+ given by

B = I + F + 1

where I ∈ Z+ are the integer bits, F ∈ Z+ are the fractional bits, and a one for the sign bit.

For the bitwidths of the coefficients, it must again be pointed out that the corresponding α and

β coefficients share the same summation node as shown in figure 3.6. For the number of integer

bits I that should be assigned to the coefficients at the ith node is

65

Ii = dmax (log2 (βδi) , log2 (αδi))e

where d·e is the ceiling operator. The number for fractional bits F at the ith node can be

determined by

Fi =

d|log2 (∆qi)|e , ∆qi < 1

0, otherwise

where ∆qi is determined by the previously described optimization routine. The ith coefficient

bitwidth Bi can then be determined by Ii and Fi according to .

Figure 3.6: Sigma Delta Filter Node Bitwidths

In regards to setting the register bitwidths, notice again that the α, β, and previous

scaled state variable all share the same summation node. It is appropriate then to set the

number of fractional bits of the proceeding integrator register to Fi. The number of integer bits

Ixi of the state register can be found by

Ixi = d|log2 (∆)|e

66

leaving the total bitwidth of the ith register

Bxi = Ixi + Fi + 1

3.5 Design Example

To demonstrate the efficacy of the Σ∆ filter architecture and the bitwidth optimization

strategy previously outlined, a small sample of filter designs will be simulated. Power and

resource utilization will also be estimated by mapping the filter designs into a low cost Artix-

7 XC7A12T-1CPG238I FPGA from Xilinx®. This FPGA was chosen as Xilinx tools support

Matlab Simulink based design interfaces as well as providing direct measurement of the resources

and power requirements. The design is mapped entirely into the logic fabric, none of the DSP

resources are used, hence these results are applicable to very low cost FPGA’s from Lattice or

Actel without DSP support, but fitting very low power or cost design niches.

The design parameters of the filter are listed in table 4.1. The Σ∆ filter will be designed

to emulate an eight order bandpass Chebyshev type II filter. Normally with a shift based filter,

a high order filter would have to be broken into second order sections to mitigate coefficient

multiply coefficient quantization but for the Σ∆ filter, this is unnecessary do to there being zero

noise of this type. The filter to follow is constructed as a single element.

Parameter Value
Filter Type Bandpass Chebyshev Type II
Passband 200 - 2000 Hz

Signal Band DC - 10 kHz
Order 8

Stopband Attenuation 60 dB

Table 3.1: Design Parameters of Σ∆ Filter

Using a white noise input stimulus, the magnitude response of the filter was estimated

for design parameters of OSR equal to 64, a target ENOB of 12 ENOB in the passband and a

magnitude deviation of 1 db in the passband and stopband from the ideal magnitude response.

The appropriate ρ was chosen to be

67

ρ (f) =

0.831 ∀f ∈ [200, 2000]

0.0011 otherwise

to achieve the desired deviation bound and used as a constraint in the bitwidth optimization

routine. The resulting magnitude and magnitude error response are shown below in figure 4.12.

(a) Magnitude Response (b) Magnitude Error

Figure 3.7: Filter Magnitude Response (OSR = 64, ENOB = 12)

As can be seen, the magnitude response is quite faithful to the ideal magnitude curve

of the filter design both for the ideal Σ∆ filter (where the simulation runs on floating point

numbers) and the quantized fixed point Σ∆ filter implementation. The magnitude error plot

shows that the quantized filter error is below the ρ design bound and demonstrates that the

sensitivity analysis based estimated error bound is quite close to the actual measured deviation.

OSR Design ENOB Calculated ENOB Power (µW) (Static/Dynamic) LUT/FF
32 10 10.35 58/>1 796/250
64 12 12.21 58/2 850/259
128 14 14.33 58/3 902/267
256 16 16.02 58/4 957/273

Table 3.2: Filter Design Parameters

Table 4.2 lists the power and resource usage after mapping the filter into a Xilinx

Artix-7 XC7A12T-1CPG238I FPGA. The XC7A12T is currently the smallest Artix-7 FPGA

68

that Xilinx provides. From the reported resources usage, one could easily fit multiple high order

filters into the device where the power is dominated by the static power of the device. The

design ENOB was also easily reached by the optimization program for each OSR value.

3.6 Previous Work

The concept of directly processing bitstreams has garnered moderate attention over

the last four decades. Motivated primarily by reduced complexity embedded signal chains and

smaller logic footprints, many have contributed to the growing field of bitstream processing in

the areas of implementing mathematical operations for signal processing [37, 38, 67, 36, 26, 27],

FIR filters [40, 32, 45], and IIR filters [65, 29, 30, 25]. The prior works regarding IIR filters

being germane to the dissertation, serve as a basis for the design of the Σ∆ filter proposed in

this chapter. Extending on those prior works in this chapter is the sensitivity analysis, noise

analysis, bitwidth optimization, and RLT design that allows one to characterize and construct

such Σ∆ based IIR filters with a reliable prediction of performance.

3.7 Conclusions

In this chapter, the Σ∆ filter architecture was introduced along with a description on

how to design the hardware to emulate any specified LTI filter design. A cogent representation

and quantization noise analysis and coefficient sensitivity analysis was presented which give way

to two important performance metrics: signal to noise ratio and transfer function deviation.

The SNR and deviation metrics were used to construct an optimization strategy for reducing

the coefficient bitwidths (and ultimately the overall size of the filter hardware implementation) by

maximizing the individual coefficient quantization steps. Using the noise and sensitivity analysis

in conjunction with the optimization routine, an 8th order filter was designed, simulated, and

routed in a low power Xilinx Artix-7 FPGA. The simulation showed that the quantized Σ∆ held

to the design metrics while using very little FPGA resources and power at varying oversample

ratios.

69

Bibliography

[24] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[25] L. Fernandes, C. A. Leme, and J. Franca. Programmable IIR bitstream filters. In 38th

Midwest Symposium on Circuits and Systems. Proceedings, volume 1, pages 576–579 vol.1,

Aug 1995.

[26] H. Fujisaka, R. Kurata, M. Sakamoto, and M. Morisue. Bit-stream signal processing and its

application to communication systems. IEE Proceedings - Circuits, Devices and Systems,

149(3):159–166, June 2002.

[27] H. Fujisaka, N. Masuda, M. Sakamoto, and M. Morisue. Arithmetic circuits for single-bit

digital signal processing. In ICECS’99. Proceedings of ICECS ’99. 6th IEEE International

Conference on Electronics, Circuits and Systems (Cat. No.99EX357), volume 3, pages 1389–

1392, Sep. 1999.

[28] G. C. Goodwin, R. H. Middleton, and H. V. Poor. High-speed digital signal processing and

control. Proceedings of the IEEE, 80(2):240–259, Feb 1992.

[29] D. A. Johns and D. M. Lewis. Design and analysis of delta-sigma based IIR filters. IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(4):233–

240, April 1993.

[30] D. A. Johns, D. M. Lewis, and D. Cherepacha. Highly selective ’analog’ filters using /spl

Delta//spl Sigma/ based IIR filtering. In 1993 IEEE International Symposium on Circuits

and Systems, pages 1302–1305 vol.2, May 1993.

[31] D.A. Johns and D.M. Lewis. Sigma-delta based IIR filters. In Circuits and Systems, 1991.,

Proceedings of the 34th Midwest Symposium on, pages 210–213 vol.1, May 1991.

[32] J. Juni and R. W. Stewart. Implementing adaptive DSP algorithms using oversampled

sigma delta strategies. In IEE Colloquium on Oversampling and Sigma-Delta Strategies for

DSP, pages 9/1–9/9, Nov 1995.

70

[33] G. Li and M. Gevers. Comparative study of finite wordlength effects in shift and delta

operator parameterizations. IEEE Transactions on Automatic Control, 38(5):803–807, May

1993.

[34] Sanjit K. Mitra. Digital Signal Processing. McGraw-Hill Science/Engineering/Math, 2005.

[35] Chiu-Wa Ng, Ngai Wong, H. Kwok-Hay So, and Tung-Sang Ng. Direct sigma-delta mod-

ulated signal processing in FPGA. In Field Programmable Logic and Applications, 2008.

FPL 2008. International Conference on, pages 475–478, Sept 2008.

[36] Chiu-Wa Ng, Ngai Wong, H. Kwok-Hay So, and Tung-Sang Ng. Quad-level bit-stream signal

processing on FPGAs. In ICECE Technology, 2008. FPT 2008. International Conference

on, pages 309–312, Dec 2008.

[37] C.W. Ng, N. Wong, and T.S. Ng. Efficient FPGA implementation of bit-stream multipliers.

Electronics Letters, 43(9):496–497, April 2007.

[38] C.W. Ng, N. Wong, and T.S. Ng. Quad-level bit-stream adders and multipliers with efficient

FPGA implementation. Electronics Letters, 44(12):722–724, June 2008.

[39] T. Song, E. G. Collins, and R. H. Istepanian. Improved closed-loop stability for fixed-point

controller implementation using the delta operator. In Proceedings of the 1999 American

Control Conference (Cat. No. 99CH36251), volume 6, pages 4328–4332 vol.6, June 1999.

[40] S. Summerfield, S. M. Kershaw, and M. B. Sandler. VLSI design of a sigma-delta bitstream

FIR filter. In 1994 IEE Colloquium on Digital and Analogue Filters and Filtering Systems

(Digest No. 1994/233), pages 3/1–3/5, Nov 1994.

[41] Ngai Wong and Tung-Sang Ng. Roundoff noise minimization in a modified direct-form delta

operator IIR structure. Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on, 47(12):1533–1536, Dec 2000.

[42] Ngai Wong and Tung-Sang Ng. A generalized direct-form delta operator-based IIR filter

with minimum noise gain and sensitivity. IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, 48(4):425–431, April 2001.

71

[43] Ngai Wong and Tung-Sang Ng. Improved roundoff noise performance in a direct-form IIR

filter using a modified delta operator. In Circuits and Systems, 2001. ISCAS 2001. The

2001 IEEE International Symposium on, volume 2, pages 773–776 vol. 2, May 2001.

[44] J. Wu, G. Li, R. H. Istepanian, and J. Chu. Shift and delta operator realisations for digital

controllers with finite word length considerations. IEE Proceedings - Control Theory and

Applications, 147(6):664–672, Nov 2000.

[45] Yifei Liu and Wei Tang. A Delta Sigma based Finite Impulse Response Filter for EEG

Signal Processing. In 2015 IEEE 58th International Midwest Symposium on Circuits and

Systems (MWSCAS), pages 1–4, Aug 2015.

72

Chapter 4

High Resolution Σ∆ Controller

Designs

While a single Σ∆ encoded bitstream is capable of high resolution, there is a limit to

how much information it can convey at a specified oversample ratio. For the typical second order

Σ∆ modulator, it is possible to obtain 14 to 16 effective bits of resolution with oversample ratios

of 256 or more. For effective signal bandwidths on the order of tens to hundreds of kilohertz this

would imply sampling frequencies of at least tens of megahertz. For embedded systems that must

be limited in power and clock frequency, achieving effective resolutions above 16 bits becomes

a decreasingly effective. The question is then, could anything be done to increase resolution of

the encoded bitstream without using an unreasonably large OSR value? As it turns out, the

answer to the problem lies with the use of MASH Σ∆ modulation.

Since the information capacity of one bitstream is rather limited, the only way to in-

crease it without increasing the sampling frequency is to increase the number of bits of the

Σ∆ encoded signal. Introduced in [48], Multistage Noise Shaping (MASH) Σ∆ modulators ac-

complish this task by introducing multiple Σ∆ modulators to not only encode the signal in-

formation but also the single bit quantization error of the signal stream in a separate stream.

The MASH technique creates a higher order of noise suppression which in turn produces a

73

higher signal to noise ratio compared to a conventional modulator [50]. The resulting oversam-

pled multibit signal in such a configuration is capable of achieving 20 or more bits of effective

resolution for modest oversample ratios.

In this chapter, it will be shown how to modify the Σ∆ filter architecture from the

previous chapter with MASH Σ∆ encoding for the purpose of creating filter and controller im-

plementations that can achieve over 20 bits of effective resolution with only a modest increase in

circuit complexity and at lower oversampling rates. An initial overview of MASH Σ∆ modula-

tion is presented followed by a description of the modified MASH Σ∆ filter architecture. Scaling,

coefficient sensitivity, and noise performance of the MASH Σ∆ controller will presented with

the chapter concluding with a modified circuit minimization strategy for the overall discrete

architecture.

4.1 Multistage Noise Shaping (MASH) Σ∆ Modulation

MASH Σ∆ modulation consists of multiple modulators that encode signal and quan-

tization error information in order to produce a composite signal that achieves greater in band

representation noise suppression. The trademark qualities of a MASH encoded signal PSD will

have a steeper representation noise slope and a lower in band noise floor which contribute to a

much higher SNR compared to signal stage Σ∆ modulators. Figure 4.1 shows a comparison of

the typical PSDs associated with a single stage and MASH modulator encoded signal.

74

Figure 4.1: MASH Power Spectral Density

The block diagram of a generalized two stage MASH Σ∆ converter can be seen in figure

4.2.

Figure 4.2: Conventional 2 Stage MASH

It is shown in the above figure that the input Σ∆ encodes the input signal u which is

then filtered by H1 (z). The quantization error of the first stage Σ∆ modulator E1 (z) is encoded

by the second stage modulator and filtered by H2 (z). The output of H2 (z) is then subtracted

from the output of H1 (z) to produce a composite output with high order noise suppression.

The discrete logic of H1 (z) and H2 (z) and the subtractor circuit is known as cancellation logic.

The purpose of the cancellation logic is to eliminate any cross terms that include the first stage

quantization error e1 that may appear in the output ysig leaving only a high order noise shaping

75

of the secondary quantization noise e2. To demonstrate the high order noise suppression that

is achievable with MASH, the following derivation will assume a two stage discrete converter

using second order modulators for signal and quantization encoding.

Assuming the linear Σ∆ model, the outputs of the signal and noise encoded paths are

Ysig (z) = H1 (z) [STF1 (z)U (z) +NTF1 (z)E1 (z)]

Yerror (z) = H2 (z) [STF2 (z)E1 (z) +NTF2 (z)E2 (z)]

where H1 (z) and H2 (z) are cancellation circuitry that will be discussed later. The composite

output Y (z) can be obtain by subtracting Yerror (z) from Ysig (z) which yields

Y (z) = Ysig (z)− Yerror (z)

= H1 (z) [STF1 (z)U (z) +NTF1 (z)E1 (z)]

−H2 (z) [STF2 (z)E1 (z) +NTF2 (z)E2 (z)]

= H1 (z)STF1 (z)U (z) + [H1 (z)NTF1 −H2 (z)STF2]E1 (z)

−H2 (z)NTF2 (z)E2 (z)

From here it is necessary to cancel the cross term [H1 (z)NTF1 (z)−H2 (z)STF2 (z)]E1 (z) in

order to extinguish any representation noise contributed from the first stage modulator. This

can be done by setting the cross term to zero and rewriting the term as

H1 (z)NTF1 (z)−H2 (z)STF2 (z) = 0

H1 (z)NTF1 (z) = H2 (z)STF2 (z)

which leads to the following relationship

76

H1 (z) = STF2 (z)

H2 (z) = NTF1 (z)

For the purposes of this dissertation, the general second order Σ∆ modulator signal

and noise transfer functions will be used giving

STF1 = z−1

STF2 = z−1

NTF1 =
(
1− z−1

)2
NTF2 =

(
1− z−1

)2
The overall output for a two stage second order MASH Σ∆ converter can then be

written as

Y (z) = STF1 (z)STF2 (z)U (z)−NTF1 (z)NTF2 (z)E2 (z)

Y (z) = z−2 (z)U (z)−
(
1− z−1

)4
E2 (z)

The equation for Y (z) indicates that the input signal is delayed by merely two over-

sampled clock cycles while the quantization noise of the second stage modulator is attenuated

by fourth order shaping. In the information band of the oversampled signal, the input signal

effectively sees zero phase delay while the representation noise is attenuated with a steep fourth

order noise shaping.

Figure 4.3 plots SNR in decibels vs OSR for ideal single, double, and triple stage MASH

converters using second order modulators. What is indicated in this plot is that for relatively

low oversample ratios, MASH converters can achieve comparable resolutions to that of a single

77

stage modulator. In fact, a two stage MASH converter can achieve about 16 bits of resolution

at an OSR of about 32 which would require an OSR of about 256 for a single stage converter.

For OSRs above 64, the two stage MASH converter can theoretically achieve 18 or more bits of

effective resolution.

Figure 4.3: Ideal MASH 2-2 SNR vs OSR

The importance of the MASH Σ∆ encoder is that it allows one to obtain high resolution

information encodings at relatively low oversample ratios compared to that of a single stage Σ∆

modulator. By decreasing the overall sample frequency, MASH based designs can potentially

reduced power dissipation (due to dynamic power dissipation) and circuit complexity (due to

the more relaxed time scaling required in δ-operator based filter designs). Another advantage is

that low speed grade and cost effective parts could be used while still achieving high bandwidth

and high resolution conversion.

In this thesis, two stage second order MASH converters will be assumed for every

MASH data conversion. In addition, a signal and noise transfer function of transfer function of

STFMΣ∆ = z−2 and NTFMΣ∆ =
(
1− z−1

)4 will be assumed as well. The remainder of the

78

chapter will describe how to modify the Σ∆ filter architecture with MASH encodings in order

to increase its performance.

4.1.1 MASH Σ∆ for Direct Signal Processing

Using a second order two stage MASH architecture to encode signal information for

direct signal processing requires a bit of thought. For the purposes of filter design, one would

like to eliminate the need for fixed point multipliers when processing Σ∆ encoded signals but

the output of a MASH encoder is multibit. Fortunately, the MASH output can takes on a very

small set of values.

For direct signal processing, rather than immediately combining ysig and yerror, the

proposed method is to keep them separate as shown in figure 4.4. In this way, downstream

digital logic can be designed to process the signal and quantization error separately as well as

allow for a simple two bit interface. For the encoded signal information we have ysig ∈ [−1, 1]

which is a bitstream. For the encoded error information we have yerror ∈ [−4, −2, 0, 2, 4] and

requires 4 bits of representation.

Figure 4.4: Proposed 2 Stage MASH

The signal path cancellation logic H1 (z) is a single delay and can be implemented

using a single flip flop. The error path cancellation logic H2 (z) for a two stage MASH encoder

with a first stage second order modulator is a double differentiator. The output of the second

stage modulator is a bitstream making the implementation of H2 (z) quite simple. A digital

hardware implementation of H2 (z) can be seen in figure 4.5.

79

Figure 4.5: Double Differentiator Circuit

A simple multiplexer, five flip flops, and a three bit and four bit adder, are all that is

needed to construct the double differentiator logic. The output yerror can be synthesized from

the bitstream output of the second stage MASH modulator using only a minimal amount of

logic.

If a device with a integrated MASH Σ∆ encoder produced both signal and quantization

error bitstreams, the cancellation logic could easily by implemented in the programmable logic

of an FPGA or the discrete design of an ASIC. Moving the cancellation logic of the MASH

encoder from the front end transducer of the signal chain to the device intended to implement

the discrete logic would require only a two wire interface and would maintain the low latency

of the overall design. The ultimate goal is to allow for the creation of a two bit input/output

interface for embedded controllers such as shown in figure 4.6.

80

Figure 4.6: MASH Σ∆ Embedded Control System

In this way, by simply increasing the interface to two bits, MASH modulators can be

used to dramatically increase SNR of the total embedded control system while maintaining the

same latency and dynamic performance at a lower OSR.

4.2 MASH Σ∆ Filter Architecture

The MASH Σ∆ controller filter architecture seen below in figure 4.7 is a modified

version of the the architecture presented in the previous chapter. While the internal signal

paths of the controller take on a two’s compliment fixed point representation, the feedforward

and feedback paths are now five bit wide MASH Σ∆ encoded signals.

Figure 4.7: MASH IIR Filter

81

For the single stage Σ∆ modulator design, the one bit input and output channels

allowed for simple implementation of coefficient multiplies using multiplexers. However with a

five bit MASH channel, coefficient multiply implementations require a slightly more involved

design.

The first change in the filter is that there now exists a discrete two stage second order

MASH encoder in the output. An RTL diagram of the MASH modulator used in this thesis

can be seen in figure 4.8. The proposed discrete MASH modulator maintains the signal and

noise transfer functions assumed in the beginning of the chapter for the analysis and design

of the overall filter architecture. It is possible to choose another topology for the discrete

MASH modulator so long as it maintains the signal and noise transfer functions assumed for

implementing the discrete cancellation logic.

Figure 4.8: Discrete MASH Σ∆ Circuit

The internal MASH filter nodes shown in figure 4.9 still make use of of the δ operator

implemented as an accumulator circuit and a corresponding bitshift which invokes the time

constant and magnitude scaling of the controller. What is different however is the coefficient

selector circuit for both the α and β coefficients. The selector circuits take in a five bit MASH

encoding and output an appropriately scaled coefficient value.

82

Figure 4.9: MASH IIR Filter Node

At this point, it is important to understand that the five bit MASH Σ∆ encoded signal

is actually a composite of the 1 bit ysignal signal and the four bit two’s compliment yerror signal.

The allowable values that each signal can take is ysignal ∈ [−1, 1] and yerror ∈ [−4, −2, 0, 2, 4].

Using this fact, the MASH2-2 coefficient selector circuit can be seen below in figure 4.10.

83

Figure 4.10: MASH 2-2 Coefficient Selector Circuit

The coefficient selector circuit operates by subtracting the corresponding scaled β co-

efficient value given by yerror from the switched β coefficient value of ysignal. For the ysignal

branch of the circuit, the coefficient multiply of β ·ysignal is implemented as before with a signal

multiplexer switched by the signal bitstream. For β · yerror, the circuit first detects whether or

not |yerror| = 2 or |yerror| = 4. If so, a multiplexer switches the appropriate scaled β coefficient

to an exclusive OR gate which provides the one’s compliment of the product should yerror have

a negative sign. For negative numbers, the ones compliment of the product is then added to

the value of the ysignal branch plus one on the adder carry to form the correctly scaled output

product value. For positive numbers the scaled product is fed through to be added to the prod-

uct of the ysignal branch. In the case of yerror = 0, the AND gate sets all bits to zero feeding

into the adder on the yerror branch which nullifies any contribution to the final product value

84

of the coefficient selector circuit. The allowable values that the coefficient selector output yout

can take is yout ∈ [−5β, −3β, −β, 0, β, 3β, 5β].

From a top level perspective, the MASH Σ∆ is a two bit input and two bit output

hardware circuit that implements transfer functions. Using slight modifications to the Σ∆

filter architecture, a new platform for high resolution transfer functions implementations can be

realized with only a slight modification to the overall circuit complexity.

4.3 MASH Σ∆ Controller Design and Performance Metrics

Like the Σ∆ filter architecture, the MASH Σ∆ filter architecture implements a transfer

function which could either be a LTI filter or controller. While they may have differences in

resolution performance, mathematically the two implementation versions are equivalent and

produce the same transfer function input/output relationship. That being said, the quantization

noise and sensitivity analysis of the MASH version is very similar to the analysis presented in

the previous chapter. The main difference is in the widths of the data paths interior of the filter

and the order of the noise transfer functions of the input and output MASH Σ∆ modulators.

To design a MASH filter/controller one must follow the same steps as outlined in the

previous chapter. Those steps are as follows:

1. Begin with continuous state space realization of filter/controller.

2. Determine the OSR and clock rate for which the filter will run such that the required SNR

is achieved on the front end modulator/converter.

3. Discretize state space model to δ domain and apply structural transformation (T0) and

scaling (Ts).

4. Calculate the representation noise and sensitivity metrics assuming the two stage second

order MASH noise transfer function of NTFΣ∆ (z) =
(
1− z−1

)4.
5. Set the magnitude deviation bound (ρ) and quantization noise bound (γnoise) and run the

quantization step optimization routine.

85

4.3.1 Choosing Filter Bitwidths

Like the single stage Σ∆ filter the bitwidths of the MASH filter must be chosen carefully

for all of the internal signal paths. Again the bitwidths of importance are those of the coefficients

and state registers. The numerical representation of these signals is 2’s compliment form and

consist of bitwidths B ∈ Z≥0 given by

B = I + F + 1

where I ∈ Z≥0 are the integer bits, F ∈ Z≥0 are the fractional bits, and a one for the sign bit.

When it comes to the α and β coefficients for the MASH implementation, it must be

taken into account that the output of the coefficient selector takes on the values from the set

[−5β, −3β, −β, 0, β, 3β, 5β]. Normally the integer bits Ii for the nth stage can be found via

In = dmax (log2 (βδn) , log2 (αδn))e

since the the coefficients share the same summation node, but an additional four bits must

be used to represent the maximum absolute value of 5β. Therefore, the integer bits for the

coefficient selector circuit should be adjusted to

In = dmax (log2 (βδn) , log2 (αδn))e+ 4

The number for fractional bits F at the nth node can be determined by

Fn =

d|log2 (∆qn)|e , ∆qn < 0

0, otherwise

where ∆qn is determined by the optimization routine detailed in chapter three.

Next, the integrator register widths must be set, Taking into account that the integrator

nodes are unity scaled, the number of integer bits Ixi of the state register can be found by

86

Ixn = d|log2 (∆)|e

The integrator register sharing the same summation node as the output of the coefficient selector

circuits should have the same fractional bits Fn determined above. The total bitwidth of the

nth register can then be written as

Bxn = Ixn + Fn + 1

Figure 4.11 shows a diagram of a MASH filter node and the appropriate bitwidths of each

internal signal path.

Figure 4.11: MASH Σ∆ Filter Node Bitwidths

4.4 Design Example

Like the previous chapter, an 8th order Chebychev Type II bandpass filter implemen-

tation will be used to demonstrate the effectiveness of the MASH filter architecture. Table 4.1

lists the design parameters of the filter. Again, the filter was constructed without breaking it

up into to smaller sections such as second order.

87

Parameter Value
Filter Type Bandpass Chebyshev Type II
Passband 200 - 2000 Hz

Signal Band DC - 10 kHz
Order 8

Stopband Attenuation 60 dB

Table 4.1: Design Parameters of MASH Σ∆ Filter

The filter was simulated with an OSR of 16 and a target ENOB of 16 in the passband.

The magnitude deviation was chosen to be 1 db in the passband and stopband from the ideal

magnitude response. The appropriate ρ was chosen to be

ρ (f) =

0.831 ∀f ∈ [200, 2000]

0.0011 otherwise

to achieve the desired deviation bound and used as a constraint in the bitwidth optimization

routine. Figure4.12 shows the magnitude response and error for the filter with an OSR of 16.

(a) Magnitude Response (b) Magnitude Error

Figure 4.12: Filter Magnitude Response and Error

By varying the OSR and noise requirements of the filter and mapping the design into

an Artix-7 XC7A12T-1CPG238 FPGA from Xilinx, table 4.2 was generated. The magnitude

error bound, ρ, was used for each of the four filter designs in the table. The table demonstrates

88

that the optimization routine was able to achieve the desired ENOB while using a minimal

amount of FPGA resources and relatively low OSRs.

Design OSR Design ENOB Calculated ENOB Power (µW) LUT/FF
1 16 13 13.37 2/58 1785/375
2 32 18 18.25 3/58 1893/389
3 64 22 22.13 6/58 1997/401
4 128 26 26.57 9/58 2011/413

Table 4.2: Filter Design Resource Usage

4.5 Conclusion

In this chapter, the MASH Σ∆ filter architecture was presented. As a modified version

of the single stage filter design from the previous chapter, the MASH architecture allows filters

and controllers to achieve twenty or more bits of effective resolution at modest oversample ratios.

The increase in resolution comes at only a modest increase in circuit complexity of which the

multiplierless design can easily fit inside small low power FPGAs. The two bit IO interface of

the MASH architecture also reduces complexity when interfacing components in the embedded

signal chain.

An 8th order bandpass filter was constructed and simulated to demonstrate the per-

formance of the MASH based filter design. At an OSR of 64, the filter was able to achieve over

22 bits of effective resolution in its passband. The resources required to place and route the

filter were small enough to fit five copies of the filter in the smallest available Artix-7 FPGA.

The magnitude response of the filter was also virtually indistinguishable from the initial transfer

function magnitude design.

Bibliography

[46] G. C. Goodwin, R. H. Middleton, and H. V. Poor. High-speed digital signal processing and

control. Proceedings of the IEEE, 80(2):240–259, Feb 1992.

89

[47] D.A. Johns and D.M. Lewis. Sigma-delta based IIR filters. In Circuits and Systems, 1991.,

Proceedings of the 34th Midwest Symposium on, pages 210–213 vol.1, May 1991.

[48] Y. Matsuya, K. Uchimura, A. Iwata, et al. A 16-bit oversampling A-to-D conversion

technology using triple-integration noise shaping. IEEE Journal of Solid-State Circuits,

22(6):921–929, Dec 1987.

[49] Chiu-Wa Ng, Ngai Wong, H. Kwok-Hay So, and Tung-Sang Ng. Direct sigma-delta mod-

ulated signal processing in FPGA. In Field Programmable Logic and Applications, 2008.

FPL 2008. International Conference on, pages 475–478, Sept 2008.

[50] R. Schreier and G.C. Temes. Understanding Delta-Sigma Data Converters. Wiley, 2004.

[51] Ngai Wong and Tung-Sang Ng. Roundoff noise minimization in a modified direct-form delta

operator IIR structure. Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on, 47(12):1533–1536, Dec 2000.

[52] Ngai Wong and Tung-Sang Ng. A generalized direct-form delta operator-based IIR filter

with minimum noise gain and sensitivity. IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, 48(4):425–431, April 2001.

[53] Ngai Wong and Tung-Sang Ng. Improved roundoff noise performance in a direct-form IIR

filter using a modified delta operator. In Circuits and Systems, 2001. ISCAS 2001. The

2001 IEEE International Symposium on, volume 2, pages 773–776 vol. 2, May 2001.

[54] X. Wu and R. M. Goodall. One-bit processing for digital control. IEE Proceedings - Control

Theory and Applications, 152(4):403–410, July 2005.

90

Chapter 5

Implementation and Realization of

Σ∆ Filters

Having developed a method for designing and characterizing Σ∆ filters, this chapter

will explore the design trade-offs and performance of such filters against conventional digital

implementations. The claims of this thesis are that these new filter/controller implementations

offer lower power, lower complexity, high resolution, and continuous time performance compared

to conventional time-shift based filter constructions. Optimizing various filter implementations

under different design constraints allows exploration of not only the gross morphology, but also

fine-scale trends and trade-offs inherent in these designs. Unfortunately, these explorations are

by no means comprehensive, issues such as design decomposition and cascade realizations are

out of scope of the currently implemented optimization techniques, however, as these imple-

mentations offer the practical ability for direct implementation of relatively high-order IIR filter

designs, and the practical interest in such designs for anti-aliasing, demodulation and other uses,

such filters are used in this chapter as benchmarks.

This chapter will first begin with addressing practical and pragmatic issues in the de-

sign and evaluation of Σ∆ filter implementations. Next, a conventional filter design will be

presented to give a complexity and cost comparison. Various single stage and MASH Σ∆ filter

91

designs will then be presented and mapped into a small Xilinx FPGA while comparing trade-offs

in OSR, ENOB, and magnitude deviation. Xilinx tools are used for the majority of comparisons

as they offer logic/placement, routing, timing and power estimation for a variety of optimized

time-shift implementation strategies and have a nicely constructed MATLAB/Simulink® li-

brary simplifying filter performance evaluation. The chapter will conclude with remarks on the

effectiveness of the design methodology presented in chapters three and four to design Σ∆ filters

compared to conventional filters of comparable response and resolution.

5.1 Pragmatic Issues in Σ∆ Filter Design and Simulation

Designing Σ∆ filters, a key pragmatic issue is that of accurate characterization and

noise estimation. Given the potential for very low levels of noise in the lower end of the operating

band, with simultaneously high levels of representation noise in the mid to high band, accurate

estimation requires substantial simulation effort and attention to details. This is especially

true for MASH designs where the potential for very high resolution and noise floors below -

150dB are practical. Σ∆ filter/controller performance estimation issues are primarily centered

on computing accurate power spectral density (PSD) estimates of bitstream channels. From

the PSD, the SNR, ENOB, and transfer function estimates can be calculated. If the PSD is

not accurate, then false conclusions can be made about the overall performance of a Σ∆ filter

design.

5.1.1 Accurate PSDs and Related Estimations

Power spectral densities are a requirement for characterizing bitstreams and Σ∆ filters.

When running simulations with oversampled bitstreams, one must take into account that the

underlying dynamics that are encoded in the signals are two to three orders of magnitude

slower that the sampling rate. To accurately measure low frequencies, it is essential that deep

simulations be performed.

Consider the two transfer function estimates of figure 5.1. It is clear that 5·105 samples

is not enough data points to accurately estimate the transfer function magnitude response. On

92

the other hand, 107 samples allows for a very nice transfer function estimation and magnitude

response plot. As a rule of thumb, bitstream PSDs should require at least 107 samples for a

Nyquist frequency of less than 100kHz and OSR ≤ 256 in order to get an accurate estimation.

5.1.2 Calculating SNR

The signal to noise ratio again is the ratio of signal power, µ2
sig, to noise variance,

σ2
noise, and is calculated via

SNRdB = 10log10

(
µsig
σnoise

)
Since the filter/controller design is normalized across the entire signal band, the SNR should be

taken at points in the frequency space equal to 0 dB. For a filter, the appropriate input stimulus

is a full scale sine wave (90% full scale for Σ∆ due to code noise) in order to calculate the SNR.

In the case of a bandpass filter, the sine wave frequency should be chosen so it is in the pass-

band where the signal information matters and is not attenuated. There may be cases however

where the SNR is calculated differently from integrating the noise floor from DC to Nyquist.

If the signal bandwidth happens to be a subset of the inferred full signal frequency range, it

will potentially render a higher SNR. The higher SNR is a direct consequence of integrating less

noise over a smaller frequency band in the PSD.

Calculating the SNR of a sine wave Σ∆ bitstream can be accomplished using the

following Matlab code:

%one−s ided PSD of Sigma Delta b i t s t ream (q_bitstream)

N = length (q_bitstream) ;

xd f t = f f t (q_bitstream) ;

xd f t = xdf t (1 :N/2+1);

psdx = (1/(f s ∗N)) ∗ abs (xd f t) . ^ 2 ;

psdx (2 : end−1) = 2∗psdx (2 : end−1);

bin = f s /N;

f r e q = 0 : bin : f s /2 ;

93

%ca l u l a t i o n o f SNR assuming f u l l s c a l e s ine−wave o f f requency f s i g

f s i g_index = f i nd (f r e q == f s i g) ;

p s i g = psdx (f s i g_index)/ bin ;

f r e q (f s i g_index) = [] ;

psdx (f s i g_index) = [] ;

index = f i nd (f r e q <= fb) ;

SNR = 10∗ l og10 (p s i g /(2∗ t rapz (f r e q (index) , psdx (index)))) ;

ENOB = (SNR−1 .72)/6 .02 ;

5.1.3 Transfer Function Estimation

Transfer function estimation was accomplished by using the ’tfestimate’ Matlab func-

tion. The function estimates the transfer function response of a filter by dividing the cross power

spectral density of the input and output, Pyx (f), by the power spectral density of the input,

Pxx (f), where x and y are the bitstream input and output of the filter/controller. The transfer

function estimation can be written as

HΣ∆ (f) =
Pyx (f)

Pxx (f)

For an input stimulus, a white Gaussian noise source should be used due to its uniform power

spectral density. White Gaussian noise will create sufficient frequency content across the entire

frequency spectrum allowing for accurate estimation of HΣ∆ (f).

For transfer function estimates that are to follow, a Hanning window was used over

eight equal length sections of the data for every transfer function estimation in this thesis. The

following Matlab code snippet demonstrates how to accomplish this task:

nx = max(s i z e (input)) ;

na = 8 ;

w = hanning (f l o o r (nx/na)) ;

94

[T_est , ~] = t f e s t ima t e (input , output ,w , [] , f , f s) ;

To demonstrate the effect of insufficient samples in the computation of a PSD, figure 5.1 shows

the transfer function estimation of an 8th order bandpass filter for 5·105 and 107 samples. As can

be seen, the magnitude estimation plot for 5 · 105 samples fails to encapsulate the low frequency

information required to accurately compute PSDs of the input and output of the filter below

1kHz. In contrast the 107 sample magnitude estimate contains the low frequency information

required for the plot and thus the magnitude response of the filter is well estimated.

(a) 5 · 105Sample Transfer Function Estimate (b) 107 Sample Transfer Function Estimate

Figure 5.1: Insufficient Sample PSD Effects

5.1.4 Matlab/Simulink, Xilinx System Generator, and Vivado

The characterization and evaluation of all filter/controller designs used in this thesis

were carried out in the Matlab/Simulink environment using Xilinx System Generator® blocks

[55]. Bit accurate Xilinx System Generator blocks were placed in the Simulink environment in

order to implement adders, multiplexers, registers and other digital components found in the Σ∆

system designs. Default parameters were used in all cases when mapping the Simulink models

into Vivado FPGA place and route.

95

5.1.5 Design of Conventional Comparison Filter

To gauge the relative savings in Σ∆ filter implementations to conventional designs, a

shift based filter is first created and implemented in a Xilinx Artix-7 XC7A12TL FPGA. The

filter is the same 8th order Chebychev II bandpass filter presented in chapter 3. The filter has a

pass band of 200 Hz to 2 kHz, a stopband attenuation of 60dB, and a sampling rate of 20 kHz.

The 8th order filter was broken into four second order sections in order to mitigate quantization

noise associated with coefficient multiplication rounding. The estimated magnitude response

and associated error can be seen in figure 5.2

(a) Shift Filter Magnitude Response (b) Shift Filter Magnitude Error

Figure 5.2: Magnitude Response and Error for Shift Based Bandpass Filter Design

Using the default Vivado implementation settings, the shift based filter was imple-

mented in two ways: using the FPGA DSP blocks and mapping the entire design into LUTs and

flip flops. The results can be seen in table 5.1.

Design LUTs FFs DSPs ENOB IO Pins Power (static/dynamic) mW
1 2171 204 20 14.17 32 58/1
2 6851 204 n/a 14.17 32 58/1

Table 5.1: Band-pass Shift Filter FPGA Resource Utilization

The results from the FPGA implementation of the shift based bandpass filter is that

conventional filter designs require substantial physical resources. For the Xilinx Artix-7 XC7A12TL,

96

only one 8th order filter with 24 bit coefficients can be fit inside with room for little else if

mapped entirely into logic. With use of DSP slices, about three 8th order filters could fit inside

the FPGA. For more complex filters or MIMO designs, a much larger and potentially more ex-

pensive FPGA must be used. IO Pins are also used in large quantity unless a serialized interface

such as SPI is used, but this increases latency which is detrimental in high bandwidth control

applications.

5.2 Σ∆ Filter Resource and Power Utilization

To demonstrate the low resource usage of Σ∆ filter designs, this section will analyze

several different filter types and design over a variety of specification constraints. In particular,

lowpass and bandpass filters will be implemented in both signal stage modular designs as well

as MASH designs. Parameters such as the order of the filter, the OSR, the required ENOB, and

the allowed transfer function variation bound will be varied and compared.

5.2.1 Single Stage Designs

Single stage designs are those discussed in chapter three with a single bitstream input

and output. Simulations of the filters were performed in the Matlab/Simulink environment

using the Xilinx System Generator Library for implementing bit accurate performance. For

performance evaluation in a FPGA, the Xilinx Vivado® design software was used.

5.2.1.1 Lowpass Filter Designs

The following lowpass filter designs are based on a Chebychev II type filter with a cutoff

frequency of 2kHz and a stopband attenuation specification of 60 dB, designed with different

OSRs, magnitude error bounds, orders, and ENOB. The following magnitude error bounds used

in the various designs, ρLP1, ρLP2, ρLP3, allow for 1dB deviation in the passband and 1dB, 5dB,

and 10dB deviation in the stopband respectively:

97

ρLP1 (f) =

0.8913 ∀f ≤ 2000 Hz

0.0011 otherwise

ρLP2 (f) =

0.8913 ∀f ≤ 2000 Hz

0.0018 otherwise

ρLP3 (f) =

0.8913 ∀f ≤ 2000 Hz

0.0032 otherwise

The examples of transfer function estimates can be found in figure 5.3, figure 5.4, and

figure 5.5. In the magnitude response plots, the blue lines represent the ideal (continuous-time)

magnitude curve, the red dashed lines represent an ideal Σ∆ filter simulated with full floating

point precision, and the green dotted lines represent the bit accurate Σ∆ filter. As can be seen

from the magnitude response plot , the quantized Σ∆ filters do an excellent job at emulating

the ideal response with the plots virtually overlapping one another even at low OSRs. These

plots were generated by using a white Gaussian random input stimulus and the transfer function

estimation method previously described.

(a) Magnitude Response (b) Magnitude Error

Figure 5.3: Lowpass Filter (4th order, OSR=64, ρLP1)

98

(a) Magnitude Response (b) Magnitude Error

Figure 5.4: Lowpass Filter (4th order, OSR=32, ρLP2)

(a) Magnitude Response (b) Magnitude Error

Figure 5.5: Lowpass Filter (4th order, OSR=32, ρLP3)

Towards the Nyquist frequency of the magnitude response, it can be seen that the Σ∆

filter implementation becomes more noisy and begins to deviate from the ideal. This is due

99

to the rise in representation noise at the filter output which reduces the mutual information

between the input and output bitstreams. To defeat this effect, one simply needs to increase

the oversampling frequency.

Another effect seen in the magnitude response plots worth noting is the relaxation of

the stopband attenuation. Figure 5.3 shows a magnitude response using ρLP1 as a design input in

the bitwidth optimization and as can be seen, the magnitude response is tight in the stopband of

the filter. In contrast, figure 5.5 shows the magnitude response using ρLP3 as a design constraint

corresponding to a 10 dB deviation in the stopband. As a result, the quantized filter response

has a higher stopband attenuation of about 50 dB as opposed to the ideal stopband attenuation

of 60 dB.

The magnitude error plots show the red ρLP bound, the gold estimated error bound

computed from the actual quantization levels, and the actual magnitude error which is defined

as the absolute difference between the ideal and quantized Σ∆ magnitude responses. For all

filters, it is evident that not only does the actual magnitude error in blue fit below the red

error bound, but it also fits relatively tight against the gold estimated error bound. (The gold

estimation is on the specification boundary as it is the metric used by the bit-width optimization

procedure). These estimates suggest that the sensitivity analysis and optimization strategy

outlined in chapter 3 is a sound predictor of the error imposed by quantization in the Σ∆ filter

itself..

Using ρLP1, ρLP2, ρLP3, in addition to varying other parameters, the Σ∆ filters can

be mapped into an actually programmable device to evaluate their performance in terms of

resource usage, power, and resolution. For the remainder of this chapter, all filter designs

will be routed in a Xilinx Artix-7 XC7A12TL via Xilinx System Generator and Vivado® for

performance evaluation. Table 5.2 shows the measured ENOB for various parameterized versions

of the Chebychev II lowpass filter. The table demonstrates as the OSR increases in conjunction

with the design ENOB, the implemented Σ∆ filters easily exceed the specification. This is an

indication that the ρLP magnitude error bound is the dominate constraint in the optimization

and that the filter dynamics can actually attenuate representation noise in the signal band for a

higher SNR. Another insight, is that as the stopband attenuation is relaxed going from ρLP1 to

100

ρLP3, the ENOB goes down by a small amount of one to one and a half ENOB. The degradation

in the magnitude response increases representation noise and quantization noise in the signal

band.

OSR Order Design ENOB ENOB (ρLP1) ENOB (ρLP2) ENOB (ρLP3)

32 2 10 14.72 13.95 13.08
64 2 12 15.17 14.32 13.72
128 2 14 15.67 14.87 14.50
256 2 15 16.22 15.45 15.17
32 4 10 14.31 13.39 12.44
64 4 12 14.73 14.05 13.34
128 4 14 15.29 14.71 14.54
256 4 15 15.81 15.37 15.25

Table 5.2: Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs = 60 db)

Moving onto FPGA utilization, table 5.3 shows the number of flip flops (FFs) and look-

up tables (LUTs) used over various OSR, order, and magnitude error bounds. The table clearly

shows that for higher OSR/ENOB and increased order, more FFs and LUTs will be needed. The

increase in resource usage though measures only 10-15% between OSRs of 32 and 256 for both

2nd and 4th order filters. A slight decrease resource usage is noticed as the magnitude error

bound is relaxed. This is due to coefficients and subsequently internal filter signals requiring

less bits to meet the relaxed magnitude error constraints in the stopband of the filter.

OSR Order FF/LUTs (ρLP1) FF/LUTs (ρLP2) FF/LUTs (ρLP3)

32 2 80/242 79/239 76/229
64 2 82/247 81/244 79/239
128 2 84/250 83/255 82/251
256 2 86/254 84/260 84/260
32 4 130/461 128/413 126/403
64 4 133/467 132/420 131/415
128 4 137/473 136/432 135/430
256 4 142/482 140/443 140/443

Table 5.3: Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60 db)

101

The last performance metric to consider for the Σ∆ filter implementations is power

dissipation. After place and route of the filter designs into the Xilinx Artix-7 FPGA within

Vivado, the Vivado power estimator was used under default specifications. The results of the

power consumption of each filter is listed in table 5.4.

OSR Order Power (static/dynamic mW) (ρLP1) Power (ρLP2) Power (ρLP3)

32 2 58/1 58/1 58/1
64 2 58/2 58/2 58/2
128 2 58/3 58/3 58/3
256 2 58/4 58/4 58/4
32 4 58/1 58/1 58/1
64 4 58/2 58/2 58/2
128 4 58/3 58/3 58/3
256 4 58/6 58/6 58/6

Table 5.4: Lowpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs = 60 db)

The first noticeable thing about the power dissipation is that the static power is 58

milliwatts; a consequence of the FPGA device simply being powered on. The dynamic power is

much less ranging from 1 to 6 milliwatts for OSRs of 32 to 256 respectively in 4th order designs.

Since the size of the overall FPGA realization is on the same level in each order category, the

dynamic power dissipation is the same across the varying magnitude error constraints.

5.2.1.2 Bandpass Filter Designs

Switching to a bandpass filter design, the following filter implementations will be based

off a 6th order Chebychev type II filter with a bandpass of 0.2-2kHz and a stopband attenuation

of 60 dB. Two magnitude error bounds will be used for the subsequent designs as well and are

as follows:

ρBP1 (f) =

0.8913 200 Hz ≤ f ≤ 2000 Hz

0.0011 otherwise

102

ρBP2 (f) =

0.8913 200 Hz ≤ f ≤ 2000 Hz

0.0018 otherwise

Like the lowpass filter designs of the previous section, the quantized Σ∆ designs using

ρBP1 and ρBP2 fit quite nicely over the ideal response as shown in figure 5.6 and figure 5.7 even

for an OSR of 32. Once again, the beginning rise in the output representation noise of the filter

creates a noisy transfer function estimation around Nyquist in both magnitude response plots.

The magnitude error however, mostly stays below the design stopband magnitude error bound of

ρBP1 and ρBP2 shown in the magnitude error plots. The magnitude error plots also demonstrate

that the estimated magnitude error provides a good estimate of the actual magnitude error of

the quantized filter; the bounds are tight especially in the passband region.

(a) Magnitude Response (b) Magnitude Error

Figure 5.6: Bandpass Filter (6th order OSR=32, ρBL1)

103

(a) Magnitude Response (b) Magnitude Error

Figure 5.7: Bandpass Filter (6th order OSR=32, ρBP2)

In terms of resolution performance, table 5.5 shows that bandpass filter designs easily

achieve the required ENOB. The fact that the actual ENOB overshoots the design parame-

ter suggests that the magnitude error bound was the dominate constraint in the optimization

routine.

OSR Order Design ENOB ENOB (ρBP1) ENOB (ρBP2)

32 6 10 13.54 13.22
64 6 12 14.07 14.34
128 6 14 14.68 14.81
256 6 15 15.26 15.26

Table 5.5: Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60 db)

Mapping the the 6th order bandpass filter designs into the same Artix-7 FPGA as before

resulted in the resource usage shown in table 5.6. Increasing the filter order by two increases

the resource usage around the magnitude as the low-pass filter order being increased from two

to four. Even though the 6th order filter is larger, it is still possible to fit over ten of these into

the Artix-7 FPGA. While increasing the OSR and subsequent resolution of the bandpass filters

104

certainly increases the resource usage, relaxing the magnitude error bound decreases it but only

slightly. the descrease in complexity for reduced error bounds coincides with the fact that the

magnitude error bound was the dominant constraint in the optimization routine.

OSR Order FF/LUTs (ρBP1) FF/LUTs (ρBP2)

32 6 575/185 568/181
64 6 607/197 605/192
128 6 645/208 639/201
256 6 670/217 660/213

Table 5.6: Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs = 60 db)

Power dissipation for the 6th order bandpass filters is reported in table 5.7. Increasing

the filter order has certainly made the circuit larger and as a consequence, is dissipating more

dynamic power than the fourth order lowpass filter. However, the point that over ten of these

filters can fit into the smallest Artix-7 FPGA means that multichannel and MIMO systems do

not need a large and higher power FPGA for implementation but rather a smaller device with

lower static dissipation.

OSR Order Power (static/dynamic mW) Power (static/dynamic mW)
32 6 58/1 58/1
64 6 58/3 58/3
128 6 58/6 58/6
256 6 58/9 58/9

Table 5.7: Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=100kHz, Rs = 60
db)

5.3 MASH Σ∆ Filter Implementation

To evaluate the MASH Σ∆ constructions, a series of bandpass filters were created over

varying parameters like the prior single stage versions. The bandpass filter was of the Chebychev

105

II type with a passband of 0.2-2kHz and a 60 dB stopband attenuation. The magnitude error

bounds ρBP1 and ρBP2 are used in the following designs and are defined as follows:

ρBP1 (f) =

0.8913 200 Hz ≤ f ≤ 2000 Hz

0.0011 otherwise

ρBP2 (f) =

0.8913 200 Hz ≤ f ≤ 2000 Hz

0.0018 otherwise

Simulating the 6th and 8th order bandpass filters resulted in the magnitude response and error

plots shown in figure 5.8, figure 5.9, and figure 5.10. Due to the high resolution of the MASH Σ∆

filter, the magnitude response plots are almost indistinguishable from the ideal case. The rise in

the representation noise on the output of the single stage design at Nyquist is of no consequence

in the MASH design due to the 4th order noise shaping of the two stage second order Σ∆

modulator architecture. In fact this phenomena is clearly seen when taking the magnitude error

plots into account. At an OSR of 64, there is about a 100 dB attenuation in the magnitude error

of the quantized MASH filter for both the 6th and 8th order bandpass filter designs. It is also

worth noting that the estimated error bound in gold is not touching the ρBP error bound in red

at any point in the signal band. The suggests that the dominate constraint in the optimization

routine for the MASH construction is the resolution constraint of 22 ENOB. The estimated

error bound is again tight is several places compared to the actual magnitude error, namely the

passband and at Nyquist. The tightness of the estimated magnitude deviation demonstrates

that the sensitivity analysis is adequate for MASH constructions as well.

106

(a) Magnitude Response (b) Magnitude Error

Figure 5.8: MASH Bandpass Filter (6th order OSR=64, ρBL1)

(a) Magnitude Response (b) Magnitude Error

Figure 5.9: MASH Bandpass Filter (6th order OSR=64, ρBL2)

107

(a) Magnitude Response (b) Magnitude Error

Figure 5.10: MASH Bandpass Filter (8th order OSR=64, ρBL2)

Apart from the previous performance plots, simulating the MASH filters over varying

parameters has yielded the resolution data tabulated in table 5.9. The first comment about

this data is that MASH achieves a very high ENOB for relatively low OSRs. For example, the

MASH filters were able to accomplish around 16 ENOB for an OSR of 16 compared to the same

ENOB in a single stage design at an OSR of 256. In addition, MASH designs can easily achieve

over 20 or more bits of effective resolution at OSRs above 64. In regards to varying the ρBP

design parameter, there is a slight decrease in ENOB for a relaxation in stopband attenuation

error which is on par with single stage designs.

OSR Order Design ENOB ENOB (ρBP1) ENOB (ρBP2)

16 6 16 16.21 16.14
32 6 18 18.31 18.07
64 6 22 22.37 22.12
128 6 24 24.25 24.01
16 8 16 16.14 16.03
32 8 18 18.27 18.07
64 8 22 22.23 22.11
128 8 24 24.21 24.06

Table 5.8: MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs =
60 db)

108

For resource usage, the MASH filter designs were mapping into the Xilinx Artix-7

XC7A12TL FPGA via Vivado. Table 5.8 shows the resource usage for the filters of different

orders, OSRs, and magnitude deviation bounds. Not surprisingly, the MASH filter implementa-

tions are larger than than the single stage designs with similar OSR by about 60-70%. This is

due to significantly larger overhead with the cancellation logic and multiple coefficient selector

circuits. For 20+ ENOB designs the MASH filter requires 2100-2400 LUTs, where most of the

expansion is coefficient switching logic for high-resolution coefficients. However, compared to a

conventional design, the 24 ENOB 8th order MASH filter is about a third the size of a 24-bit

conventional 8th order filter that only achieves 14 ENOB. At least three of the 24 ENOB 8th

order filters could fit within the smallest Artix-7 FPGA using only 4 IO pins each.

OSR Order FF/LUTs (ρBP1) FF/LUTs (ρBP2)

16 6 302/1316 300/1304
32 6 324/1487 321/1467
64 6 343/1601 340/1591
128 6 386/1784 384/1757
16 8 355/1738 349/1689
32 8 391/1964 384/1892
64 8 427/2157 411/2078
128 8 465/2411 451/2356

Table 5.9: MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs =
60 db)

When evaluation for power, the MASH filters generated the power dissipation numbers

shown in table 5.10. For OSRs of 16 and 32, the MASH filters produce power dissipation numbers

similar to single stage designs for similar ENOB. The dynamic power dissipation for higher

resolution designs jump substantially for large ENOB. Note, these power figures are somewhat

surprising, given the OSR-clock operating speed of the filters. Despite running as much as 128x

as fast as conventional filters, the dynamic power is reduced by the small footprint of the design

and for comparable resolution to 24-bit conventional designs, is below the static power of the

109

smallest conventional Xilinx FPGA as of 2019. Based in 28nm technology, the Xilinx parts

are optimized for large-scale signal processing tasks – these techniques would allow substantial

(typically 10x) reduction in part size required for similar tasks and resolutions and further, make

no use of embedded DSP core resources.

OSR Order Power (static/dynamic mW) (ρBP1) Power (ρBP2)

16 6 58/1 58/1
32 6 58/4 58/4
64 6 58/8 58/8
128 6 58/13 58/13
16 8 58/2 58/2
32 8 58/6 58/6
64 8 58/11 58/11
128 8 58/17 58/17

Table 5.10: MASH Bandpass Filter Implementation (Cheby II f_band=2kHz, f_b=10kHz, Rs
= 60 db)

There are families of ultra-low power FPGAs that currently fill niche markets where

programability and firmware update of “glue” logic is a direct benefit. Such FPGAs were never

intended for intensive signal processing and contain no embedded DSP cores or fast-add bypass

logic, but illustrate the potential of these new filtering techniques. The Lattice uPower® family

contains several parts with static power in the few mW scale. For instance, the 6th order

bandpass filters for both single stage and MASH designs running at an OSR of 64 dissipate 4

mW and 8 mW of power when implemented into a Lattice ICE40LP8K FPGA.

5.3.1 The Relative Size of Things

Having implemented several different Σ∆ filter designs under various design parameters

and constraints, a picture of their relative complexity and cost becomes apparent. The follow is

a list of the relative size of filter/controller implementations in an Artix-7 FPGA:

• Conventional shift based filter (8th order):

– 20 DSP slices, ~2000 LUTs, 200 FFs

110

– 0 DSP slices, ~7000 LUTs, 200 FFs

– ~14 ENOB

– 30+ IO pins for parallel interfacing

– Requires complex interfacing between filter/controller and ADC and DAC

• Σ∆ based filter (2nd to 8th order):

– 100-1000 LUTs, 70- 250 FFs

– 10-16 ENOB

– Only two IO pins required

– no interfacing between filter/controller and Σ∆ ADC and DAC

∗ Direct bitstream processing

• MASH Σ∆ based filter (2nd to 8th order):

– 800-2400 LUTs, 150 500 FFs

– 16-24+ ENOB

– Only four IO pins required

– no interfacing between filter/controller and Σ∆ ADC and DAC

∗ Direct bitstream processing

5.4 Conclusion

This chapter began by introducing pragmatic issues involving the accurate simulation

and evaluation of Σ∆ bitstream filters/controllers. Those issues center around using enough

simulation samples to produce accurate PSDs, how to compute SNR, and how to obtain transfer

function magnitude estimations of the filters. From there a series of lowpass and bandpass filter

designs were implemented and evaluated for both signal stage and MASH constructions. The

filter designs were created over varying oversample ratios, magnitude error bounds, resolution

bounds, and filter orders. The designs were then implemented in a Xilinx Artix-7 XC7A12TL

111

FPGA and evaluated for SNR, power dissipation, and resource usage. For signal stage designs, it

was found that for 100-1000 LUTs and 70-250 FFs, quantized filters 2nd to 8th order with 10-16

ENOB could be achieved while the noise and sensitivity analysis provided a good estimate of the

predicted SNR and magnitude error of the filter implementation. For MASH, 800-2400 LUTs and

150-500 FFs, quantized filters 2nd to 8th order with 16-24 ENOB could be achieved. Multiple

single stage and MASH filters are able to fit inside the smallest Artix-7 FPGA from Xilinx

while only requiring two to four IO pins and no interfacing circuitry with outside components.

Compared to a conventional bit parallel filters, these filters are at least an order of magnitude

lower in complexity when taking into account resource usage, IO pin usage, and interfacing

allowing for several continuous time performance filters/controllers to fit within very compact

FPGAs. In terms of power, the Σ∆ filters were on par with conventional designs in an FPGA

on a one to one basis due to dominate static power dissipation. However, since multiple Σ∆

filters can fit in a small lower power device, the need for larger and higher power devices are

unnecessary contributing to a sizable decrease in system power requirements.

Bibliography

[55] Xilinx, The address of the publisher. Vivado Design Suite User Guide: Model-Based DSP

Design Using System Generator, v2019.2 edition, 10 2019. An optional note.

112

Chapter 6

Σ∆ Based Digital Control

In the previous chapters, it was shown that Σ∆ filters could be designed and char-

acterized in a methodical and accurate way. The fact that they can emulate transfer function

dynamics makes them a prime candidate for implementing embedded LTI controllers. This

chapter will describe the advantages of using Σ∆ filters as digital controllers as well as how to

integrate them into current popular control architectures such as LQG and H∞. Lastly, a series

of motivating examples will be described that demonstrate the advantages and feasibility of the

Σ∆ paradigm.

Prior work on Σ∆ control revolves around mostly simple implementations of controllers

(typically PI or PID) for a variety of applications such as motor control [72, 56, 70, 57, 71, 58].

These works demonstrate the effectiveness of even the simplest of controllers to provide adequate

performance for the task at hand. This chapter will expand on prior works as well as the previous

chapters to discuss implementation strategies for embedded Σ∆ closed loop controllers.

6.1 Control Specific Advantages of Σ∆ Filters

Σ∆ based digital controllers have several advantages over conventional designs, most

notably substantially lower latency. A slightly hidden advantage is the use of integrators instead

of time-shift operators. This has the consequence that the integrator contents at any given time

113

are simply the controller implementation state variables. In particular, the parallel output is

always available as well as the Σ∆ stream, substantially simplifying low-noise ADC outputs as

well simplified debugging in simulation.

6.1.1 Controller Latency

It should be apparent by now that the Σ∆ filter/controller is a low latency implemen-

tation do to the fact that it runs at the oversample rate. The total latency of the controller

includes the latency of both the ADC and the DAC, which do not require a data conversion

interface, as well as the FPGA controller implementation. The total latency can be represented

by

Ttotal = TADC + TDAC + TSDC

where

TSDC = 3∆

Typical Σ∆ ADC latencies are on the order of one to a few oversample clocks (in

advanced MASH designs) when using serial outputs, but this degrades to 1 sample period (or

more depending on the communication interface) when using the bit-parallel output. On the

other hand, many kinds of actuator are directly controllable with pulses from a Σ∆ stream since

these are often 100-200 times the intended actuation bandwidth. This is particularly true for

integrated capacitance (MEMS drives) and voice-coil drive circuits. In motor control systems,

such high rates of switching are expensive in terms of driver power, so pulse compression is

often used. Finally, since the final stage accumulator state is bit-parallel output, a zero latency

output can be read by a suitable DAC to effect low noise drive at very low latency. Overall

then, extremely low latency control can be achieved whenever Σ∆ stream outputs are available

from the sensors or input ADCs. The advent of PDM parts allows for a substantial variety of

such components.

114

6.2 Adapting Output Feedback Control Designs for Σ∆ Based

Implementations

In most cases, control designers do not have direct access to a systems state variables

and have to rely on synthesizing controllers that utilized the measured output variables. These

controller designs are called output feedback controllers and come in a variety of flavors. This

section will briefly discuss three types of controllers and how they can be easily scaled and

adapted to an equivalent embedded Σ∆ controller implementation.

6.2.1 Scaling of Controllers

In digital control implementations, one must scale the control parameters such that

input and output signals to the embedded signal chain do not overflow and cause distortion. It

is also the case that front end of the signal chain be scaled such that the signal being measured

utilizes the full dynamic range of the ADC so that the highest SNR can be achieved. For Σ∆

controllers, the front end and back end modulators must have signals scaled to 90% of the full

scale input (i.e. -0.9 to 0.9) but the overall controller has a gain, k ∈ R, typically much larger

than one. So what to do?

Fortunately the problem of scaling can be easily solved by invoking an ADC gain ,

ku ∈ R, and DAC gain, ky ∈ R, in the design where the controller C (δ) can be written as

C (δ) = kC
′
(δ) = kykuC

′
(δ)

where

k = ‖C (γ)‖∞ = sup
ω

∣∣∣∣C (ejω − 1

∆

)∣∣∣∣
γ= ejω−1

∆

The controller for Σ∆ implementation, C
′
(γ), is the normalized version of the original controller

design where

∣∣∣C ′ (γ)
∣∣∣
∞

= 1

115

The ADC and DAC gains ku and ky can be chosen according to l1 scaling methods proposed in

[69].

6.2.2 Set-point Tracking

Set-point tracking is a common requirement of many control systems where the plant

must follow a specified reference signal. Such control loops find use in motor control, industrial

process control, and so on. For a Σ∆ controller implementation, some modifications to the

hardware architecture are required to make set-point tracking realizable.

Consider the Σ∆ reference tracking controller diagram in figure 6.1. The Σ∆ controller

in this case has two bitstream inputs for the reference as well as the feedback inputs. The

reference command to be followed is first Σ∆ encoded using a discrete modulator inside the

FPGA and the feedback comes directly from the front end Σ∆ ADC. Typically, the feedback

signal is subtracted from the reference command in order to produce an error signal that the

controller can act upon. In this case there is no need for the additional subtractor circuit.

Figure 6.1: Reference Tracking Embedded Σ∆ Controller

116

The set point Σ∆ controller architecture is illustrated in figure 6.2. From an RTL

perspective, the controller is identical to the architecture presented in chapter 3 with the dif-

ference being two input multiplexers in the feedforward path. These two input multiplexers

take the feedback and reference bitstreams and combine them to form appropriately scaled

feedforward coefficient multiplies. This strategy again removes the need for hardware multi-

plies by bitstream encoding the reference command and pushing the scaling into multiplexers.

The increase complexity for this modification is nominal and allows one to implement set point

controllers relatively easily.

Figure 6.2: RTL Diagram of Reference Tracking Σ∆ Controller

6.2.3 LQG Regulation

Linear-Quadratic-Gaussian (LQG) control is a optimal design technique for synthesiz-

ing output feedback regulators and can easily be integrated into a Σ∆ controller [64]. Beginning

with the problem formulation, the LQG regulator design assumes that following state-space

system

ẋ = Ax+Bu+ B̄w

y = Cx+ v

where x ∈ Rn, u ∈ Rk, w ∈ Rq, and y, n ∈ Rq. In this case, w and v are modeled additive

Gaussian noise inputs. The goal of the LQG regulator is to drive y to zero while under external

noise disturbance by driving the model input u with the appropriate control effort.

117

The controller consists of a linear quadratic regulator (LQR) gain vector, K,in con-

junction with a Kalman filter. The purpose of the Kalman filter is to estimate the internal states

of the plant and provide them for use by the LQR feedback gains. The LQG regulator system

diagram can be seen in the figure below

Figure 6.3: LQG Regulator System Diagram

The LQG regulator is designed to minimizing the cost function

J (u) =

ˆ ∞
0

{
xTQx+ 2xTNu+ uTRu

}
dt

where Q, N , and R are weighting matrices on the control actuation performance.

Algebraic Riccati eqautions are solved in order to determine the regulator gain vector K and

Kalman filter gain matrix L. K and L are then used to formulate the composite state space

regulator equations

˙̂x = (A− LC −BK) x̂+ Ly

u = −Kx̂

By taking the Laplace transform of the LQG regulator state space representation, the regulator

can be transformed into the transfer function

118

C (s) = K (sI −A+ LC +BK)
−1
L

Now having a continuous time transfer function representation of the LQG controller, scaling

and Σ∆ control design outlined in chapter 3 can be used to synthesize a digital embedded

controller.

6.2.4 H∞ Control Design

For the H∞ control problem, the designer seeks to find a controller, K, that stabilizes

a plant, P , while meeting various performance constraints [63]. Given the system

 z

v

 =

 P11 (s) P12 (s)

P21 (s) P22 (s)

 w

u

with exogenous input w, control input u, performance outputs z, and measured plant output v

, the controller

u = K (s) v

is chosen to minimize the performance gain

z = F` (P,K)w

where

F` (P,K) = P11 + P12K (I − P22K)
−1
P21

Minimizing the performance gain Fl (P,K) is akin to minimizing

‖F` (P,K)‖∞ = sup
ω
σ̄ (F` (P,K) (jω))

119

Once K is found, one has a continuous time transfer function that is ready to be scaled

and transformed into an embedded Σ∆ controller implementation. Typically H∞ controllers

are high order and great pains are taken to reduce the controller order of such designs due to

conventional discrete shift based limitations [61, 60, 66]. Fortunately, Σ∆ controllers can be

made to relatively high order and emulate very high performance H∞.

Figure 6.4: H∞ Controller Diagram

6.3 MIMO Configurations

When it comes to MIMO controller implementations which can be produces be LQG

and H∞ design techniques, there is great flexibility in how the controller can be configured.

The following is a list of various ways one can take the individual single input single output Σ∆

controllers and piece them together to construct larger systems:

1. MIMO Configuration with Parallel Output: In the case where a design calls for the use

of parallel DACs, the parallel outputs of the individual Σ∆ controllers can be taken and

routed to a parallel DAC as shown in figure 6.5. The advantage here is having a high reso-

lution output running at the oversample rate minus any Σ∆ representation noise provided

that each controller is strictly proper (i.e. βδ0 = 0).

120

Figure 6.5: MIMO Configuration with Parallel Output

2. MIMO Configuration with Σ∆ Encoded Output: Having MIMO controller Σ∆ encoded

outputs, should they be desired, require only a slight increase in complexity. For the

MIMO controller shown in figure6.6, the multibit outputs of the individual controllers are

summed and then Σ∆ encoded with a discrete modulator before being routed to a one bit

DAC.

121

Figure 6.6: MIMO Configuration with Σ∆ Encoded Output

The one bit outputs of this configuration lend themselves nicely to driving loads via a

simple output power half bridge stage. Figure 6.7 illustrates what a one bit output driver

stage could look like.

122

Figure 6.7: Σ∆ Output Half-Bridge Drive

3. MIMO Configuration with Pulse Width Modulated Output: In some cases where the high

frequency switching of a PDM representation may be deleterious to performance, it is

possible to encoded the multibit output of the controller with a pulse width modulation

module. When driving inductive loads for instance, switching at the oversample frequency

may reduce efficiency in the drive electronics due to the high transition rates. Figure

6.8 demonstrates how to adapt the Σ∆ MIMO controller by encoding the outputs with a

PWM module.

123

Figure 6.8: MIMO Configuration with Pulse Width Modulated Output

6.4 Motivation Examples

In this section, two motivating examples are presented: the inverted pendulum con-

troller and an AFM cantilever controller. These examples serve to demonstrate that not only

can the Σ∆ controllers emulate continuous time controllers, but they do so with high resolution

and precision.

6.4.1 Inverted Pendulum

The inverted pendulum on a cart is a well known problem in control where a feedback

controller is designed to balance a pendulum upright. The problem is interesting for a variety of

reasons such as the upright equilibrium point being unstable and the fact that the system has

non-minimum phase zeros. For this example, an LQG controller will be designed, as previously

described, to stabilize the pendulum in the upright position.

124

Figure 6.9: Inverted Pendulum on a Cart

Consider the inverted pendulum in figure 6.9. A model of the system can be created

with state vector xstate defined as

xstate =

x

ẋ

θ

θ̇

where x is the cart displacement and θ is the angle of the pendulum from the upright position.

A state space model linearized around the upright equilibrium for a small inverted pendulum is

given as

125

A =

0 1 0 0

0 −15.1372 −3.0448 0

0 0 0 1

0 37.2252 31.6122 0

B =

0

3.3871

0

−8.3294

C =

 1 0 0 0

0 0 1 0

D = 0

The system has one input, the input Voltage to the DC motor that drives the cart,

and two outputs, the cart position measurement and the angle of the pendulum. The LQG

controller designed for the upright stabilization yielded the two continuous time controllers

Kx (s) =
−2994s3 − 2.842e04s2 + 4.553e05s+ 1.156e05

s4 + 140.8s3 + 5721s2 + 2.569e04s+ 4.403e04

Kθ (s) =
9104s3 + 1.636e05s2 + 1.352e06s+ 3.682e06

s4 + 140.8s3 + 5721s2 + 2.569e04s+ 4.403e04

The pendulum controller FPGA implementation can be seen in figure 6.10. The con-

troller implementation reads both the x and θ measurements via second order Σ∆ modulators

and drives them straight into the Kx and Kθ controllers. The multibit output of the controllers

are them summed and then bitstream encoded before driving a one bit DAC.

126

Figure 6.10: Pendulum Controller FPGA Implementation

After the initial design of each Σ∆ sub-controller with an OSR of 128 and fb = 1kHz,

the controller was mapped into an IE40LP8K FPGA from Lattice. The resource usage for this

controller was 967 LUTs and 276 FFs with a power dissipation of only 1 mW .

A simulation of the closed loop system seen in figure 6.11 represents the pendulum

starting away from equilibrium by − π
32 and then being “tapped” at t=0.5 seconds. The simu-

lation shows that the Σ∆ pendulum response in red overlays the continuous time response in

blue. This demonstrates that the Σ∆ controller design is effective at emulating its continuous

time counterpart.

Figure 6.11: Pendulum Controller Time Simulation

127

6.4.2 AFM Cantilever Q-Control

Atomic force microscopy is a method of scanning that requires high bandwidth and

high resolution. The size of the scanning probe for such systems is on the order of microns and

has dynamics in the tens and hundreds of kilohertz. Digital feedback control at these rates can

be tricky and expensive; perfect for Σ∆ control.

The Q controller presented in [59] describes an AFM cantilever with a differential

sensing interface. The goal of the Q controller is to provided feedback control that quells the

first oscillatory mode of the cantilever tip at about 49 kHz. This allows higher performance and

greater accuracy for the cantilever operation in tapping mode, especially for actuation signals

close to resonance.

Figure 6.12 illustrates a Σ∆ version of the Q controller. The design samples the output

of the sensing circuit with a Σ∆ ADC which provides the bitstream signal encoding for the

FPGA based control. The bit parallel output of the Σ∆ controller is routed from the final state

integrator and into an ideal parallel DAC running at the oversample rate. A parallel DAC is

used in this case in order to not excite any unmodeled higher order cantilever resonance modes

with bitstream representation noise.

128

Figure 6.12: AFM Cantilever Q Control Loop Implementation

The estimated transfer function estimate from the actuation input Voltage to the out-

put Voltage of the sense amplifier circuit is given as

G (s) =
−0.73s3 + 1.28 · 105s2 − 6.57 · 1010s+ 1.45 · 1016

s3 + 1.12 · 106s2 + 9.52 · 1010s+ 1.05 · 1017

and the PPF controller is given as

C (s) =
kcω

2
c

s2 + 2ζcωcs+ ω2
c

where kc = 0.959, ζc = 0.178, and ωc = 48.547 kHz. Simulations were performed with the

continuous time controller, a conventional discrete controller, and an Σ∆ controller implemen-

tation. It is important to note that the conventional discrete controller is implemented by first

decimating an input Σ∆ modulator running at 30.72 MHz with a 3rd order Sinc filter at a rate

of 25 and 50. The discrete controller as well as the output DAC then runs at the decimated

clock rate. The discrete controller was derived from the continuous controller using the bilinear

129

Figure 6.13: AFM Continuous, Discrete, and Σ∆ Q-Controller Magnitude Response

transform at the appropriate sampling period. A plot of the closed loop magnitude response

performance can be seen in figure 6.13 with the SDC running at a clock frequency of 30.72 MHz.

Using Welch’s power spectral density estimates from the actuation Voltage input and sense

Voltage output of the Simulink model, the closed loop magnitude response of the continuous,

discrete, and Σ∆ Q controllers were determined and plotted.

Σ∆ controllers running at three different clock frequencies using the controller param-

eters seen in table 6.1 were simulated with their corresponding closed loop magnitude response

plotted in figure 6.12. Table 6.2 lists the relevant design information associated with each con-

troller. While there is no converter or sensor noise modeled in the simulation, the SDC control

band SNR can still be estimated and measured from the fixed point implementation. The SNR

numbers assume a full scale sinusoidal input while integrating the noise PSD over the entire con-

trol band from DC to fB . It is also of note to specify that the ideal Q controller coefficients were

chosen to obtain a specific closed loop Q value. The SDC control loop magnitude response varies

slightly from the ideal model due to the discretization process at different sampling frequencies.

130

Table 6.2: Σ∆ Q Controller Fixed Point Parameters

Oversample
Frequency

Measured
SDC SNR

Power LUT/FF

7.68MHz 61.47dB 1.94mW 178/76
15.36MHz 71.16dB 3.12mW 195/82
30.72MHz 86.57dB 4.36mW 214/88

Figure 6.14: AFM Σ∆ Q-Controller Magnitude Response

Table 6.1: Σ∆ Q Controller Parameters

Parameter Controller
1

Controller
2

Controller
3

fB 60 kHz 60 kHz 60 kHz

fs 7.68 MHz 15.36
MHz

30.72
MHz

Controller
Latency

1.3 µs (5
clock
cycles)

326 ns (5
clock
cycles)

163 ns (5
clock
cycles)

Estimated
SDC
SNR

61dB
(9.84

ENOB)

76.5dB
(12.4

ENOB)

91.5dB
(14.9

ENOB)

131

To estimate resource utilization and power dissipation in an FPGA, the three Σ∆ con-

trollers were mapped into the low power ICE40LP8K-CM81 FPGA from Lattice Semiconductor.

The Lattice iCEcube2 software was used to synthesize, place, and route the hardware descrip-

tion of the controllers to determine the number of flip flops and look up tables (LUT) used as

well as estimate the power dissipation in each scenario. The ICE40LP FPGA from Lattice does

not contain any built in DSP hardware accelerators and although it might typically be used for

glue logic or interfacing, the low complexity and multiplierless design of the Σ∆ controller allows

normally resource hungry controller implementations to be mapped into low cost, low power,

low resource FPGAs. In fact, the ICE40LP8K FPGA can fit 30 to 40 second order controllers

based on the resource utilization numbers given above. One could also implement a higher order

controller to dampen higher frequency resonance peaks in the Q controller which would further

increase an AFM’s scanning speed.

These simulations show that the Σ∆ Q controller is able to emulate a continuous time

controller transfer function by directly processing the bitstream from the front end modulator.

The entire Σ∆ Q controller has a signal chain latency of only five clock cycles which is a

minute fraction of the multiple decimated clock cycles required for the conventional discrete

case. Consequently, the conventional discrete controller closed loop magnitude response deviates

substantially from that of the ideal continuous controller. When increasing the oversample clock

frequency, the Σ∆ Q controller response holds closer to the continuous case but at a cost. In

terms of power and footprint, doubling the clock frequency increases the power dissipation by

a factor of about 50% in the controller while the LUT/FF utilization increases only modestly.

Faster clock speeds also allow for higher controller SNRs which is demonstrated in the estimated

and actual output noise powers. The estimated output noise power from Table 6.1 matches quite

well to the actually noise power listed in Table 6.2 which, again, validates the accuracy of the

noise analysis.

132

6.5 Conclusions

In this chapter, a variety of implementation schemes for embedded Σ∆ controllers were

presented and discussed. So long as a controller can be converted to an LTI transfer function

model, the Σ∆ controller architecture can accommodate any design whether it be a PID, LQG,

or H∞. MIMO systems can also be easily adapted by linking single input and output Σ∆

controllers. There is also flexibility in the output type that a controller can provide whether it

a multibit output, a bitstream output, or a PWM output as a means to drive loads at a lower

switching frequency. Two control examples were also presented. The inverted pendulum control

problem demonstrated the feasibility of linking two Σ∆ controllers to form a composite output

and provide continuous time performance. The AFM cantilever control problem demonstrated

that Σ∆ controllers can easily perform high bandwidth control in high performance applications.

The low latency of the Σ∆ AFM controller in conjunction with being δ operator based allowed it

to easily outperform the high latency discrete controllers and achieve performance mirroring an

ideal continuous controller. These controllers were also successfully integrated into a low power

non-DSP Lattice ICE40LP FPGA using minimal resources and operating on only a couple

milliwatts.

Bibliography

[56] D. Al-Makhles, A. Swain, and N. Patel. Delta-Sigma based bit-stream controller for a D.C.

motor. In TENCON 2012 IEEE Region 10 Conference, pages 1–5, Nov 2012.

[57] D. Almakhles, N. Pyle, H. Mehrabi, A. Swain, and A. P. Hu. Single-bit modulator based

controller for capacitive power transfer system. In 2016 IEEE 2nd Annual Southern Power

Electronics Conference (SPEC), pages 1–6, Dec 2016.

[58] D. J. Almakhles, R. Sakthivel, A. Swain, U. Subramaniam, and K. Almustafa. A Gener-

alized One-Bit Control System Using a ∆Σ -Quantizer. IEEE Access, 7:117009–117018,

2019.

133

[59] M. B. Coskun, H. Alemansour, A. G. Fowler, M. Maroufi, and S. O. R. Moheimani. Q Con-

trol of an Active AFM Cantilever With Differential Sensing Configuration. IEEE Transac-

tions on Control Systems Technology, pages 1–8, 2018.

[60] E. Gershon. Robust Reduced-order Hâ Output-Feedback Control of Retarded Stochastic

Linear Systems. IEEE Transactions on Automatic Control, 58(11):2898–2904, Nov 2013.

[61] P. J. Goddard and K. Glover. Controller reduction: weights for stability and performance

preservation. In Proceedings of 32nd IEEE Conference on Decision and Control, pages

2903–2908 vol.3, Dec 1993.

[62] G. C. Goodwin, R. H. Middleton, and H. V. Poor. High-speed digital signal processing and

control. Proceedings of the IEEE, 80(2):240–259, Feb 1992.

[63] M. Green and D.J.N. Limebeer. Linear Robust Control. Dover Books on Electrical Engi-

neering. Dover Publications, Incorporated, 2012.

[64] J.P. Hespanha. Linear Systems Theory. Princeton University Press, 2009.

[65] D.A. Johns and D.M. Lewis. Sigma-delta based IIR filters. In Circuits and Systems, 1991.,

Proceedings of the 34th Midwest Symposium on, pages 210–213 vol.1, May 1991.

[66] D. Mustafa and K. Glover. Controller reduction by H/sub infinity /-balanced truncation.

IEEE Transactions on Automatic Control, 36(6):668–682, June 1991.

[67] Chiu-Wa Ng, Ngai Wong, H. Kwok-Hay So, and Tung-Sang Ng. Direct sigma-delta mod-

ulated signal processing in FPGA. In Field Programmable Logic and Applications, 2008.

FPL 2008. International Conference on, pages 475–478, Sept 2008.

[68] Michael Ruppert and S O. Reza Moheimani. Multimode Q Control in Tapping-Mode AFM:

Enabling Imaging on Higher Flexural Eigenmodes. IEEE Transactions on Control Systems

Technology, 24:1–11, 10 2015.

[69] M. Steinbuch, G. Schootstra, and Hoon-Toh Goh. Closed-loop scaling in fixed-point digital

control. IEEE Transactions on Control Systems Technology, 2(4):312–317, Dec 1994.

134

[70] A. Swain, D. Almakhles, Y. Hou, N. Patel, and U. Madawala. A Sigma-Delta Modulator

based PI controller for bidirectional inductive power transfer systems. In 2016 IEEE 2nd

Annual Southern Power Electronics Conference (SPEC), pages 1–6, Dec 2016.

[71] C. Wanigasekara, D. Almakhles, L. Zhou, et al. Design of âÎ£ Based PID Controller

for Wind Energy Systems. In 2019 IEEE International Conference on Environment and

Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe

(EEEIC / I CPS Europe), pages 1–6, June 2019.

[72] X. Wu and R. M. Goodall. One-bit processing for digital control. IEE Proceedings - Control

Theory and Applications, 152(4):403–410, July 2005.

135

Chapter 7

Conclusions

This dissertation presented a design methodology for implementing hardware imple-

mentations of LTI controllers that directly process Σ∆ bitstreams. These filters have extremely

low latency as a result of operating at the oversample ratio of the input bitstreams and thus

achieve near-continuous-time response. When implemented via FPGA, these controllers require

substantially smaller resources (e.g. ~10x) look up tables and minimal flip flops compared

to conventional bit-parallel designs. As a consequence, extremely large MIMO designs can fit

within small, low cost, and low power realizations. Further, the use of integrators vs. time-shift

operators in the formulation and construction has the hidden benefit of relaxed coefficient reso-

lution sensitivity allowing for practical single-filter realizations of 8th and higher degree digital

IIR filters.

These benefits are greatly enhanced by the implementation of MASH realizations,

allowing effective 4th order behavior of the sigma-delta modulation scheme and thus greatly

reduced oversampling requirements at high resolution (e.g. 16 ENOB) and the ability to reach

ultra-high resolution (e.g. 24+ ENOB) with hardware that is still far smaller than conventional

designs. Both MASH and single-stage filters are fully supported by a simple additive NTF

model which has been shown to be highly accurate despite the required approximations. MASH

benefits in the predictive stability of the filters (allowing 2nd-order modulators throughout)

while only requiring 2 bit-serial, non-positional interfaces.

136

This combination of features is particularly valuable in high performance controller

implementations. In particular, the very low latency (on the scale of 1 OSR clock period) po-

tentially simplifies the design of digital controllers realizing continuous-time transient response

without the classic issues of analog noise, component drift and calibration. That these filters

can be realized in extremely small footprints allows for the design and implementation of micro-

power filters and compensators with superior characteristics matching the potentials of advanced

sigma-delta modulator designs. In particular, applications such as hearing-aids (currently de-

signed around low-power CPUs and dissipating about 1.1mW) could be run in low-power FPGA

(firmware programmable) or even lower power ASIC implementations. Such designs could reach

10uW for the digital signal processing (compression, filtering) portion of the power use, roughly

tripling the overall battery life (about 50-100 hours currently). Other direct uses could be found

in AFM microscope controllers (improving the performance of the DSP part by more than 10x)

thus substantially reducing hardware costs. (Both the analog and digital parts of the controller

could be simplified).

Finally, the widespread adoption of high-resolution (1 and 2 bit PDM signaling) would

simplify wiring and communication requirements while improving system robustness and sensi-

tivity to transient faults such as ionizing radiation based soft-errors. Techniques for protecting

adders and clock distribution schemes are well known, all long-wire communications are via

non-place value bit-streams for which soft-errors are simply low-sensitivity noise sources.

7.1 Future Work

Having laid the groundwork for creating reliable high performance LTI Σ∆ controllers,

there are many avenues where this work can be extended.

7.1.1 Design Partition and Cascade Realizations

A natural extension to the optimization procedures is the separation of eigenvalues

into frequency similar groups and partitioning the design based on these groups. This has the

benefit of allowing substantially smaller coefficients and accumulators as well as the possibility of

137

reduced power use while maintaining overall resolution and performance. Since the representa-

tion error of cascaded filters in non-correlated, only the associated white-noise NTF components

accumulate. This allows for substantial design flexibility in controller applications where noise

sensitive portions of the response can be accommodated.

7.1.2 Modulated (non-baseband) Controllers and Filters

The great majority of Σ∆ ADC and DAC devices are built at base-band. The issue of

1/f noise, however, make such simple implementations very difficult or impossible in sensitive

sensing systems. Classical capacitive microphones and microphone pre-amplifiers have typical

preamp voltage gains of 60-75db. Maintaining a 65+db SNR places substantial strain on am-

plifier design as well as requiring physically large (and thus expensive) sensing elements. The

classical solution is to modulate the element at 1MHz, perform the amplification using 1 MHz

IF and then demodulate to base band. This solution is used extensively in (very expensive)

precision audio measurement systems. Instead of the demodulator, a Σ∆ ADC with 1 MHz

modulation could be used. Such a design could be demodulated digitally, providing substantial

cost savings and allowing for custom calibration of the sensor non-idealalities in NVram. These

designs are rather simple extensions to the current filtering scheme.

7.1.3 Nonlinear Control

While linear controllers are certainly the more popular design choice, in reality most

real world systems are nonlinear. Saturation, quadratic effects, trigonometric terms, and other

nonlinear phenomena present them selves in a variety of important control problems. For in-

stance, in robotic control the robot kinematics include trigonometric functions and nonlinear

terms. Partial feedback linearization is a popular way to handle the nonlinear terms of the

robotic kinematics while providing sufficient control of the robot dynamics. To implement bit-

stream control in these situations, one must devise a way to implement state machines that

emulate trigonometric functions while directly processing bitstreams. Future work will revolve

around devising Σ∆ based filters and state machines that have the ability to emulate trigono-

138

metric and common nonlinear functions and how to apply them to different classes of nonlinear

control problems.

3 Phase Motor Control

Multi phase motor control requires complicated algorithms and conversions between

stationary and rotating reference frames to provide adequate and efficient control. Typically

implemented in software via DSPs and running anywhere from ten to one hundred kilohertz,

modern motor control invoke considerable latency in their implementation. Given that Σ∆

controllers are extremely low latency, the opportunity to provide higher performance control

with possibly greater efficiency is available. Rather than take the conventional approach using

Park and Clarke transformations [73] for the reference frame conversions in the feedforward and

feedback, it is possible to construct compact Σ∆ oscillator circuits to generate the oscillating

waveforms necessary for commutation. Figure 7.1 shows an RTL diagram for a two phase sine

and cosine generator. Such a circuit could be used to drive a two phase motor.

Figure 7.1: Two Phase Oscillator Circuit

Figure 7.2 shows a time simulation of very high resolution sinusoids coming from the

multibit outputs of the oscillator. For future work regarding three phase motors, a simple three

139

phase oscillator circuit will be devised and utilized into a novel low latency and high performance

motor control architecture.

Figure 7.2: Two Phase Oscillator Simulation

Reduced Driver Switching

Driving inductive loads comes up very often in embedded control applications. Whether

it is a voice coil for a speaker, a motor coil, or a electromagnet, these actuators are typically

driven via PWM into a half-bridge power stage. Unfortunately there comes a point of diminishing

returns when quickly switching power transistor switching stages; power loss in the switching

transistors increases dramatically when close to the switching timescale limits of the device. In

order to drive these types of stages directly via a bitstream, the number of switching transitions

must be lowered to reduce power loss. Further work will include devising a scheme to reduce

switching losses due to direct drive via oversample rate bitstreams.

140

Bibliography

[73] Microchip Technology Inc. Sensored (Encoder-Based) Field Oriented Control of Three-

Phase Permanent Magnet Synchronous Motor (PMSM), ds00002757a-rev1 edition, 2018.

141

