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ABSTRACT OF THE DISSERTATION

How the immune system learns from infections

by

Hongda Jiang

Doctor of Philosophy in Physics

University of California, Los Angeles, 2022

Professor Shenshen Wang, Chair

The immune system is a complex system of cells and molecules that work cooperatively to

protect us against pathogenic organisms. It can perform complicated tasks such as pattern

recognition, learning, and memory, all of which require dynamical coordination among a

large number of components across multiple scales. Nevertheless, the multitude of different

components makes it challenging to unveil the mechanistic principles that give rise to these

remarkable functions.

My thesis focuses on how our immune system learns from infections and improves speci-

ficity of pathogens recognition on the fly. This process is known as affinity maturation,

where the affinity of B cell receptor improves through Darwinian evolution. Although recent

progresses in experiments revealed many details, what remains is a first-principle and quan-

titative understanding of how different elements come together to achieve the goal. Using

statistical physics tools and computational modeling, I study various aspects of the mat-

uration process, including molecular interactions, information extraction, and evolutionary

dynamics.

To understand how B cells with different affinities are discriminated during affinity matu-
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ration, we investigate the process of antigen extraction, where B cells use cytoskeleton forces

to extract antigen molecules from other presenting cell surface. We show this process allows

a B cell to infer its receptor affinity by measuring the number of extracted antigens. Our

model highlights the regulatory role of mechanical force: Application of a constant force

with proper magnitude can enhance discrimination fidelity, and usage of a dynamical force

that introduces negative feedback can improve discrimination robustness with respect to

fluctuations in antigen concentration.

To illustrate how molecular interactions influence cellular evolution, we couple the phys-

ical theory of antigen extraction to a minimal model of affinity maturation and simulate

ensembles of cell populations under different conditions. The multiscale model predicts that

the affinity ceiling stems from the physical limit of antigen tether strength and identifies

strategies to alleviate the constraint.

Lastly, we present a study on the long-term coevolution between evolving pathogen and

adaptive immune response. Our work reveals that the asymmetric reaction range between

immunogenicity (the ability of pathogens to induce an immune response) and antigenicity

(the ability of pathogens to interact with antibodies) is critical in determining the dynamics

of coevolution.
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2.1 Free energy plotted against receptor-ligand separation along direction of pulling.

Zero separation corresponds to the bound state. A force that stretches the bond

will decrease the free energy linearly with distance. x‡ denotes the location of

the force-free potential barrier. (A) Bell’s phenomenological model. (B) A linear-

cubic potential that is tilted by the force. Note that the equilibrium state and

the location of the barrier are changed by force. The curvature at the barrier κb

and curvature at the attractor κa are highlighted by colors. . . . . . . . . . . . 9

2.2 Antigen extraction process. (A)Antigens are displayed on APCs as a chain of

molecules that include tethering proteins (antibodies and FC receptor (FcR)). B

cells bind antigens through their BCRs and apply forces to the bond. (B)Before

extraction, the multi-bond structure is modeled by a three-body complex, BCR-

Ag-APC. Rupture can happen at either of the two binding interfaces in the com-

plex. One corresponds to successful Ag acquisition by the B cell and the other to

failure. (C) Applied pulling forces and random forces affect the bond extension

xa, xb thereby transferring external forces to the two binding interfaces. . . . . 13

2.3 (A) The intrinsic free-energy for BCR-Ag bond Ub(xb) has a minimum at xb =

0 and a barrier at xb = x‡
b with height ∆G‡

a. (B) The free-energy for APC-

Ag bond Ua(xa) has a barrier is at xa = x‡
a with a height of ∆G‡

a. (C) The

assumed potential of mean force, U(xa, xb) used for Brownian motion consists of

an attracting well (bound state) and two barriers (successful or failed extraction).

The chance of antigen extraction is the probability for the Brownian particle to

cross the barrier, corresponding to successful extraction. . . . . . . . . . . . . . 14
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2.4 Escaping problems with different boundary conditions. (A) Two boundaries are

both absorbing, as appeared in the tug-of-war problem. (B) Boundary ∂Ωa is

absorbing yet boundary ∂Ωb is reflective. So the net flux at ∂Ωb is zero. (C)

Boundary ∂Ωb is absorbing and boundary ∂Ωa is reflective. The integrated fluxes

are labelled in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 We use 2D Brownian simulations to simulate the extraction process. Coordinates

represent the extensions in APC-Ag bond and BCR-Ag bond. Interacting poten-

tial energy is shown by color. Two thick dashed lines represent boundaries for

the breaking of two bonds, respectively. Typical rupture trajectories are shown

in black, which cross one of the rupture boundaries at the end. Histograms show

the distribution of exit position along each boundary. The percentage shows the

fraction of antigen extraction. Attractors and saddle points are labeled by ‘A’ and

‘Sa’ or ‘Sb’ respectively. (A) No force was used, F = 0. (B) Force ( F = 20pN)

lowers the barrier, and shifts the location of attractor and saddle points, resulting

in changes in the extraction probability. . . . . . . . . . . . . . . . . . . . . . . 28

2.6 The relationship between the extraction chance η and the pulling force F . (A)Results

based on the linear-cubic potential. (B) Results for the cusp-harmonic potential.

Symbols are based on Brownian motion simulations. Curves are analytical re-

sults. Dashed curves represent the Bell’s phenomenological expression. Red: stiff

APC-Ag bond, x‡
a = 1.5nm. Blue: soft APC-Ag bond, x‡

a = 3nm. Other param-

eters: x‡
b = 2nm. ∆G‡

a = ∆G‡
b = 10kBT , γa = γb. Arrows mark the bare bond

strength min(fa, fb). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.7 Large pulling force inhibits antigen extraction, and the inhibition depends on

APC-Ag bond stiffness. (A)Under large force, simulated stochastic trajectories

wiggle around the deterministic one. Contour maps show the potential landscape

U(xa, xb). The solid line in green represents the deterministic trajectory, and the

solid black line is a simulated rupture trajectory. F = 40pN (B) Same as (A) but

for a larger force F = 80pN. (C)Large force reduces extraction efficiency. Symbols

were obtained from Brownian motion simulations (≥1000 runs) for different APC-

Ag bond stiffness (from red to blue: x‡
a = 0.5, 1.0, 1.5, 2.0, 3.0nm), The reduction

is more effective for soft APC-Ag bond (blue) than for stiff APC-Ag bond (red).

Parameters: ∆G‡
a = ∆G‡

b = 10kBT, x
‡
b = 1.5nm. A linear cubic potential was used. 32

2.8 The relationship between the extraction chance η and the mean rupture force

Fr, under different dynamical forces. The insets show the force dynamics F (t),

including a constant force F (t) = F0 (black), a linear ramping force F (t) = rt

(orange), a sigmoid force F (t) = Fmaxt/(tF + t)(green), a periodic pulsed force

(red), and a nonlinear ramping force F (t) = rt2 (purple). Symbols in each color

are obtained from Brownian simulation by varying force parameters. For instance,

we vary the loading rate r for the linear ramping force. Parameters: x‡
b = 2nm,

x‡
a = 1.5nm, ∆G‡

a = 10kBT,∆G‡
b = 14kBT , γa = γb. Now (∆x‡/x‡

b)
2 = 0.0625 ≪ 1. 36

2.9 Applied force shifts the response curve and enhances the ceiling affinity. We plot

the extraction probability as a function of BCR affinity, under different forces.

Solid curves are analytical predictions given by Eq 2.53. Symbols are obtained

from 200 independent Brownian simulations. Dashed lines are given by Bell’s

model, Eq. 2.50. (A) Cusp-harmonic potential was used. (B) We use the linear-

cubic potential. Parameters: ∆G‡
a = 20kBT, x

‡
a = 1.5nm, x‡

b = 2nm. . . . . . . . 38
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2.10 Applied force enhances ceiling affinity and extends the distinguishable affinity

range. (A) Phase diagram for distinguishable affinity under different forces. Dis-

tinguishable affinity ∆G‡
b is defined as ηmin < η(∆G‡

b;F ) < ηmax, as shown in

the colored region. The boundaries (η = ηmin and η = ηmax) are represented

by solid curves (obtained from Eq. 2.73) and symbols (obtained from Brown-

ian simulations). The dashed lines are analytical prediction by Bell’s model. The

cusp-harmonic potential was used. (B) Discrimination range increases with force.

Filled squares are from Brownian simulations. Blue for cusp-harmonic potential

and red for linear-cubic potential. Solid curves are based on Eq. 2.74. Open

circles are numerical results to Eq. 2.70. Both results suggest the discrimina-

tion range increases with force. And in the limit of small force, the relation is

quadratic. Parameters: ∆G‡
a = 20kBT, x

‡
a = 1.5nm, x‡

b = 2nm. . . . . . . . . . . 40

3.1 (A) Overview of cellular processes within GC during affinity maturation. An

established GC consists of a light zone (LZ) and a dark zone (DZ). In the LZ,

B cells contact with APC to form synapse and extract antigens. Then they

interact with Tfh cells to get a survival signal, after which they recycle to the DZ,

differentiate into plasma cells or undergo apoptosis. In the DZ, B cells proliferate

according to the survival signal delivered by T cell: B cells that extract more

antigens will proliferate more times. Random mutations that modify the binding

may take place during each replication. (B)The tug-of-war antigen extraction

process. During the interaction between APC and B cell, BCRs bind to antigens

that are tethered on the surface of APC. Then the B cell uses the tugging force

to extract antigens. We use a Brownian motion model to describe the molecular

dynamics and obtain the chance of antigen extraction (see Chapter 2). APC: Ag

presenting cell. PC: plasma cell. MBC: memory B cell. Ag: antigen. . . . . . . 48
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3.2 Evolution dynamics of the minimal GC evolution model. (A) The evolution of the

mean affinity of cells in one GC. Solid curves represent the average trend among

100 GCs. The shade shows the variation among GCs. Different color correspond

to different forces. Because x‡
b > x‡

a, the relative tether strength s increases as we

increase force. (B) The evolution of GC population size. Solid lines are average

trends, and shades show the variation among different GCs. (C)The relationship

between the output affinity and the applied mechanical force. Circles were the

mean B cell affinity at tf , averaged from 100 independent GC simulations under

different F . Error bars show stdev across different GCs. Squires were the fraction

of surviving GCs at tf among 100 simulations. . . . . . . . . . . . . . . . . . . 53

3.3 The effect of expansion of distinguishable affinity range. (A) Compare the evo-

lution outcome between Bell’s model and the microscopic landscape model. Red

symbols are the same as Fig. 3.2C. The black symbols were based on the phe-

nomenological Bell’s model. (B) Schematic plots that explain the difference in

(A). The shade labels the “reachable” affinity range, starting from the minimal B

cell affinity that could avoid GC death to the maximal affinity that is “distinguish-

able” through antigen extraction, resembling Fig. 2.10 in CH2. The blue dotted

lines are the founder B cell affinity used in simulations. GC dies if the founder

B cell lies below the shaded region. We can see the expansion of distinguishable

affinity range improves the maximal achievable output affinity. . . . . . . . . . 55

3.4 The relationship between the output affinity and relative tether strength. Sym-

bols (blue circles) were obtained from GC simulations at different x‡
a (from 0.5nm

to 4nm) and under different F (from 0 to 30pN). Error bars were obtained from

100 GCs. Meanwhile, the GC survival percentage (red squares) quickly declines

at high tether strength. The dashed line shows the prediction by Eq. 3.9 . . . . 57
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3.5 GC evolution with Ab feedback. (A-B) are similar to Fig. 3.2. (A) we plot the

evolution of average affinity, under different forces. Note that an intermediate

force gives the highest evolution rate. (B) The evolution of population size. (C)

The adpatation rate as a function of the applied force, obtained by tracking the

mean affinity improvement per cycle averaged from the last 200 GC cycles. Error

bars are obtained from 100 GCs. The solid curve is the prediction given by

Eq. 3.13. The red curve shows the surviving GC fraction at t=300 GC cycle. . 59

3.6 Evolution with mutable x‡
b. (A)Evolution trajectories in the x‡

b-∆G‡
b plane under

different forces and against different tethers. The contour map in gray indicates

the Ag extraction chance η, which characterizes the fitness landscape. High-

quality (high intrinsic bond lifetime, Q > log10 50) parameter region is colored

in green. Simulated evolution trajectories are shown by the colorful lines. We

can see force application modifies the fitness landscape and changes the evolution

direction to favor stiff BCR bonds. (B) Tether strength as a function of force

F and tether bond length x‡
a, obtained from MFPT calculation. When x‡

a < x‡
b,

tether strength increases with force. In contrast, when x‡
a > x‡

b, force reduces the

tether strength. (C) The dependence of evolved B cell fitness (at tf = 100cycle)

on pulling force and tether property. Each symbol is an average of 20 independent

GC simulations. We can see the evolved B cell fitness follows the same trend as

tether strength. (D) The binding quality of output BCRs(at tf = 100cycle), Q.

In the low-force regime, both the binding quality and B cell fitness are improved

after evolution. In contrast, in the high-force regime, optimizing the B cell fit-

ness conflicts with improving BCR binding quality. Parameters: ∆G‡
a = 14kBT ,

pm,Gb = 0.5, pm,xb
= 0.5, initial condition: ∆G‡

b0 = 14kBT , x‡
b0 = 2nm. . . . . . . 63
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3.7 Intermediate heterogeneity in force maximizes diversity of binding quality. (A)Fitness

landscape on F -x‡
b space. The contour lines show the antigen extraction chance

η (or effectively fitness) landscape. Green arrows show the gradient along the x‡
b

axis, indicating the evolution direction within lineages of the same force. The red

dashed line represents the steady state of x‡
b at different forces, where the gradient

along x‡
b vanishes. Note that it differs from the “ridgeline” (dashed black line) of

local maxima along the principal direction corresponding to the negative curva-

ture (see “height definition” by Eberly et al. [1]). (B) Examples of evolution on

the F -x‡
b space. Different rows represent individual realization of GC reactions

starting from different initial force heterogeneity. Each column shows snapshots

of fitness landscape (in gray) and population density (in colors) at a certain time

point. Population-averaged ∆G‡
b was used to evaluate the η landscape at each

time point. (C) Distribution of binding quality. Each colorful curve corresponds

to one simulation result in (B) at t = tf . The dashed line shows the initial distri-

bution that was shared by all simulations. We can see, with intermediate force

heterogeneity, the high-binding quality B cells and low-binding quality B cells

coexist after evolution. (D) Distribution of B cell fitness λ. The black dashed

line shows the initial fitness distribution for σF0 = 0(the other two cases have

similar initial distributions). Colorful lines are the evolved fitness distribution at

t = tf . (E) Violin plot of evolved binding quality diversity, characterized by the

stdev of the binding quality distribution σQ. The black bars show the average

value among 50 realizations. (F)Temporal trajectories of B cell binding quality

diversity σQ at low force heterogeneity σF0 = 0. Each trajectory represents one

realization. The histogram on the right shows the distribution of diversity of

evolved binding quality σQ at t = tf . (G)Similar to (F) but at an intermediate

force heterogeneity σF0 = 0.6Fave. (H)Similar to (F) but at a large force het-

erogeneity σF0 = Fave. Parameters: x‡
a = 1.5nm, ∆G‡

a = 14kBT , Fave = 10pN,

pm,xb
= 0.5, tf = 100 cycle. Initial condition: x‡

b0 = 2nm, ∆G‡
b0 = 14kBT . Initial

diversity σ0,Gb
= 0.2kBT , σ0,xb

= 0.5nm. No antibody feedback. . . . . . . . . . 68xv



4.1 Schematic plot of the antigen extraction process. B cell uses force to extract

antigens (Ags) that are tethered on the surface of antigen presenting cell (APC).

Pulling forces are uniformly shared by all closed bonds. Each bond may break at

either binding interface, leading to failed or successful antigen extraction. There

are four kinds of reactions involved in this process: BCR-Ag unbinding, APC-Ag

unbinding, BCR Ag binding, and APC Ag binding, respectively with rate kb, ka,

kon and kon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 The extraction trajectory and readouts differ as BCR affinity changes and thereby

are informative about BCR affinity. We plot the cluster size m(t) (dashed lines)

and the number of antigen extracted n(t) (solid lines) trajectories obtained from

simulations. Red for the high affinity B cell (∆G‡
b = 9.5kBT ) and blue for the low

affinity B cell (∆G‡
b = 9kBT ). The diamond symbols mark the time points when

the clusters break. The histograms show distribution of cluster lifetime (top)

and extracted antigen number (right) from 1000 independent runs. Parameter

used: m0 = 100, f = 10pN, ∆G‡
a = 8kBT , x‡

a = 1.5nm, x‡
b = 2.0nm, kon = 0.

Independent extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Rebinding increases mean cluster lifetime and changes the lifetime distribution

to exponential-like. In A, we plot the lifetime distribution at different on-rates.

Curves are obtained by solving the forward master equation numerically. In B

we plot the average lifetime based on Eq. 4.19. Parameters: m0 = 20, kb = ka =

1s−1, F = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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4.4 n-discriminator and τ -discriminator complement each other for broad affinity

discrimination. (A): the readout as a function of effective BCR affinity. Solid

lines are the ensemble mean, and the shades mark the standard deviation. The

plotted cluster lifetime is relative to 1/ka. (B) Fisher information encoded in

cluster lifetime (red, Iτ from Eq. 4.40), antigen extraction number (blue, In from

Eq. 4.40), and the entire unbinding trajectory (greym Ifull from Eq. 4.41). As

affinity increases, the information encoded in the waiting time measure decays

much faster than the information from antigen number data. The vertical dashed

line marks the condition ∆G‡
b = ∆G‡

a. We considered independent antigen extrac-

tion without rebinding. Parameters: x‡
a = 1.5nm, x‡

b = 2.0nm,m0 = 100,∆G‡
a =

10kBT, F = 0pN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Selection fidelity (see definition in Eq. 4.8) between two B cells with a small affin-

ity difference ϵ = 0.1kBT . Symbols are the ensemble average over 500 Gillespie

simulations of the master equation and error bars from 10 independent realiza-

tions of the ensemble. Curves depict the upper bound in relation to Fisher in-

formation (Eq. 4.9) derived from first principles. Vertical dashed lines mark the

condition of vanishing affinity gap under force, ∆G‡
b = ∆G‡

a + f∆x. Independent

extraction events without rebinding. Parameters: xa = 1.5nm, xb = 2nm,m0 =

200,∆G‡
a = 9kBT , f = kBT/∆x. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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4.6 Cooperativity arising from force sharing enhances information extraction. We

plot Fisher information as a function of effective BCR affinity ∆GF = ∆G‡
b −

∆G‡
a − F∆x/m0 under various forces. The curve with F = 0 (in black) also

represents independent extraction results, which is independent of force when

plotting against ∆GF . (A): Fisher information in cluster lifetime, calculated

based on Eq. 4.44. The inset shows examples of cluster disassociation trajectories

for independent complexes (black), or under shared force F/m0 =1pN (blue) and

20pN (orange). (B): Fisher information in extracted antigen number, obtained

from Eq. 4.45. In the inset, we plot information encoded in each rupture event

for two cases: black for F/m0 = 0pN and orange for F/m0 = 20pN. Parameters:

x‡
a = 1.5nm, x‡

b = 2.0nm, ka = 1s−1,m0 = 100. . . . . . . . . . . . . . . . . . . . 98

4.7 Rebinding enhances Fisher information in cluster lifetime at a cost of

speed, but does not alter n-discriminator performance much. (A)Equilibrium

cluster size in the deterministic picture. Curves are steady solutions to Eq. 4.46.

The solid branch shows the stable solution and the dashed part shows the un-

stable solution. The symbols mark the bifurcation points where the equilibrium

states disappear when decreasing kon. (B)The average cluster lifetime as a func-

tion of rebinding rate with symbols corresponding to the bifurcation points in

(A). (C) The color-coded ratio between Fisher information in cluster lifetime

with rebinding and that without rebinding, Ĩτ (kon)/Ĩτ (0), as a function of on

rate and relative BCR affinity ∆G‡
b − ∆G‡

a. Symbols correspond to the bifur-

cation points in (A). The dashed line is a collection of bifurcation points at

various ∆G‡
b. F/m0 = 1pN. (D) Fisher information in nag, compared to In with-

out rebinding, Ĩn(kon)/Ĩn(0). A relatively large shared force (F/m0 = 10pN)

was used. The dashed line marks the bifurcation points. Other parameters:

x‡
a = 1.5nm, x‡

b = 2.0nm, ka = 1s−1,m0 = 30. . . . . . . . . . . . . . . . . . . . 100
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5.1 B cells extract antigens from the APC using dynamically controlled cytoskeletal

forces. (A) Adhesion of B cell to APC relies on clusters with receptors (blue) bind-

ing to antigens (red) tethered on the APC receptors (brown), forming three-body

complexes. The tight linkage of BCR to the actin cytoskeleton network (green)

generates and transmits dynamical out-of-plane forces to binding complexes as

instant feedback to cluster formation, which serves to extract antigens from APC.

(B) We assume the force is time-dependent or max-cluster-size dependent, which

follows the Hill function parameterized by F0, mc (or tc) and β. . . . . . . . . . 111

5.2 Simulated trajectories (solid line) reproduce experimental observations (symbols).

Experiment data was extracted from [2]. A time-dependent F (t) was used in

the simulation for panel (A). Panel (B) shows a trajectory under cluster-size-

dependent force. Parameters: L0 = 100, kon = 0.05s−1,∆G‡
a = 12.6kBT,∆G‡

b =

13.3kBT . Force parameter: F0 = 350pN, β = 5, tc = 1.5min,mc = 60. . . . . . . 114

5.3 Steady state and bifurcation curve in the deterministic picture, under a constant

force. (A)We plot the l.h.s. (black line) and r.h.s. (colorful lines) of Eq. 5.5.

Under a large force, the system does not have a non-zero steady solution. (B)The

system undergoes a bifurcation behavior as force increases. The red lines are

numerical solutions to Eq. 5.5. We label the bifurcation tipping point by a star.

Gray arrows show the evolution trajectory under constant force, determined by

perturbation analysis. The green arrows show two schematic plots of typical

trajectories under a ramping force. Thus, deterministically, the cluster is stable

when m > mlow
s and F < F ∗ (the region in red), and it becomes unstable when

m < mlow
s or F > F ∗ (the white region). . . . . . . . . . . . . . . . . . . . . . . 117
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5.4 Different forcing schemes yield distinct scaling relationships between contact du-

ration and antigen density. Each symbol shows the average contact duration τ

of 1000 independent simulations. Error bars show the standard deviation. Under

time-dependent force (left panel), the contact duration increases with ligand num-

ber. In contrast, under cluster-size-dependent force (right panel), the duration

decreases with L0. Note that we terminated the simulation at tmax = 30min when

the cluster didn’t break before that. Parameters: ∆G‡
a = 12.6kBT , ∆G‡

b = 15kBT ,

F0 = 4000pN, tc=2min, mc=60. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Simulation results (symbols) of mean antigen extraction (A) and standard de-

viations (B) agree with Eq. 5.19 (black lines). We use a time-dependent force

(F0 = 600pN, tc = 1min, β = 5).The fluctuations are larger than expected at

high ∆G‡
b, which is because some contact lasts for longer than tmax. . . . . . . . 123

5.6 (A) Ranking fidelity ξ quantifies how well the extracted antigen distributions of

two B cells are separated. (B) The ranking fidelity as a function of BCR-Ag

affinity. Symbols were obtained from the simulation. The black curve is the

approximation based on Eq. 5.22. We plotted the contribution from cluster size

and extraction chance respectively in blue and purple (see Eq. 5.22). We use a

time-dependent force(F0 = 600pN, tc = 1min, β = 5). ϵ = 0.3kBT . . . . . . . . . 125
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5.7 (A) To optimize discrimination, dynamical force needs to focus on different stages

of antigen acquisition at different BCR affinities. For each β, the simulated

annealing algorithm was used to find the optimal fidelity (symbols) at various

background BCR affinity ∆G‡
b. The solid curve, which agrees with the global

optimal when ∆G‡
b > ∆G‡

a but displays significant deviation when ∆G‡
b < ∆G‡

a,

shows the optimized fidelity when force applies after the cluster stabilizes and

thereby contributes only through the rupture process. The vertical dotted line

marks ∆G‡
a. (B-D) The optimal force parameters that generated the optimized

ξ in (A). Panel (A) and (B) (red symbols) are for step force (F (mmax; β = ∞)).

Panel (C) (black symbols), which shows the optimal F0 and mc satisfy F (m∗) =

F0m
∗/(m∗ + mc) = F ∗ at low affinity, is for F (mmax; β = 1). Parameters: L0 =

100,∆G‡
a = 12.6kBT, kon = 0.05s−1, x‡

a = 1.5nm, x‡
b = 2nm, ϵ = 0.5kBT . Error

bars were obtained from 5 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Discrimination by antigen extraction exhibits speed-fidelity trade-off. We plot

speed against fidelity, evaluated for sampled force schedules (changing F0, β, and

tc) at different affinity (from left to right, ∆G‡
b = 11kBT , 13.3kBT , 17.4kBT ).

Each symbol represents the average of 10000 independent runs for one parameter

set. The value of F0, β and mc are coded in the size, color and opacity of each

symbol, respectively. The figure shows that, at high ∆G‡
b (right), a step force

sets the Pareto front, whereas a linear sensing force can optimize the trade-off

at low ∆G‡
b(left). Parameters: ∆G‡

a = 12.6kBT, L0 = 100, kon = 0.05s−1. Time-

dependent force was used. Cluster size dependent forces generate similar behavior.129
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5.9 Non-linear cluster-sensing force enables absolute affinity discrimination. (A) The

force per bond (F/m) of a sensing force increases with cluster size m before F

saturates for β > 1, providing the negative feedback (the larger the cluster, the

larger the force per bond). The inset shows F (m,β = 5), where the force per

bond is represented by the slope of dashed lines. (B) We systematically scan force

parameters (F0, β,mc (or tc) ) and plot the sensitivity to ligand number change

σL = 1
σn

dn̄ag

dL0
against the sensitivity to BCR affinity change σE = 1

σn

dn̄ag

d∆G‡
b

. The

parameter F0, β, and mc (or tc) are respectively represented by the size, color and

color gradient of symbols. F0 was chosen from 100pN to 1000pN with a spacing

of 100pN. We see the sensing force can provide high αE with low αL. αE and αL

are calculated using Euler method, averaged from 6000 runs. (C) Discrimination

performance is robust to ligand number fluctuation under F (mmax). In each

realization, the antigen number L0 seen by a B cell is sampled from a Gaussian

distribution with variance σL. We simulate 6000 pairs of B cells to obtain the

ranking fidelity. The inset shows the distribution from which L0 was sampled.

Two forces share the same F0 = 800pN and β = 5. tc = 1min, mc = 60. Other

parameters: (B and C) L0 = 100,∆G‡
a = 12.6kBT,∆G‡

b = 13.3kBT, kon = 0.05s−1. 132
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5.10 Antagonism due to load sharing in the presence of multiple antigen

types. We compare the max agonist cluster size (A), mean rupture force per bond

on agonists (B) between cases with and without antagonists: m1max(∆G‡
b1,∆G‡

b2)/m1max(∆G‡
b1),

and fr1(∆G‡
b1,∆G‡

b2)/fr1(Eb1). The antagonism effect, quantified by An (see

Eq. 5.26), is plotted in (C). Top panels are for time-dependent force F (t), and

bottom panels are for F (mmax). All quantities are an average of 500 runs. Un-

der time-dependent force, the interaction between agonists and antagonists are

mostly cooperative An < 0. In contrast, under F (mmax), the interaction is an-

tagonistic An > 0, because antagonists inhibits agonist cluster formation and

agonist extraction. Parameters: kon = 0.05s−1, ∆G‡
a = 12.6kBT,∆G‡

b1 = 15kBT ,

L10 = L20 = 100. Top panels: F0 = 700pN, mc = 60. Bottom panels:

F0 = 500pN, tc = 1min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Schematic of antigen-receptor interaction with asymmetric range of inhibition and

activation in the phenotypic space. (A) Rinh > Ract: the receptor (blue Y-shape)

is not activated by the antigen (red flower-shape) but nevertheless inhibits it. (B)

Ract > Rinh: the antigen activates the receptor but is not subject to its inhibition.

Lower row: in addition to predation (black arrows; blunt for inhibition, acute

for activation), antigens self replicate (red arrow) whereas receptor-expressing

cells spontaneously decay (blue arrow pointing to an empty set symbol) in the

absence of stimulation. If a finite carrying capacity of receptors, θ2, is explicitly

considered, self-inhibition will also be present (Figs. 6.4C, 6.6B and 6.6C). . . . 142
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6.2 Phases in a 1D reaction-diffusion system under local predator-prey interactions.

(A) Phase diagram on the plane spanned by the ratio between diffusion constants

D1/D2 and that between birth and death rates λ1/λ2 of antigens (activators) and

receptors (inhibitors). Dynamics start from a local dose of antigens and uniform

receptors. The early extinction phase is color coded for the logarithm of the

inverse time to antigen extinction. The persistence phase (blank) divides into a

propagating wave state (upper) and a uniform coexistence state (lower). Insets

show typical kymographs in each subphase, red for antigen and blue for receptor;

the upper pair corresponds to the filled circle at λ1/λ2 = 200, D1/D2 = 10−2, and

the lower one corresponds to the open circle at λ1/λ2 = 10, D1/D2 = 10−2. (B)

Representative abundance trajectories. Top: λ1/λ2 = 20, D1/D2 = 10−3 (red

dot in panel A); bottom: λ1/λ2 = 10, D1/D2 = 10−2 (white dot in panel A).

Corresponding phase plots are shown on the right; vertical dashed lines indicate

the extinction threshold. Bin = 10, α1 = 10−3, α2 = 10−4. . . . . . . . . . . . . 145
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6.3 Asymmetric cross-reactive interactions simultaneously organize receptor and anti-

gen distributions. (A and B) The pattern wavelength, λ, identical for both

populations, is symmetric under the interchange of the interaction ranges Rinh

and Ract. (A) The scaled wavelength increases with the extent of asymmetry

γ ≡ (Rinh − Ract)/(Rinh + Ract); Rinh + Ract = 0.015, 0.02, 0.03 from top to bot-

tom. (B) Pattern diagram in the (Ract, Rinh) plane. The white region corre-

sponds to stable behavior, whereas patterning occurs in the colored areas. Solid

lines indicate the instability onset (Eq. 6.8). The color bar shows the values

of the wavelength determined from the critical mode. (C) Typical mutual dis-

tributions of receptor (blue) and antigen (red) in a 1D trait space with coor-

dinate x. The actual (solid line) and effective (dashed line) population densi-

ties (scaled by total abundance) show mismatch for receptors (antigens) when

Rinh > Ract (Rinh < Ract), leading to colocalized (alternate) density peaks be-

tween two populations, as indicated by the yellow bars. Shaded are the effective

density fields Aeff(x) and Beff(x). These two examples correspond to the open cir-

cle (Rinh = 0.025, Ract = 0.005) and the filled circle (Rinh = 0.005, Ract = 0.025)

in panel B. λ1 = 10, λ2 = 1, α1 = 10−3, α2 = 10−4, D1 = 10−6, D2 = 10−4. . . . 147
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6.4 Distinct regimes of coevolutionary dynamics. Population trajectories (top row)

and concomitant pattern evolution (lower rows) of antigen (red) and receptor

(blue) are shown for late antigen extinction (A), persistent coexistence (B) and

antigen escape (C), which are realized by varying the range of cross-reactivity and

the size of carrying capacity. Concentration changes progress via three distinct

stages: uniform steady state, stationary pattern, and oscillatory pattern. An

extinction threshold is crucial for the termination of branches (A, B) and the

formation of forks (B) shown in the evolutionary kymographs. Color bars code for

population densities. (A) Rinh = 0.025, Ract = 0.005, θ2 = ∞; (B) Rinh = 0.005,

Ract = 0.025, θ2 = ∞; (C) Rinh = 0.005, Ract = 0.025, θ2 = 3.5 × 105. Other

parameters are identical to those in Fig. 6.3. . . . . . . . . . . . . . . . . . . . 148

6.5 Theory predicts pattern amplitudes and abundance shift induced by coupling

between Turing modes. Shown are scaled first (A) and second (C) order pattern

amplitudes and abundance shift (B) as a function of ϵ, the dimensionless deviation

from D∗
1. Lines are analytical predictions; symbols are numerical solutions. Solid

line and filled symbol: Rinh = 0.025, Ract = 0.005; dashed line and open symbol:

Rinh = 0.005, Ract = 0.025. Red (blue) for antigen (receptor). θ2 = ∞. . . . . . 151
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6.6 Asymmetric cross-reactivity yields diverse phases. (A) Without homeostatic con-

straints on lymphocyte counts (θ2 = ∞), above the critical asymmetry (beyond

the light blue region), patterns form. The pattern-forming boundaries are sym-

metric about the diagonal. The boundary between the late antigen extinction

phase (blue) and the persistent patterned phase (yellow) is determined by track-

ing the prevalence trajectories until t = 100. (B) Under a finite carrying capacity

(θ2 = 3× 105), the pattern-forming region is no longer symmetric and an antigen

escape phase (red) emerges at the small-Rinh large-Ract corner, where the phase

boundary corresponds to the transition between supercritical and subcritical bi-

furcations. (C) First order pattern amplitudes as a function of carrying capacity

θ2. Lines are analytical solutions of amplitude equations, and symbols are nu-

merical values extracted from Fourier spectrum of stationary patterns right after

abundance shift. Insets show examples of population dynamics in escape (sub-

critical) and persistence with pattern (supercritical) phases; pattern amplitudes

diverge near the transition. Red (blue) for antigen (receptor). . . . . . . . . . . 155

8.1 The WKB approximation used in Talkner’s method. A typical trajectory will

stay within the neighborhood of the attractor for a long time until it suddenly

escapes from the domain. Thus, we divide the domain Ω into three parts, the

bulk region (Ω − ∆Ω), a thin layer (∆Ω), and the boundary ∂Ω. . . . . . . . . . 168
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CHAPTER 1

Introduction

“Physics was a point of view that the

world around us is, with effort

ingenuity, and adequate resources,

understanable in a predictive and

reasonably quantitative fashion.”

John J. Hopfield

The immune system protects ourselves against pathogenic organisms and cells that are

diverse and constantly evolving in nature. The past few decades have witnessed an explosion

in detailed experimental findings about the cells, molecules, and genes that constitute the

intricate yet reliable immune system. What still remains is the task of understanding in a

quantitative way how elements of the immune system behave and how they interact with

each other to generate the organized activity observed during an immune response.

While the goal of the immune system is well-defined in principle — preventing pathogenic

cells from the programmed division — it is not easy to recognize and clear foes from friends.

To a large extent, the main challenge is to recognize the unknown: Pathogens are extremely

diverse in nature and constantly evolving to escape recognition by the immune system. This

can be seen in our everyday experience by the evolving influenza virus, which requires a new

vaccination every year. Besides, SARS-CoV-2, the virus that causes the ongoing COVID-

19 pandemic, has developed into many thousands of variants in the past two years and

continues threatening the global population with novel mutants. Therefore, it is futile and
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impossible to code all pathogen information into genetic materials. Instead, organisms must

be adaptive and learn from exposures. For this reason, the strategies developed by the

immune system require evolution on the fly to generate novel binders in order to recognize

the unseen pathogens.

One of the main players in this adaptive immune response is B cell, which is capable

of generating highly specific receptors to deal with invading pathogens through a unique

process called affinity maturation [3]. During an antigen encounter, the B cells that barely

recognize the antigen are activated and go through cycles of somatic hypermutations that

introduce further diversity, followed by a selection process to eliminate low-affinity and self-

reactive specificities. At the same time, a fraction of evolving B cells may differentiate into

antibody-secreting B cells (plasma cells) which can create antibody molecules to neutralize

antigens, or memory cells in preparation for future encounter of the same antigen.

Since the discovery of affinity maturation in the last century [4], it becomes increasingly

clear that this process requires coordination at many scales from the molecular of receptor-

antigen bindings, gene recombination, regulation of biochemical pathways, to the cellular of

cell-to-cell communication and clonal population dynamics. Despite this complexity, affinity

maturation works remarkably robust and reliably. How do these collective interactions on

different scales dynamically come together to build a complex evolving system against a high

dimensional moving target? This high level question can be broken into smaller problems

emerging from the key steps at different levels or scales of affinity maturation, viewed from

different perspectives.

First, at the molecular level, the evolution of B cells is mainly driven by the interaction

between B cell receptors and antigens. It was recently discovered that, unlike other lym-

phocytes including T cells, B cells actively used tugging forces to extract and internalize

antigens presented on antigen presenting cells [2, 5]. From the biological point of view, this

raises the question of how and why evolving B cells expend mechanical energy to physically

extract antigens. Besides, from the information perspective, the noisy antigen-receptor in-
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teraction allows an immune system to fetch readable signals in order to discriminate B cells

with different affinities. Is there any fundamental physical constrain for affinity discrimi-

nation? More importantly, how can we approach the limit? What signal a B cell should

look at to optimize decision-making? In addition, recent experiments suggested that B cells

might be able to actively manipulate the ligand receptor interaction through highly dynamic

and adaptive forces [6], which implies a feedback mechanism that allows B cells to control

the thermodynamic process. From the perspective of control theory, what types of control

can potentially benefit the task of affinity discrimination? How to identify the feedback

mechanism in experiments?

Second, at the population level, it is unclear what factors facilitate affinity maturation

and what halt it. The information collected from the antigen extraction process is utilized to

determine the cell fate (proliferate or die). Collectively, B cell clones with different affinities

are iteratively generated, discriminated and selected, which not only increases the affinity

and neutralization potency of receptors, but also changes their binding breadth as well as

flexibility [7, 8]. However, this evolutionary learning process appears surprisingly ineffective:

First, it retains B cells with a wide variety of binding affinities. What’s more, it hits a

modest ceiling of evolvable affinity [9]. The maximum antibody affinities evolved in vivo

(Ka ∼ 1010-1012M−1) tend to be orders of magnitude lower than those achieved by directed

evolution in vitro (Ka ∼ 1013M−1) [10]. Due to the multiscale complexity, what exactly

controls affinity maturation dynamics and sets the evolution outcome remains an unresolved

puzzle in this field, which limits our ability to alter the constraints and improve response

efficacy.

Finally, at a longer timescale, highly variable pathogens may manage to continuously

evade immune recognition, leading to a coevolutionary arm races between antigen and im-

munity. Rapidly mutating viruses, such as human immunodeficiency virus (HIV) or hepatitis

C virus (HCV), go through fast intra-host diversification and constantly escape from immune

recognition [11, 12]. On the reciprocal side, affinity maturation allows the host immune sys-
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tem to adjusts on the fly to recognize the altered versions of the antigen. In this Red Queen

[13] scenario, antigen and immune system constitute each other’s responsive environment and

are mutually driven out of equilibrium. Then the question is, how do antigen and immu-

nity mutually organize when the ecological and evolutionary dynamics occur on comparable

timescales? What governs the persistence and outcome of mutual adaptation?

To answer these questions, statistical physics and quantitative modeling provide great

instruments to decode the underlying principles. The ultimate goal is similar to the pur-

poses of statistical mechanics. On the one hand, the macroscopic behavior of the immune

system, as probed in imaging or other quantitative measurement experiment, can be well

characterized. On the other hand, we are lacking of the complete representation for the

elementary interactions that would give rise to the coordinate behavior seen in the immune

system. The adventure of statistical physics is full of equivalent endeavors, starting from

the macroscopic description of thermal properties of gases and solids, on the assumption

of independent particles composing a perfect gas and the coupling of harmonic oscillators,

respectively, to the three-dimension structure of folding proteins and the description of neu-

ral networks. This approach is especially useful to theoretical immunology because of our

ignorance about the hierarchy of fundamental physical laws in different scales that are re-

sponsible for the observed macroscopic behaviors. Moreover, in-silico experiments based

on quantitative models not only allow one to identify the core mechanisms, but also help

to inform experiments with a view to reducing costs and increasing efficiency. To provide

an example, the quantitative model of affinity maturation developed by Wang et al. [14]

suggests that sequential immunization with antigen variants is preferred over a cocktail for

induction of cross-reactive antibodies, which was preceding experimental verifications.

My thesis aims to address the above problems utilizing the tools from statistical physics

and computational quantitative modeling. It presents a comprehensive multiscale study of

the B cell affinity maturation process from different perspectives that helps to uncover the

underlying principles governing the adaptive immune response.
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Chapter 2 focuses on the molecular scale and investigates the dynamics of antigen ex-

traction by B cells. The existing bond disassociation theory mainly focused on the ligand-

receptor system with a single binding interface [15, 16, 17]. However, the antigen extraction

process involves multiple binding interfaces, and it is the competition between different bond

breaking pathways that determines the extraction efficiency. In this dissertation, I extend

the bond dissociation theory to a “tug-of-war” system, where multiple binding interfaces

present, using a two-dimensional Langevin model. This framework allows one to estimate

the probability of successful antigen extraction and study how different components (i.e.,

force strength) influence the efficiency of antigen uptaking. I show that the tugging force

can regulate physical extraction of antigen via deforming the interacting free energy surface,

which couples internal dynamics of cells to the mechanical environment. This process allows

comparative measurements of the receptor affinity for affinity discrimination.

Chapter 3 integrates the tug-of-war antigen extraction model with an in silico model of

B cell evolution to show how regulation at the molecular level propagates to and influences

the evolution at the population level. Prior models of affinity maturation often assume

that the equilibrium binding affinity between B cell receptor and antigen determines the

reproductive success of a B cell clone [14, 18, 19, 20]. However, it is evident in experiments

that interactions between antigens and receptors are far beyond equilibrium binding and

involve contractile cytoskeleton forces [5]. Based on our understanding from the Langevin

model in chapter 2, I developed a model of B cell maturation using agent-based simulations

where the clonal reproductive fitness is governed by the results of antigen extraction. I find

that active force usage can both constrain and enable effective selections, but with regard

to different functional objectives. On the one hand, tugging force is able to regulate the

relative tether strength, which sets the limit of evolvable B cell affinities. On the other hand,

heritable heterogeneity in cytoskeleton forces, combined with evolvable receptor flexibility,

can generate a wide spectrum of output binding affinities with similar clonal fitness. This

unifies multiple experiments results otherwise hard to reconcile, including the persistence of
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low-affinity clones and diverging rates of diversity loss among B cell populations.

Chapter 4 revisits the antigen extraction process and investigates affinity discrimination

from the perspective of information theory, focusing on the fundamental physical limit of

discrimination accuracy. Existing models [21, 22] mainly studied the task of ligand detection

by cells, which is distinct from affinity discrimination in various aspects, including the under-

lying physical process as well as the output state space. I compare two debating hypotheses

of readout signal of BCR affinity, the binding lifetime (known as signal-1 in immunology) and

the number of acquired antigens (corresponding to signal-2 in immunology), by looking at

the amount of affinity information encoded in each signal. I show that both readouts can be

informative, but with regard to different affinity regimes. When B cell affinity is lower than

the antigen tether affinity, the binding lifetime carries most of the affinity information. As

B cell affinity increases, the information in binding lifetime diminishes due to the breaking

of the weak tether bonds and is outperformed by the information in the extracted antigen

number when receptors are stronger than antigen tethers. I also discuss how the coupling

between different receptors can potentially benefit the task of affinity discrimination.

Chapter 5 presents a study of antigen extraction from the perspective of the control

theory. Motivated by recent experimental observations [6, 23, 24], I develop a model where

B cells are able to actively manipulate the ligand-receptor clusters using dynamical and

adaptive forces. Different forms of feedback are compared in different aspects including

discrimination fidelity, speed and robustness. The model suggests that an adaptive force can

benefit affinity discrimination either through increasing the sensitivity of cluster formation

to affinity change, or by enhancing the sensitivity of extraction efficiency to affinity change.

I show that the negative feedback provided by a force that responds nonlinearly to ligand

clustering can reduce the dependence of antigen acquisition on antigen ligand concentration,

resulting in absolute discrimination for receptor affinity. In addition, I analyze antagonistic

effects under different controls when mixtures of different kinds of antigens are presented.

Specifically, our model predicts that a strong antagonism can be an indicator of adaptive

6



forces that sense the cluster size instead of the binding lifetime.

Chapter 6 focuses on the long-time coevolution scenario — the mutual adaptation be-

tween B cell receptor repertoires and antigens. I develop a reaction-diffusion model in trait

space, based on predator-prey interactions between coevolving immune receptors and anti-

gens, that combines evolutionary diversification and population dynamics. My study reveals

that the asymmetric reaction range between immunogenicity (the ability of antigens to induce

an immune response) and antigenicity (the ability of antigens to interact with antibodies)

is critical in determining the dynamics of coevolution. As such asymmetry varies, transi-

tions between qualitatively distinct regimes seen in nature would follow, including persistent

coexistence, antigen elimination and unrestrained growth.
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CHAPTER 2

Dynamics of single antigen extraction

2.1 Introduction

Biology background One of the key steps in germinal center (GC) evolution is antigen

extraction [25, 3, 7, 26, 27, 28]. It has been known for a long time that B cells use B

cell receptors (BCRs) to retrieve antigens (Ags) deposited on the membranes of antigen

presenting cells (APCs) in an affinity-dependent manner [29, 30]. Shortly after the contact

between a B cell and an APC, an immune synapse forms connecting the cells, that contains

clusters of BCR-antigen bonds [29, 31, 32, 24]. Those antigens are acquired by B cells if the

connection between antigen and APC breaks [30, 2, 33, 24]. In contrast, if the bond between

antigen and BCR breaks, the antigen remains on the surface of APC [2, 33]. Antigens

retrieved by B cell can then be presented to helper T cells [34]. Competition between GC B

cells displaying different surface densities of processed antigens to a limited number of helper

T cells then drives GC selection [9, 34, 35, 36].

Recent experiments suggest that the above antigen extraction process is subject to active

regulation [5]. For example, Natkanski et al. [2] observed that B cells acquired antigens by

dynamic myosin IIa-mediated contraction. Thus, B cell contractility influences the affinity

discrimination. Furthermore, Nowosad et al. [32] showed that, compared to naive B cells,

GC B cells used a larger tugging force. This form of active force application is puzzling,

because it is not only energy consuming, but also dependent on complicated signaling net-

works that regulate active bundle formation. It has been suggested that the application of

8
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Figure 2.1: Free energy plotted against receptor-ligand separation along direction of pulling.

Zero separation corresponds to the bound state. A force that stretches the bond will decrease

the free energy linearly with distance. x‡ denotes the location of the force-free potential

barrier. (A) Bell’s phenomenological model. (B) A linear-cubic potential that is tilted by

the force. Note that the equilibrium state and the location of the barrier are changed by

force. The curvature at the barrier κb and curvature at the attractor κa are highlighted by

colors.

mechanical force may serve to regulate the extraction threshold and improve the discrimi-

nation stringency [2, 32, 37], yet the detailed physical principle is still missing.

Bond dissociation theory The physics of bond disassociation under external mechanical

force has been investigated extensively since last century. An increase of the disassociation

rate under external force was examined by Bell [15] using a simple phenomenological model

that becomes the law of “mechanical chemistry”. It is an extension of the classical reac-

tion rate theory for noise-assisted bond breaking (see the outstanding review by Hanggi

et al. [38]). In the Bell model, force lowers the barrier height (see Fig. 2.1A), leading to an

exponential reduction of bond lifetime:

τ = τ̃ exp

(
−Fx‡

kBT

)
. (2.1)
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The applied force, F , is assumed to be directed along the reaction coordinate (usually a

molecular separation). τ̃ is the bond lifetime without force. While Bell’s insights successfully

demonstrated the significant role of mechanical force in biological chemistry, all features of

the underlying energy landscape were lumped into a single parameter – the bond length

x‡. To overcome this limitation, detailed free energy landscapes were introduced by Evans

and Ritchie [16] by extending the Brownian dynamics theory of Kramers [39, 38] to the

force-driven dissociation of bonds. According to the Kramers theory [39], for a sufficiently

high barrier and in the over-damped limit, the average time to escape from a local attractor

(metastable minimum) can be approximated by

τ =
2πkBT

D
√
κbarrierκwell

exp

[
1

kBT
(Ubarrier − Uwell)

]
. (2.2)

Here, the Arrhenius (exponential) factor contains the potential difference between the attrac-

tor and the barrier, scaled by the thermal energy kBT . κwell and κbarrier are the curvatures

at the attractor and at the barrier, respectively (see Fig. 2.1B). Following Kramers’ picture,

Evans and Ritchie [16] show that the bond lifetime follows a general form given by

τ = τ̃ g(F ) exp
[
− ∆G(F )

kBT

]
, (2.3)

where the barrier height reduction ∆G(F ) depends on the deformation of the energy land-

scape by the external force. It does not necessarily change linearly with F . This is because

force not only lowers the free energy at x‡, but also tilts the potential and changes the

minimum-barrier distance (see Fig. 2.1B). The prefactor g(F ) characterizes the change in

relaxation timescale due to potential tilting.

To connect with laboratory experiments, Evans and Ritchie [16] and Izrailev et al. [40]

examined the disassociation dynamics under a ramping force, which is easier to realize in

experiments using dynamic force spectroscopy [41] such as atomic force microscope (AFM)

[42], optical tweezers [43], or high-speed force spectroscopy (HS-FS) [44], as compared to a

constant force. The theory predicts that the average force grows linearly with the logarithm

of the force-loading rate. It was later tested in experiments using AFM to pull against
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various bonds, including a ligand-receptor complex [45] and bonds connecting two strands

of a DNA duplex[46].

More sophisticated but still analytically tractable models were developed by Hummer

et al. [47] using a cusp-harmonic potential and Dudko et al. [17] using a linear-cubic poten-

tial, which can be summarized into an explicit and unified form [17]:

τ = τ̃
(

1 − vFx‡

∆G‡

)1− 1
v

exp
{∆G‡

kBT
[(1 − vFx‡

∆G‡ )
1
v − 1]

}
. (2.4)

Here ∆G‡ is the force-free potential barrier height, and 0 < v ≤ 1 characterizes the shape

of potential landscape (v = 2/3 and v = 1/2 correspond to the linear-cubic and cusp-

harmonic free energy surfaces, respectively). For v = 1, and for ∆G‡ → ∞, the expression

reduces to the Bell’s phenomenological result, Eq. 2.1. These models not only provide a

detailed understanding of the effect of mechanical forces on the lifetime of chemical bonds

(“mechanical chemistry”), but also allow one to extract free energy surfaces to distinguish

between different mechanisms by repeated pulling experiments [47, 17, 48, 49, 50].

The tug-of-war system Nevertheless, the classical bond disassociation theory cannot

address the antigen extraction process. As we show in Fig. 2.2, before the extraction, a

BCR-antigen-APC complex has multiple binding interfaces [51]. Where it breaks is crucial

in determining whether the B cell can obtain the antigen or not [33]. Therefore, the process

involves the competition between different types of bond breaking and can lead to different

rupture outcomes (a type of “tug-of-war” problem). The distribution of the rupture outcome

is important for B cells to probe their receptor affinities [9, 29, 52], discriminate between

different ligands [2, 32] or substrates [33], and determine the cellular fate (die or survive) [35].

Moreover, the difference in the rupture outcome distribution between distinct B cells drives

the natural selection and influences the adaptation of a polyclonal population during the GC

evolution [25, 35]. However, the classical bond disassociation theory does not distinguish

between different binding interfaces and does not care much about the rupture outcome.
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Here, we extend the bond disassociation theory to the “tug-of-war” system, where mul-

tiple binding interfaces present. In section 2.2, we introduce our Langevin model and inves-

tigate how the tugging force influences the efficiency of antigen extraction. In section 2.3,

we discuss how the force regulates the discrimination power. Our results show that force

can enhance or inhibit antigen extraction, depending on tether (APC-Ag) stiffness and force

magnitude. Specifically, if the tether is soft and force is not too large, B cells can get more

antigens by applying a tugging force. In contrast, if the tether is stiff or force is too large,

antigen extraction will be inhibited by force. Moreover, our model predicts that force usage

not only regulates the discrimination stringency but also expands the sensitive window of

affinity discrimination.

2.2 Antigen extraction as a first passage problem

To describe the kinetics of antigen extraction, we consider a Langevin model where the

motion of molecules is governed by molecular interactions and stochastic random forces

from the environment, in a viscous extracellular solvent. The key quantity of interest is the

chance of successful antigen extraction, η, which determines on average how many antigens

can be acquired by a B cell. In what follows, we first introduce a general framework to

describe the kinetics and formulate the antigen extraction chance (section 2.2.1). Then we

apply the framework to calculate η in the limit of a static weak-force (section 2.2.2), in the

limit of a static strong-force (section 2.2.4), and under a dynamical force (section 2.2.5).

2.2.1 A two-dimensional Langevin dynamics model

Let us first formulate the problem using a Langevin model. We start from the system state

space and construct the equation of motion based on the Rayleigh dissipation function and

general potential landscapes. The Langevin equation can be converted into a Fokker-Planck

equation, which describes the ensemble dynamics. Then the timescale and the success rate
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Figure 2.2: Antigen extraction process. (A)Antigens are displayed on APCs as a chain

of molecules that include tethering proteins (antibodies and FC receptor (FcR)). B cells

bind antigens through their BCRs and apply forces to the bond. (B)Before extraction,

the multi-bond structure is modeled by a three-body complex, BCR-Ag-APC. Rupture can

happen at either of the two binding interfaces in the complex. One corresponds to successful

Ag acquisition by the B cell and the other to failure. (C) Applied pulling forces and random

forces affect the bond extension xa, xb thereby transferring external forces to the two binding

interfaces.

of antigen extraction can be formulated based on the ensemble description.

System states We use a three-body complex to model different binding configurations of

APC, Ag, and BCR groups. Before extraction, the complex is in a bound state, BCR-Ag-

APC, with two binding interfaces (BCR-Ag and Ag-APC). During extraction, either binding

interface may break. After extraction, the B cell will obtain the antigen if the Ag-APC in-

terface breaks or lose the antigen if the BCR-Ag interface breaks (see Fig. 2.2B). We use

bond extensions to further characterize the system state. Let xa and xb be respectively the

extension of the APC-Ag bond and the BCR-Ag bond, as compared to their unstressed equi-

librium states (see Fig. 2.2C). The advantage of using bond extension is that it is convenient

to describe the dynamics and tell if the bond is broken or not.
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Figure 2.3: (A) The intrinsic free-energy for BCR-Ag bond Ub(xb) has a minimum at xb = 0

and a barrier at xb = x‡
b with height ∆G‡

a. (B) The free-energy for APC-Ag bond Ua(xa)

has a barrier is at xa = x‡
a with a height of ∆G‡

a. (C) The assumed potential of mean force,

U(xa, xb) used for Brownian motion consists of an attracting well (bound state) and two

barriers (successful or failed extraction). The chance of antigen extraction is the probability

for the Brownian particle to cross the barrier, corresponding to successful extraction.

Dissipation function We consider the following Rayleigh dissipation function

R =
1

2
γaẋ

2
a +

1

2
γb(ẋa + ẋb)

2︸ ︷︷ ︸
hydrodynamic dissipation

+
1

2
γa0ẋ

2
a +

1

2
γb0ẋ

2
b︸ ︷︷ ︸

internal dissipation

. (2.5)

The first term is hydrodynamic dissipation of the antigen molecule, associated with transla-

tion of its center of mass dxa/dt, with respect to APC. The second term describes hydrody-

namic dissipation associated with translation of the center of mass of BCR (d(xa + xb)/dt).

Note that we assume the APC is static. The last two terms capture the internal dissipation

within the APC-Ag bond and the internal dissipation within the BCR-Ag bond, respectively,

depending on the relative motion of molecules forming a bond. γa, γb, γa0, and γb0 are cor-

responding damping constants. It should be noted that the detailed form of the internal

dissipation is complicated and might depend on other degrees of freedom (i.e., configura-

tional changes inside the receptor and the ligand, surrounding buffer ions, etc.) [53, 54, 55].

Nevertheless, our formula gives the simplest way to capture the core behavior: the faster the
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relative motion, the stronger the dissipation [45].

To keep the picture simple, in what follows we focus on the strong hydrodynamic damping

limit (γa, γb ≫ γa0, γb0), and drop the internal dissipation terms:

R ≈ 1

2
γaẋ

2
a +

1

2
γb(ẋa + ẋb)

2. (2.6)

Our analysis shows that this simplification does not change the results much in the physically

plausible regime (see our discussion in section 2.4).

Interacting potential We consider the following surface as the potential of mean forces

U(xa, xb) = Ua(xa) + Ub(xb) − F · (xa + xb). (2.7)

Here F is the external tugging force from the B cell. Ua(xa), respectively Ub(xb) , is the

free-energy profile of the APC-Ag bond, respectively the BCR-Ag bond, in the absence of

an applied force. These free-energies include the elastic energy due to protein stretching

and the binding energy within the chemical bond. In addition, the potential of mean force,

Ua(xa) (or Ub(xb)) are assumed to have a single well at the natural state xa = 0 (or xb = 0),

and a barrier at xa = x‡
a (or xb = x‡

b). The barrier heights of Ua(xa) and Ub(xb) are denoted

by ∆G‡
a and ∆G‡

b respectively (see Fig. 2.3A-B). Hence, the APC-Ag bond breaks if xa > x‡
a,

and the BCR-Ag bond breaks when xb > x‡
b.

Equation of motion For an over-damped system, the equation of motion is given by

∂U
∂xa

= − ∂R
∂ẋa

+ ξa, (2.8a)

∂U
∂xb

= − ∂R
∂ẋb

+ ξb. (2.8b)

ξa and ξb are stochastic forces from the environment, respectively acting on the Ag-APC

bond and BCR-Ag bond, which will be determined using the detailed-balance condition

and the fluctuation-dissipation theorem later (see Eq. 2.13). With some rearrangement, the
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equation becomes

γaẋa = −U ′
a(xa) + U ′

b(xb) + ξa − ξb, (2.9a)

γb(ẋa + ẋb) = −U ′
b(xb) + F + ξb. (2.9b)

Here −U ′
a(z) = −dUa(z)

dz
and −U ′

b(z) = −dUb(z)
dz

are interacting forces within APC-Ag and

BCR-Ag, respectively. Eq. 2.9 is essentially the Langevin equation that has been widely

used to model the dynamics of bond dissociation under force [16]. The first part is the

equation of motion of the antigen molecule, determined by the force from the APC side

(−U ′
a(xa)), the force from the BCR side (U ′

b(xb)), and random forces from the environment

ξa − ξb influencing the Ag molecule (recall that ξa and ξb are random forces acting on the

bonds). The second part is about the motion of BCR center of mass, determined by the

force from the Ag side (−U ′
b(xb)), the force from B cell (F ), and a random force ξb. Note

that two degrees of freedom are coupled together. Thus, we convert the problem into a

two-dimensional Brownian motion problem.

Two absorbing boundaries are placed in the state space (xa, xb) to represent the bond

breaking, one along the line xa = x‡
a and the other along the line xb = x‡

b (see dashed lines in

Fig. 2.4A). Therefore, successful antigen extraction corresponds to a barrier-crossing event

over the boundary at xa = x‡
a. In contrast, an antigen is lost when the Brownian particle

exits the potential well via the boundary at xb = x‡
b.

Noise correlation To determine the noise, we follow the Ito type Langevin equation, and

rewrite Eq. 2.9 into the standard form,

dxi

dt
= −

∑
j=a,b

Lij
∂U

∂xj

+
√

2kBT ξ̃i, (2.10)

where i = a, b are coordinate indexes. Explicitly,

L =

 1/γa −1/γa

−1/γa 1/γa + 1/γb

 ,

ξ̃a

ξ̃b

 =
1√

2kBT

 ξa − ξb

(1 + γa
γb

)ξb − ξa

 . (2.11)
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Assume the noise is a linear combination of white noises, ξ̃i =
∑

j Bijwj, where wj is zero

mean ⟨wj⟩ = 0, delta-correlated ⟨wi(t)wj(t
′)⟩ = δijδ(t− t′), and Gaussian distributed. Then

the detailed balance condition requires

∑
k

BikBjk = Lij ⇐⇒ ⟨ξ̃i(t)ξ̃j(t′)⟩ = Lijδ(t− t′). (2.12)

Solving this, we get⟨ξa(t)ξa(t′)⟩ ⟨ξa(t)ξb(t′)⟩

⟨ξa(t)ξb(t′)⟩ ⟨ξb(t)ξb(t′)⟩

 = 2kBTδ(t− t′)

γa + γb γb

γb γb

 . (2.13)

To clearly see the origin of noise, we define the following independent noises: ξ1, the white

noise associated with the hydrodynamic dissipation of antigen, ⟨ξ1(t)ξ1(t′)⟩ = 2kBTγaδ(t−t′);

ξ2, the white noise associated with the hydrodynamic dissipation of BCR, ⟨ξ2(t)ξ2(t′)⟩ =

2kBTγbδ(t− t′). Then

ξa = ξ1 + ξ2, ξb = ξ2. (2.14)

Thus, the equation of motion can be written as

γaẋa = −U ′
a(xa) + U ′

b(xb) + ξ1, (2.15a)

γb(ẋa + ẋb) = −U ′
b(xb) + F + ξ2. (2.15b)

Comparing Eq. 2.15 with Eq. 2.9, we find that ξ1 and ξ2 are independent random forces

acting on the molecules, whereas ξa and ξb are coupled random forces acting on the bonds.

Ensemble description To provide an ensemble description, we look at the time-evolution

of P (xa, xb, t), that is, the probability density function finding the system in state (xa, xb)

at time t. It follows the Fokker-Planck equation

∂P (xa, xb, t)

∂t
= L̂P (xa, xb, t), (2.16)
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where

L̂ ≡
∑

i∈{a,b}

− ∂

∂xi

Ki +
∑

i∈{a,b}

∑
j∈{a,b}

∂2

∂xi∂xj

Dij.

This is constructed from Eq. 2.15 using the Kramers–Moyal expansion up to the second

order [56]. The drift vector K = (Ka, Kb) and diffusion matrix D read as

K = −
[

1
γa
∂xaU(xa, xb) − 1

γa
∂xb

U(xa, xb), ( 1
γa

+ 1
γb

)∂xb
U(xa, xb) − 1

γa
∂xaU(xa, xb)

]
,

D = kBT

 1/γa −1/γa

−1/γa 1/γa + 1/γb

 . (2.17)

The diffusion matrix contains off-diagonal elements, because the random force on the antigen

molecule influences both bonds. We can see the detailed balance is ensured in this system

since the drift vector K relates with diffusion matrix through Ki =
∑

j Dij∂xj
(U(xa, xb)/kBT )

for all i, j ∈ {a, b} [57]. The probability flux is given by

J = KP −∇ · (DP ). (2.18)

This allows us to write the Fokker-Planck equation as

∂tP = −∇ · J. (2.19)

As such, we constructed a general framework to describe the antigen extraction process.

On the one hand, for a given free-energy profile U(xa, xb), one can use the Brownian mo-

tion simulation to simulate the molecular kinetics until bond breaking based on Eq. 2.15.

Statistical distributions of rupture outcomes can be obtained by repeating the simulation

for multiple times. On the other hand, starting from the Fokker-Planck equation, one can

derive the first passage time distribution and calculate the probability to obtain an antigen,

as we detailed below.

Antigen extraction probability As the key quantity of interest, the antigen extraction

chance determines B cell’s ability to capture antigens. In our model, it is the integrated
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probability flux exiting through the boundary corresponding to APC-Ag bond breaking.

Explicitly,

η ≡
∫ ∞

0

ja(t)dt. (2.20)

Here ja(t) =
∫
xa=x‡

a
J(x‡

a, xb, t) · exadxb is the integrated probability flux along the boundary

xa = x‡
a. exa = (1, 0) is the unit vector pointing to positive xa direction. One can imagine

any change in the underlying potential landscape will be reflected in the antigen extraction

chance. For examples, as the potential barrier near the boundary xb = x‡
b rises, more flux

will exit through the other boundary xa = x‡
a, which increases the extraction probability.

To elucidate the impact of different factors more explicitly, we consider several cases

where analytical understanding of η is feasible. We will first study a general case where

potential barriers are high compared to thermal fluctuations so that separation of timescales

is available (section 2.2.2). The results allow us to investigate extraction under a small static

force (section 2.2.3). Then we consider a large static force under which potential barriers

vanish (section 2.2.4). Finally, we will present the results under a slowly changing dynamical

force (section 2.2.5).

Timescale for antigen extraction To provide a more complete understanding about

the effect of force, we will also present the analysis of antigen extraction timescale. In the

framework of Langevin model, the distribution of complex lifetime is represented by the first

passage time (FPT) distribution, which is

p(t) = − d

dt

∫
xa<x‡

a,xb<x‡
b

P (xa, xb, t)dxadxb (2.21)

According to the divergence theorem, we have

p(t) = ja(t) + jb(t). (2.22)

Here ja(t) =
∫
xa=x‡

a
J(x‡

a, xb, t) · exadxb and jb(t) =
∫
xb=x‡

b
J(xa, x

‡
b, t) · exb

dxa is the integrated

probability flux along the boundary xa = x‡
a and boundary xb = x‡

b, respectively. The mean
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first passage time (MFPT) depicts the timescale of antigen extraction (average complex

lifetime). By definition, it is given by

τ ≡
∫ ∞

0

tp(t)dt (2.23)

The timescale will be calculated explicitly in certain limit, as we present below.

2.2.2 Antigen extraction in the limit of high-barrier

First, we consider a simple circumstance where the potential barrier is high, Ubarrier−Uwell ≫

kBT . In this case, it takes a very long time for the Brownian particle to leave the potential

well. This allows us to separate the timescale of bond breaking from the correlation timescale

and the timescale of relaxation [38], which makes the system simpler to analyze. In what

follows, we will show that, in this limit, the antigen extraction probability can be calculated

from the FPT distribution associated with each individual boundary, assuming that the

other one is reflective. To simplify the description, we will call the boundary along xa = x‡
a

by ∂Ωa, and the boundary along xb = x‡
b is named to ∂Ωb (see Fig. 2.4A).

The original system is difficult to solve directly because it involves two absorbing bound-

aries (see Fig. 2.4A). Thus, we consider simpler systems in which one of the boundaries

is reflective. First, we can set boundary ∂Ωa absorbing and boundary ∂Ωb reflective (see

Fig. 2.4B). The corresponding solution to the Fokker-Planck equation (Eq. 2.16) is Pa(xa, xb, t).

Let Ja be the probability flux. jaa(t) =
∫
∂Ωa

Ja · exadxb is the integrated probability along

the absorbing boundary ∂Ωa (see Fig. 2.4B). The FPT distribution is given by

pa(t) = − d

dt

∫
xa<x‡

a

Pa(xa, xb, t)dxadxb. (2.24)

Note that jaa(t) = pa(t) according to the divergence theorem. Second, we can set boundary

∂Ωb absorbing and assume the other boundary ∂Ωa is reflective (see Fig. 2.4C). The solution

to Eq. 2.16 is Pb(xa, xb, t). Let Jb be the probability flux. jbb(t) =
∫
∂Ωb

Jb · exb
dxa is the
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integrated probability flux along boundary ∂Ωb. The FPT distribution is defined by

pb(t) = − d

dt

∫
xb<x‡

b

Pb(xa, xb, t)dxadxb. (2.25)

Note that jbb(t) = pb(t). Those FPTs can be obtained using standard methods [38].

xa

xb

xa

xb
reflective

xa

xb

reflective

A B C

Figure 2.4: Escaping problems with different boundary conditions. (A) Two boundaries are

both absorbing, as appeared in the tug-of-war problem. (B) Boundary ∂Ωa is absorbing yet

boundary ∂Ωb is reflective. So the net flux at ∂Ωb is zero. (C) Boundary ∂Ωb is absorbing

and boundary ∂Ωa is reflective. The integrated fluxes are labelled in each case.

The main idea is to establish a relationship between the flux in different systems so that

we can find ja(t) based on our knowledge of jaa(t) and jbb(t). In fact, we can decompose

jaa(t) into two parts: ja(t) and the remaining part:

jaa(t) = ja(t) + j′aa(t). (2.26)

Here ja(t) corresponds to trajectories that directly run to boundary ∂Ωa without touching

the reflective boundary ∂Ωb. In contrast, j′aa(t) corresponds to trajectories that were reflected

by the boundary ∂Ωb at least once before running into boundary ∂Ωa. From this perspective,

j′aa(t) =

∫
pa(t|t′)jb(t′)dt′. (2.27)

Here jb(t
′)dt′ is the probability that a trajectory touches boundary ∂Ωb for the first time

during [t′, t′ + dt′). Besides, pa(t|t′) is the probability distribution that the system will touch
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boundary ∂Ωa at time t conditioned on that it visited boundary ∂Ωb at time t′. The above

two equations yield

pa(t) = ja(t) +

∫
pa(t|t′)jb(t′)dt′. (2.28)

Similarly, we can show

pb(t) = jb(t) +

∫
pb(t|t′)ja(t′)dt′. (2.29)

Here p2(t|t′) is the probability distribution that the system will reach boundary ∂Ωb at time

t conditioned on that it visited boundary ∂Ωa at time t′.

An explicit expression of pa(t|t′) or pb(t|t′) can be obtained in the limit of high-barrier.

We consider a trajectory that runs towards the absorbing boundary ∂Ωa after visiting the

reflective boundary ∂Ωb. Because the relaxation happens much faster than escaping, the

trajectory will quickly approach the attractive well after visiting boundary ∂Ωb. In addition,

the position information at time t′ quickly get lost because the correlation timescale is much

shorter than the timescale of escaping. Thus, the event at t′ only tells us that the trajectory

has not reached the absorbing boundary till time t′. This allows us to assume that pa(t|t′)

is zero if t < t′ and follows the same distribution as pa(t) (with a different normalization

constant) after t′. Explicitly,

pa(t|t′) = Apa(t)Θ(t− t′). (2.30)

Here Θ(t) is the Heaviside step function. The normalization constant is given by

A =
1∫∞

0
pa(t′′)Θ(t′′ − t′)dt′′

=
1∫∞

t′
pa(t′′)dt′′

. (2.31)

Similarly, the conditional distribution pb(t|t′) can be approximated by

pb(t|t′) =
1∫∞

t′
pb(t′′)dt′′

pb(t)Θ(t− t′). (2.32)

Once pa(t) and pb(t) are known, the conditional distribution pa(t|t′) and pb(t|t′) can be

constructed immediately using the above formulas.
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Hence, in the high-barrier limit, Eq. 2.28 and Eq. 2.29 become

pa(t) = ja(t) +

∫ t

0

1∫∞
t′

pa(t′′)dt′′
pa(t)jb(t

′)dt′, (2.33a)

pb(t) = jb(t) +

∫ t

0

1∫∞
t′

pb(t′′)dt′′
pb(t)ja(t

′)dt′. (2.33b)

This yields

ja(t) = pa(t)

∫ ∞

t

pb(t
′)dt′, (2.34a)

jb(t) = pb(t)

∫ ∞

t

pa(t
′)dt′, (2.34b)

which can be confirmed by plugging back into Eq. 2.33.

Therefore, the extraction probability can be written as

η ≡
∫ ∞

0

ja(t)dt =

∫ ∞

0

dtpa(t)

∫ ∞

t

dt′pb(t
′). (2.35)

Here, the term dtpa(t) is the probability for that the APC-Ag bond breaks at the time

interval [t, t+dt). The inner integral
∫∞
t

dt′pb(t
′) = 1−

∫ t

0
dt′pb(t

′) is the probability for that

the BCR-Ag bond has not broken until time t. As such, by Eq. 2.35 we express the antigen

extraction chance as the probability that the APC-Ag bond breaks while the BCR-Ag bond

remains bound. This probability reflects the relative strength, measured by lifetime, of the

BCR-Ag bond, as compared to the Ag-APC bond under pulling stress.

Similarly, the distribution of complex lifetime, is also associated with pa(t) and pb(t)

through

p(t) = ja(t) + jb(t) = pa(t)

∫ ∞

t

pb(t
′)dt′ + pb(t)

∫ ∞

t

pa(t
′)dt′. (2.36)

The first part is the first passage time conditioned on that APC-Ag bond breaks first. The

second part represents the first passage time conditioned on that BCR-Ag bond breaks first.

It is important to emphasize that Eq. 2.35 works as long as the potential barrier is

high so that the escaping happens at a much longer timescale compared to relaxation and
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correlation, even if the potential landscape is changing adiabatically. However, when the

potential barrier is close to thermal noise or even vanishes, Eq. 2.35 is no-longer applicable.

Instead, one need to use simulations or the original definition of η in Eq. 2.20 to find the

extraction probability.

2.2.3 Antigen extraction under a small static force

In this section, we consider antigen extraction under a static force. We focus on the small

force regime where the high-barrier assumption is valid, so that our results in the previous

section still apply.

When the potential barrier under static force is high compared to thermal fluctuations,

escaping from the potential well becomes a rare event that happens typically after numerous

independent noisy steps, resembling the Poisson process. Because of this, the FPT obeys an

exponential distribution [58],

pi(t) =
1

τi
exp

(
− t

τi

)
, (2.37)

where τi is the MFPT, i = a, b, given by L̂†τi = 0. Here L̂† is the adjoint operator of the

Fokker-Planck equation Eq. 2.16. To calculate τa and τb, we need to set the boundary xb = x‡
b

and the boundary at xa = x‡
a reflective, respectively. Note that L̂† contains both degrees

of freedom, hence τa may depend on the property of BCR-Ag bond and τb may rely on the

APC-Ag bond. Then the extraction chance η in Eq. 2.35 can be simplified into

η =

∫ ∞

0

(∫ ∞

t

1

τb
e
− t′

τb dt′
) 1

τa
e−

t
τa dt =

1

1 + τa/τb
. (2.38)

We can see it depends on the relative bond lifetime of BCR-Ag (τb/τa): a B cell will almost

lose all antigens if τb ≪ τa and get all antigens if τb ≫ τa, as one intuitively expects. The

transition from low antigen extraction to high antigen extraction happens when τb = τa.

Similar results have been obtained by Garg et al. [18], yet our approach is first-principle and

more systematic. Furthermore, by Eq. 2.23 and Eq. 2.36, the timescale of antigen extraction
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is

τ =

∫ ∞

0

t
[
pa(t)

∫ ∞

t

pb(t
′)dt′ + pb(t)

∫ ∞

t

pa(t
′)dt′

]
dt =

τaτb
τa + τb

. (2.39)

This is the average lifetime of two binding interfaces. Essentially, it represents the inverse

of the total off-rate koff = ka,off + kb,off = τ−1
a + τ−1

b . In what follows, we dive deeper and

calculate the MFPTs.

Mean first passage time With the high-barrier assumption, the MFPT can be calcu-

lated explicitly. Since we have a two-dimensional FPT problem, we utilize the Langer’s

multidimensional generalization of Kramers formula [59] and get

τ = 2πτ+
( | det HS|

det HA

)1/2

e(US−UA)/kBT . (2.40)

Here US and UA are the potential at the saddle point at the barrier (∂xaU = ∂xb
U =

0, det HS < 0) and the potential minimum (∂xaU = ∂xb
U = 0, det HA > 0), respectively.

HA and HS are Hessian matrixes of potential U(xa, xb) at the potential minimum and

the saddle point. τ+ is the unique positive root of det(βDHS + I/τ+) = 0, characteriz-

ing the deterministic timescale leaving the saddle point after a small perturbation. D =

kBT

 1/γa −1/γa

−1/γa 1/γa + 1/γb

 is the diffusion matrix. Essentially, Langer’s formula states

that the MFPT is given by the time scale τ+ on which the deterministic dynamical goes

away from the saddle, yet stretched by the relative frequency pA/pS =
(

|detHS |
detHA

)1/2

eβ(US−UA)

of finding the system at the bottom of the potential well instead of the saddle [58].

Therefore, for a smooth mean-force potential U(xa, xb) on which the Hessian matrix

exists, the MFPT τa and τb are

τa = 2πτ+a

( | det HSa|
det HA

)1/2

e(USa−UA)/kBT , (2.41a)

τb = 2πτ+b

( | det HSb
|

det HA

)1/2

e(USb
−UA)/kBT . (2.41b)
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Here we call the saddle point near the boundary xa = x‡
a as Sa and the saddle point near

the boundary at xb = x‡
b as Sb (see Fig. 2.3). Then the antigen extraction chance is given by

η =
[
1 +

τ+a
τ+b

√
| detHSa|
| detHSb

|
e(USa−USb

)/kBT
]−1

. (2.42)

Interestingly, the formula states that, in the high barrier limit, η is sorely determined by

the diffusion matrix D, and the geometrical features of the saddles including (1) the gap

between apparent activation energies USa −USb
; (2) the curvatures of the free energy surface

near the saddle points. The energy gap appears in the Arrhenius (exponential) factor scaled

by the thermal energy kBT .

An explicit example In order to show explicitly how η relies on the underlying potential

and the external force, we consider the following linear-cubic functions, respectively for the

APC-Ag bond and BCR-Ag bond,

Ua(xa) = 3
2
∆G‡

a

(
xa

x‡
a
− 1

2

)
− 2∆G‡

a

(
xa

x‡
a
− 1

2

)3
,

Ub(xb) = 3
2
∆G‡

b

(
xb

x‡
b

− 1
2

)
− 2∆G‡

b

(
xb

x‡
b

− 1
2

)3
. (2.43a)

Each potential has a minimum at the natural bond extension (xa = 0 or xb = 0) and

a barrier at bond length (xa = x‡
a or xb = x‡

b). The barrier heights are ∆G‡
a and ∆G‡

b,

respectively. Example potentials depicted in Fig. 2.3 are based on this linear-cubic form.

The combined free-energy surface U(xa, xb, F ) has a minimum (denoted as ‘A’) at (xa =

x‡
a(1 −

√
1 − F/fa)/2, xb = x‡

b(1 −
√

1 − F/fb)/2) and two saddle points, one at (xa =

x‡
a(1 +

√
1 − F/fa)/2, xb = x‡

b(1 −
√

1 − F/fb)/2) (denoted as ‘Sa’) and the other at (xa =

x‡
a(1 −

√
1 − F/fa)/2, xb = x‡

b(1 +
√

1 − F/fb)/2) (denoted as ‘Sb) (see Fig. 2.3). Here we

let fa = 3∆G‡
a/(2x‡

a), fb = 3∆G‡
b/(2x‡

b). It should be noted that conclusion is not limited

to this particular choice of energy surface because all smooth combined free-energy surfaces

can be well approximated by a cubic polynomial [49, 17].

After direct calculation, we have

USa − UA = ∆G‡
a(1 − F

fa
)3/2, USb

− UA = ∆G‡
b(1 − F

fb
)3/2, (2.44)
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Besides,

HSa =

−κa 0

0 κb

 , HSb
=

κa 0

0 −κb

 , HA =

κa 0

0 κb

 , (2.45)

where κa = ∂2
xa
U |A = 4fa

x‡
a

√
1 − F

fa
, κb = ∂2

xb
U |A = 4fb

x‡
b

√
1 − F

fb
are local curvatures at

the potential minimum along coordinates xa and xb respectively. This yields | detHSa| =

| detHSb
| = detHA = κaκb. By solving det(βDHS + 1/τ+) = 0, we get

τ+a = γa
2κa

(
γb
γa

(1 − κa

κb
) + 1 +

√
( γb
γa

(1 − κa

κb
) + 1)2 + 4 γb

γa
κa

κb

)
, (2.46a)

τ+b = γb
2κb

(
1 − κb

κa
(1 + γa

γb
) +

√
(1 − κb

κa
− κb

κa

γa
γb

)2 + 4 κb

κa

γa
γb

)
. (2.46b)

Therefore,

τa = 2πτ+a e
∆G‡

a(1− F
fa

)
3
2 /kBT , (2.47a)

τb = 2πτ+b e
∆G‡

b(1−
F
fb

)
3
2 /kBT

. (2.47b)

Although these MFPTs still take the form of Kramers’ formula (Eq. 2.2 and Eq. 2.4), it

is different from the single bond lifetime predicted by the one-dimensional Kramers theory,

as τb relies on the APC-Ag stiffness κa and τa depends on BCR-Ag stiffness κb. This is

because two degrees of freedom are coupled together via the noise (the diffusion matrix has

off-diagonal elements), so that the timescale leaving the saddle point (Sa or Sb) depends on

both curvatures (κa and κb).

Now it is clear how the tugging force plays a role. First, as shown in Fig. 2.5, the force

application lowers potential barriers for both binding interfaces. The change depends on the

ratio between the external force, F , and the bare strength of the bond, fa = ∆G‡
a/(vx‡

a)

(for APC-Ag) or fb = ∆G‡
b/(vx‡

b) (for BCR-Ag). Hence, the disassociation rates of both

binding interfaces are amplified. Second, the applied force modifies the local curvatures

(κa, κb) near the saddle points, and thereby changes relaxation timescales τ+a , τ
+
b . The effect

is also characterized by F/fa and F/fb.

27



1 0 1 2
2

1

0

1

2

3
0

100

200

1000 200

-16 120

U (kBT)

1 0 1 2
2

1

0

1

2

3
0

100

200

0 100 200

57%

43%

APC-Ag BCR

A
PC

A
g-B
C
R

A

Sa
Sb

Countxa (nm)

x b
(n
m
)

C
ou
nt

18%

82%

A B

Countxa (nm)

x b
(n
m
)

C
ou
nt

F=0 F=20pN

Figure 2.5: We use 2D Brownian simulations to simulate the extraction process. Coordinates

represent the extensions in APC-Ag bond and BCR-Ag bond. Interacting potential energy

is shown by color. Two thick dashed lines represent boundaries for the breaking of two

bonds, respectively. Typical rupture trajectories are shown in black, which cross one of the

rupture boundaries at the end. Histograms show the distribution of exit position along each

boundary. The percentage shows the fraction of antigen extraction. Attractors and saddle

points are labeled by ‘A’ and ‘Sa’ or ‘Sb’ respectively. (A) No force was used, F = 0. (B)

Force ( F = 20pN) lowers the barrier, and shifts the location of attractor and saddle points,

resulting in changes in the extraction probability.

Then, based on Eq. 2.38, we find

η =
[
1 +

τ+a
τ+b

e
(∆G‡

a(1− F
fa

)
3
2−∆G‡

b(1−
F
fb

)
3
2 )/(kBT )

]−1

. (2.48)

We see the extraction probability depends on not only the BCR property (∆G‡
b, x

‡
b, γb), but

also the tether property (∆G‡
a, x

‡
a, γa) and the force magnitude F . To understand the results

in Eq. 2.48 better, in what follows we discuss the effect of force in two regimes.

The weak force limit First, we take the weak-force limit and show that our results

recover the Bell’s phenomenological model. For simplicity, we assume the prefacor τ+a and

τ+b are independent of force, and focus on the Arrhenius factor, where the main effect of the

force stems out. When F ≪ fa and F ≪ fb, by Taylor expansion to the leading order, we
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have

τa ≈ τ̃a exp
(
−Fx‡

a/kBT
)
, (2.49a)

τb ≈ τ̃b exp
(
−Fx‡

b/kBT
)
, (2.49b)

where τ̃a = 2πτ+a exp
(
∆G‡

a/kBT
)

and τ̃b = 2πτ+b exp
(

∆G‡
b/kBT

)
are the bond lifetimes

of APC-Ag bond and BCR-Ag bond without force, respectively. This is exactly the phe-

nomenological expression given by Bell [15]. Then we have

η =
1

1 + τ̃a
τ̃b
eF (x‡

b−x‡
a)/kBT

. (2.50)

This suggests that the effect of force depends on the difference between APC-Ag bond length

and BCR-Ag bond length. Specifically, if x‡
a > x‡

b, then force promotes antigen extraction.

In contrast, when x‡
a < x‡

b, force inhibits antigen extraction. This has been confirmed by

Brownian motion simulations (see Fig. 2.6). Additionally, if x‡
a = x‡

b, force has no effect at

all.

An intermediate force Now let us turn to the intermediate force regime (F < fa, F < fb)

but still with high enough barriers (∆G‡
a(1 − F/fa)

3/2 ≫ kBT,∆G‡
b(1 − F/fb)

3/2 ≫ kBT ).

In this case, the nonlinear terms in the Arrhenius factor, which come from the potential

tilting that shortens the barrier-attractor distance, start to play a role. As expected, the

value of η predicted by the Bell’s model deviates from that based on the landscape model

(see Fig. 2.6). More specifically, η is less sensitive to force than what Bell’s model predicts.

This is because the potential tilting compensates the potential reduction at the boundary,

as shown by the Taylor expansion to the second order,

∆G‡
i (1 − F

fi
)
3
2 ≈ ∆G‡

i − Fx‡
i +

2F 2x2
i

3∆G‡
i

. (2.51)

Note that fi = 3∆G‡
i/(2x‡

i ). Notice that the tugging force may still play a role even when

x‡
a = x‡

b, which is different from what Bell’s model predicts.
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General potentials Our analysis above is not specific to the linear-cubic potential. In

Appendix 8.1 we considered a cusp-harmonic potential which gives similar results. Following

Dudko et al. [17], we can write the MFPTs in a general formula,

τa = τas(F )e
β∆G‡

a(1−
vFx

‡
a

∆G
‡
a

)
1
v

, (2.52a)

τb = τbs(F )e
β∆G‡

b(1−
vFx

‡
b

∆G
‡
b

)
1
v

. (2.52b)

τas and τbs are relaxation times, depending on the force and bond properties. v counts the

shape of the potential. For the linear cubic potential, v = 2/3, and for a cusp-harmonic

potential, v = 1/2. This allows us to express η using a unified form

η =
1

1 + τa/τb
=

1

1 + τas
τbs

exp
[
β∆G‡

a(1 − vFx‡
a

∆G‡
a

)
1
v − β∆G‡

b(1 − vFx‡
b

∆G‡
b

)
1
v

] , (2.53)

Furthermore, if we set v = 1, the formula is reduced to the phenomenological result given

by Bell’s model (now τas and τbs are independent of force).

It should be noted that if the high-barrier approximation fails, the formula in Eq. 2.53 is

not applicable anymore. This happens when the external force F is too large such that the

energy barrier becomes comparable to thermal noise or even vanishes. We discuss the case

of large force in the next subsection.

2.2.4 Antigen extraction in the limit of strong force

While Eq. 2.53 established analytical understanding of antigen extraction in the weak-force

regime, it remains unclear how the system behaves when the tugging force is so large that

the potential barrier vanishes. In this section, we proceed to discuss the chance of antigen

extraction when F > min(fa, fb). We show that, as opposed to the behavior in the weak-

force regime, a strong force always inhibits the antigen extraction regardless of the tether

property.

We first note that the dynamics of xa and xb follows the deterministic trajectory inde-

pendent of the thermal noise when the force is large. In the weak force regime, we assumed
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Figure 2.6: The relationship between the extraction chance η and the pulling force F .

(A)Results based on the linear-cubic potential. (B) Results for the cusp-harmonic po-

tential. Symbols are based on Brownian motion simulations. Curves are analytical re-

sults. Dashed curves represent the Bell’s phenomenological expression. Red: stiff APC-Ag

bond, x‡
a = 1.5nm. Blue: soft APC-Ag bond, x‡

a = 3nm. Other parameters: x‡
b = 2nm.

∆G‡
a = ∆G‡

b = 10kBT , γa = γb. Arrows mark the bare bond strength min(fa, fb).

that the barrier height was much larger than the thermal noise so that bond disassocia-

tion was governed by rare events. When forces are strong, in contrast, BCR molecule and

Ag molecule undergo a drift motion governed by deterministic terms in Eq. 2.15, since the

noise force ξ1 and ξ2 are negligible compared to the applied force. In this drift-dominating

regime, the unbinding trajectory mostly follows the deterministic one [40]. Therefore, we

can understand the extraction results by working out the deterministic motion explicitly.

To examine the deterministic motion, we start from Eq. 2.15 and turn the noise off. With

ξ1 = ξ2 = 0, Eq. 2.15 becomes

γaẋa = −U ′
a(xa) + U ′

b(xb), (2.54a)

γb(ẋa + ẋb) = −U ′
b(xb) + F. (2.54b)

This ordinary differential equation can be solved numerically given the potential function
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Figure 2.7: Large pulling force inhibits antigen extraction, and the inhibition depends

on APC-Ag bond stiffness. (A)Under large force, simulated stochastic trajectories wig-

gle around the deterministic one. Contour maps show the potential landscape U(xa, xb).

The solid line in green represents the deterministic trajectory, and the solid black line

is a simulated rupture trajectory. F = 40pN (B) Same as (A) but for a larger force

F = 80pN. (C)Large force reduces extraction efficiency. Symbols were obtained from Brow-

nian motion simulations (≥1000 runs) for different APC-Ag bond stiffness (from red to blue:

x‡
a = 0.5, 1.0, 1.5, 2.0, 3.0nm), The reduction is more effective for soft APC-Ag bond (blue)

than for stiff APC-Ag bond (red). Parameters: ∆G‡
a = ∆G‡

b = 10kBT, x
‡
b = 1.5nm. A linear

cubic potential was used.

Ua(x) and Ub(x).

As shown by Fig. 2.7, in the deterministic picture, BCR-Ag bond is always stretched by

force first before APC-Ag bond is stretched. To show this, we look at the initial ‘speed’ of

extension. Starting from the equilibrium position (xa = xb = 0), we have ẋa(t = 0) ≈ 0

and ẋb(t = 0) ≈ F/γb. This suggests that BCR molecule moves without influencing the

Ag location much in the beginning. Intuitively, this is because the mechanical force coming

from the B cell side always perturbs the BCR-Ag bond first before propagating to the

APC-Ag bond through the extension of BCR-Ag bond. The larger the force, the less APC-

Ag deforms before BCR-Ag bond breaks (Fig. 2.7A-B). When there is noise, the unbinding
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trajectory wiggles around the deterministic one (Fig. 2.7A-B). Therefore, as the deterministic

trajectory deviates from the absorbing boundary xa = x‡
a, antigen extraction becomes less

likely (Fig. 2.7A-B). This implies that a larger force always leads to less antigen extraction

in this regime, regardless of tether property (Fig. 2.7C).

In addition, the dependence of η on force is more sensitive for a soft APC-Ag bond (i.e.

large x‡
a). This is consistent with the barrier reduction picture (i.e. lifetime of a softer bond

is more sensitive to force) when the potential barrier is high, but it is from a kinetic point of

view. Under a larger force, the APC-Ag bond is less stretched deterministically due to the

shorter response time. Such reduction of deformation is more significant for soft APC-Ag

bond than for stiff APC-Ag bond (Fig. 2.7C).

2.2.5 Antigen extraction under a dynamical force

Previously, we assume the tugging force is constant once applied. However, in reality, the

pulling force might be dynamic [32, 6]. To appreciate how a dynamical force influences the

antigen extraction, in this section we assume the force is time-dependent, F (t). Therefore,

the potential landscape becomes,

U(xa, xb, t) = Ua(xa) + Ub(xb) − F (t) · (xa + xb). (2.55)

Now the first passage time is no-longer exponential even the barrier is high [16]. For example,

under a linearly ramping force, the first passage time distribution peaks at some most likely

value that is determined by the balance of increasing off-rate and decreasing bond survival

likelihood [16]. We assume the potential barrier is high so that Eq. 2.35 is still applicable.

To find the extraction chance, we follow the method developed by Hummer and Szabo

[47] and introduce the survival probability of the bond chain s(t) at time t. It is a multiplier

of the survival probability of the BCR-Ag bond, sa(t) and that of the APC-Ag bond, sb(t).

s(t) = sa(t)sb(t). (2.56)
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Note s(0) = 1. Then the first passage time can be simply derived by p(t) = −ṡ(t). Under the

adiabatic approximation, the survival probability satisfies a first-order rate equation [40, 17].

ṡa(t) = − 1

τa(F (t))
sa(t), ṡb(t) = − 1

τb(F (t))
sb(t), (2.57)

where τa(F ) and τb(F ) are mean bond lifetimes at constant force F . Integrating both sides,

we get

sa(t) = e
−

∫ t
0

1
τa(F (t′))dt′, sb(t) = e

−
∫ t
0

1
τb(F (t′))dt′. (2.58)

Therefore,

pa(t) = −ṡa(t) =
1

τa(F (t))
e
−

∫ t
0

1
τa(F (t′))dt′, (2.59a)

pb(t) = −ṡb(t) =
1

τb(F (t))
e
−

∫ t
0

1
τb(F (t′))dt′. (2.59b)

With this, we find,

η̃ =

∫ ∞

0

pa(t)

∫ ∞

t

pb(t)dt =

∫ ∞

0

1

τa(F (t))
e
−

∫ t
0 (

1
τa(F (t′))+

1
τb(F (t′)) )dt

′
dt. (2.60)

We use η̃ to denote the extraction chance under a dynamical force, distinguished from the

extraction chance under a constant force, η. The above formula can be evaluated numerically

utilizing the relationship between τa, τb and F as we obtained in earlier sections. In addition,

the combined suirvival probability is

s(t) = exp{−
∫ t

0

(
1

τa(F (t′))
+

1

τb(F (t′))
)dt′}, (2.61)

which gives us the FPT distribution

p(t) ≡ −ṡ(t) = (
1

τa(F (t))
+

1

τb(F (t))
) exp{−

∫ t

0

(
1

τa(F (t′))
+

1

τb(F (t′))
)dt′}. (2.62)

Consequently, we can rewrite Eq. 2.60 into

η̃ =

∫ ∞

0

η(F (t))p(t)dt. (2.63)
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This implies that the extraction probability is the integrated probability flux that exits

through the boundary for successful antigen extraction, η(F (t))p(t), which is rooted in our

adiabatic assumption behind Eq. 2.57: force changes slowly so that the system is always in

a quasi-equilibrium state with extraction chance η(F (t)) at time t.

If we are allowed to change variable from t to F (e.g., a linear ramping force, F (t) = rt),

we get

η̃ =

∫ ∞

0

η(F (t))p(t)dt =

∫ ∞

0

η(F )p(F )dF. (2.64)

Here η(F ) = 1/(1 + τa(F )
τb(F )

) is the antigen extraction probability under constant force F .

Therefore, with the knowledge of extraction under a static force η(F ), we are able to estimate

the extraction chance as soon as we know the rupture force distribution p(F ).

Furthermore, Fig. 2.8 suggests that the mean rupture force alone is predictive of extrac-

tion results. As shown in Fig. 2.8, different dynamical forces result in a similar relationship

between η̃ and mean rupture force Fr ≡
∫
Fp(F )dF . In the following, we show that this

happens when the difference between bond lengths ∆x‡ ≡ |x‡
b−x‡

a| is small compared to the

bond length per se. By Eq. 2.64, η̃ relies on the rupture force distribution p(F ). If η does

not change much across the bulk region of p(F ) (we will justify this assumption below), we

can Taylor expand η(F ) near Fr,

η(F ) = η(Fr) +
dη

dF

∣∣∣∣
Fr

(F − Fr) +
1

2

d2η

dF 2

∣∣∣∣
Fr

(F − Fr)
2 + O

(
(F − Fr)

3
)
. (2.65)

Thus,

η̃ =

∫
η(F )p(F )dF ≈ η(Fr) +

1

2

d2η

dF 2

∣∣∣∣
Fr

σ2
F , (2.66)

where σ2
F =

∫
(F − Fr)

2p(F )dF is the variance of rupture force distribution. Thus, the

extraction chance can be estimated by

η̃ = η(Fr), (2.67)

as long as the rupture force distribution is “narrow”.
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Figure 2.8: The relationship between the extraction chance η and the mean rupture force

Fr, under different dynamical forces. The insets show the force dynamics F (t), including

a constant force F (t) = F0 (black), a linear ramping force F (t) = rt (orange), a sigmoid

force F (t) = Fmaxt/(tF + t)(green), a periodic pulsed force (red), and a nonlinear ramping

force F (t) = rt2 (purple). Symbols in each color are obtained from Brownian simulation by

varying force parameters. For instance, we vary the loading rate r for the linear ramping

force. Parameters: x‡
b = 2nm, x‡

a = 1.5nm, ∆G‡
a = 10kBT,∆G‡

b = 14kBT , γa = γb. Now

(∆x‡/x‡
b)

2 = 0.0625 ≪ 1.

When can the distribution p(F ) be treated as narrow enough? We observed that roughly,

d2η
dF 2

∣∣
Fr

∼ (∆x‡)2, σ2
F ∼

(
1
x‡

)2

, where ∆x‡ = |x‡
b − x‡

a|, and x‡ = x‡
a or x‡

b, depending on

which bond is weaker. This is because, to the leading order, η varies with force according to

exp(F∆x/kBT ), whereas the width of p(F ) falls inversely with the bond length itself [17].

Therefore,

1

2

d2η

dF 2

∣∣∣∣
Fr

σ2
F ∼

(∆x‡

x‡

)2

, (2.68)

This suggests that when the difference between bond lengths, ∆x, is small compared to the

bond length per se, the rupture force distribution is narrowly peaked relative to the variation

of extraction probability with force. So the antigen extraction chance is mostly determined
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by the mean rupture force.

Summary So far we constructed the Langevin model for the antigen extraction process

and calculated the antigen extraction chance to show how the tugging force played a role. In

the weak force regime (F ≪ fa, F ≪ fb), the Bell’s phenemonological expression is pridictive

of extraction chance. The force can promote or inhibit antigen extraction, depending on the

relative bond length ∆x. When the force gets strong (F < fa, F < fb), deviations from

Bell’s model show up because the force not only lowers the potential at the barrier but also

tilts the potential and changes the mininum-barrier distance. When force is large enough to

destroy the potential barrier (F > fa, F > fb), it always inhibits antigen extraction because

it ruptures the BCR-Ag bond before its effect reaches the APC-Ag bond. If the force is

dynamical, in the adiabatic limit, its influence on antigen extraction is characterized by the

rupture force distribution.

2.3 Affinity discrimination based on antigen extraction

In addition to the intriguing dynamics, it is interesting to discuss the biological importance

of antigen extraction, in terms of B cell affinity discrimination. In this section, we look at

how the mechanical force regulates affinity discrimination through the antigen extraction

process. For simplicity, we assume different B cells form clusters with the same size and

BCR-Ag-APC complexes in a cluster are independent of each other. Then, the number of

captured antigens is sorely determined by the extraction probability η. Thus, in what follows,

we focus on the dependence of η on affinity ∆G‡
b under different tugging forces and different

APC properties (x‡
a, ∆G‡

a). Our analysis suggests that the force regulates the stringency of

affinity discrimination and expands the discrimination range.

To see how the antigen extraction changes as BCR affinity improves, we sketch the

relationship between η and ∆G‡
b (the response curve) in Fig. 2.9, which is supported by
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Figure 2.9: Applied force shifts the response curve and enhances the ceiling affinity. We

plot the extraction probability as a function of BCR affinity, under different forces. Solid

curves are analytical predictions given by Eq 2.53. Symbols are obtained from 200 in-

dependent Brownian simulations. Dashed lines are given by Bell’s model, Eq. 2.50. (A)

Cusp-harmonic potential was used. (B) We use the linear-cubic potential. Parameters:

∆G‡
a = 20kBT, x

‡
a = 1.5nm, x‡

b = 2nm.

Brownian dynamics simulations. The curve displays a sigmoid shape: starting from 0, η

increases with affinity and saturates when affinity is sufficiently high. Therefore, a small

difference in affinity is distinguishable only when B cell affinities fall into the transition

region where η changes sensitively as ∆G‡
b varies. We call this transition region the “sensitive

window”.

Fig. 2.9 shows that, as we raise the force magnitude, the sensitive window shifts (see solid

lines). When pulling against a stiff APC (x‡
a < x‡

b), force inhibits antigen extraction (Fig. 2.6)

and thereby the response curve shifts toward higher affinities, as predicted by Bell’s model.

Consequently, by applying a large force, B cells with high affinities become distinguishable.

If the APC is soft (x‡
a > x‡

b), a small force improves η and a large force decreases η (Fig. 2.6).

Therefore, as we increase force, the response curve first shifts toward the low-affinity end
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and then shifts to the high-affinity end. This suggests that the mechanical force can be an

active regulator of the sensitive window for discrimination.

In addition to the shift, Fig. 2.9 demonstrates that the response curve is stretched so

that the sensitive window expands. This is because landscape deformation compensates the

force-induced barrier reduction, which is more significant for low-affinity B cells, as seen by

∆G‡(1 − vFx‡

∆G‡ )
1
v ≈ ∆G‡ − Fx‡ +

1 − v

2

(Fx‡)2

∆G‡ + o(F 3). (2.69)

Note that the nonlinear offset (third term on the right-hand side) is positive and depends

inversely on the intrinsic affinity, ∆G‡. In other words, as pulling applies, lower affinity B cells

can maintain the extraction level by making a smaller improvement in affinity. Therefore,

the “shifting” is affinity-dependent, suggesting that force application substantially broadens

the discrimination range.

To provide a quantitative understanding, we define the discrimination range as the affinity

span between almost vanishing ηmin and nearly full (ηmax) antigen extraction, where η is

sensitive to affinity changes. Explicitly,

∆∆G‡
b(F ) ≡ ∆G‡

b(ηmax;F ) − ∆G‡
b(ηmin;F ), (2.70)

depending on force F . As we show in Fig. 2.10, the discrimination range (orange region)

expands as the pulling force increases. This intriguing behavior is beyond the Bell’s model.

We can appreciate the effect analytically. To do so, we solve for ∆G‡
b(η;F ), namely, the

BCR affinity that corresponds to η antigen extraction under force F . It is defined by the

implicit equation below,[
1 +

τas
τbs

e
β∆G‡

a(1−
vFx

‡
a

∆G
‡
a

)
1
v −β∆G‡

b(1−
vFx

‡
b

∆G
‡
b

)
1
v ]−1 − η = 0. (2.71)

We assume the major dependence on force and affinity goes into the exponential factor. In

other words, τas and τbs are assumed to be constant. Then, in the limit of a weak force, by

Taylor expansion, we have

∆G‡
b(η;F ) = ∆G‡

b(η; 0) +
∂∆G‡

b

∂F

∣∣∣∣
F=0

F +
1

2

∂2∆G‡
b

∂F 2

∣∣∣∣
F=0

F 2 + O
(
F 3

)
. (2.72)
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Figure 2.10: Applied force enhances ceiling affinity and extends the distinguishable affinity

range. (A) Phase diagram for distinguishable affinity under different forces. Distinguish-

able affinity ∆G‡
b is defined as ηmin < η(∆G‡

b;F ) < ηmax, as shown in the colored region.

The boundaries (η = ηmin and η = ηmax) are represented by solid curves (obtained from

Eq. 2.73) and symbols (obtained from Brownian simulations). The dashed lines are analyt-

ical prediction by Bell’s model. The cusp-harmonic potential was used. (B) Discrimination

range increases with force. Filled squares are from Brownian simulations. Blue for cus-

p-harmonic potential and red for linear-cubic potential. Solid curves are based on Eq. 2.74.

Open circles are numerical results to Eq. 2.70. Both results suggest the discrimination range

increases with force. And in the limit of small force, the relation is quadratic. Parameters:

∆G‡
a = 20kBT, x

‡
a = 1.5nm, x‡

b = 2nm.
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The derivative can be obtained utilizing the implicit differentiation and the chain rule,

∂∆G‡
b

∂F
= − ∂z/∂F

∂z/∂∆G‡
b

, where z ≡ 1/(1 + τa/τb) − η. After calculation, we get,

∆G‡
b(η;F ) ≈ ∆G‡

b(η; 0) + (x‡
b − x‡

a)F +
1 − v

2

[(Fx‡
a)

2

∆G‡
a

− (Fx‡
b)

2

∆G‡
b(η; 0)

]
+ O

(
F 3

)
, (2.73)

where ∆G‡
b(η; 0) is the required affinity without force. All terms behind ∆G‡

b(η; 0) describe

the “shifting” of discrimination curve by force, that is, how much affinity should be improved

to maintain the extraction level as pulling force applies. If v = 1 when the model reduces to

the phenomenological theory, the shifting depends linearly on F and is affinity-independent.

In contrast, for a landscape model with v < 1, higher order terms play a role and the shifting

depends on BCR affinity. By Eq. 2.70, we have

∆∆G‡
b(F ) ≈ ∆∆G‡

b(0)
[
1 +

1 − v

2

( Fx‡
b

∆G‡
a

)2]
. (2.74)

This agrees with numerical simulations when F is small (see Fig. 2.10B). As expected, only

the force-induced stretching that starts at the quadratic order contributes to range expansion.

Furthermore, under a dynamical force, this expansion of discrimination range is even

more significant. This can be seen from Eq. 2.67, the extraction chance η̃ depends on the

mean rupture force, which increases with BCR affinity (because the complex gets stronger).

This further flattens the response curve because the higher the affinity, the force-induced

inhibition of antigen extraction is more significant. Therefore, this affinity-dependent force

application further broadens distinguishable affinities.

2.4 Discussion

In this section, we performed detailed analysis regarding the antigen extraction process

using a Langevin model, investigated how the force regulates antigen extraction chance, and

explored its beneficial effect in affinity discrimination. We found that force application is

able to lower the potential barrier and deform the potential landscape. Consequently, it
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can improve or inhibit antigen extraction, depending on the relative bond length and force

magnitude. This regulates the discrimination stringency and expands the sensitive window.

Timescale of antigen extraction We have shown in the limit of high potential barrier,

the average complex lifetime is given by τ = τaτb/(τa + τb). It is straightforward to show

a larger force leads to shorter timescale of extraction. Nevertheless, the overall contact

duration between a B cell and an APC also depends on the binding process and cytoskeleton

reorganization. Roughly, τcontact ≈ τbinding + τforce−trigger + τextraction. Here τextraction = τ .

Therefore, increasing the force magnitude can speed up the process significantly only when

the affinity is sufficiently high so that a complex never almost breaks within the contact

duration.

Supporting evidence from experiments Our results agree well with experimental ob-

servations. First, it has been discovered that naive B cells rapidly internalized the anti-

gen from the flexible plasma membrane sheets (PMSs) but not stiff planar lipid bilayers

(PLBs), even though B cell spreading and antigen clustering were induced on both substrates

[31, 33, 2]. This suggests that naive B cells are able to extract antigens from a flexible mem-

brane but not a stiff membrane. Consistent with the observation, our results predict that

under a high-enough pulling force, a softer tether (larger x‡
a) results in a higher chance of

antigen extraction (see Fig. 2.6). This is because, when pulling against a flexible substrate,

force significantly weakens the tether strength by lowering the potential barrier. Second,

compared to naive B cells, GC B cells are usually more diverse, with higher average affinity,

and thereby more difficult to distinguish. Therefore, GC B cells display distinct properties

compared to naive B cells. For example, they usually interact with stiffer APCs such as

follicular dendritic cells (FDCs) and deploy a larger force [32, 33]. Our model indicates that

this regulation is beneficial for discrimination of high-affinity B cells. Indeed, Nowosad et

al. investigated the extraction of two similar specific antigens (the low-affinity 4-hydroxy-

3-nitrophenylacetyl (NP) and the high-affinity 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)

42



haptens) by naive B cells and GC B cells, and demonstrated that GC B cells achieved better

affinity discrimination than naive B cells [32].

Potential experimental tests In addition, predictions of our theory can be tested using

dynamic force spectroscopy combined with live-cell imaging. The extraction curve η̃ ≈

η(Fr), if able to collapse the dynamic-force data onto the constant-force theory, will assist in

understanding rupture dynamics and predicting extraction propensity based on mean rupture

force;a smaller difference in stiffness between the tugging and tethering complexes is expected

to improve the match. In these cases, η can be estimated by counting successful events out

of many ex-traction attempts; success is determined by tracking anti-gen fluorescence during

rupture. Importantly, by fitting data to the analytical theory, one can extract intrinsic

parameters characteristic of the multidimensional binding landscape, especially the strength

of antigen tether in the absence of force that would otherwise be hard to measure.

Strong internal dissipation limit Our model focused on the strong hydrodynamic dis-

sipation limit, whereas it is possible that the internal dissipation dominates the energy

dissipation during bond rupture [54]. To see how the internal dissipation plays a role, we

consider the following Rayleigh dissipation function

R =
1

2
γa0ẋ

2
a +

1

2
γb0ẋ

2
b , (2.75)

where we dropped the hydrodynamic dissipation by assuming γa0, γb0 ≫ γa, γb. Then the

equation of motion becomes

γa0ẋa = −U ′
a(xa) + F + ξa, (2.76a)

γb0ẋb = −U ′
b(xb) + F + ξb. (2.76b)

As opposed to Eq. 2.15, now the force influences two bonds simultaneously and the two

degrees of freedom are decoupled. Therefore, the model becomes effectively one-dimensional.

In the limit of high potential barrier, the MFPT is given by the Kramers theory (see Eq. 2.4).
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Compared to Eq. 2.52, the exponential term takes exactly the same form and the only

difference lies in the pre-factor. Hence, our unified formula of η in Eq. 2.53 is still applicable.

Therefore, most of our results (section 2.2.3, 2.2.5, and 2.3) are qualitatively unchanged.

Nevertheless, under the limit of a large force, results will be different due to the different

kinetics. More specifically, a large force may enhance antigen extraction if γa0 < γb0, because

it stretches the APC-Ag bond faster (ẋa(t = 0) ≈ F/γa0) than it extends the BCR-Ag bond

(ẋb(t = 0) ≈ F/γb0).

Clustering Our treatment of antigen extraction is mean-field in nature and neglecting

rebinding. However, in reality, complexes form clusters [32], which introduces coupling

between different complexes. For example, force may be shared by all closed complexes

within a cluster. Therefore, different complexes break under a different force magnitude. In

addition, there are chances of rebinding before the entire cluster is fully detached. How this

hierarchy of complexity modulates the extraction results and the discrimination function is

not captured by our mean field model. We will investigate the coupling between bonds in

chapter 4.
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CHAPTER 3

Evolutionary significance of antigen extraction

“Nothing in biology makes sense except

in the light of evolution.”

Theodosius Dobzhansky

3.1 Introduction

In the previous chapter, we have shown that the physical extraction of antigen using tugging

forces relates the receptor affinity to rupture outcomes and allows a gradual dependence of

antigen acquisition on BCR affinity over a wide dynamic range. But whether, and how, does

active sensing by cells influence the adaptation of a polyclonal population? An ultimate test

of plausible physical behaviors is to subject the resulting phenotype to natural selection.

Therefore, in this chapter, we will combine the antigen extraction model with an in silico

evolution model of GC to show how the regulation at the molecular level propagates to and

influences the evolution at the population level.

Biology background It is known for a long time that the average affinity of specific an-

tibodies increases dramatically over the course of an immune response. Back in 1964, Eisen

and Siskind [4] found that the association constant (Ka) between antigens and serum anti-

bodies yielded from immunized rabbits increased progressively with time from 105-106M−1

to 107-108M−1 after a few months. The difference can be as large as 104-fold in Ka [4].
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Repeated experiments with different antigens invariably confirmed the same results [60, 61].

This phenomenon is known as affinity maturation. Besides, the sequence analysis of antibody

genes provides correlated results: sequences of early antibodies were identical to that of the

germline, whereas antibodies derived later in the response had somatically acquired point

mutations [62]. Crystal structure analysis suggests that those point mutations are important

in improving the chemical complementarity of the antibody-antigen interface [63].

To uncover the mechanism that drives affinity maturation, a lot of effort has been de-

voted to understanding the structure of germinal center (GC), the place where the affinity

maturation takes place (see the review given by Victora et al. [3] Mesin et al. , [26] and

Cyster and Allen [27]). Shortly after an infection, GCs form in the center of B cell folli-

cles of secondary lymphoid organs, interspersed within a network of follicular dendritic cells

(FDCs). Each GC has two compartments, or “zones” (see Fig. 3.1). The zone rich in FDCs

is called the light zone (LZ). LZ contains B cells and a crucially important population of T

follicular helper (Tfh) cells. The other one is known as the dark zone (DZ), which is less

diverse and consists primarily of highly proliferative B cells.

In the past two decades, the understanding of GC dynamics has been tremendously

advanced due to the development in the sequencing and imaging technique. At the initial

stage of the GC reaction, näıve B cells are recruited. The population expands and diversifies

through hypermutation. In the LZ, B cells contact with FDCs to form synapses and extract

antigens that are displayed on the surface of FDCs [30]. Then those extracted antigens are

internalized, processed into peptide, and displayed on the surface of each B cell. These B

cells then compete for a limiting number of Tfh cells for survival signals [34, 64]. After the

competition, some B cells die due to lack of sufficient surviving signal [65], and a few B cells

differentiate into antibody-producing plasma cells or memory cells. The majority of B cells

migrate to the DZ [34, 64]. In the DZ, B cells proliferate with a rate proportional to the

amount of proliferation signal received from Tfh cells [35], during which random mutations

in the gene coding for the BCR happens at a high rate. After proliferating and mutating in
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the DZ, B cells migrate back to the LZ [34, 64]. Iterative cycles of such hypermutation and

selection result in an increase in B cell affinity over time.

Existing models In-silico models of GC reaction have proven to be a powerful tool to

appreciate and predict how the elegant structure of GC could facilitate the affinity matu-

ration process. The seminal work of Perelson et al. [66] showed that cyclic re-entry of B

cells between the DZ and the LZ is optimal for the affinity improvement. Meyer-Hermann

et al. [67] conducted very detailed simulations to reproduce the cellular dynamics within a

GC. Recent computational studies focused on the effect of different immunization strategies

with multiple variant antigens on the development of broadly neutralized antibodies (bnAbs)

[68, 14, 69, 70, 19, 20, 71]. For instance, Wang et al. [14] developed a stochastic rule–based

model to show that sequential immunization with variant antigens may elicit bnAbs more

efficiently than a mixture of the same antigens. Another focus is that how different reg-

ulatory factors influence the speed of affinity maturation in a GC reaction. Such factors

include antigen availability [72], antibody feedback (antibody injection or passive immuniza-

tion) [73, 74, 18], and antigen spike density [75]. Besides, several studies have investigated

the mechanism behind the wide spectrum of clonal diversity observed across different GCs

[76, 77, 78].

However, most existing studies neglected or oversimplified the physical process of BCR-

Ag interaction, the key step that drives affinity maturation. For example, one of the widely

used formulas is (see [14, 69, 18, 19, 20], we changed notations for consistency)

Pextraction =
Cage

(∆G‡
b−∆G‡

ref)/kBT

1 + Cage(∆G‡
b−∆G‡

ref)/kBT
. (3.1)

Here Cag is the antigen concentration and ∆G‡
ref is the reference affinity that sets the thresh-

old for extraction. This phenomenological formula lumps all details during antigen extraction

into a single parameter ∆G‡
ref . Thus, it is hard to see how different individual factors influ-

ence evolution. Furthermore, the formula did not include the effect of force. Some researchers
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Figure 3.1: (A) Overview of cellular processes within GC during affinity maturation. An

established GC consists of a light zone (LZ) and a dark zone (DZ). In the LZ, B cells contact

with APC to form synapse and extract antigens. Then they interact with Tfh cells to get a

survival signal, after which they recycle to the DZ, differentiate into plasma cells or undergo

apoptosis. In the DZ, B cells proliferate according to the survival signal delivered by T

cell: B cells that extract more antigens will proliferate more times. Random mutations

that modify the binding may take place during each replication. (B)The tug-of-war antigen

extraction process. During the interaction between APC and B cell, BCRs bind to antigens

that are tethered on the surface of APC. Then the B cell uses the tugging force to extract

antigens. We use a Brownian motion model to describe the molecular dynamics and obtain

the chance of antigen extraction (see Chapter 2). APC: Ag presenting cell. PC: plasma cell.

MBC: memory B cell. Ag: antigen.
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introduced the dependence of Pextraction on force [75], but only the phenomenological expres-

sion from Bell’s model was used. Last but not least, as we show in the previous chapter, the

extraction probability may depend on affinity in complicated ways. Whether and how the

affinity maturation process would deviate if we use the full expression is yet unknown.

Tug-of-war + GC evolution Here we present a multiscale computational model that

integrates the molecular Ag extraction process and population dynamics, operating at dif-

ferent time scales yet both being crucial to the evolution process, to investigate how the

immune microenvironment influences affinity maturation. Specifically, we implemented a

birth-death-mutation model of GC reaction using agent-based simulations, which incorpo-

rates the cyclic action of antigen extraction, competition, proliferation and mutation on cells

that drives stochastic clonal expansion and an overall affinity increase. The key ingredient

is an affinity-dependent proliferation rate, where our model of the molecular tug of war pro-

vides a bridge between BCR affinity and Ag extraction efficiency which, in turn, determines

clonal fitness.

Our model shows how the tug-of-war antigen extraction could influence affinity mat-

uration. First, the force application can improve the evolved affinity at the risk of GC

death. This is done by adjusting the relative tether strength under force (effectively ∆G‡
ref

in Eq. 3.1). A stronger tether decreases B cell fitness and requires higher BCR affinity for

B cells to obtain all antigens presented. Besides, the nonlinear effect of force on potential

tilting, as stated in chapter 2, can play an important role in extending the ceiling affinity

without increasing the risk of GC death. Second, using feedback mechanisms, cells might be

able to alleviate the constraint on response potency against current antigen. We show that

a balance between mutation and selection establishes when the tether strength improves at

the same pace as BCRs, which can be provided by the antibody feedback.

The results become even more interesting and surprising if the BCR bond length is

evolvable. Our model predicts that as active force changes, the evolution direction varies:
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High quality BCRs with large bond lengths develop under a small force, whereas a large force

results in low-quality stiff BCRs with small bond lengths. Besides, heritable heterogeneity

in pulling strength, combined with evolvable receptor flexibility, can generate a wide variety

of binding affinities with similar clonal fitness. This discrepancy between antibody quality

and B cell fitness reflects an optimization goal other than strong binding. Rather, force-

enabled phenotypic plasticity may represent an adaptive strategy for balancing depth and

breadth of collective responses aimed at evolving targets. Interestingly, tug-of-war antigen

extraction confers an intrinsic geometry to the fitness landscape of B cell selection, which

unifies multiple experimental results otherwise hard to reconcile, including the persistence

of low-affinity clones [79] and diverging rates of diversity loss among B cell populations [80].

3.2 Germinal center evolution model and results

To investigate the cellular and molecular mechanisms involved in GC reaction, we integrate

the antigen extraction model in chapter 2 with an agent-based GC evolution model. At the

molecular level, the tug-of-war model outputs the number of Ags extracted by each B cell,

which further determines the B cell’s fitness. At the cellular level, B cell individuals undergo

proliferation, mutation, and death according to their fitness. Fig. 3.1 shows a schematic plot

of the model.

This chapter is structured as the following. We first introduce a minimal model and

discuss the key quantities that determine the evolved affinity (section 3.2.1). After that, in

order to better appreciate the components that might benefit the evolution, we make several

modifications: evolution with antibody feedback (section 3.2.2), evolution with mutable

bond length (section 3.2.3), and evolution of B cells with heterogeneous forces (section

3.2.4). Those modifications are motivated by recent experimental observations.
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3.2.1 The minimal model

It has been reported in experiments that the GC evolution depends on diverse environmental

factors such as the physical property of presenting cells [81, 82], and the mechanical feature of

immune cells [83, 23]. To appreciate the underlying mechanism, we utilize a baseline model

to explore how different environmental factors play a role. Our results suggest that the

relative tether strength, characterized by tether affinity, tether stiffness and tugging force, is

crucial in regulating the evolution outcome.

3.2.1.1 Model details

We combine our antigen extraction model introduced in Chapter 2 with a minimal GC

reaction model. The GC model mostly inherits the model used by Amitai et al. [76] with

essential modifications to fit our antigen extraction part. We will use this model as the

baseline model and make modifications in later sections.

We initiate a GC with N0 = 1000 founder B cells with initial affinity ∆G‡
b0 = 14kBT

and bond length x‡
b = 2nm. During the evolution, individual cells undergo many GC cycles.

A GC cycle consists of the following steps: antigen extraction, death, differentiation, and

birth/mutation, as we detailed below.

Antigen extraction For each B cell i, we calculate the antigen extraction chance ηi

based on Eq. 2.48 and sample nag,i from a Binomial distribution B(CagA, ηi) as the number

of obtained antigens, assuming different antigens are extracted independently. Here Cag is

the 3-body complex (BCR-Ag-APC) concentration on APC and A is the synapse area. We

set CagA = 100 [84].

Death In the death step, all B cells die with a uniform probability pa = 0.3. In addition,

if a B cell failed to get any antigen nag,i = 0, it also underwent apoptosis. With this setting,

the death step is weakly dependent on affinity unless receptors of the B cell are damaged,

which agrees with recent experimental findings [35, 85, 86].
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Differentiation If a B cell survived from the death step, it might differentiate into a

plasma cell by a chance of pd = 0.05 [14]. The newly generated plasma cell inherits the

affinity.

Birth and mutation The remaining B cells proliferate afterwards. To mimic the

stochastic birth step of B cell i, we sample the number of offsprings, ni, from a Poisson

distribution,

ni ∼ Poisson(ri), (3.2)

where ri is the proliferation rate depending on fitness λi,

ri = λi(1 − N

Nc

) = λmax
nag,i

n0 + nag,i

(1 − N

Nc

). (3.3)

Here, 1 − N/Nc describes the homogeneous pressure from finite resources and space (Nc =

2000). λmax = 8/cycle is the maximal proliferation rate, corresponding to 3 divisions per

cycle. n0 = 0.5CagA is the number of extracted antigens for half maximum proliferation.

Mutations that change binding potential may happen when a newborn B cell is generated.

In the baseline model, we assume the mutation modifies ∆G‡
b only. In each division event,

∆G‡
b mutates at a chance of pm,Gb

= 0.5.

∆G‡
b,daughter = ∆G‡

b,parent + N(0, σGb
). (3.4)

We repeat the GC cycles until either all B cells die out or a maximum duration tf is

reached.

3.2.1.2 Results

Evolution dynamics Fig. 3.2 shows the simulated GC evolutionary dynamics. Starting

from the initial affinity (∆G‡
b0 = 14kBT ), the population-averaged affinity increases over

time, mimicking the affinity maturation process (see Fig. 3.2A). Moreover, the maturation

slows down over time. This is due to the fading discrimination sensitivity as antigen extrac-

tion saturates ( dη

d∆G‡
b

→ 0 as η → 1). Concomitantly, as displayed in Fig. 3.2B, an initial

52



0 10 20 30 40
16

18

20

22

24

0.0

0.2

0.4

0.6

0.8

1.0

Survival fraction
Evolved affinity

0 100 200 300
0

5

10

15

0 100 200 300

14

18

22

26

30 F=0
F=10pN
F=20pN
F=30pN

Force (pN)

Ev
ol

ve
d

af
fin

ity
(k

B
T)

Fraction
ofsurviving

G
C

s

Time (GC cycle)

Po
pu

la
tio

n
si

ze

Po
pu

la
tio

n-
av

er
ag

ed
af

fin
ity

(k
B
T)

Time (GC cycle)

A B C

Figure 3.2: Evolution dynamics of the minimal GC evolution model. (A) The evolution of

the mean affinity of cells in one GC. Solid curves represent the average trend among 100

GCs. The shade shows the variation among GCs. Different color correspond to different

forces. Because x‡
b > x‡

a, the relative tether strength s increases as we increase force. (B)

The evolution of GC population size. Solid lines are average trends, and shades show the

variation among different GCs. (C)The relationship between the output affinity and the

applied mechanical force. Circles were the mean B cell affinity at tf , averaged from 100

independent GC simulations under different F . Error bars show stdev across different GCs.

Squires were the fraction of surviving GCs at tf among 100 simulations.

B cell population rapidly falls to a low abundance and subsequently recovers, forming a

population bottleneck. This is an effect of evolution: the fitness initially is too low to keep

the population size, but improves overtime, which rescues the population from extinction.

If the population size drops to zero, the GC dies.

Output affinity and surviving GC fraction Because the GC reaction aims to output

high-affinity B cells, we look at the evolved B cell affinity at tf = 300 GC cycles when our

simulation terminates. In Fig. 3.2C, we show that as the pulling strengthens, the evolved

affinity increases whereas the fraction of surviving GCs drops to zero, consistent with curves

in Fig. 3.2A-B. The improvement in evolved affinity is simply because pulling-induced shift

of the extraction curve (see Fig. 2.9 in CH.2) promotes the discrimination of strong affini-
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ties. Given a long-enough evolution time, the output affinity corresponds to a vanishing

discrimination sensitivity. The surviving GC fraction drops because the initial B cell fitness

decreases with the pulling strength, which places B cells population under higher risk of

extinction during the bottleneck period.

To provide a quantitative understanding, we use the condition of vanishing fitness gradi-

ent to estimate the output affinity. Explicitly,

∆G‡
b,t=tf

≈ ∆G‡
b,ceiling, (3.5)

where the ceiling affinity ∆G‡
b,ceiling is the solution to

dη

d∆G‡
b

= αthreshold. (3.6)

αthreshold is a threshold value of η gradient. For a given α, the above condition can be solved

numerically. We choose the value of α that gives us the best fit (minimal mean square

distance) to the simulation results. The solid curve in Fig. 3.2C demonstrates beautiful

agreement.

Compared with Bell’s model How does the stretch of discrimination curve (see Fig. 2.9

in chapter 2) influence affinity maturation? To show this, we compare our results based on

the microscopic landscape model (Eq. 2.42) to the GC evolution based on the Bell’s model

(no stretch of discrimination curve). Note that by Bell’s model we mean using the following

phenomenological expression for antigen extraction probability,

η =
1

1 + τa0
τb0

eF (x‡
b−x‡

a)/kBT
, (3.7)

where τa0 and τb0 are force-free APC-Ag bond lifetime and BCR-Ag bond lifetime respec-

tively. As we show in chapter 2, this excludes the effect of potential tilting by force and

provides good approximation when the force is weak. Fig. 3.3A shows that two models

converge at the weak force limit, but behave differently when force is large, as expected.
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Figure 3.3: The effect of expansion of distinguishable affinity range. (A) Compare the evolu-

tion outcome between Bell’s model and the microscopic landscape model. Red symbols are

the same as Fig. 3.2C. The black symbols were based on the phenomenological Bell’s model.

(B) Schematic plots that explain the difference in (A). The shade labels the “reachable”

affinity range, starting from the minimal B cell affinity that could avoid GC death to the

maximal affinity that is “distinguishable” through antigen extraction, resembling Fig. 2.10

in CH2. The blue dotted lines are the founder B cell affinity used in simulations. GC dies if

the founder B cell lies below the shaded region. We can see the expansion of distinguishable

affinity range improves the maximal achievable output affinity.
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Specifically, in the microscopic landscape model, the evolved affinity extends to higher affin-

ity values and the GC extinction begins at higher force magnitude. This is explained in

Fig. 3.3B. The nonlinear stretching effect expands the distinguishable affinity range and fa-

cilitates survival of lower affinity clones. Therefore, even under a large force, the low-affinity

founder B cells are able to survive initially and evolve into high affinity ones. These effects

thus sustain adaptation and potentially support clonal diversity at once.

The importance of relative tether strength How do other parameters influence the

evolution? To provide a simple and generic picture, we define the relative tether strength

as,

s ≡ τa
τb0

, (3.8)

which is the APC-Ag lifetime τa under force F , scaled by the founder BCR-Ag lifetime τb0

under force. Note that s depends on force F . The extraction chance becomes η = τb/(τb +

sτb0), where τb is the BCR-Ag lifetime under force. Thus, the tether strength essentially

characterizes the reference affinity ∆G‡
ref in Eq. 3.1. For founder B cells, η0 = 1/(1 + s).

Therefore, B cells get fewer Ags when interacting with stronger tethers. This has been

vividly shown in recent experiments done by Spillane and Tolar [33].

To further show the influence of tether strength on evolution, we systematically varied the

tether bond length x‡
a and the tugging force F , and measured the evolved BCR-Ag affinity

(barrier height ∆G‡
b(t = tf )). Fig. 3.4 suggested a strong correlation between the relative

tether strength and the evolution output, as well as the GC survival chance. Specifically,

a stronger tether corresponds to higher output affinity yet a higher GC death risk. On the

one hand, the output affinity increases with tether strength because high-affinity B cells can

be distinguished when interacting with a strong tether. On the other hand, if the tether

strength is too strong, all B cells fail to acquire enough antigens for surviving, leading to GC

apoptosis.
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Figure 3.4: The relationship between the output affinity and relative tether strength.

Symbols (blue circles) were obtained from GC simulations at different x‡
a (from 0.5nm to

4nm) and under different F (from 0 to 30pN). Error bars were obtained from 100 GCs.

Meanwhile, the GC survival percentage (red squares) quickly declines at high tether strength.

The dashed line shows the prediction by Eq. 3.9

To make this intuition more qualitative, we estimate the output affinity ∆G‡
b by in-

verting the relation η(∆G‡
b) = ηth to find the affinity that provides sufficient antigen ex-

traction ηth. When activation barriers are high and forces are modest, we can approxi-

mate the relationship η(∆G‡
b) using Bell’s phenomenological expression η(∆G‡

b) ≈
(

1 +

s exp
(
−(∆G‡

b − ∆G‡
b0)/kBT

))−1

, then the output affinity can be solved analytically, which

follows a logarithmic dependence on tether strength,

∆G‡
b ≈ ∆G‡

b0 + kBT
[

ln s + ln
( ηth

1 − ηth

)]
. (3.9)

Recall that ∆G‡
b0 is the founder affinity. As shown in Fig. 3.4, evolved affinities of simulated

ensembles match the prediction (dashed line) over a wide range of tether strengths. Mild

deviation raises when force is strong, which is due to a neglected effect in our estimation —
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the considerable landscape deformation that causes a nonlinear reduction in the potential

barrier by force, as we discussed in chapter 2.

3.2.2 The minimal model combined with antibody feedback

In the baseline model, we assumed that the tether remains unchanged during the evolution.

This happens when antigens are directly loaded on receptors such as Fc receptors (FcRs) or

complement receptors (CRs) [87]. Nevertheless, antibodies secreted by newly differentiated

plasma cells, thus having improved affinities, may preferentially present antigens on the APC

in the form of immune complexes [87, 73]. This is known as antibody feedback, that is, the

secreted antibodies re-enter the GC in the form of immune complexes and act as tethers

connecting antigens with APC [88, 73, 37]. Our tug-of-war configuration naturally supports

the inter-generation feedback via antibodies. In this section, we demonstrate its influence

on affinity maturation.

3.2.2.1 Model details

To simulate the antibody feedback effect, we draw the top-K high-affinity plasma cells

(K=100) to form the feedback antibody pool. This captures the competition between se-

creted antibodies when binding to antigens. Then, at the antigen extraction step, each B cell

will encounter a random tether sampled from the feedback antibody pool instead of a fixed

tether. In other words, ∆G‡
a is sampled from the antibody feedback pool that is updated on

the fly,

∆G‡
a ∈ {∆G‡

b1,plasma,∆G‡
b2,plasma, . . . ,∆G‡

bK,plasma}t, (3.10)

{∆G‡
bj,plasma} is the list of top-K high affinity of plasma B cells. Note that the plasma B

cell was generated in previous cycles and ∆G‡
bj,plasma is expected to improve over GC cycles.

Consequently, as affinity maturation proceeds, the tether affinity improves at a similar pace.

It should be noted that we only updated the value of ∆G‡
a according to the feedback
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Figure 3.5: GC evolution with Ab feedback. (A-B) are similar to Fig. 3.2. (A) we plot the

evolution of average affinity, under different forces. Note that an intermediate force gives the

highest evolution rate. (B) The evolution of population size. (C) The adpatation rate as a

function of the applied force, obtained by tracking the mean affinity improvement per cycle

averaged from the last 200 GC cycles. Error bars are obtained from 100 GCs. The solid

curve is the prediction given by Eq. 3.13. The red curve shows the surviving GC fraction at

t=300 GC cycle.

antibody, while keeping x‡
a fixed during the evolution. This is because the bond stiffness may

be controlled by other components within the APC-Ag bond, such as the APC membrane.

All other steps remain the same as the baseline model.

3.2.2.2 Results

Stabilized evolution As suggested by Fig. 3.5, antibody feedback introduces significant

changes in the evolution dynamics. First, the affinity maturation did not slow down but

achieved a steady rate (Fig. 3.5A), as opposed to the evolution against a fixed tether. This is

because, as tether strength improves, it becomes harder for B cells to obtain Ags. Therefore,

the saturation of Ag extraction is avoided so that the discrimination stringency maintains.

Second, the population size stabilizes to a force-dependent level (Fig. 3.5B), reflecting that

the population-averaged fitness η decreases with increasing pulling strength.
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These observations are consistent with the recent work from Garg et al. [18]. They

showed in an in-silico model that the evolved B cell affinity is improved after introducing

high-affinity exogenous antibodies as presenting tethers, while the output B cell population

is decreased, unraveling a quality-quantity trade-off that constrains the GC response. Here,

we further show that if the quality of feedback antibodies improves continuously, a steady

affinity maturation might emerge.

Adaptation rate To better appreciate the steady evolution, we seek for a quantitative

understanding of the adaptation rate. As the updated tether antibodies provide negative

feedback by continuously improving the Ag-APC affinity and impeding extraction, a steady

selection pressure can be established; once η becomes steady, so does the fitness and the

population size. The steady selection pressure and a steady population size constitutes the

basis of mutation-selection balance [89]: random mutations broaden the fitness distribution

while selection narrows it, creating a steady-state variance around an increasing mean fitness.

Hence, the average affinity advances at a steady speed,

vG ≡ d∆G‡
b

dt
∝∼ α lnN. (3.11)

Here ∆G‡
b is the population-averaged affinity. The logarithm dependence on population

size N comes from the interference between different clones: only the population at the

“nose” of fitness distribution are essential to produce novel clones with higher fitness. α

characterizes how sensitively fitness responds to affinity changes and thus governs selection

strength, defined by

α ≡ dλ

d∆G‡
b

=
η0

η(η0 + η)

dη

d∆G‡
b

≈ 1

kBT

η0(1 − η)

η0 + η
. (3.12)

Where η0 ≡ n0/(CagA). In the second step, we assumed the affinity is high such that

the dependence of MFPT on affinity is purely exponential τb ∼ e∆G‡
b/kBT (note that η =

1/(1 + τa/τb) and τa is assumed to be independent of ∆G‡
b for simplicity). We can see α

decreases with the extraction probability. Note that the proportional relationship is not
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exact, since the adaptation rate may depend on other factors, such as multi-mutation effect

[89].

A consistent understanding can be made based on the Price equation [90]. According to

Price, the evolution rate is related to the covariance of fitness and the trait of interest. In

our model, it states that

⟨vG⟩ =
d⟨∆G‡

b⟩
dt

= ⟨1

λ
Cov(∆G‡

b, λ)⟩ ≈ ⟨α(∆G‡
b)Var(∆G‡

b)⟩, (3.13)

where overbars denote population mean and angular brackets stand for ensemble average.

Covariance and variance are taken with respect to one population. The second relation holds

since fitness varies mildly over the affinity distribution across a population. Consistently,

we can see the adaptation rate is controlled by the discrimination stringency α and the

population diversity Var(∆G‡
b).

Notably, the adaptation rate vG exhibits a non-monotonic dependence on force magni-

tude, peaked around F = 10-20pN (Fig. 3.5). This can be understood from the mutation-

selection balance picture or the Price equation. As force increases, η decreases (we assumed

x‡
b > x‡

a) hence the population size N or the affinity variance Var(∆G‡
b) falls, while the

selection strength α rises (see Eq. 3.12). In other words, stronger pulling first accelerates

adaptation by enhancing the selection pressure, before it slows adaptation as affinity variance

falls with shrinking population size. Different from the potential role of antibodies in ending

GC reaction by masking antigen [73], our work suggests their alternative role as renewable

tethers in maintaining the adaptation rate.

3.2.3 The minimal model combined with mutable bond length

In addition to the potential barrier height ∆G‡
b, other physical properties of BCR may also

evolve. For example, sequence coding for the framework region (FWR) of BCR may mutate

to change the stiffness or rigidity of BCR, which has been shown to be beneficial in the

development of broadly neutralizing antibodies [91, 92]. Meanwhile, in short-term evolution,
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the mutation in the FWR seems to be inhibited since the distribution of mutations across the

sequence coding for BCR is shown to be strongly nonuniform, with mutations more likely to

occur in the complementarity-determining regions (CDRs) outside FWR[93]. Nevertheless,

very few existing GC evolution models have looked at the evolution of molecular properties

other than the binding affinity.

3.2.3.1 Model details

In this section, we allow mutations that change the entire binding potential, including ∆G‡
b

and x‡
b. We assume the mutation that modifies ∆G‡

b and the mutation that changes x‡
b

take place independently. Specifically, in each division event, ∆G‡
b mutates at a chance of

pm,Gb
= 0.5. And x‡

b mutates at a chance of pm,xb
= 0.5.

3.2.3.2 Results

Diverse evolving directions Fig. 3.6A demonstrates the evolution in the x‡
b-∆G‡

b plane

under different circumstances, which displays diverse evolving directions as the tether or force

changes. Specifically, under vanishing tugging force, evolution soften BCRs by selecting B

cells with large x‡
b. This is because soft BCRs have relatively long intrinsic lifetime without

force [38]. However, under a large force, the evolution drives the population towards the

region with stiff BCRs, which experience smaller lifetime reduction by force and thereby

are more favored, compared with soft BCRs. Besides, it should be noted that GCs at the

opposite corners (large x‡
a small F and small x‡

a large F ) experience high risk of collapse

(survival percentage < 20%), due to strong tethers.

Binding quality To compare output B cells directly, we define the binding quality Q as

Q ≡ log10

τ̃b
τ̃b0

,
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Figure 3.6: Evolution with mutable x‡
b. (A)Evolution trajectories in the x‡

b-∆G‡
b plane under

different forces and against different tethers. The contour map in gray indicates the Ag

extraction chance η, which characterizes the fitness landscape. High-quality (high intrinsic

bond lifetime, Q > log10 50) parameter region is colored in green. Simulated evolution

trajectories are shown by the colorful lines. We can see force application modifies the fitness

landscape and changes the evolution direction to favor stiff BCR bonds. (B) Tether strength

as a function of force F and tether bond length x‡
a, obtained from MFPT calculation. When

x‡
a < x‡

b, tether strength increases with force. In contrast, when x‡
a > x‡

b, force reduces the

tether strength. (C) The dependence of evolved B cell fitness (at tf = 100cycle) on pulling

force and tether property. Each symbol is an average of 20 independent GC simulations. We

can see the evolved B cell fitness follows the same trend as tether strength. (D) The binding

quality of output BCRs(at tf = 100cycle), Q. In the low-force regime, both the binding

quality and B cell fitness are improved after evolution. In contrast, in the high-force regime,

optimizing the B cell fitness conflicts with improving BCR binding quality. Parameters:

∆G‡
a = 14kBT , pm,Gb = 0.5, pm,xb

= 0.5, initial condition: ∆G‡
b0 = 14kBT , x‡

b0 = 2nm.
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where τ̃b0 and τ̃b are the intrinsic BCR lifetime at time 0 and output time tf (we use the

tilde notation τ̃ to denote force-independent intrinsic lifetime), measured without force. This

captures the lifetime of binding between the secreted antibody and the Ag, which happens

in the absence of tugging force.

As shown in Fig. 3.6B-D, while a strong tether indeed leads to large enhancement of B

cell fitness through GC reaction, the binding quality of BCRs is not necessarily optimized.

In contrast to what have been observed in experiment, our simulation shows that a system

with vanishing forces is favored to produce high binding quality BCRs (Fig. 3.6D), compared

to cases with large forces. The reason behind is intuitive: the learning is effective only when

the training environment (GC) is similar to the testing environment (plasma). Under a

large tugging force, the fitness landscape becomes different from what underlies the binding

quality (Fig. 3.6). Consequently, the learning is “misled”. This implies an intriguing paradox

that may be overlooked before, that is, when x‡
b is allowed to mutate, the force application

by B cells in the GC may conflict with the target of optimizing the intrinsic BCR lifetime.

There are several possibilities to reconcile the above paradox. First, this paradox high-

lights the importance of integrating different readout signals to make a decision. For example,

it has been shown that BCR signaling and synapse formation are vital for B cell selection

[31, 94, 95], which may depend strongly on the intrinsic BCR-Ag lifetime. In this way, clones

with low quality BCRs are constantly removed from the population due to the low intrinsic

signaling lifetime. Second, B cells might intentionally inhibit the evolution of BCR-Ag bond

length. This is supported by the observation of mutation hot spots which mainly appear in

the CDR but not the FWR [93]. In addition, the fitted value of x‡
b obtained from differ-

ent stages of evolution were shown to be similar [96]. This implies that GC evolution may

focus on the mutations that are beneficial for both selection in GC and recognition of Ag

outside the GC through modulating the mutation hot-spot. Third, the GC structure may

be optimized for multiple tasks, such as enhancing the range of discrimination or enlarging

the output binding breadth. These hypotheses can be tested by inducing the mutations that
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change the BCR-Ag stiffness during a course of GC evolution.

3.2.4 The minimal model combined with heterogeneous forces

The diverse evolving direction motivates us to examine the change in B cell clone diversity

when noise presents. What is the evolution dynamics if different B cell clones apply dis-

tinct forces? How does the evolved B cell diversity correlate with the randomness in force

application?

Experimentally, people have observed that the diversity in affinity can persist for at least

over a period of a few weeks during GC evolution, with B cells of widely disparate affinities

co-existing within the same GC [80] or across the output B cells [97, 79]. In other words,

GCs are capable of supporting the maturation of a diversity of clones in parallel without

being taken by a high-affinity “winner”. Such concurrence of selection and diversification

is puzzling. It was believed to related to stochasticity in the probabilistic selection of B

cells(“intrinsic noise”) [76] or the inheritable non-genetic heterogeneity across founder B

cells (“extrinsic noise”) [98].

To explore how the randomness in force plays a role, we simulated GC evolutions starting

from B cells with diverse affinity, bond length and force magnitude. In particular, the force of

each founder B cell is sampled from a uniform distribution between (Fave − σF0, Fave + σF0).

Here, σF0 quantifies the initial force heterogeneity. We assume the force is inheritable,

meaning daughter B cells use the same force as parent cells. Our model suggests that an

intermediate heterogeneity in force application enhances the binding quality diversity. The

diversification origins from the disparate evolution directions of B cells applying different

forces. They can coexist because of the presence of a saddle point in the fitness landscape

where selection pressure on (F, x‡
b) pairs vanishes.
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3.2.4.1 Model details

To model the heterogeneity, we assume the founder B cells are diverse in affinity, bond

length and force. The initial affinity follows a Gaussian distribution, N (∆G‡
b0, σ0,Gb

) with

∆G‡
b0 = 14kBT , and σ0,Gb

= 0.2kBT . The bond length also follows a Gaussian distribution

N (x‡
b0, σ0,xb

). We used x‡
b0 = 2nm, and σ0,xb

= 0.5nm. The distribution of force is assumed

to be uniform between (Fave − σF0, Fave + σF0). Using a truncated Gaussian distribution

produces similar results (data not shown). We further assume the force is inheritable and

immutable, meaning the daughter cells always apply the same force as the parent cell. Other

settings are the same as the baseline model.

3.2.4.2 Results

Evolution dynamics We first examine the evolution dynamics under different force het-

erogeneity, σF0. As shown in Fig. 3.7, the fitness landscape in the x‡
b-F plane has mul-

tiple peaks: lineages with small force evolve towards large x‡
b whereas lineages with large

force evolve towards small x‡
b. At low σF0, the evolution follows the dynamics presented

in Fig. 3.7A: the population evolves according to the fitness gradient and ends up with an

unimodal distribution of bond length x‡
b (Fig. 3.7B) around the optimal value, illustrated

by the red line in Fig. 3.7A. In contrast, an intermediate force heterogeneity resulted in a

bimodal distribution: B cells applying small forces develop large x‡
b, whereas B cells that use

large forces are popularized at small x‡
b (Fig. 3.7B). This is because different combination of

parameters could result in similar Ag extraction chance and thereby B cell fitness, as indi-

cated by the saddle point in the fitness landscape on x‡
b-F space (Fig. 3.7A). Therefore, B

cells with distinct properties could co-exist, yet using different strategies to extract sufficient

number of Ags and survive. In consequence, the evolved B cells display a broad range of

binding quality but share similar fitness values (Fig. 3.7 C-D). Interestingly, at large σF0,

the distribution becomes unimodal again, which is dominated by clones that apply vanishing
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Figure 3.7: Intermediate heterogeneity in force maximizes diversity of binding quality.

(A)Fitness landscape on F -x‡
b space. The contour lines show the antigen extraction chance η

(or effectively fitness) landscape. Green arrows show the gradient along the x‡
b axis, indicat-

ing the evolution direction within lineages of the same force. The red dashed line represents

the steady state of x‡
b at different forces, where the gradient along x‡

b vanishes. Note that

it differs from the “ridgeline” (dashed black line) of local maxima along the principal direc-

tion corresponding to the negative curvature (see “height definition” by Eberly et al. [1]).

(B) Examples of evolution on the F -x‡
b space. Different rows represent individual realiza-

tion of GC reactions starting from different initial force heterogeneity. Each column shows

snapshots of fitness landscape (in gray) and population density (in colors) at a certain time

point. Population-averaged ∆G‡
b was used to evaluate the η landscape at each time point.

(C) Distribution of binding quality. Each colorful curve corresponds to one simulation result

in (B) at t = tf . The dashed line shows the initial distribution that was shared by all simu-

lations. We can see, with intermediate force heterogeneity, the high-binding quality B cells

and low-binding quality B cells coexist after evolution. (D) Distribution of B cell fitness

λ. The black dashed line shows the initial fitness distribution for σF0 = 0(the other two

cases have similar initial distributions). Colorful lines are the evolved fitness distribution

at t = tf . (E) Violin plot of evolved binding quality diversity, characterized by the stdev

of the binding quality distribution σQ. The black bars show the average value among 50

realizations. (F)Temporal trajectories of B cell binding quality diversity σQ at low force

heterogeneity σF0 = 0. Each trajectory represents one realization. The histogram on the

right shows the distribution of diversity of evolved binding quality σQ at t = tf . (G)Similar

to (F) but at an intermediate force heterogeneity σF0 = 0.6Fave. (H)Similar to (F) but at a

large force heterogeneity σF0 = Fave. Parameters: x‡
a = 1.5nm, ∆G‡

a = 14kBT , Fave = 10pN,

pm,xb
= 0.5, tf = 100 cycle. Initial condition: x‡

b0 = 2nm, ∆G‡
b0 = 14kBT . Initial diversity

σ0,Gb
= 0.2kBT , σ0,xb

= 0.5nm. No antibody feedback.
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forces or clones with large forces. This is due to a simple mechanism: with a large initial

diversity, some founder B cells can be much fitter than others. Those better-fitted clones

out compete other clones so that the system quickly loses force heterogeneity.

Saddle point The saddle point underlying the enhanced diversity is a general feature of

the tug-of-war configuration of antigen extraction. To provide a simple and intuitive picture,

we focus on the small force limit when the effect of force on MFPT mainly comes from the

exponent factor. The extraction chance is

η ≈ 1

1 + τ̃a
τ̃b
e−F (x‡

a−x‡
b)/kBT

=
1

1 + e−F (x‡
a−x‡

b)/kBT−ln
τ̃b
τ̃a

.

Here τ̃a and τ̃b are intrinsic APC-Ag lifetime and BCR-Ag lifetime, independent of force F .

The above equation suggests there are two factors influencing the extraction chance: the

intrinsic bond lifetime ratio and the external force, which have the opposite dependence on

x‡
b. Specifically, the intrinsic lifetime part

(
ln τ̃b

τ̃a

)
increases with x‡

b due to an increased

relaxation timescale τbs for flatter potential according to the Kramers theory [39, 38] (see

chapter 2), while the external force part F (x‡
a − x‡

b) decreases with x‡
b because of greater

barrier reduction. Such opposite effects underlie the saddle point that appears when the

sign of dependence flips. To show the condition for saddle point explicitly, we conduct

detailed calculations below. Since there is only one extremum point on the landscape, the

saddle point is simply given by the following two conditions,

∂η
∂F

= 0, (3.14a)

∂η

∂x‡
b

= 0. (3.14b)

Plugging in Eq. 3.2.4.2, we get

x‡
b,saddle = x‡

a, (3.15a)

Fsaddle = kBT
∂ ln τ̃b/τ̃a

∂x‡
b

= 2kBT

x‡
a

(−κb)
∂ ln(τ̃b/τ̃a)

∂κb
. (3.15b)
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To confirm that the above solution represents a saddle point, we calculated the prod-

uct of principle curvatures near the solution. Explicitly, it is equal to det(Hsaddle) =

− 1
(kBT )2

(τ̃aτ̃b)
2

(τ̃a+τ̃b)4
< 0, suggesting that the principle curvatures have opposite sign and thereby

the above solution is indeed a saddle point. Here Hsaddle is the Hessian matrix at the saddle

point.

Therefore, the saddle point appears when tether bond length and BCR-Ag bond length

are comparable. In addition, it requires an intermediate force such that when x‡
b varies,

the change in force effect compensates the change in intrinsic lifetime. To provide more

quantitative understanding, we assume ∆G‡
b = ∆G‡

a so that κb = κa at the saddle point. This

gives Fsaddle ≈ 2kBT/x
‡
a. Plugging in parameters used, x‡

b,saddle = 1.5nm, Fsaddle ≈ 5.3pN,

which roughly agree with Fig. 3.7 (x‡
b,saddle = 1.5nm, Fsaddle ≈ 8.1pN). In addition, Fsaddle is

small enough compared to fa = fb = 56.3pN to allow us to use the small-force approximation.

Binding quality diversity To better appreciate the enhanced diversity in binding quality

at intermediate σF0, we quantified the diversity using σQ, the standard deviation of bind-

ing quality distribution. Consistent with Fig. 3.7B, σQ on average shows a non-monotonic

dependence on the initial force heterogeneity σF0 (Fig. 3.7E). It should be noted that the

qualitative results do not rely on a particular choice of the diversity measure. For example,

using the Shannon entropy gives the same trend of dependence.

In addition, at a given force heterogeneity, there are large variations between different

realizations (see Fig. 3.7E). In some cases, the system quickly loses clone diversity (Fig. 3.7F-

H) and the population is narrowly distributed on x‡
b − ∆G‡

b plane. In other cases, the

bimodal distribution can persist for a long time. This is due to the intrinsic stochasticity of

the probabilistic mutation and selection in GC evolution. The population converges to an

unimodal distribution when some B cells in one of the branch become much fitter than others.

Consistent with this prediction, experiments have shown that GCs lose clonal diversity at

widely disparate rates: some become heavily dominated by few clones in days, while others

70



maintain high diversity for several weeks [80].

3.3 Discussion

Over the past decades, fundamental breakthroughs in experiments make it promising to

appreciate the fundamental principle governing GC evolutions. On the one hand, high-

resolution imaging technology helps to reveal the microenvironment and cellular dynamics

of GC reactions. On the other hand, the advance of sequencing technology allows us to

directly read the evolution of BCR during the course of GC reaction. What remains unclear

is how those two ends of observations are connected. Specifically, how does the specialized

GC structure benefit the affinity maturation process? What are the key components that

we should look at? What are feasible mechanisms that one can utilize to further optimize

the GC evolution during vaccination or infection?

To tackle the above intriguing and critical questions, we developed a multiscale model that

integrated the start-of-art knowledge of GC, including the molecular Ag extraction process

and the cellular dynamics. Our model allowed us to investigate how the regulations at the

molecular level propagate to the evolutionary dynamics and determine the learning outcome.

Specifically, we looked at the regulation through the property of presenting tethers and the

tugging forces from B cells, which can be constant or dynamical or even heterogeneous. Our

results demonstrated how those key components influenced the fitness, binding quality and

diversity of output B cells.

Population dynamics Our model predicts different population dynamics given different

assumptions. If the relative tether strength is fixed, the population will either collapse

or evolve towards its maximal capacity (Fig. 3.2), depending on the relative tether strength

compared with the initial B cell affinity. If the tether affinity changes at the same rate as BCR

affinity due to antibody feedback, the population size may reach a force-dependent steady
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state (Fig. 3.5) due to the mutation-selection balance. In contrast, if the changing speed

in tether strength and BCR-Ag bond strength are not synchronized, we expect a gradual

shift of the population size. For instance, if the pulling force is dynamic, stronger binding

to antigen results in larger rupture force (see chapter 2). As BCR affinity improves during

the evolution, the rupture force changes and so does the tether strength. Consequently, the

population size changes accordingly during a GC reaction.

Our predictions are consistent with experimental observations. For example, Yewdell

et al. found that GC B cell population declined after initial expansion and stabilized and

persisted for a long time (22 weeks) [99], which agrees with our model prediction in Fig. 3.5.

It should be pointed out that, in an acute infection, however, GC volume gradually declines

during the infection [99]. This is potentially due to clearance of pathogens and thereby a

decrease in antigen access — a factor that has been excluded in our model. Furthermore,

the GC collapse, an important feature that underlies the condition of optimal GC structure

in our model, has been observed in experiments. Mayer et al. have shown that B cells are

programmed to die unless they are rescued when receiving enough surviving signal from

follicular-helper T cells [86]. Vinuesa et al. showed that GCs induced by non-processable

antigens only last for 3 days before all GC B cells undergo apoptosis [100]. Consistent with

this, measurement of GC volume distribution implies frequent and sudden collapses of GCs

[101].

However, to the best of our knowledge, there is no direct observation of population bot-

tleneck. One reason might be that existing studies measured the ensemble GC dynamics by

sampling from different mice sacrificed at different time points, which might differ from indi-

vidual GC kinetics. Indeed, the quantification of GC volume distribution from Wittenbrink

et al. suggested that GC growth was nonsynchronized [101].

Critical role of tether strength An important insight from our model is the critical

function of tether strength, which has been underestimated in most existing studies. Indeed,
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a lot of experiments have shown that the tether strength or the mechanical property of

presenting cells plays an important role in B cell activation, Ag extraction as well as affinity

maturation. By modeling the tug-of-war process explicitly, we demonstrate that the tether

property governs when the discrimination stringency disappears and determines the ceiling

affinity. This is consistent with recent study of passive immunization with external antibodies

[18]. More importantly, we show that the tether strength is tunable from the B cell end,

which appreciates the application of tugging force in a simple picture. Finally, the antibody

feedback mechanism naturally imposes a time-dependent tether strength, which helps the

system to avoid the issue of vanishing discrimination stringency.

Beneficial impact of mechanical force In addition, the mechanical force applied from B

cells seems to be important in tuning the tether strength, influencing the evolution direction

and generating B cell diversity. All those effects are done by regulating the Ag extraction

process. Specifically, forces enhance Ag extraction when x‡
a > x‡

b while inhibit Ag extraction

if x‡
a < x‡

b. Consequently, the interplay between force and the environment determines the

fitness landscape that underlies the B cell selection (Fig. 3.6). This suggests that our immune

system needs to coordinate different components to facilitate the affinity maturation and

satisfy the functional needs. Furthermore, our study suggested that a heterogeneous force

can be beneficial in terms of producing B cells with diverse binding qualities. In fact, low-

affinity output B cells have been frequently observed in experiments in healthy GCs. Our

model provides one possibility to appreciate such unexpected results.
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CHAPTER 4

Information acquisition in immune sensing through

antigen extraction

“Focusing on information flow will

help us to understand better how cells

and organisms work.”

Paul Nurse

4.1 Introduction

Biology background In the previous chapters, we focused on the chance of antigen ex-

traction. This essentially ignores the demographic noise and assumes the number of antigens

available is infinity. However, the process of antigen extraction is noisy in nature, due to

the finite number of ligands, heterogeneity in molecular concentration, or random contact

between ligands and receptors. How is it possible for a B cell to read the receptor affinity

accurately from the noisy thermodynamic process? What is the fundamental physical limit

of discrimination accuracy? How do B cells approach this optimal bound using biochemical

solutions? These questions relate to a central question in physics: Given a system described

by a set of parameters, how much information about the physical system can be obtained by

observing some measurable quantities? This motivates us to apply the information theory

to study B cell affinity discrimination.
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It has been discovered that a single cell can sense and process external chemical signals

with extremely high accuracy. For example, Escherichia coli can detect attractant aspartate

as low as 3 particles in the volume of the cell [102]. In immunology, T cell detection of agonists

(foreign antigens) on APCs is remarkably sensitive and selective: 1 to 10 agonists with

binding half-lives only three times longer than thousands of weakly binding ligands can lead

to activation but not the latter ones [103, 104, 105]. For B cells, affinity maturation is effective

despite all uncertainty of B cell mutation, antigen presentation, and antigen acquisition [80].

These observations raise the question of how close cells operate to the fundamental physical

limit of sensing or discrimination accuracy set by the underlying thermodynamic process?

Information theory of ligand detection Information theory has been a powerful tool

to address such questions. Early studies focused on the task of ligand detection. In their

pioneering work, Berg and Purcell derived the fundamental bound on the accuracy of ligand

concentration sensing [106]. They considered that the time correlations of particles bound

to receptors and found the minimal estimation error (variance) ⟨(δc)2⟩ can be given by the

Berg-Purcell limit,

⟨(δc)2⟩
c20

=
1

2Dac0(1 − p̄)T
, (4.1)

where D is the diffusion coefficient, a is the effective receptor size, p̄ is the equilibrium prob-

ability for receptor to be bound. Later, Endres and Wingreen re-investigated the problem

using maximum likelihood estimation and discovered that the Berg-Purcell limit is closely

related to the inverse of the Fisher information (Cramér-Rao bound) [21],

⟨(δc)2⟩
c20

=
2

c20Ic

. (4.2)

Here, Ic = −⟨d
2 lnP ({t+,t−};c)

dc2
⟩c0 is the Fisher information, where P ({t+, t−}; c) is the proba-

bility for a time series of binding and unbinding events (with timestamps {t+, t−}) to occur

given the ligand concentration c, and the average is over the probability distribution of all

binding events. Fisher information quantifies the effect of smooth parameter variations and
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encodes the maximum amount of information that can be gained by measuring readouts.

Therefore, the larger the information a thermodynamic process can generate, the smaller the

sensing error.

This has fueled the interest in noise and its implications for information processing by

cells. General or refined bounds on sensing accuracy have been extended to spatial or

temporal gradient sensing[107, 108], amid spurious ligand sensing [22], while the trade-

offs between metabolic cost, speed and sensing accuracy have been explored [109, 110].

Recently, there is a growing interest in understanding how the immune system works from

the perspective of information theory [111, 112, 71, 113]. For instance, Ganti et al. quantified

T cell discrimination capacity using channel capacity to show how affinity information was

decoded by the topology and rates of kinetic proofreading signaling steps inside T cells [71].

The task of affinity discrimination Nevertheless, the task of B cell affinity discrimina-

tion is distinct from what have been studied about ligand detection. First, the quantity of

interest is the binding quality of receptors instead of the concentration of antigen ligands.

Second, it is not a simple binary discrimination as T cells’. Rather, mutations and selections

continuously modify the B cell affinity distribution during affinity maturation. Therefore,

the system has to work on a dynamic and wide spectrum of B cell affinities. Lastly, the

cellular behavior of B cells is different from T cells’. In addition to ligand-receptor binding,

B cells use mechanical force to extract and internalize the antigens. All these features make

B cell affinity discrimination a unique task with many properties to be explored.

More specifically, recent progress in experiments has revealed many unexpected behaviors

related to B cell affinity discrimination. A prevailing model for näıve B cell activation argues

that B cells integrate antigen-dependent BCR signals and T cell-derived signals to make

cell-fate decisions [25, 114, 115, 116]. The former one uses the binding lifetime of BCR and

Ag clusters as readout of affinity [116, 23], whereas the latter one depends on the number

of Ags captured by B cells [65, 36]. Interestingly, as opposed to this canonical affinity
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discrimination picture, much experimental evidence suggests that the selection of GC B cells

strongly depends on the Ag number but not the BCR signaling [117, 32, 6, 94, 95, 118].

For example, in contrast to näıve B cells who have significant downstream signaling after

BCR Ag binding, most highly proliferative GC B cells undergoing Ag-driven selection cannot

execute BCR signaling [117]. Besides, BCR antigen binding is shown to be insufficient to

promote GC B cell selection, whereas T cell help is able to rescue B cells lacking BCR Ag

binding and promote the selection [65, 118]. Those observations indicate that the affinity

discrimination process in GC might be optimized by preferring one type of signal over the

other.

It is puzzling that why these transitions are necessary and important. It has been postu-

lated that the transition may serve to shift the dynamic range such that competing clones of

relatively high affinity can more easily be distinguished [119]. Yet, the underlying physical

mechanism remains illusive.

Information theory of B cell affinity discrimination Here we use the information

theory to study how the affinity discrimination is made possible from the stochastic, non-

equilibrium and collective antigen acquisition process, and understand what underlies the

unexpected behavior of GC B cells. Our model incorporates the vital components of antigen

extraction process, such as the tug-of-war structure and mechanical pulling force. We com-

pare two readouts of BCR affinity, the cluster lifetime τ (τ -discriminator) and the acquired

antigen number nag (n-discriminator), by quantifying their sensitivity to affinity change us-

ing the Fisher information (FI). Our results show both readouts can be used for affinity

discrimination, but fit to different affinity regimes. As BCR affinity increases, the affinity

information in cluster lifetime diminishes due to the breaking of the weak tether bonds and is

outperformed by the affinity information in nag when BCR-Ag lifetime exceeds the APC-Ag

bond lifetime. In addition, our model suggests that mechanical forces are able to couple

bonds within a cluster and improve information extraction in both readouts.
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Our results provide a profound understanding of a series of observations of GC B cell

behavior in recent experiments. All the changes happening in GC B cells seem to serve a

unified purpose: making the competing B cells of high affinity more distinguishable. As

BCR affinity improves, readouts inevitably saturate when BCR affinity is much higher than

the tether affinity. Additionally, the thermal noise in ligand receptor reactions corrupts

discrimination. To distinguish high-affinity B cells, the switch of focus and the application

of large forces help to suppress the noise effect and enhance discrimination fidelity.

The chapter is structured as follows. In section 4.2 we define the antigen extraction

model, introduce different affinity readouts, and quantify the discrimination performance.

In section 4.3.1 we present our calculation of readout distributions. In section 4.3.2 calculate

Fisher information and compare different readouts in several scenarios, including independent

extraction (no force-sharing, no rebinding, section 4.3.2.1), extraction of coupled ligands

(with force-sharing, no rebinding, section 4.3.2.2), and extraction under rebinding (with

rebinding, section 4.3.2.3). We conclude with a discussion in section 4.4.

4.2 Model

Antigen extraction by force We consider the extraction of multiple antigens. In chapter

2 we studied the extraction of a single antigen. Now let us consider a cluster of m0 APC-Ag-

BCR complexes, all of which are initially closed and undergo rupture or rebinding according

to appropriate rates after force application (Fig. 4.1). For each complex, the rupture can

happen in either the APC-Ag or Ag-BCR bond, respectively, with off rate ka and kb [18].

Meanwhile, the broken bonds can rebind and form a complex again with a diffusion-limited

rate kon. Thus, four types of reactions can happen including the breaking of APC-Ag bond,

the breaking of BCR-Ag bond, the binding of BCR and Ag, and the rebinding between APC

and Ag.

The state of the system at time t is described by the probability Pm,n(t) to have a cluster
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Figure 4.1: Schematic plot of the antigen extraction process. B cell uses force to extract

antigens (Ags) that are tethered on the surface of antigen presenting cell (APC). Pulling

forces are uniformly shared by all closed bonds. Each bond may break at either binding

interface, leading to failed or successful antigen extraction. There are four kinds of reactions

involved in this process: BCR-Ag unbinding, APC-Ag unbinding, BCR Ag binding, and

APC Ag binding, respectively with rate kb, ka, kon and kon.
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of size m (the number of APC-Ag-BCR complexes) and n antigen extraction (the number of

Ag-BCR bonds). Assuming each reaction is a discrete Markov jump process, we can describe

the ensemble dynamics of the system via a master equation [120]

dPm,n(t)

dt
= Wm,nPm,n(t), (4.3)

where

Wm,n = (ξ1,−1 − 1)mka(m) + (ξ1,0 − 1)mkb(m) + (ξ−1,0 − 1)(m0 −m− n)kon + (ξ−1,1 − 1)nkon (4.4)

is an operator matrix. Here ξi,j is the step operator, ξi,jG(x, y) = G(x + i, y + j) for an

arbitrary function G(x, y). Each term on the right-hand side describes one of the four

reactions considered. The off-rates may depend on the cluster size m. When all complexes

break (m = 0), the antigen extraction process finishes and the B cell detaches from the APC.

To connect the off-rates with bonds affinity and pulling force, we use Bell’s phenomeno-

logical expression [15]

ka(m) = k0e
−(∆G‡

a−f(m)x‡
a)/kBT , kb(m) = k0e

−(∆G‡
b−f(m)x‡

b)/kBT , (4.5)

where ∆G‡
a and ∆G‡

b are respectively the binding affinity of APC-Ag bond and BCR-Ag

bond. kB is the Boltzmann constant and T is the temperature. We assume the applied force

is shared by all complexes in the cluster. Thus, the force per individual bond f(m) = F/m,

depending on the total force F and the cluster size m. If F = 0, then different complexes

break independently with constant off-rates. In contrast, if F > 0, then complexes within

the cluster are coupled together through force-sharing. We will discuss the effect of force-

sharing in detail in section 4.3.2.2. k0 characterizes other factors influencing both bonds. x‡
a

and x‡
b are respectively the minimal-to-barrier distances within the interacting potential of

APC-Ag bond and BCR-Ag bond, effectively characterizing the bond stiffness (see chapter

2). In this section, we assume APC-Ag bond to be softer than BCR-Ag bond (x‡
a < x‡

b).

Examples of simulated trajectories of (m,n) are shown in Fig. 4.2.
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Figure 4.2: The extraction trajectory and readouts differ as BCR affinity changes and thereby

are informative about BCR affinity. We plot the cluster size m(t) (dashed lines) and the

number of antigen extracted n(t) (solid lines) trajectories obtained from simulations. Red for

the high affinity B cell (∆G‡
b = 9.5kBT ) and blue for the low affinity B cell (∆G‡

b = 9kBT ).

The diamond symbols mark the time points when the clusters break. The histograms show

distribution of cluster lifetime (top) and extracted antigen number (right) from 1000 indepen-

dent runs. Parameter used: m0 = 100, f = 10pN, ∆G‡
a = 8kBT , x‡

a = 1.5nm, x‡
b = 2.0nm,

kon = 0. Independent extraction.

In principle, one should use Kramers theory to describe the relationship between off-

rates and applied force. However, as we discussed in chapter 2, the Bell’s formula gives the

simplest description and captures the leading order effect of force on off-rates when force is

weak. Besides, our main conclusion stems from the tug-of-war nature of antigen extraction

process and thereby still holds if one uses more realistic description of reaction rates.

Readouts of binding affinity To achieve affinity discrimination, B cells need to infer the

underlying BCR affinity by measuring some “readouts” generated by the above thermody-

namic process that are measurable using internal signaling circuits.

Motivated by experimental observations, we consider two particular affinity readouts,

the cluster lifetime τ (τ -discriminator) and the number of extracted antigens nag in the end
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(n-discriminator) (see Fig. 4.2). The former one is supported by recent experiments showing

B cells actively generated traction force to test the bond strength [2, 23]. The invagination

lifetime is measurable through force-induced receptor conformation change and downstream

signaling [121]. The latter readout determines how much help a B cell can gain from T-

helper cells and displays direct correlation with B cell survival and proliferation [36]. Those

two readouts correspond to the conventional 2-signal model for B cell activation [122, 116].

The distribution of affinity readouts can be solved analytically in some special cases or

obtained numerically by propagating the master equation starting from the initial condition

Pm,n(0) = δm,m0δn,0.

Quantification of discrimination performance To quantify how well B cells with dif-

ferent affinities are discriminated based on certain readout, we introduce Fisher information

(FI). The classical way of measuring the discrimination performance used the ratio of the

mean readouts of different cells [123]. As suggested by a diverse literature, a more reason-

able way is to look at how sensitive the entire readout distribution to the change in affinity

[124, 113]. In this sense, one can consider FI to describe such sensitivity. For readout

type Y , the FI in its distribution PY (y; ∆G‡
b) with respect to B cell affinity ∆G‡

b is defined

mathematically as follows [125]:

IY =

∫ (d lnPY (y; ∆G‡
b)

d∆G‡
b

)2

P (y; ∆G‡
b)dy. (4.6)

FI measures how much information the readout contains about the underlying B cell

affinity. If the readout distribution does not depend on the affinity, the associated FI is

zero and no information about BCR affinity can be gained from a measurement of Y . On

the other hand, if a small variation of the affinity leads to a large change in the readout

distribution, then the FI is large and a B cell can make precise estimate of the BCR affinity.

This is because, according to the Cramer-Rao inequality [126], the inverse of the Fisher

information is a lower bound on the variance of any unbiased estimator of the underlying
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parameter ∆G‡
b. Specifically,

σ2

∆G‡
b

≥ 1

IY

, (4.7)

where σ∆G‡
b

is the inference error of any unbiased estimator.

The choice of FI is further motivated by the fact that it is closely related to the discrim-

ination power. To show this, we define the selection fidelity ξY , namely the probability to

rank an advantageously mutated B cell (with affinity ∆G‡
b + ϵ) higher than its low-affinity

competitor (with affinity ∆G‡
b) by observing the readout Y . Explicitly,

ξY ≡
∫

dyPY (y; ∆G‡
b + ϵ)

∫
y′<y

dy′PY (y′; ∆G‡
b). (4.8)

We demonstrate that in the hard-discrimination regime ϵ ≪ 1, there is a universal upper

bound of ξ for any readout distribution (see Appendix)

ξY ≤ µCDF + σCDF

√
IY ϵ + o(ϵ2), (4.9)

where µcdf and σ2
cdf are respectively the mean and variance of the cumulative distribution

function of readout Y , respectively. For a continuous distribution, µcdf = 1/2, σ2
cdf =

1/12. For a discrete distribution, µcdf → 1/2, σ2
cdf → 1/12 as the number of possible states

increases. This relationship is reminiscent of the universal connection between information

and the fundamental physical limit of decision accuracy based on thermodynamic processes

[21].

We are aware of other evaluation metrics such as Kullback–Leibler (KL) divergence may

be alternative choices to quantify the sensitivity of a distribution, but we prefer to stay on

FI because it is easy to evaluate and can provide analytical understandings. Besides, our

calculations suggest that using other metrics (such as KL divergence) does not change our

main conclusion.
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4.3 Results

4.3.1 Readout distributions

Before discussing the Fisher information associated with any readout Y , we need to obtain its

distribution for a given BCR affinity, PY (y; ∆G‡
b). In this section, we present our calculation

for the distribution of cluster lifetime and extracted antigen number. In addition, since

the cluster dissociation trajectory encodes the full information generated by the antigen

extraction process, we will calculate the distribution of dissociation trajectory in some simple

cases.

Cluster lifetime distribution To access the distribution of cluster lifetime, we look at

the dynamics of cluster size m. At any time t, the probability distribution of cluster size is

Pm(t) ≡
m0−m∑
m=0

Pm,n(t). (4.10)

Then for a fixed m, summing over all n-states in Eq. 4.3 gives the master equation for m,

which reads as the following one-step birth-death process,

Ṗm(t) = A(f)
m Pm(t) = [(ξ1 − 1)rm + (ξ−1 − 1)gm]Pm(t), (4.11)

where A(f)
m is the operator. The superscript (f) indicates that it is a forward master equation.

The reverse and forward rates are

rm = (ka(m) + kb(m))m, gm = kon(m0 −m). (4.12)

Note at the absorbing boundary g0 = 0. Then our cluster lifetime can be expressed in the

form of first passage time distribution

Pτ (t) ≡ − d

dt

m0∑
m=1

Pm(t). (4.13)

Here
∑m0

m=1 Pm(t) is the survival probability. In principle, one can solve the master equation

Eq. 4.11 and use the definition to calculate the cluster lifetime distribution. However, the
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analytical solution becomes infeasible when m0 is large, since the computation complexity

of solving differential equations explodes with m0

Alternatively, the first passage time distribution can be calculated using the backward

formalism of Eq. 4.11. The backward master equation describes the first step out of the

initial state m = mi at time ti, rather than the last step of the trajectory leading to the

current state m at time t [127]. This feature makes it especially useful in the context of first

passage problems where the ending state is fixed. It can be shown the first passage time

follows the backward master equation [127],

dPτ (t|mi)

dt
= A(b)

mi
Pτ (t|mi) =

[
rmi

(ξ−1 − 1) + gmi
(ξ1 − 1)

]
Pτ (t|mi). (4.14)

where Pτ (t|mi) is the first passage time distribution starting from the state m = mi at

t = 0. A(b)
mi is the backward operator acting on mi (i.e., ξ±1Pτ (t|mi) = Pτ (t|mi ± 1)). Note

Pτ (t|0) = δ(t). We are interested in Pτ (t|m0), the first passage time distribution starting

from all bound state mi = m0. Although solving the backward equation is not necessarily

easier than solving the forward master equation of Eq. 4.11, it provides an easy way of

calculating the moments of first passage time, as we show below.

To get more insights about the cluster lifetime, we calculate the mean cluster lifetime τ

and its variance σ2
τ analytically from Eq. 4.14. Define the q-th moment of first passage time

starting from the state mi as

τ (q)mi
≡

∫ ∞

0

tqPτ (t|mi)dt. (4.15)

Then applying the backward operator on both sides gives

A(b)
mi
τ (q)mi

= −qτ (q−1)
mi

, (4.16)

where we used the boundary condition Pτ (t = ∞|mi) = 0. Here mi ranges from 1 to m0.

Explicitly, the first moment τ
(1)
mi satisfies

rmi
τ
(1)
mi−1 + gmi

τ
(1)
mi+1 − (rmi

+ gmi
)τ (1)mi

= −1. (4.17)
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Note we set gm0 = g0 = 0. Solving this using iterative method with condition τ
(1)
0 = 0 and

τ
(1)
m0 − τ

(1)
m0−1 = 1/rm0 , one gets [120, 128]

τ (1)m =
m∑
i=1

1

ri
+

m∑
i=1

m0∑
j=i+1

1

rj

∏j−1
k=i gk∏j−1
k=i rk

. (4.18)

Hence the mean cluster lifetime reads as

τ = τ (1)m0
=

m0∑
i=1

1

ri
+

m0−1∑
i=1

m0∑
j=i+1

1

rj

∏j−1
k=i gk∏j−1
k=i rk

. (4.19)

The first term in Eq. 4.19 is the result of vanishing rebinding kon = 0, and the second term

increases the lifetime as a polynomial of order m0 − 1 in kon. In addition, by Eq. 4.16 the

second moment follows

rmi
τ
(2)
mi−1 + gmi

τ
(2)
mi+1 − (rmi

+ gmi
)τ (2)mi

= −2τ (1)mi
. (4.20)

Again, one can solve this with boundary condition τ
(2)
0 = 0 and τ

(2)
m0 − τ

(2)
m0−1 = −2τ

(1)
m0/rm0

to get

τ (2)m0
=

m0∑
i=1

2τ
(1)
i

ri
+

m0−1∑
i=1

m0∑
j=i+1

2τ
(1)
j

∏j−1
k=i gk∏j
k=i rk

. (4.21)

Then the variance is simply given by

σ2
τ = τ (2)m0

− (τ (1)m0
)2. (4.22)

Eq. 4.19 and Eq. 4.22 certainly provide a closed formula to calculate the mean cluster lifetime

and its variance. We will use Eq. 4.19 and Eq. 4.22 to estimate Fisher information in the

following sections.

In order to understand the cluster lifetime in a more transparent way, we look at how

the rebinding plays a role. If the rebinding is negligible (kon = 0), then

τ =

m0∑
i=1

1/ri. (4.23)
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Figure 4.3: Rebinding increases mean cluster lifetime and changes the lifetime distribution

to exponential-like. In A, we plot the lifetime distribution at different on-rates. Curves

are obtained by solving the forward master equation numerically. In B we plot the average

lifetime based on Eq. 4.19. Parameters: m0 = 20, kb = ka = 1s−1, F = 0.

Note that 1/ri is the expected waiting time for (m0 − i)-th reaction to take place after

(m0 − i + 1)-th reaction. So τ is the sum of m0 expected waiting times. This is because

the m0 complexes break sequentially. In contrast, the rebinding opens diverse pathways for

cluster dissociation: Some broken bonds can close again and break later. Those additional

pathways increase the expected cluster lifetime, as captured by the second term in Eq. 4.19.

For simplicity, we assume the complexes are independent (no force application F = 0) so that

the off-rates ka and kb are independent of cluster size. Then the product in Eq. 4.19 simply

becomes Binomial coefficients. Combining two terms on the right-hand side of Eq. 4.19

together, we have

τ =
1

ka + kb

m0∑
i=1

∑m0

j=i

(
m0

j

)
γj−i(

m0

i

)
i

=
1

ka + kb

m0∑
i=1

(1 + γ)i−1

i
. (4.24)

Here γ = kon/(ka+kb) is the relative on rate. The second step can be proven by expanding the

right-hand side and collecting terms according to the order of γ. We can see τ is a polynomial

of order m0 − 1 in γ. When γ < 1, the cluster lifetime grows only weakly (logarithmic) with

m0. When γ > 1, the higher order term in γ takes over and the increase in τ with m0

becomes exponential. This is demonstrated in Fig. 4.3: For a large cluster, increasing γ to

values larger than unity leads to strong increase in lifetime. Besides, from Fig. 4.3, we can see

at high rebinding rate, the lifetime distribution becomes exponential-like. In fact, one can
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show the standard deviation στ also has a polynomial order m0− 1 in γ. Thus, when γ ≫ 1,

we have στ ≈ τ , which is a feature of the exponential distribution. Therefore, rebinding not

only increases the mean cluster lifetime, but also makes the distribution exponential-like.

Extracted antigen number distribution Now let us turn to the extracted antigen

number nag. The distribution of nag is the steady distribution of Eq. 4.3 at the absorbing

boundary,

Pnag(n) ≡ P0,n(t = ∞).

For a general reaction matrix Wm,n, we will show that instead of solving the differential

equations in Eq. 4.3 directly, we can construct a set of linear equations to compute the

steady distribution.

To obtain the steady distribution at the boundary, we integrate the master equation

Eq. 4.3 over time, which gives

Pm,n(∞) − Pm,n(0) =

∫ ∞

0

Ṗm,n(t)dt = Wm,n

∫ ∞

0

Pm,n(t)dt. (4.25)

Recall Wm,n is the time-independent operator in the original master equation Eq. 4.3 and

may change the indexes of quantities after it. The physical meaning of Eq. 4.25 is that the

probability change in a state is given by the integrated net probability current into that

state, which is determined by the time-integrated probability at adjacent states and the

transition matrix, due to the Markovian property of our system. As a special example, at

the absorbing boundary,

P0,n(∞) = ka1

∫ ∞

0

P1,n−1(t)dt + kb1

∫ ∞

0

P1,n(t)dt. (4.26)

Hence, the stationary probability at boundary state (0, n) is determined by the integrated

probability at two adjacent states (1, n− 1) and (1, n) that are directly connected to (0, n).

This motivates us to define the integrated probability at each transition state (m,n) over

time, Qm,n ≡
∫∞
0

Pm,n(t)dt. For a given initial condition Pm,n(0) = δm,m0δn,0 and known
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stationary distribution at non-absorbing (m > 0) states Pm,n(∞) = 0, Eq. 4.25 provides

coupled linear equations about the integrated probability Qm,n at different non-absorbing

states. Explicitly, at the bulk (1 < m < m0, 0 ≤ n ≤ m0 −m)

0 = (m + 1)ka(m + 1)Qm+1,n−1 + (m + 1)kb(m + 1)Qm+1,n + kon(n + 1)Qm−1,n+1 +

kon(m0 −m− n + 1)Qm−1,n − (mka(m) + mkb(m) + kon(m0 −m))Qm,n,(4.27a)

and at the edge cases

−1 = konQm0−1,1 + konQm0−1,0 −m0(ka(m0) + kb(m0))Qm0,0, (4.28a)

0 = 2ka(2)Q2,n−1 + 2kb(2)Q2,n − (ka(1) + kb(1) + kon(m0 − 1))Q1,n. (4.28b)

The non-physical terms of Qm,n (i.e., n < 0, m < 0 or n + m > m0) are set to be 0. There

are totally m0(m0 + 1)/2 unknown variables of Qm,n (m = 1, 2, ...,m0, n = 0, 1, ...,m0 −

m). Correspondingly, there are m0(m0 + 1)/2 coupled linear equations in Eq. 4.27 and

Eq. 4.28. Therefore, for any general off rates ka(m) and kb(m), in principle one can obtain

the distribution Pnag(n) by solving the linear equations about Qm,n and get the stationary

distribution at the absorbing boundary through

Pnag(n) = ka(1)Q1,n−1 + kb(1)Q1,n, n > 0 (4.29a)

Pnag(0) = kb(1)Q1,0. (4.29b)

By doing so, we convert the m2
0/2 ordinary differential equation in Eq. 4.3 into m2

0/2 linear

equations in Eq. 4.27 that can be solved with much lower time complexity.

To get more intuition, we consider a simple scenario where the off-rates ka and kb are

constant (F = 0). If kon=0, then Eq. 4.27, Eq. 4.28 and Eq. 4.29 essentially become the

recurrent formula for Binomial coefficients:
(
m0−m

n

)
=

(
m0−m−1

n

)
+

(
m0−m−1

n−1

)
. We can easily

get

Pnag(n) =
kn
ak

m0−n
b

(ka + kb)m0

(
m0

n

)
, (4.30)

89



which is the Binomial distribution. This agrees with the intuition that antigen extraction is

the Bernoulli process if the probability to get the antigen is the same at each rupture event.

For non-zero kon, intuitively the rebinding should not change the distribution given that two

binding interfaces have the same on-rate. In other words, closing and re-opening the complex

do not change the chance to get that antigen. So nag still follows the Binomial distribution.

This can be confirmed by plugging Eq. 4.30 back into Eq. 4.27-4.29 with non-vanishing kon.

The average antigen extraction ⟨nag⟩ and its variance σ2
n can be obtained implicitly from

3m0 linear equations. We first define,

R(k)
m ≡

m0∑
n=0

nkQm,n. (4.31)

Then

⟨nag⟩ ≡
∑m0

n=1 nPnag(n) = ka,1
∑m0

n=1 nQ1,n−1 + kb,1
∑m0

n=1 nQ1,n

= ka,1(R
(1)
1 + R

(0)
1 ) + kb,1R

(1)
1 . (4.32)

We used
∑m0

n=0 nQ1,n−1 =
∑m0−1

n=0 (n + 1)Q1,n =
∑m0

n=0(n + 1)Q1,n. Similarly,

⟨n2
ag⟩ ≡

∑m0

n=1 n
2Pnag(n) = ka,1

∑m0

n=1 n
2Q1,n−1 + kb,1

∑m0

n=1 n
2Q1,n

= ka,1(R
(2)
1 + 2R

(1)
1 + R

(0)
1 ) + kb,1R

(2)
1 . (4.33)

Thus, ⟨nag⟩ and σ2
n can be calculated once we know R

(0)
1 , R

(1)
1 and R

(2)
1 . The remaining work

is to establish linear equations about R
(k)
m based on Eq. 4.27. For k = 0, we can simply sum

over all n-states on both sides of Eq. 4.27. This yields,

−δmm0 = (m + 1)(ka,m+1 + kb,m+1)R
(0)
m+1 + (m0 −m + 1)konR

(0)
m−1

−(mka,m + mkb,m + (m0 −m)kon)R
(0)
m , (4.34)

m = 1, 2, ...,m0. Besides, we know R
(0)
0 = 0, R

(0)
1 = 1/(ka,1 + kb,1) (obtained from Eq. 4.29

based on
∑

n Pnag(n) = 1). Thus, R
(0)
m can be calculated iteratively using Eq. 4.34. For

k = 1, we can multiply Eq. 4.27 by n on both sides and sum over all n-states. This gives,

0 = (m + 1)ka,m+1(R
(1)
m+1 + R

(0)
m+1) + (m + 1)kb,m+1R

(1)
m+1

+(m0 −m)konR
(1)
m−1 − (mka,m + mkb,m + (m0 −m)kon)R(1)

m , (4.35)
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m = 1, 2, ...,m0. Given R
(1)
0 = 0, R

(1)
m0+1 = 0 and calculated R

(0)
m , one can find R

(1)
m by solving

the m0 linear equations above. Similarly, we multiply Eq. 4.27 by n2 on both sides and sum

over all n-states, which yields,

0 = (m + 1)ka,m+1(R
(2)
m+1 + 2R

(1)
m+1 + R

(0)
m+1) + (m + 1)kb,m+1R

(2)
m+1

+kon[(m0 −m− 1)R
(2)
m−1 + R

(1)
m−1] − (mka,m + mkb,m + (m0 −m)kon)R(2)

m , (4.36)

m = 1, 2, ...,m0. Hence, R
(2)
m can be obtained by solving m0 linear equations once we know

R
(0)
m and R

(1)
m . Therefore, the first two moments of antigen number distribution can be

calculated from 3m0 linear equations.

Cluster disassociation trajectory In a particular realization of cluster disassociation

process defined by Eq. 4.3, all stochastic reaction events constitute a disassociation trajectory,

characterized by (t, s) = {(ti, si); i = 1, . . . , NR} where ti ∈ (0,∞) is the waiting time

between (i− 1)-th reaction and i-th reaction, and si labels the type of i-th reaction. NR is

the total number of reactions till complete disassociation. We will calculate the distribution

of such trajectories P (t, s). For simplicity, we only focus on the case with negligible rebinding

(kon = 0). Then only two types of reactions are allowed, APC-Ag breaking (s = sa) or BCR-

Ag breaking (s = sb). Besides, the total number of reactions is fixed at NR = m0. The

probability density function of observing a trajectory (t, s) is given by

P (t, s) = P (t) · P (s), (4.37a)

P (t) =
∏m0

i=1(m0 − i + 1)(ka + kb)e
−(m0−i+1)(ka+kb)ti , (4.37b)

P (s) =
∏m0

i=1(ηδsi,sa + (1 − η)δsi,sb). (4.37c)

The first part is because the waiting time t and reaction type s are independent random

variables. In other words, knowing the value of t does not help to predict s. In the second

part, we assume that the waiting time follows the exponential distribution with a mean

value of 1/((m0 − i + 1)(ka + kb)). Note there are m0 − i + 1 closed complexes before the
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i-th reaction. The last part means si follows the Bernoulli distribution. The formulation

of Eq. 4.37 is based on the “fundamental premise of stochastic chemical kinetics”, which

assumes that the probability for reaction si to take place after sojourn time ti is given by

P (ti, si|m,n, t) = ai(m,n)e−ti
∑

j aj(m,n). Here, each of the a terms are propensity functions

of an elementary reaction.

Now we are ready to calculate FI in the readout distributions. If the analytical form of

readout distribution is available, one can evaluate Eq. 4.6 to get the FI. If the distribution

cannot be determined explicitly, FI can still be calculated numerically with acceptable accu-

racy for a small cluster (m0 ∼ 10). For a large cluster (m0 ≫ 1), however, direct evaluation

of FI is unfeasible due to the amplified numerical error in the tail part of a distribution after

taking logarithm (| lnPY (y)| is large when PY (y) → 0). Instead, one can use the first two

moments of the distribution to obtain a general lower bound of FI, which is predictive of

FI when the distribution is close to Gaussian. In the following sections, we will compare

FI between readouts in different cases. We will start from a simple case: vanishing force

(F = 0) and vanishing rebinding (kon = 0). Then we will investigate how force-sharing plays

a role. Lastly, we will discuss the effect of rebinding.

4.3.2 Fisher information in affinity readout

4.3.2.1 Vanishing force (F = 0) and negligible rebinding (kon = 0)

To provide some intuition about the antigen extraction process, we look at readout distri-

butions in a simple case where complexes are decoupled (F = 0) and rebinding is negligible

(kon = 0). Complexities such as cooperativity and rebinding will be discussed in later sec-

tions. Solving Eq. 4.14 iteratively gives

Pτ (t) = m0λe
−λt(1 − e−λt)m0−1, (4.38)

which depends on the off-rate of a complex λ = ka+kb. The cumulative distribution function

(CDF) reads as
∫ t

0
Pτ (t′)dt′ = (1−e−λt)m0 , which is the probability for no complex surviving
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till time t. Therefore, Eq. 4.38 suggests that the cluster lifetime is governed by the complex

that survives for the longest period, as expected. Besides, based on Eq. 4.30, the antigen

extraction follows

Pnag(n) = ηn(1 − η)m0−n

(
m0

n

)
. (4.39)

Here η = ka/(ka + kb) is the probability to get the antigen in every breaking event. Because

antigens are extracted independently and with fixed probability η, antigen extraction is

simply the Binomial process. In Fig. 4.4A we show as affinity increases, the mean value of

both readouts increases, which agrees with the observation in vivo that a high-affinity B cell

forms longer contact with APC and acquires more antigens from APC than a low-affinity B

cell [52]. Besides, both readouts saturate at the high-affinity end. The saturation is simply

because at high ∆G‡
b, APC-Ag bond becomes the weaker bond in each complex and the

BCR-Ag bond almost never breaks (λ ≈ ka, η ≈ 1). Thus, further improving BCR affinity

did not improve cluster lifetime or antigen extraction much. Indeed, an affinity ceiling of

affinity maturation has been observed in vivo which turned out to be far below the inherent

potential of antibodies for ligand binding [30, 129].

In a particular extraction event, however, both cluster lifetime and extracted antigen

number are inherently stochastic due to the random binding and unbinding of ligand-receptor

pairs. Thus, a higher affinity B cell may have a lower affinity readout, which leads to

discrimination mistakes.

To compare the discrimination performance of two discriminators, we compute the FI by

direct evaluation of Eq. 4.6 using Eq. 4.38 and Eq. 4.39. This gives

Iτ ≈ (lnm0)
2

(1 + e(∆G‡
b−∆G‡

a)/kBT )2
, In =

m0e
(∆G‡

b−∆G‡
a)/kBT

(1 + e(∆G‡
b−∆G‡

a)/kBT )2
. (4.40)

The approximation in Iτ holds when m0 ≫ 1. Interestingly, Iτ and In show distinct depen-

dence on the B cell affinity ∆G‡
b and cluster size m0, as we detailed below.

First, Iτ decreases with ∆G‡
b whereas In peaks at some intermediate ∆G‡

b (Fig. 4.4B).

This is because cluster lifetime is informative about ∆G‡
b when most breaking events happen
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Figure 4.4: n-discriminator and τ -discriminator complement each other for broad affinity

discrimination. (A): the readout as a function of effective BCR affinity. Solid lines are the en-

semble mean, and the shades mark the standard deviation. The plotted cluster lifetime is rel-

ative to 1/ka. (B) Fisher information encoded in cluster lifetime (red, Iτ from Eq. 4.40), anti-

gen extraction number (blue, In from Eq. 4.40), and the entire unbinding trajectory (greym

Ifull from Eq. 4.41). As affinity increases, the information encoded in the waiting time mea-

sure decays much faster than the information from antigen number data. The vertical dashed

line marks the condition ∆G‡
b = ∆G‡

a. We considered independent antigen extraction with-

out rebinding. Parameters: x‡
a = 1.5nm, x‡

b = 2.0nm,m0 = 100,∆G‡
a = 10kBT, F = 0pN.
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at BCR side (λ ≈ kb) and its information decreases as the number of BCR-Ag breaking

events decreases. In contrast, the Binomial process of antigen extraction is most sensitive to

∆G‡
b when η = 1/2, that is, the BCR-Ag off rate matches the APC-Ag off rate (∆G‡

b = ∆G‡
a).

Second, In exceeds Iτ and decays more slowly (∼ e−∆G‡
b/kBT ) than Iτ (∼ e−2∆G‡

b/kBT )

as ∆G‡
b increases. This is related to the fluctuation in two readouts. At high affinity end,

the noise in APC-Ag lifetime keeps fluctuations in cluster lifetime large. In contrast, the

noise in antigen extraction diminished as ∆G‡
b → ∞ because the influence of APC-Ag lifetime

fluctuation on nag is factored out by the long BCR-Ag lifetime when taking the ratio between

off-rates. These differences imply the two readouts have distinct operation ranges of affinity.

Additionally, Iτ has a slower scaling relation with cluster size m0 than In, ((lnm0)
2

vs m0). This difference, which implies In > Iτ at m0 ≫ 1, is rooted in the way different

breaking events contribute to the final readout. For the cluster lifetime, most time was spent

on the last few breaking events because the disassociation of bonds slowed down during the

antigen extraction process due to the decreasing number of closed complexes. In contrast,

In is linear in m0 because all complex contribute to nag equally and independently through

m0 Bernoulli processes.

To compare two discriminators with the ideal discriminator, we obtained the full infor-

mation encoded in the entire extraction trajectory (t, s) = {t1, s1, t2, s2, ..., tm0 , sm0} (recall

ti is the waiting time between (i − 1)-th reaction and i-th reaction, and si is the type of

i-th reaction). The full information can be calculated from the probability of observing each

trajectory P (t, s),

Ifull =
m0

1 + e(∆G‡
b−∆G‡

a)/kBT
. (4.41)

We immediately see In → Ifull when ∆G‡
b ≫ ∆G‡

a (see Fig. 4.4B). In other words, nag

contains almost all the affinity information generated by the extraction process at high ∆G‡
b

end. This suggests that B cells do not need to look at the cluster lifetime at all and should

focus on counting the extracted antigen number when BCR affinity is much higher than the
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a + f∆x. Independent extraction events without rebinding. Parameters:

xa = 1.5nm, xb = 2nm,m0 = 200,∆G‡
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presenting tether affinity.

To see how the above differences in Fisher information between two readouts propagate

to the performance of a realistic affinity discrimination task, we calculated the selection

fidelity by simulating the antigen extraction processes of different B cells. We consider

two B cells with a small affinity difference and calculate the selection fidelity (see Eq. 4.8)

by simulating the antigen extraction processes many times. In Fig. 4.5 we show that the

simulated selection fidelity follows a similar trend to the Fisher information as the average

BCR affinity improves. Since a sensitive response in readout to affinity change means readout

distributions of different B cells are well separated, it is not surprising that there exists a

strong connection between Fisher information and the practical selection fidelity.
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4.3.2.2 Finite force (F > 0) and negligible rebinding (kon = 0)

In the previous section, we ignored the force application and assume complexes are inde-

pendent of each other. However, the intrinsic covalent property of BCR allows formation

of cross-linking micro-clusters. Indeed, recent experiments suggest GC B cell may actively

manipulate receptors into correlated assemblies, which may have functional importance to be

explored [32, 6]. How the cooperativity between different complexes modifies the information

encoded in readouts?

As one particular example, we consider that different complexes within a local cluster

share the tugging force and thereby are coupled together, which is a common feature in

ligand-receptor systems [130, 131]. Assuming that cytoskeleton force is uniformly distributed

in the cluster, the off-rates depend on cluster size m through

ka(m) = k0e
−(∆G‡

a− F
m
x‡
a)/kBT , kb(m) = k0e

−(∆G‡
b−

F
m
x‡
b)/kBT . (4.42)

F is the total force. As more and more bonds break, the force on each bond F/m will

increase. In this section, we assume the rebinding is negligible for simplicity (kon = 0). The

coupling between different complexes makes calculation of FI in readouts difficult. We turn

instead to a general lower bound on the FI. For readout mean µY and standard deviation

σY , we have [132]

IY ≥ ĨY ≡ 1

σ2
Y

( dµY

d∆G‡
b

)2

. (4.43)

This simplification has the advantage that the calculation of two required moments is easier

than evaluating the integral in Eq. 4.6. Similar approach has appeared in a diverse literature

[133, 113, 134]. Besides, the results of Eq. 4.43 show good agreement with the exact FI of

small clusters.

Surprisingly, our model suggests that this simple force-sharing feature can introduce

nontrivial effect. Unlike the case with vanishing force where the cluster lifetime mostly

depends on few long-lived complexes, force-sharing accelerates rupture at the late stage such
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Figure 4.6: Cooperativity arising from force sharing enhances information extraction. We
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b−∆G‡
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under various forces. The curve with F = 0 (in black) also represents independent ex-
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information in cluster lifetime, calculated based on Eq. 4.44. The inset shows examples of

cluster disassociation trajectories for independent complexes (black), or under shared force

F/m0 =1pN (blue) and 20pN (orange). (B): Fisher information in extracted antigen num-

ber, obtained from Eq. 4.45. In the inset, we plot information encoded in each rupture

event for two cases: black for F/m0 = 0pN and orange for F/m0 = 20pN. Parameters:

x‡
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that most complexes contribute roughly equally to the total cluster lifetime. This reduces

the relative variance of τ and enhances its information (Fig. 4.6A). In addition, because

different complexes break under different values of force per bond, the n-discriminator can

sense a much wider affinity range compared to the case without force (Fig. 4.6B). We explain

these effects in details below.

Specifically, the FI of τ can be enhanced by a shared weak force. Direct evaluation

of Ĩ (see Eq. 4.43) using the mean µτ =
∑m0

i=1 1/(iλi) (See Eq. 4.19) and variance σ2
τ =∑m0

i=1 1/(iλi)
2 (See Eq. 4.22, here λi = ka(i) + kb(i)) gives

Ĩτ =
1∑m0

i=1(iλi)−2

( m0∑
i=1

kbi
iλ2

i

)2

. (4.44)

In Fig. 4.6A, we show under force-sharing, a small force (F/m0 ≈ 1pN) greatly increases

information in τ at low BCR affinities, compared to the case with F = 0.

To understand the intriguing behavior, we look at the cluster disassociation trajec-

tory (Fig. 4.6A inset). Shared force accelerates complex breaking as rupture proceeds

due to the increasing force per bond, which changes the distribution of waiting time be-

tween adjacent reactions. For some intermediate force (max(∆G‡
a/x

‡
a,∆G‡

b/x
‡
b) < F <

min(m0∆G‡
a/x

‡
a,m0∆G‡

b/x
‡
b), the cluster size decreases roughly at a constant rate (Fig. 4.6A

inset, blue trajectory) and thereby waiting times have a uniform distribution. This reduces

the relative variance in cluster lifetime [128] and increases FI. In addition, the scaling of FI on

the cluster size changes from (lnm0)
2 to m0 (fixing F/m0 while increasing m0). However, if

the force is too large, the improvement due to force-sharing disappears since the distribution

of waiting time is highly biased towards the initial few breaking events due to the ‘domino’

effect [130]: The force per bond dramatically increases after the initial few breaking events

and the remaining complexes break almost instantly (see the orange trajectory in Fig. 4.6A

inset).

For n-discriminator, cooperativity may serve to expand the distinguishable affinity range.

Without rebinding, the antigen extraction process consists of m0 breaking events. In each
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breaking event, the number of antigen obtained is a random variable Xi ∼ B(1, ηi). Here

ηi = ka(i)
ka(i)+kb(i)

. Using mean µn =
∑m0

i=1 ηi and variance σ2
n =

∑m0

i=1 ηi(1 − ηi), we get

Ĩn ≈
m0∑
i=1

Ii,indiv. =

m0∑
i=1

e(∆G‡
b−∆G‡

a−F∆x/i)/kBT

(1 + e(∆G‡
b−∆G‡

a−F∆x/i)/kBT )2
, (4.45)

as plotted in Fig. 4.6B. Here Ii,indiv. is the information encoded in the reaction type of

(m0− i+ 1)-th breaking event. So In is the sum of information generated by each individual

breaking event. More importantly, each bond has its own sensitive window for affinity

discrimination where the Ii,indiv peaks ((∆G‡
b)

∗(i) = ∆G‡
a + F∆x/i, see Fig. 4.6B inset),

because different complexes break under different force per bond. At small force, all sensitive

windows are nearly coincident and the total In peaks at a narrow affinity window. Under

shared-force, those windows for individual bonds are placed at different locations on the

affinity spectrum and overlap with each other. Consequently, FI is high over a broad range

(Fig. 4.6B). Nevertheless, the force can’t be too large since otherwise all sensitive windows

are well separated and the total information is low.

4.3.2.3 Finite rebinding (kon > 0)

To understand the effect of rebinding, in this section we relax our assumption and consider

kon > 0. As pointed out by other studies focusing on ligand-receptor interaction, one im-

portant effect of crowding is the increased chance of rebinding: Ligands may rebind to the

receptors nearby before diffusing away [135]. Here we show rapid rebinding greatly enhances

FI in cluster lifetime but has negligible impact on FI in nag.

In Fig. 4.7, we show that frequent rebinding enables a non-zero equilibrium state, which

greatly amplifies Îτ . The equilibrium state ms is the steady solution to the deterministic

equation about mean cluster size

0 =
dm

dt
= −mk0(e

−(∆G‡
a−

Fx
‡
a

m
)/kBT + e−(∆G‡

b−
Fx

‡
b

m
)/kBT ) + (m0 −m)kon. (4.46)

At low rebinding rate, the above equation does not have non-zero solution. So the cluster di-

101



rectly disassociates from the all-closed state without many rebinding events, which is similar

to the case where kon = 0. When kon is larger than a critical value (diamonds in Fig. 4.7),

a steady state emerges (Fig. 4.7A). Both FI and mean cluster lifetime are greatly amplified

(Fig. 4.7B-C). This is consistent with the idea of nonequilibrium sensing, which lowers the

inference error by raising the number of measurements per receptor, at a cost of decreased

speed [109].

To make the results more transparent, we calculate the FI in the limit of large rebinding

rate, kon ≫ ka(i) + kb(i) (i = 1, ...,m0). Now the system persists near the equilibrium state

for a long time before the rapid disassociation driven by some rare large fluctuations. Thus,

Pτ (t) can be approximated by an exponential distribution,

Pτ (t) ≈ m0λ

γm0−1
e
− m0λ

γm0−1 t, (4.47)

obtained by taking kon ≫ ka + kb. This gives

Iτ,large rebinding ≈
( m0∑

i=1

1

1 + e(∆G‡
b−∆G‡

a+F∆x/i)/kBT

)2

, (4.48)

independent of kon. At low affinity limit (∆G‡
b − ∆G‡

a + F∆x/i ≪ kBT ), Iτ ≈ m2
0, which

increases with m0 much faster than extraction without rebinding. However, rebinding does

not change the dependence on ∆G‡
b because APC-Ag bond still dominates the majority of

breaking events at high ∆G‡
b. This can be seen by taking high affinity limit (∆G‡

b ≫ kBT )

in Eq. 4.48, which gives Iτ ∝ e−2∆G‡
b/kBT .

In contrast, the change in In due to rebinding is typically insignificant(Fig. 4.7D). To

understand this, we first need to know how rebinding changes antigen extraction. The key

insight is that rebinding can alter the expected chance to get the antigen in some complexes

by closing the broken bond and ‘re-extracting’ the antigen later under a different force.

This is only important for complexes which broke before the system reached the equilibrium

state, since the new force per bond at equilibrium (F/ms) is greater than the force used

to break the same bond earlier (F/i, i > ms). Nevertheless, this effect diminishes at large
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kon, because the fraction of complexes whose extraction chance can be altered via rebinding

(i = m0,m0 − 1, ...,ms) decreases as ms approaches m0. This is why the change in In due

to rebinding is limited to some intermediate value of kon(Fig. 4.7D). More importantly, the

scaling dependence of Iτ on m0 and ∆G‡
b remains the same. Thus, one expects that In still

exceeds Iτ at high ∆G‡
b limit even in the presence of rebinding.

4.4 Discussion

One of the key challenges in immunology is to understand how an adaptive immune system

generates a robust immune response despite stochasticity at genetic, molecular, and cellular

levels. In particular, selection of high affinity B cells relies on the ability to rank B cells

based on the noisy affinity readouts. The task is complicated because GC reaction is an evo-

lutionary system with dynamical B cell affinity distributions, which makes the conventional

‘thresholding’ model inapplicable. With the abundance of data regarding the molecular dy-

namics, synaptic kinetics and cellular behavior, the time is ripe to tackle the problem from

a theoretical modeling perspective.

In this study, we present a detailed analysis of stochastic antigen extraction dynamics and

influences of thermal noise on affinity discrimination. Our simplified model takes account

of the key factors that determine the efficiency of antigen acquisition, including BCR, the

presenting tether, and mechanical pulling force. We quantified discrimination performance

using FI, which measures the sensitivity of the readout distribution to affinity change. Our

results reveal different readouts complement each other to cover a wide range of affinity spec-

trum for accurate discrimination. Specifically, rapid disassociation of low affinity BCR-Ag

bond enables accurate measurement of BCR-Ag lifetime via BCR signaling, which is over-

whelmed at high BCR affinity by APC-Ag bond disassociation that terminates the forceful

contact between B cell and APC. Instead, by comparing the BCR-Ag lifetime to APC-Ag

lifetime, the extracted antigen number retains some information about BCR affinity even
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though most breaking events happen at the APC side.

Our study emphasizes several strategies which are beneficial for affinity information ex-

traction. First, the complementary role of cluster lifetime and extracted antigen number

highlights the importance of adaptation. At different stage of affinity maturation, the BCR

signal and the T cell derived signal are not equally informative. Thus, as other adaptation

strategy utilized by immune system, an active switch of focus allows access of affinity in-

formation while minimizing the energy cost. Second, mechanical force plays a key role in

regulating the distinguishable affinity window and prompting affinity discrimination. In lig-

and discrimination by T cell, it has been shown that the force application can be extremely

important to select the correct ligand. Here we demonstrate that the cellular force of B

cell can adjust the sensitive window of affinity discrimination by regulating the chance of

antigen extraction, which enables a dynamical control of affinity discrimination during GC

evolution. Therefore, by actively tuning the force strength and switching the discriminator,

GC B cells are able to recognize beneficial mutants even in a high-affinity background.

Existing experiments support the above optimal affinity discrimination strategy. Diverse

experiments suggest a switch of focus from BCR signaling to T cell help during GC reaction

[25, 65, 117]. Other experiments show that naive B cells spend a lot of time engaging with

APCs whereas GC B cells only pause on APC for a few minutes [25, 52]. This is consistent

with our prediction that prolonged contact does not elevate the BCR affinity information

encoded in the number of extracted antigen. Besides, it has been shown that GC B cells

applied stronger and more persistent forces on antigen than naive B cells [32, 6], which is

necessary for a stringent affinity discrimination at the high-affinity regime in our model.

Additionally, in contrast with a low affinity naive B cell or a memory B cell which gathers

antigens toward the synapse center to form a large cluster, a GC B cell extracts antigen using

peripheral clusters with smaller sizes [32, 6]. This active manipulation not only ensures large

force per bond, but also suppresses rebinding and shortens the contact duration.

Our results may provide an understanding of experimental observations regarding B
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cell selection. First, there have been contradictory phenomena about BCR signaling in

experiments. On the molecular level, while some studies suggested GC B cells did not

directly signal through their BCRs [117], others reported that signaling was observed in a

subpopulation of GC B cells [136]. Likewise, on the cellular level, Victora et al. demonstrated

T cell derived signal limits GC B cell selection [65], but a more recent experiment by Turner

et al. showed BCR signaling augmented B cell selection in GC [118]. All those results can

be explained by the adaptation picture: BCR signaling may contribute to B cell selection

at early stage of GC evolution, but diminished at later stage. Indeed, experiments such as

Turner et al. [118] focused on the response in the first few days of GC reaction (i.e., the first

week after immunization) whereas Victora et al. [65] analyzed GC B cells after 2-4 weeks

since immunization. Second, another long-standing mystery of GC evolution is the retention

of GC B cells expressing low- and moderate- affinity BCRs while high-affinity B cells are

generated [80, 97], which seems contradictory to the competitive affinity-dependent selection

model of affinity maturation. However, if there is an adaptive transition during affinity

maturation, different B cell clones may render different “affinity-thresholds” of survival, that

is, the antigen-affinity thresholds for a portion of GC B cells may be lower than others [6].

Within this picture, the co-existing of low-affinity and high-affinity B cells is not impossible.

Indeed, recent experiment observed a permissive selection of GC B cell which ensures clonal

diversity for broad protection [79].

It is straightforward to design experiments and verify our results. First, one can quantify

the BCR signaling activity over the entire GC reaction period to see whether there is a

dynamic regulation or a sharp transition of BCR signaling strength. Second, the selection

fidelity can be measured by injecting a mixture of many wild-type B cells and a few benefi-

cially mutated B cells and mount the chance for the mutated B cell to survive and replicate.

Then our results can be verified by varying the background wild-type B cell affinity. Lastly,

in experiments, people are able to delivery antigens to B cell in a BCR-independent way.

Hence, it is possible to reduce the affinity information in T cell derived signal via delivering
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abundant antigens to all the B cells and see whether the affinity maturation is suppressed.
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CHAPTER 5

Dynamic control and feedback that optimize affinity

discrimination

5.1 Introduction

Motivation In previous chapters, we focused on antigen extraction stage and assumed

that B cells applied tugging forces after cluster formation. Nevertheless, recent experiments

demonstrated that B cells might apply highly dynamic and adaptive forces during the forma-

tion of ligand-receptor cluster, implying that the entire process, including cluster formation

and dissociation, is actively regulated by the B cell through mechanical stress. More im-

portantly, this suggests a feedback mechanism that couples binding kinetics, cytoskeleton

dynamics, and level of mechanical transition together into a sophisticated yet powerful sys-

tem, since B cells need to sense the binding configuration and apply force accordingly in

order to implement a dynamic control. How does this coupled system behave? If a B cell

is able to actively manipulate the ligand-receptor interaction, what is the optimal form of

feedback? Is it possible to reveal the underlying feedback by looking at some observable?

To tackle these intriguing questions, we generalize our model in chapter 4 to incorporate

systems with dynamical forces.

Feedback in affinity discrimination of T cells It has been suggested that feedback

played an important role in enhancing discrimination sensitivity and specificity of T cells. It

is known for a long time that the T cell signal transduction satisfies a tight set of properties,
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including speed, sensitivity and specificity. Specifically, discrimination among antigens is

achieved within a time window of 1-5 min (speed); a three- to five-fold increase in binding

lifetime is sufficient to distinguish antigens that activate T cells (agonists) from those that

do not (non-agonists) (sensitivity); T cells usually do not respond to self-ligands, even if

presented in numbers as high as 105 or more (specificity, aka absolute discrimination) [137].

The high sensitivity is explained by the classical kinetic proofreading (KPR) model [123],

which introduces a temporal lag between ligand binding and receptor signaling, allowing

amplification of the difference between agonists and non-agonists through non-equilibrium

reactions. Nevertheless, the KPR model cannot account for specificity as well as the observed

phenomenon of antagonism (presence of nonagonists can inhibit response to agonists). To

overcome this inconsistency, Germain and colleagues [138] added to the basic KPR process

a negative feedback mediated by SHP-1 and a positive feedback mediated by ERK kinase.

Given plausible parameters, the elaborate model was able to satisfy the constraints of speed,

sensitivity, and specificity [139]. With the insights of feedback, François et al. [105] proposed

a simple analytical model that relied on just the SHP-1 negative feedback yet successfully

recapitulated experimental observations. These models highlighted the effect of negative

feedback in T cell affinity discrimination.

Mechanical control during antigen extraction Nevertheless, B cells display distinct

behavior from T cells [140]. For example, growing evidence suggested GC B cells may make

decisions based on the efficiency of antigen capture instead of receptor signaling [117, 141,

95, 118]. Besides, the pulling machine in B cell is found to be dissimilar from T cell’s,

consisting of not only in-plane contraction force but also strong dynamical out-of-plane

normal forces [2]. Regardless of those significant differences in cellular behavior, B cells

also show surprisingly efficient and absolute affinity discrimination. For example, antigens

that differ in affinity by six-fold resulted in a significant difference in antigen extraction [2].

In addition, given that antigens are nonhomogeneously distributed over space and B cells
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cannot sample the entire GC structure [52], selection of high affinity B cells is still effective,

indicating that it can reduce the influence from antigen concentration fluctuations and focus

on antigen binding affinity. Therefore, a new model is demanded to understand how such

properties emerge from the non-equilibrium antigen extraction process.

Recent experiments provided insights about the regulatory role of dynamical mechanical

force. The reorganization of member cytoskeleton initiates just seconds after B cell receptor

binding to antigen [142], which is far before the cluster size begins to shrink. A direct

observation was made by Kwak et al. [6]. By utilizing time-lapse live-cell imaging, they

showed that B cells applied highly dynamical pulling force during the formation of ligand-

receptor clusters when contacting with substrates coated with antigens [6]. Quantification

of actin localization indicates that the amount of myosin IIa and F-actin correlates with

the size of antigen microclusters [2]. Further studies reported correlations between pulling

force and the antigen cluster size [23, 24]. These observations indicate that the cytoskeleton

structure may be able to sense and feed back to the ligand receptor interaction. It remains

unclear whether and how such feedback influences the affinity discrimination function. It is

speculated that B cells might utilize the mechanical force to regulate the antigen extraction

process and achieve the desired properties of affinity discrimination [32, 6], resembling the

idea of mechanical proofreading [143]. Yet the underlying physical principle is missing.

Additionally, the kinetics of the antigen extraction process under dynamical force itself

is an intriguing problem. Existing studies focused on the stability of pre-existing clusters.

The dynamics of cluster rupture has been described long ago by Bell [15] and Erdmann

et al. [130]. Bell [15] assumed a constant pulling force uniformly distributed on all connected

bonds in a pre-existing cluster. The deterministic model predicted a critical force that was

just sufficient to rupture the cluster. A stochastic version of the Bell’s model has been

investigated in very detailed form by Erdmann and Schwarz [130], which suggested distinct

cluster stability compared to the deterministic model. However, one common assumption in

existing studies is that forces (either constant or dynamical) are deployed long after cluster
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formation and independent of binding state. How does the system behave under an adaptive

force? What is the bridge connecting passive binding with active mechanical transition? Is

it possible to reveal the underlying force dynamics by looking at the observable?

To tackle those questions, we build a model that integrates cluster formation, force de-

velopment, and cluster disassociation to investigate the role of dynamical force in antigen

acquisition and affinity discrimination by B cells. The coupled system reproduces the cluster

formation-disassociation dynamics observed in experiments. To break the cluster within a

reasonable timescale, the force has to respond fast enough or be large enough. Based on the

dynamics, we propose that the contact duration can potentially be a good indication of un-

derlying force schemes. Additionally, antigen acquisition depends on both cluster formation

and cluster disassociation, both of which are mediated by force. Based on this, we show force

can contribute to affinity discrimination either through increasing the sensitivity of cluster

formation to affinity change, or by enhancing the sensitivity of extraction efficiency to affin-

ity change. Both methods require a dynamical force that is adaptive to the underlying BCR

affinity.

Furthermore, our model predicts that force can benefit affinity discrimination in other

aspects. We show that by tuning the force schedule, the system can prioritize speed in

one context and discrimination fidelity in another. More interestingly, for low-affinity B

cells, speed and fidelity can be improved simultaneously by guiding the liand-receptor sys-

tem towards the bifurcation point in parameter space, where the cluster formation becomes

extremely sensitive to affinity perturbations. Besides, if a B cell could sense the cluster size

and apply force accordingly, a natural negative feedback on clustering is created, which con-

sequently reduces the influence of fluctuations in ligand concentration, resulting in absolute

discrimination.

Lastly, our model allows us to study the interference between different antigen types

under a dynamical force. We show an antagonism effect naturally emerges as antigens are

coupled together by collectively triggering and sharing the force, that is, the presence of a
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Figure 5.1: B cells extract antigens from the APC using dynamically controlled cytoskeletal

forces. (A) Adhesion of B cell to APC relies on clusters with receptors (blue) binding to

antigens (red) tethered on the APC receptors (brown), forming three-body complexes. The

tight linkage of BCR to the actin cytoskeleton network (green) generates and transmits

dynamical out-of-plane forces to binding complexes as instant feedback to cluster formation,

which serves to extract antigens from APC. (B) We assume the force is time-dependent or

max-cluster-size dependent, which follows the Hill function parameterized by F0, mc (or tc)

and β.

secondary self antigen inhibits the extraction of foreign antigens.

5.2 Model

The interaction between B cell and APC involves ligand receptor binding, cluster formation

and extraction by force (Fig. 5.1A) [144, 5, 37]. We focus on the dynamics of a local cluster

within a synapse. Antigen ligands and receptors are assumed to be uniformly distributed

and move freely, so that one can omit the spatial resolution. In the beginning, B cell uses

BCRs to bind to antigens that are tethered on the surface of APC, forming three-body
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complexes APC-Ag-BCR. This simple coarse grained structure captures the key point of

antigen acquisition: B cell obtains antigen only when BCR-Ag bond persists longer than

APC-Ag bond. The initial engagement of BCR and antigen triggers the reorganization of

cytoskeletons, which exerts force on the bonds and accelerate the unbinding. We assume the

interaction terminates when all complexes are broken. Below, we show our mathematical

model that describes the above process.

Ligand receptor interaction The stochastic chemical reactions between ligand, receptor

and tether are modeled by a master equation. Let m and n be the number of BCR-Ag-APC

complexes and BCR-Ag complexes at time t, respectively. We assume there is no antigen in

the soluble form. Then, given the total number of antigen ligands available, L0, the number

of antigens in the form of APC-Ag is (L0 − m − n). Thus, the system state is completely

described by (m,n). The probability for the system to be in state (m,n) evolves according

to

dP (m,n; t)

dt
=

[
(ξ+1,−1 − 1)mka + (ξ+1,0 − 1)mkb + (ξ−1,+1 − 1)nkon + (ξ−1,0 − 1)(L0 −m− n)kon

]
P. (5.1)

Here ξi,j is the step operator: ξi,jG(m,n) = G(m + i, n + j) for any function G(m,n). We

assume that free tethers and free BCRs are abundant, which do not change much during

reactions. In addition, we assume two binding interfaces (BCR-Ag and APC-Ag) share the

same diffusion-limited on-rate kon but differ in their off-rates. The off-rates of APC-Ag bond

(koff
a ) and of BCR-Ag bond (koff

b ) are given by,

ka(m) = k0e
−(∆G‡

a−
Fx

‡
a

m
)/kBT , (5.2a)

kb(m) = k0e
−(∆G‡

b−
Fx

‡
b

m
)/kBT . (5.2b)

Here the off-rates depend on the force per closed bond F/m, where F is the total force on

the entire cluster, and m is the instantaneous cluster size. ∆G‡
a and ∆G‡

b are respectively

the APC-Ag binding affinity and BCR-Ag binding affinity. x‡
a and x‡

b are bond lengths.

k0 accounts for other factors that are not considered in our model, such as the effect of
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membrane fluctuations. The above process is the same as the model in chapter 4. The

differences lie in the force scheme and the initial condition, as we describe below.

Force schemes To model dynamical forces, we utilize the phenomenological functions with

tunable parameters. Experiments show that the force produced by B cell can be dynamic

and correlated with the ligand-receptor binding state [32, 23]. Explicitly, we consider time-

dependent dynamic force and cluster size-dependent force, which are assumed to take the

following forms

F (t) = F0
tβ

tβ + tβc
, or F (mmax) = F0

mβ
max

mβ
max + mβ

c

. (5.3)

Here, F0 controls the force magnitude, and tc or mc characterizes the on-set threshold.

mmax(t) = maxt′<t[m(t′)] is the maximal cluster size in the history of a cluster. The non-

linearity is determined by β: small β corresponds to early force initiation but slow force

development, whereas large β represents step-like force (Fig. 5.1B). By tuning parameters,

we are able to cover a wide range of possible force schemes.

Stochastic reaction simulations We use Gillespie algorithm [145] to simulate the stochas-

tic reactions associated with Eq. 5.1. The reactions include: (1)binding between BCR and

antigen: BCR + Ag → BCR-Ag; (2)unbinding between BCR and antigen: BCR-Ag → BCR

+ Ag; (3)unbinding between APC and antigen: APC-Ag → APC + Ag; (4) binding be-

tween APC and antigen: APC + Ag → APC-Ag. The reaction rates are the same as what

appears in the master equation. For the time-dependent force, we use a stochastic reaction

to simulate the change in force: F → F + ∆F . ∆F is fixed at 1pN and the reaction rate is

determined according to the force schedule. To avoid unrealistically short contact, we require

the contact to be greater than tmin = 1s. Besides, to avoid unrealistically long contact, we

also end the simulation when the time reaches an upper limit tmax = 30min. Note that in

the stochastic reaction simulations, molecules are unlabeled. Thus, we can only keep track

of the number of complexes, (m,n).
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Figure 5.2: Simulated trajectories (solid line) reproduce experimental observations (sym-

bols). Experiment data was extracted from [2]. A time-dependent F (t) was used in the

simulation for panel (A). Panel (B) shows a trajectory under cluster-size-dependent force.

Parameters: L0 = 100, kon = 0.05s−1,∆G‡
a = 12.6kBT,∆G‡

b = 13.3kBT . Force parameter:

F0 = 350pN, β = 5, tc = 1.5min,mc = 60.

Agent-based simulation To better understand the process, we perform explicit agent-

based simulation according to the trajectory obtained in the stochastic reaction simulations.

The Gillespie algorithm above generates a time series of reaction events. For each reaction

event, we randomly draw individual agents (i.e., BCR, Ag, etc.) to perform the reaction

explicitly. Because all complexes are labeled and distinguishable in the agent-based simula-

tion, we can keep track of all visited antigens and unvisited antigens. This allows us to get

the total number of visited antigens (those who have bound to BCR, mtot, see definition in

section 5.3.2 below).
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5.3 Results

5.3.1 Cluster formation and dissociation dynamics

Recently, a lot of efforts have been devoted to visualize the interaction between B cells and

APCs at different scales using advanced imaging technique [30, 34, 52, 2, 32, 6]. Experiments

vividly show that binding of B cell receptor to antigen ligands leads to synapse formation

followed by antigen acquisition [30]. Despite the difference in synapse architecture [32],

pulling force, affinity selection threshold [6] between germinal center B cells and naive B cells,

the cluster formation-disassociation process is shared by all observations [2]. In this section,

we show that our model reproduces the observed dynamics. Furthermore, by analyzing a

mean filed model in the deterministic picture, we discuss how the criticality emerges and

influences dynamics.

In Fig. 5.2, we overlay the simulated trajectories m(t) above the experimental data ob-

tained from real-time fluorescence imaging, which shows beautiful agreement. At the begin-

ning of a contact, the cluster grows because the pulling force is small. When the force is large

enough, a cascade of unbinding reactions takes place, leading to rapid cluster dissociation.

This is a feature of load sharing: the more bond breaks, the larger force per bond applied to

complexes that remain closed. Therefore, the disassociation is accelerated over time during

the rupture stage. At the end of the interaction when all complexes are ruptured, some

antigens are acquired by the B cell, whereas others remain on APC. It should be noted that

though the cluster formation and rupture cascade are ubiquitous in all simulations that suc-

cessfully break the cluster, the timescale of contact may vary significantly between different

parameter settings or even different realizations. In some cases, if the force is too weak,

clusters never break before our simulation terminates.

To gain a quantitative understanding, we look at a mean field model. In the deterministic
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picture, dynamics of Eq. 5.1 can be described by the following ODE,

dm
dt

= −(ka(m) + kb(m))m + kon(L0 −m− n) + konn, (5.4a)

dn
dt

= ka(m)m− konn. (5.4b)

Note that this mean field equation applies when m ≥ 1. m = 0 is an absorbing boundary.

To find the steady state under a given force F , we solve for dm/dt = 0, dn/dt = 0. This

provides a condition for steady state cluster size ms, reading as

(L0 −ms)kon = ms(ka(ms) + kb(ms)), (5.5)

which balances the on- and off-propensity. Steady states of Eq. 5.4 exist if the above equation

has solutions. Otherwise, the system will be driven to the absorbing boundary at m = 0.

Fig. 5.3 shows l.h.s. and r.h.s. of Eq. 5.5. It suggests that, under a small force F , there

are two crossing points which correspond to two steady states (denoted as mlow
s and mhigh

s ).

As force increases, two steady solutions converge and disappear, indicating a bifurcation

transition. Perturbation analysis suggests that the larger solution mhigh
s is stable, whereas

the smaller one mlow
s is unstable.

To find the critical force at the point of bifurcation, F ∗, we solve the following condition

in addition to Eq. 5.5,

d

dms

kon(L0 −ms) =
d

dms

ms(ka(ms) + kb(ms)). (5.6)

This locates the point along the steady state curve ms-F where the gradient over m vanishes.

For given internal parameters (ka, kb, kon, L0, fa, fb), the solution (F ∗,m∗) does not have

explicit form. Hence, to get analytical understanding, we consider the limit of strong BCR

(ka(ms) ≫ kb(ms)) or weak BCR (ka(ms) ≪ kb(ms)). In the former case, we let f ≡ fa, K ≡

kon/(k0e
−∆G‡

a/kBT ). For the later case, we let f ≡ fb, K ≡ kon/(k0e
−∆G‡

b/kBT ). The condition

for bifurcation point becomes

m∗e
F∗
m∗f ≈ K(L0 −m∗), (5.7a)

(1 − F ∗

m∗f
)e

F∗
m∗f ≈ −K. (5.7b)
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large force, the system does not have a non-zero steady solution. (B)The system undergoes
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We label the bifurcation tipping point by a star. Gray arrows show the evolution trajectory

under constant force, determined by perturbation analysis. The green arrows show two

schematic plots of typical trajectories under a ramping force. Thus, deterministically, the
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when m < mlow
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This gives

F ∗ ≈ L0fpln(
K

e
), (5.8a)

m∗ ≈ L0

pln(K
e

)

pln(K
e

) + 1
. (5.8b)

Here pln(a) is defined as the solution x to xex = a. e is the Euler’s number. The results

above resemble what Bell found [15] except that now the critical force is characterized by the

weaker bond (the bond that can resist a smaller force) in the bond chain structure. Finally,

we combine the strong BCR limit and weak BCR limit, and express the critical point in a

general formula:

F ∗ ≈ L0 min
(
fapln( kon

k0e
1−∆G

‡
a/kBT

), fbpln( kon

k0e
1−∆G

‡
b
/kBT

)
)
, (5.9a)

m∗ ≈ L0 min
( pln( kon

k0e
1−∆G

‡
a/kBT

)

pln( kon

k0e
1−∆G

‡
a/kBT

)+1
,

pln( kon

k0e
1−∆G

‡
b
/kBT

)

pln( kon

k0e
1−∆G

‡
b
/kBT

)+1

)
. (5.9b)

Numerical solution of Eq. 5.5 and Eq. 5.6 agree well with the above approximation. The

system is unstable when F > F ∗. Thus, F ∗ characterizes the maximal force a cluster can

resist in the deterministic picture. From Eq. 5.9, we can see the critical force scales linearly

with L0.

The mean field analysis above tells us when the cluster is likely to break. First, when F

is small, if the cluster size is below mlow
s (F ), it may disassociate quickly without reaching the

stable equilibrium cluster size mhigh
s due to the large force per bond (see the bottom green

trajectory in Fig. 5.3B). Second, when force is beyond the critical value F ∗, no non-zero

ms exists and thereby the cluster is unlikely to maintain (see the top green trajectory in

Fig. 5.3B). Therefore, one expect a fast force directly rupture the system when m is below

mlow
s , whereas a large force (F > F ∗) is needed to break the cluster if force develops slowly.

5.3.2 Contact duration and extracted antigen number

Two measurable quantities about the interaction dynamics are (1) the total contact duration

and (2) the number of extracted antigen [25, 33]. In this section, we discuss the influence of
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different force schemes on the timescale of contact and the efficiency of antigen extraction.

Contact duration We first look at the average contact duration τ as a function of ligand

number L0 (Fig. 5.4). Interestingly, the scaling relationship between τ and L0 varies as

the underlying force scheme changes. Under a time-dependent force F (t), more ligands

always result in longer expected contact. In contrast, τ decreases with L0 under F (mmax).

This qualitative difference arises from a simple principle: The contact duration is mostly

determined by the time when the force is large enough to stop cluster growth and break all

closed complexes. The time it takes B cell to develop a large enough force depends on how

the force is triggered. We show this explicitly below.

For a slowly developing force that is time-dependent F (t), the system collapses when F

goes beyond the bifurcation point F ∗. When F0 ≫ F ∗, we have F (t) ≈ F0(
t
tc

)β. Then, the

condition F (τ) ≈ F ∗ ∝ L0 indicates that

τ ∝ L
1/β
0 . (5.10)

In contrast, for a cluster size sensing force, the contact duration is determined by the time

it takes to form a large enough cluster, that is F (mmax(τ)) ≈ F ∗. To get a simple scaling

relation, we assume the force is step-like (β = ∞). Because there is no force before m reaches

mmax, we can solve the ODE Eq. 5.4 to get mmax(t) = m(t) = L0kon(1−e−(kon+ka+kb)t)/(kon+

ka + kb) ≈ L0kont. The approximation holds when t ≪ 1/(kon + ka + kb). The condition

mmax(τ) ≈ mc suggests that

τ ≈ mc

L0kon
∝ L−1

0 . (5.11)

The scaling relationships agree with simulation results well (Fig. 5.4).

Therefore, the distinct scaling relationships imply that one might be able to determine

what force scheme is used by a B cell via quantifying the dependence of contact duration on

free antigen ligand number. Specifically, if higher ligand density results in longer contact,
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then B cells might read the binding time to trigger force. In contrast, force might be cluster-

size dependent if contact duration gets shorter when more ligands are available.

Number of extracted antigens While the contact duration is mostly determined by the

cluster formation stage, the number of extracted antigen nag depends on both the cluster

formation and disassociation progress. First, a B cell must bind to Ag in order to obtain it.

We define mtot as the total number of distinct Ags that have been visited by BCRs. Note

that mtot can be larger than mmax because unbinding may happen before a BCR visits a new

antigen ligand. Second, in the dissociation stage, an Ag is successfully extracted when BCR-

Ag bond persists longer than APC-Ag bond. Since BCR-Ag lifetime and APC-Ag lifetime

are assumed to be independent, antigen extraction becomes coin-flipping event, meaning the

B cell gets a antigen with a chance η. Note that η may change as force per bond changes.

Explicitly,

η(fr) =
1

1 + kb
ka

=
1

1 + e(∆G‡
a−∆G‡

b−fr(x
‡
a−x‡

b))/kBT
, (5.12)

where fr is the force per bond right before the bond rupture. For stiff APCs (x‡
a < x‡

b), the

larger the force, the lower the extraction probability. Besides, η depends on BCR affinity

∆G‡
b: As ∆G‡

b improves, η increases from 0 to 1. Therefore, antigen extraction becomes mtot

Bernoulli events (with different η because the values of fr are different). Explicitly,

nag =
mtot∑
i=1

Xi, (5.13)

where Xi ∈ {0, 1} is a random variable indicating whether i-th antigen is successfully ex-

tracted or not. From this perspective, the distribution of nag can be written as

P (nag) =

L0∑
mtot=0

P (mtot)P (nag|mtot), (5.14)

where P (nag|mtot) = Prob(
∑mtot

i=1 Xi = nag). P (mtot) and P (nag|mtot) can be obtained

from agent-based simulations. The above formula suggests that the more antigens a B cell

encounters, or the larger the extraction chance, the more antigens a B cell can acquire.
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To provide more analytical understanding of the distribution P (nag), we look at the first

two moments, the mean µn and the variance σ2
n. From Eq. 5.13, we have

µn ≡ ⟨nag⟩ = ⟨
mtot∑
i=1

Xi⟩ = ⟨
mtot∑
i=1

η(fr,i)⟩ ≈ ⟨mtot

∫
η(fr)P (fr)dfr⟩ = ⟨mtotη⟩. (5.15)

Because for each antigen, extraction is a coin-flipping event, ⟨Xi⟩mtot,fr,i = η(fr,i), where

⟨·⟩mtot,fr,i is averaging many realizations that have the same mtot and same rupture force

for i-th antigen fr,i. P (fr) is the rupture force per bond distribution across all visited

mtot antigens. ⟨·⟩ is the ensemble average, i.e., averaging many independent realizations

(with labeled antigens). η is the mean extraction chance, averaged over the force per bond

distribution P (fr). We can clearly see it depends on both the cluster formation mtot and

the extraction chance η. Meanwhile, the variance can be expressed as

σ2
n ≡ ⟨n2

ag⟩ − ⟨nag⟩2. (5.16)

Although it is difficult to find the explicit expression for µn and σ2
n in general, we can gain

analytical understanding in some special cases. For instance, if a large step force F0 applies

long after the system reaches an equilibrium state ms = mhigh
s (F = 0), we have mtot = L0

(all antigens will be visited given a long enough time at the equilibrium state). The rupture

force per bonds are {fr} = {0, ..., 0︸ ︷︷ ︸
L0−ms

,
F0

ms

,
F0

ms − 1
, ..., F0︸ ︷︷ ︸

ms

}. Therefore,

µn = (L0 −ms)η(0)︸ ︷︷ ︸
extraction at equi.

+
ms∑
i=1

η(
F0

i
)︸ ︷︷ ︸

extraction during rupture

, (5.17a)

σ2
n = (L0 −ms)η(0)[1 − η(0)] +

ms∑
i=1

η(
F0

i
)[1 − η(

F0

i
)]. (5.17b)

Note that we replaced the integral in Eq. 5.15 and Eq. 5.16 with summation because we

know the exact values of force per bond. Furthermore, if the fluctuation in mtot is small

compared to itself, then mtot ≈ ⟨mtot⟩. We can simplify Eq. 5.15 and Eq. 5.16 into

µn = ⟨mtot⟩⟨η⟩, (5.18)

σ2
n ≈ ⟨mtot⟩⟨η − η2⟩. (5.19)
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Figure 5.5: Simulation results (symbols) of mean antigen extraction (A) and standard devi-

ations (B) agree with Eq. 5.19 (black lines). We use a time-dependent force (F0 = 600pN,

tc = 1min, β = 5).The fluctuations are larger than expected at high ∆G‡
b, which is because

some contact lasts for longer than tmax.

Here η2 ≡
∫∞
0

η2(fr)P (fr)dfr. When mtot and P (fr) are available, the above equation can

be evaluated from the first principle. Alternatively, ⟨mtot⟩ and ⟨η⟩ can be obtained from the

agent based simulations. In Fig. 5.5 we show that the above formula agrees with simulation

well.

The above analysis clearly suggests that the number of extracted antigens mainly depends

on (1) the number of antigen ligands have been visited by BCR during the contact; (2) the

average chance to obtain an antigen when the three-body complex breaks. In the next

section, we discuss how different force schemes modulate those two factors and influence

affinity discrimination.

5.3.3 Optimal force schemes for affinity discrimination

The functional purpose of antigen extraction is affinity discrimination, that is, higher affinity

B cells are expected to get larger number of Ags. In this section, we quantify the affinity

123



discrimination performance and ask what are the optimal force schemes that give the best

affinity discrimination. Our results suggest the optimal force scheme may vary as B cell

affinity changes.

Selection fidelity To quantify the performance of affinity discrimination, we use the se-

lection fidelity, namely the probability for a high-affinity B cell to get more antigens than its

low-affinity peer. We consider the discrimination between two B cells with different affinities

(∆G‡
b vs ∆G‡

b + ϵ). A ‘correct’ selection means that the high-affinity B cell gets more antigen

than the low-affinity one and thus is selected for further evolution. Nevertheless, due to

the stochastic nature of the antigen extraction process, this is not guaranteed. Thus, the

probability for our system to make a correct decision is

ξ = Prob[nag(∆G‡
b + ϵ) > nag(∆G‡

b)], (5.20)

which can be an evaluation matrix for affinity discrimination. The higher the value of ξ, the

better the discrimination.

We are aware of other evaluation matrix such as KL divergence that could potentially

be useful, but we prefer to focus on the selection fidelity because it is easy to evaluate using

stochastic simulations and is more biologically meaningful.

To provide more intuition about selection fidelity, we discuss some special cases. If two B

cells are identical (ϵ = 0), then ξ = 0.5, meaning two B cells have equal chance to be selected.

If the distribution of nag(∆G‡
b + ϵ) is well separated from the distribution of nag(∆G‡

b), then

ξ ≈ 1, suggesting high selection accuracy (Fig. 5.6A). Moreover, if nag follows Gaussian

distributions with affinity-dependent mean µn(∆G‡
b) and variance σ2

n, in the limit of ϵ ≪ 1,

ξ ≈ 1

2
+

1

2
√
πσn

dµn

d∆G‡
b

ϵ. (5.21)

Therefore, the selection fidelity is high when (1)the mean antigen extraction is sensitive to

affinity change (large dµn

d∆G‡
b

) or (2) nag is narrowly distributed (small σn). Based on our
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Figure 5.6: (A) Ranking fidelity ξ quantifies how well the extracted antigen distributions

of two B cells are separated. (B) The ranking fidelity as a function of BCR-Ag affinity.

Symbols were obtained from the simulation. The black curve is the approximation based on

Eq. 5.22. We plotted the contribution from cluster size and extraction chance respectively

in blue and purple (see Eq. 5.22). We use a time-dependent force(F0 = 600pN, tc = 1min,

β = 5). ϵ = 0.3kBT .

results in Eq. 5.19, we get

dµn

d∆G‡
b

≈ ⟨η⟩d⟨mtot⟩
d∆G‡

b

+ ⟨mtot⟩
d⟨η⟩

d∆G‡
b

, (5.22)

which contains two parts: contribution from cluster formation and from cluster disassociation

(Fig. 5.6B). Specifically, the first term enters because B cells with different affinities may

engage with different number of ligands during a contact, and the second term suggests B

cells can be discriminated through extraction chance. Both of the mechanisms have been

demonstrated vividly in experiments [31, 2].

Optimal force scheme Then the question is how a dynamical force can help to enhance

the fidelity? More specifically, what force scheme can provide the best discrimination?

To find the optimal force scheme, we use the simulated annealing algorithm to optimize

ξ for given internal parameters(∆G‡
a,∆G‡

b, L0 etc.) and fixed β. First, we generate random

initial parameters (F0, mc or tc), drawn from a uniform distribution within a realistic range
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Figure 5.7: (A) To optimize discrimination, dynamical force needs to focus on different

stages of antigen acquisition at different BCR affinities. For each β, the simulated anneal-

ing algorithm was used to find the optimal fidelity (symbols) at various background BCR

affinity ∆G‡
b. The solid curve, which agrees with the global optimal when ∆G‡

b > ∆G‡
a

but displays significant deviation when ∆G‡
b < ∆G‡

a, shows the optimized fidelity when

force applies after the cluster stabilizes and thereby contributes only through the rupture

process. The vertical dotted line marks ∆G‡
a. (B-D) The optimal force parameters that

generated the optimized ξ in (A). Panel (A) and (B) (red symbols) are for step force

(F (mmax; β = ∞)). Panel (C) (black symbols), which shows the optimal F0 and mc sat-

isfy F (m∗) = F0m
∗/(m∗ + mc) = F ∗ at low affinity, is for F (mmax; β = 1). Parameters:

L0 = 100,∆G‡
a = 12.6kBT, kon = 0.05s−1, x‡

a = 1.5nm, x‡
b = 2nm, ϵ = 0.5kBT . Error bars

were obtained from 5 runs.
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(0 < F0 < 6000pN, 0 < mc < L0, tmin < tc < tmax). Then we evaluate the fidelity ξ by

repeatedly comparing the antigen extraction of two similar B cells for 5000 times. After

that, we attempt parameter changes (F ′
0 = F0 + δF ,m

′
c = mc + δm, ln(t′c) = ln(tc) + δt) and

evaluate the corresponding fidelity ξ′. Note that tc is perturbed in a logarithmic scale. The

perturbations of δF , δm and δt follow standard normal distributions with standard deviation

respectively 200pN, 20, 0.5. Nonphysical perturbations that lead to mc < 0 or too long

contact (t > tmax) are rejected. We calculate the change in fidelity ξ′− ξ and decide whether

to accept the perturbation according to Metropolic-Hastings criterion. Specifically, if the

fidelity is improved, we accept the change. Otherwise, we accept it with the probability

Paccept = e(ξ
′−ξ)/T0 . We repeat this perturbation-evaluation-accept procedure for 300 steps.

At the same time, we decrease the “temperature” T0 by T0 = 1/i, where i is the optimization

step. This gives us one result of the optimized fidelity and optimal parameters. To make sure

that our results are global optimal, we repeat the above process for 5 times starting from

different initial parameters. All repeated simulations gave similar results. In addition, we

scanned parameters in the realistic range (0 < F0 < 2000pN, 0 < mc < L0, tmin < tc < tmax)

with fixed step size, which provided consistent results.

Fig. 5.7 suggests the optimal force schemes depend on the underlying BCR affinity. On

the one hand, at high BCR affinity (∆G‡
b > ∆G‡

a), a step force β = ∞ (either F (t) or

F (mmax)) gives the optimal ξ. At low ∆G‡
b, on the other hand, the nonlinearity β is not

important, but the force needs to satisfy F (m∗) = F ∗. We explain these results in detail

below.

At high ∆G‡
b, a step force is needed to produce a large enough rupture force to optimize

sensitivity in antigen extraction dη/d∆G‡
b. When ∆G‡

b > ∆G‡
a, cluster formation is limited

by ∆G‡
a and weakly depends on ∆G‡

b. Hence, the sensitivity mostly comes from the rupture

process. In fact, the optimal ξ can be reached if force only contributes through the rupture

stage(Fig. 5.7A). To maximize ξ, one needs a large mtot and a large dη/d∆G‡
b. The former

condition can be satisfied by a large on-set condition (mc or tc). The later one requires a
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proper rupture force to close the affinity gap between BCR and tether, because dη/d∆G‡
b

peaks at koff
b = koff

a , that is

F∆x/mr ≈ ∆G‡
b − ∆G‡

a. (5.23)

mr is the cluster size right before force application. For a step force, this can be achieved by

tuning F0 accordingly (Fig. 5.7B-C). However, if force increases gradually, Eq. 5.23 cannot

be met at high ∆G‡
b because the system will quickly collapse once the force exceeds F ∗.

That’s why a step force is expected to optimize the discrimination.

In contrast, at low ∆G‡
b, a dynamical force that controls cluster formation optimizes

discrimination. In Fig. 5.7A we show the fidelity at low ∆G‡
b can be significantly improved if

the force is applied before cluster formation reaches the steady state (symbols above the solid

line), implying that the cluster formation can play an important role. More intriguingly, the

optimal force schemes at low ∆G‡
b satisfies a general condition (Fig. 5.7B-D), that is

F (m∗) = F0
(m∗)β

(m∗)β + mβ
c

= F ∗. (5.24)

This is due to the high sensitivity of cluster formation near the tipping point in the steady

state curve (Fig. 5.3), which corresponds to the bifurcation transition. Near the tipping point,

a small increase (say ϵ) in ∆G‡
b greatly changes the dynamics from force driven disassociation

(F > F ∗(∆G‡
b), small mtot) to fluctuation driven disassociation (F < F ∗(∆G‡

b + ϵ), large

mtot). Therefore, to maximize dmtot/d∆G‡
b, the applied force needs to guide the system

towards the bifurcation point (F = F ∗,m = m∗). To achieve this, a cluster-size dependent

force satisfying Eq. 5.24 is desired.

In practical, even though it might be impossible for a B cell to know precisely where

is the tipping point or what is the force that matches the affinity gap, our results are still

meaningful because they imply different strategies should be deployed depending on whether

∆G‡
b is below or above ∆G‡

a, a critical affinity might be known by B cells. This is because

the tether bonds consist of antibodies generated by plasma cells. Thus, in the early stage

128



0.4 0.6 0.8 1

10-1

100

101

102

10-2
0.4 0.6 0.8 1

10-1

100

101

102

10-2
0.4 0.6 0.8 1

10-1

100

101

102

10-2 0

120

60

mc
v r
(m
in
-1
)

F0, (pN)
2000

0

1000

1
5
∞

β

ξ ξ ξ

∆Gb
‡=11kBT ∆Gb

‡=13.3kBT ∆Gb
‡=17.4kBT

Figure 5.8: Discrimination by antigen extraction exhibits speed-fidelity trade-off. We plot

speed against fidelity, evaluated for sampled force schedules (changing F0, β, and tc) at dif-

ferent affinity (from left to right, ∆G‡
b = 11kBT , 13.3kBT , 17.4kBT ). Each symbol represents

the average of 10000 independent runs for one parameter set. The value of F0, β and mc are

coded in the size, color and opacity of each symbol, respectively. The figure shows that, at

high ∆G‡
b (right), a step force sets the Pareto front, whereas a linear sensing force can opti-

mize the trade-off at low ∆G‡
b(left). Parameters: ∆G‡

a = 12.6kBT, L0 = 100, kon = 0.05s−1.

Time-dependent force was used. Cluster size dependent forces generate similar behavior.

of GC reaction, ∆G‡
b is roughly equal to or lower than ∆G‡

a. As affinity maturates, ∆G‡
b

becomes higher than ∆G‡
a due to positive selection. Therefore, our model predicts a switch of

forcing scheme during the progress of affinity maturation to optimize affinity discrimination,

consistent with our results in chapter 4.

5.3.4 Discrimination speed and fidelity trade-off

One common feature in cellular sensing or discrimination task is the trade-off between fidelity

and speed [123, 146, 147]. In the traditional proofreading scheme, the fidelity was enhanced

at a cost of signaling transmitting speed. In practice, therefore, biological systems may not

be able to reach the optimal limit due to time constrains.

Here, the antigen extraction process provides distinct ways to sense and discriminate
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BCR affinity. Are there similar constrains in this physical process? Our results suggest that

a trade-off between speed and fidelity also emerges in B cell affinity discrimination. To show

this, we consider the selection fidelity and speed v = 1/τ .

Speed and discrimination fidelity for various sampled value of F0 and β are depicted in

Fig. 5.8, which shows that adjusting the force scheme can trade off fidelity against speed.

Specifically, for a fixed nonlinearity β, the value of F0 sets the Pareto front in the fidelity-

speed diagram, whereas the onset time tc (or cluster size mc) moves the system along the

Pareto front. This trade-off is intuitive from the perspective of information gathering, as it

takes time to accumulate BCR-Ag breaking events to infer the binding affinity.

In addition, depending on the affinity, different nonlinearity β results in different Pareto

fronts (Fig. 5.8). At high ∆G‡
b, a step force sets the optimal front. This is because it allows

rapid cluster formation, and can generate higher fidelity for a given mtot, as we note in the

last section. In contrast, at low ∆G‡
b, a linear sensing force β = 1 can optimize the trade-off.

At β = 1, force applies at the beginning of contact, which prevents low-affinity B cells from

forming clusters but allows high-affinity ones to have large clusters before extraction. This

ensures fast discrimination.

It is worth noting that the trade-off in Fig. 5.8 displays turning points. At low affinity,

both ξ and vr can be optimized simultaneously. The turning point corresponds to the Eq. 5.24

where ξ is maximized by the sensitivity of the bifurcation tipping point. At high affinity,

after the turning point, further delaying force application did not improve fidelity much but

greatly slowed down the process. Therefore, the turning points provide an optimal solution

to balance speed and discrimination fidelity when BCR affinity is low.

5.3.5 Absolute discrimination by cluster sensing force

Another intriguing feature of affinity discrimination is its insensitivity to variations in ligand

concentration. Fluorescent images display inhomogeneous distribution of antigens across
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GC. Different B cells show distinct migrating paths in GC [52], which implies that some

B cells might see more antigens (larger L0) than others. Nevertheless, the selection should

be only based on B cell’s quality (affinity) and independent of seen antigen quantities (L0).

How B cells could overcome the heterogeneity of antigen distribution and make discrimi-

nation “absolute”? Is it possible to utilize mechanical control to separate receptor quality

from ligand quantity? In this section, we show that the cluster-size-dependent force indeed

can reduce the dependence of antigen extraction on ligand number and achieve absolute

discrimination.

We show that if a B cell is able to sense the cluster size and apply force accordingly in

a non-linear form, it can provide negative feedback. As shown in Fig. 5.9A, for cluster-size-

dependent force with β > 1, the force per bond F/m increases with cluster size before the

total force saturates. In other words, the larger the cluster size, the larger the force per bond,

and it is harder to form new complexes. This is similar to the negative feedback provided

by SHP-1 in TCR signaling cascade[105], but now the feedback is provided by mechanical

force, rather than chemical signaling, and can be regulated by changing the force schedule.

The negative feedback provided by the mechanical control can decouple receptor quality

from ligand quantity. To show this, we quantify the sensitivity of antigen extraction to

affinity change and to ligand number change respectively using

αE =
1

σn

dµn

d∆G‡
b

, αL =
1

σn

dµn

dL0

. (5.25)

In Fig. 5.9B we show αL and αE simultaneously at various force schemes. For time-dependent

force, αL and αE are strongly correlated. In contrast, non-linear cluster-size-dependent force

can achieve high αE while maintaining low αL, meaning the antigen extraction is sensitive

to affinity improvement but insensitive to perturbation in L0. This is because the negative

feedback reduces the dependence of max cluster size on L0. Meanwhile, the antigen extraction

chance η is still affinity-dependent, which preserves the affinity information in nag.

To see how the above difference in sensitivity propagates into the selection fidelity, we look
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Figure 5.9: Non-linear cluster-sensing force enables absolute affinity discrimination. (A)

The force per bond (F/m) of a sensing force increases with cluster size m before F saturates

for β > 1, providing the negative feedback (the larger the cluster, the larger the force per

bond). The inset shows F (m,β = 5), where the force per bond is represented by the slope

of dashed lines. (B) We systematically scan force parameters (F0, β,mc (or tc) ) and plot

the sensitivity to ligand number change σL = 1
σn

dn̄ag

dL0
against the sensitivity to BCR affinity

change σE = 1
σn

dn̄ag

d∆G‡
b

. The parameter F0, β, and mc (or tc) are respectively represented by the

size, color and color gradient of symbols. F0 was chosen from 100pN to 1000pN with a spacing

of 100pN. We see the sensing force can provide high αE with low αL. αE and αL are calculated

using Euler method, averaged from 6000 runs. (C) Discrimination performance is robust to

ligand number fluctuation under F (mmax). In each realization, the antigen number L0 seen

by a B cell is sampled from a Gaussian distribution with variance σL. We simulate 6000

pairs of B cells to obtain the ranking fidelity. The inset shows the distribution from which

L0 was sampled. Two forces share the same F0 = 800pN and β = 5. tc = 1min, mc = 60.

Other parameters: (B and C) L0 = 100,∆G‡
a = 12.6kBT,∆G‡

b = 13.3kBT, kon = 0.05s−1.

132



at the discrimination performance under a heterogeneous antigen ligand distribution. Instead

of fixing antigen ligand number, for each B cell we sample L0 from a Gaussian distribution

N(L0, σL) and then perform simulation to calculate the ranking fidelity. As displayed in

Fig. 5.9C, as σL increases, the fidelity under time-dependent force significantly decreases,

whereas the results of cluster-size dependent force only decreases marginally. This indicates

that under F (mmax), the discrimination is robust to fluctuations of antigen concentration.

5.3.6 Antagonism effect due to coupling through force

In previous sections, we have considered affinity discrimination when only one type of ligands

is presented. However, a more realistic situation is that agonist ligands are presented simul-

taneously with many low affinity (self) ligands. The interaction between different antigens is

inevitable. It is indeed experimentally known that the response to agonists is inhibited (or

antagonized) when immune cells are exposed to a mixture of agonists and low affinity lig-

ands (antagonists), named antagonism effect, for both T cells and B cells [148, 149, 150, 151].

It gains increasing attention over the years due to its potential application in autoimmune

diseases [152] and cocktail vaccines for protections against HIV [153].

As for the antigen acquisition process, it remains unclear how the co-presentation of weak

self ligands influences the extraction of strong foreign ligands. Here, we use our model to

explore this question and provide qualitative predictions.

To investigate the interference between different antigen types, we consider a minimal

model where two types of antigens (Ag1 and Ag2) with distinct off-rates are presented on

APC in a well mixed form. B cells blindly bind to and extract two types of antigens,

Nevertheless, in the T cell selection step, only the foreign antigen (Ag1) is effective for B

cells to compete for T cell help. Since different antigens within a cluster trigger and share the

same loading force, acquisition of two types of antigens are coupled through force application.

To quantify the interference between different types of antigens, we define antagonism effect
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Figure 5.10: Antagonism due to load sharing in the presence of multiple antigen

types. We compare the max agonist cluster size (A), mean rupture force per bond on ag-

onists (B) between cases with and without antagonists: m1max(∆G‡
b1,∆G‡

b2)/m1max(∆G‡
b1),

and fr1(∆G‡
b1,∆G‡

b2)/fr1(Eb1). The antagonism effect, quantified by An (see Eq. 5.26),

is plotted in (C). Top panels are for time-dependent force F (t), and bottom panels are

for F (mmax). All quantities are an average of 500 runs. Under time-dependent force,

the interaction between agonists and antagonists are mostly cooperative An < 0. In

contrast, under F (mmax), the interaction is antagonistic An > 0, because antagonists

inhibits agonist cluster formation and agonist extraction. Parameters: kon = 0.05s−1,

∆G‡
a = 12.6kBT,∆G‡

b1 = 15kBT , L10 = L20 = 100. Top panels: F0 = 700pN, mc = 60.

Bottom panels: F0 = 500pN, tc = 1min.
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by the relative reduction in antigen extraction in the presence of a secondary antigen:

An ≡ −µn(∆G‡
b1,∆G‡

b2) − µn(∆G‡
b1)

µn(∆G‡
b1)

, (5.26)

where µn(∆G‡
b1) is the mean antigen acquisition when only Ag1 presents and µn(∆G‡

b1,∆G‡
b2)

is the average amount of obtained Ag1 when both Ag1 and Ag2 are available. If two antigens

are uncorrelated, we have An = 0. Our results show the interaction between Ag1 and Ag2

can be cooperative or competitive, depending on the mechanical response provided by B

cells. We discuss the interactions in two stages as follows.

First, in the cluster formation stage, if the force is time-dependent, adding Ag2 can

promote Ag1 cluster formation by cooperatively sharing the developed forces. In contrast,

under cluster sensing force, introducing Ag2 inhibits formation of Ag1 clusters by triggering

large pulling forces (Fig. 5.10 A).

Second, in the cluster disassociation stage, those additional Ag2 ligands trigger larger

extraction force than Ag1-only case, because the cluster can be larger or persist longer. On

the other hand, closed Ag2 bonds can help to share the extraction force so that the average

extraction chance for Ag1 gets larger. As we show in Fig. 5.10B, Ag2 with intermediate

affinities create the strongest rupture force per bond on Ag1, resulting in the strongest

inhibition on extraction chance. This is because the binding of antagonists with intermediate

affinity helps to trigger the tugging force which creates large rupture force but does not share

the force at the rupture stage.

The overall effect, which depends on affinity, is the combination of interactions in two

stages. Our model suggests that under time-dependent force the interaction is mostly coop-

erative (An < 0), whereas the cluster sensing force leads to strong antagonism effect (An > 0)

(see Fig. 5.10C). This, together with the observation of antagonism effect in antigen extrac-

tion, may imply that B cells use a mechanical sensing force when extracting antigens.

135



5.4 Discussion

Our model highlighted the interplay between ligand-receptor reaction kinetics and force gen-

eration dynamics. Focusing on equilibrium steady states failed to capture the complete pic-

ture, as dynamical forces may keep pushing the system away from equilibrium states. More-

over, under rapidly developing force, rupture of the cluster takes place before it reaches the

equilibrium. In addition, it is the force-controlled cluster formation-disassociation two-phase

process that enables B cells to infer receptor affinity through antigen extraction. Simply

counting equilibrium binding may exclude important factors that influence affinity discrim-

ination.

In addition, dynamical force provides a diverse range of degrees of freedom for cells to

tune, which enables the system to adapt to a wide range of antigen properties and optimize

function needs. For instance, the lifetimes or length-scales of systems with passive ligand-

receptor interaction may differ in order of magnitude as on- or off-rates change [128]. In

contrast, systems under dynamical force are more adaptable to the changing conditions

and needs of the cell. On the one hand, the forcing schedule defines a spatial length- or

timescale at which affinity discrimination is performed regardless of antigen affinities or

concentrations. This adaptation is especially crucial for B cells due to the wide range of

operating parameter space. On the other hand, by simply tuning forcing parameters, the

scheme can prioritize speed in one context, and discrimination fidelity in another. Such

transition has been observed recently between naive B cells and GC B cells, with GC B cells

apply a larger force compared to naive B cells [32, 6]. The activation of naive B cells requires

high fidelity since the cost of error can be deadly (autoimmunity), whereas speed is favored

in GC B cells for rapid maturation. Another tunable knob provided by dynamical force is

the form of feedback. We have shown non-linear cluster sensing forces are able to provide

negative feedback on clustering, leading to absolute discrimination.

We analyzed antagonistic effects when mixtures of antigens are presented, which indicated
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that the adoption of dynamical force may not be absolutely beneficial. Consistent with recent

experiments [154], we assume the triggered forces are shared by all close bonds, which couple

different bonds together. This leads to the interference between different antigen types. We

show antagonism effect emerges under cluster sensing force, which peaks at intermediate

agonists affinities. A similar feature has been observed for T cell receptor antagonists [105].

For B cells, further experiments will be needed to test our predictions.
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CHAPTER 6

Coevolution between antigen and immunity

“Now, here, you see, it takes all the

running you can do, to keep in the

same place. If you want to get

somewhere else, you must run at least

twice as fast as that!”

Lewis Carroll

6.1 Introduction

While the evolutionary learning process in the germinal center protects living organisms

against a vast variety of microscopic invaders, highly variable antigenic challengers, such as

fast evolving viruses and cancers, may manage to continuously evade immune recognition

through rapid replication and mutation [155, 156]. This leads to a coevolutionary arms races

between antigen and immunity that happens on a timescale much longer than GC evolution,

and might even endure through an individual’s lifetime [11]. How does this coevolution

between antigen and immunity takes place? What strategy can be used by the immune

system to win the arms race? In this chapter, we will turn to the long-term coevolution

between antigen and immunity and explore possible beneficial strategies.

In this coevolution scenario, antigen and receptor populations constitute each other’s re-

sponsive environment and are mutually driven out of equilibrium: Specific immune receptors

138



recognize and prey on matching antigens and hence alter both the composition and overall

abundance of antigens, which in turn modifies selective pressures on distinct receptors thus

causing re-organization of the repertoire, and vice versa. Consequently, neither population

has enough time to equilibrate, and yet they mutually engage in a dynamic balance. In

this sense, the Red Queen state represents a nonequilibrium steady state [157, 158]. Then

the question is whether alternative evolutionary outcomes characteristic of non-steady states

occupy a larger volume of the state space of coevolving systems than does the Red Queen

state.

Recent progress has been made toward understanding various aspects of coevolutionary

dynamics in antigen-immunity systems [68, 159, 160, 161, 162, 163, 164, 165, 166], rang-

ing from antibody evolution against HIV and influenza viruses to evolution of tumors and

bacterial phage under host immunity. Yet we are still short of insights into certain fun-

damental questions: How do receptor repertoire and antigen ensemble mutually organize,

when ecological and evolutionary dynamics occur on comparable timescales? What govern

the persistence and outcome of mutual adaptation?

In existing generic models where both ecological and evolutionary processes are con-

sidered, a separation of timescales is often assumed so that the fast dynamics is slaved

to the slow one (reviewed in [167]). In cases where timescales are not treated as sepa-

rated [168, 169, 170, 171, 172, 173, 174, 175], the feedback between changes in diversity and

population dynamics tends to be ignored. The goal of this study is to consider inseparable

timescales and at the same time account for feedback effect in order to address the questions

raised above.

Specifically, we develop a phenotypic model, based on predator-prey interactions between

coevolving immune receptors and antigens, that combines evolutionary diversification and

population dynamics. By formulating an ecological model in a trait space, we describe

coevolutionary changes in the distribution of trait values and trait-dependent predation in

the same framework. Importantly, this allows us to study the stability of speciation (pattern
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formation in the trait space) and its impact on the persistence of coevolution. Our model

abstracts the key features of adaptive immunity: antigens and receptors move (due to trait-

altering mutations) and behave like activators and inhibitors that react through predation;

both antigens and receptors are cross-reactive — one receptor recognizes many distinct

antigens and one antigen is recognized by multiple receptors — this flexibility in recognition

stems from structural conservation of part of the receptor/antigen binding surface [176] and

provides an enormous functional degeneracy [177] among distinct immune repertoires; there

is no preexisting fitness landscape for either population so that selection pressures are owing

purely to predation.

The theory predicts, counterintuitively, that simultaneous patterning in coevolving pop-

ulations can emerge solely from asymmetric range of activation and inhibition in predator-

prey dynamics, without a need for severely large differences in their rate of evolution [178]

(aka mobility in their common phenotypic space), thus representing a Turing mechanism

distinct from the classic one. This surprising result can be understood from an intuitive

picture: colocalized clusters of antigens and receptors form in the trait space when the “in-

hibition radii” of adjacent receptor clusters overlap so that inhibition of antigen is strongest

in between them; whereas alternate clusters emerge if the “activation radii” of neighboring

antigen clusters intersect, because then activation of receptor is most intense in the midway.

Biologically, receptor activation and antigen inhibition are distinct processes: the assumed

asymmetry in reaction range reflects potential distinction between the ability of antigens to

induce protective immune responses (immunogenicity) and the ability to interact with the

product, such as antibodies, formed by a response (antigenicity). In fact, this discrepancy

between antigenicity and immunogenicity has been known for long [179] and demonstrated

for both natural and synthetic antigens [180, 181, 182].

We show for the first time that, as asymmetry in cross-reactivity varies, transitions

between qualitatively distinct regimes of eco-evolutionary dynamics seen in nature would

follow, including persistent coexistence, antigen elimination and unrestrained growth. While
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competitive interactions, whether direct or mediated by resource competition, are known to

elicit patterns in a population [183, 184, 185, 186], a new interesting outcome of our analysis

is, mutual feedback between dynamic patterns of antigens and receptors can drive the arms

race off balance. Given sufficient asymmetry, spontaneous oscillations in Turing patterns

precede antigen extinction, whereas uncontrolled antigen growth follows the formation of

alternate quasispecies, as ineffective receptors exhaust the limited immune resources; these

measurable features may serve as precusors of the off-balance fates.

Many theoretical studies have considered adaptation to time-varying environments with

prescribed environmental statistics [187, 188, 189, 190, 191, 192, 193]. This work makes a step

toward a theory of coevolution from the perspective of responsively changing environments

(mutual niche construction [194] in ecological terms), highlighting the role of feedback in

driving evolution toward novel organization regimes and non-steady states. As new genomic

and phenotypic methods are developed to better characterize antigenic [195, 196, 197] and

immunological [91, 198, 199, 200] landscapes as well as bidirectional cross-reactivity [201],

the predictions for repertoire composition and coevolutionary outcome derived from this

study can be compared with high-throughput profiling of coevolving immune repertoire and

antigen ensemble in humans [202, 203, 204].

6.2 Model

A finite repertoire of immune receptors that collectively cover the antigenic space while

leaving self types intact is conceivable, if the distribution of potential threats is predeter-

mined [205, 206, 207, 70]. Given a fixed distribution of pathogenic challenges, competitive

exclusion is shown to drive clustering of cross-reactive receptors [207]. In coevolution, how-

ever, antigen distribution is no longer preset but responds to reorganization of receptors. In

addition, cross-reactivity is bidirectional: not only can a receptor be activated by a range

of distinct antigens, but an antigen can be removed by a variety of receptors. Then, can
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A B𝑹𝒊𝒏𝒉 > 𝑹𝒂𝒄𝒕 𝑹𝒂𝒄𝒕 > 𝑹𝒊𝒏𝒉

Figure 6.1: Schematic of antigen-receptor interaction with asymmetric range of inhibition

and activation in the phenotypic space. (A) Rinh > Ract: the receptor (blue Y-shape) is not

activated by the antigen (red flower-shape) but nevertheless inhibits it. (B) Ract > Rinh: the

antigen activates the receptor but is not subject to its inhibition. Lower row: in addition

to predation (black arrows; blunt for inhibition, acute for activation), antigens self replicate

(red arrow) whereas receptor-expressing cells spontaneously decay (blue arrow pointing to

an empty set symbol) in the absence of stimulation. If a finite carrying capacity of receptors,

θ2, is explicitly considered, self-inhibition will also be present (Figs. 6.4C, 6.6B and 6.6C).

predation lead to simultaneous clustering of antigens and receptors in their common trait

space? If so, are such patterns stable? Would the concurring patterns interact to affect

population dynamics?

To answer these questions, we consider a dynamical system of activators and inhibitors

representing antigens and receptors, which diffuse in a shared phenotypic space and react

through predator-prey interactions. Population densities of antigens A(x⃗, t) and receptors

B(x⃗, t) evolve according to

∂tA(x⃗, t) = D1∇2A(x⃗, t) + λ1A(x⃗, t) − α1A(x⃗, t)

∫
S1(|x⃗− y⃗|;Rinh)B(y⃗, t)dy⃗,

∂tB(x⃗, t) = D2∇2B(x⃗, t) − λ2B(x⃗, t) + Bin + α2B(x⃗, t)

∫
S2(|x⃗− y⃗|;Ract)A(y⃗, t)dy⃗.

(6.1a)

Here, D1 and D2 denote isotropic diffusion constants of antigens and receptors, respectively,
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that mimic the rates of trait-altering mutations. Other forms of jump kernels do not change

qualitative results. Antigens self replicate at rate λ1 whereas receptors spontaneously decay

at rate λ2. Receptors inhibit antigens with an intrinsic rate α1 and grow at rate α2 upon

activation; Rinh denotes the range of receptors that can inhibit a given antigen, while Ract

represents the range of antigens by which a receptor can be activated (Fig. 6.1). In real

systems, there is likely a distribution of reaction range; we assume a single value to simplify

analysis. The term Bin corresponds to a small influx of lymphocytes that constantly out-

put from the bone marrow and supply nascent receptors; without stimulation, receptors are

uniformly distributed at a resting concentration given by Bin/λ2. We choose the lifetime of

receptors, λ−1
2 , as the time unit and the linear dimension L of the phenotypic space as the

length unit. To account for the discreteness of replicating entities and hence avoid unreal-

istic revival from vanishingly small population densities, we impose an extinction threshold;

antigen or receptor types whose population falls below this threshold are considered extinct

and removed from the system.

In the spirit of Perelson and Oster [208], we think of receptors and antigens as points

in a high-dimensional phenotypic space, whose coordinates are associated with physical and

biochemical properties that affect binding affinity. We assume that the strength of cross-

reactive interaction only depends on the relative location, r⃗ = x⃗−y⃗, of receptor and antigen in

this space, as characterized by the non-local interaction kernels S1(|r⃗|;Rinh) and S2(|r⃗|;Ract).

Close proximity indicates good match between the binding pair leading to strong interaction,

whereas large separation translates into weak affinity and poor recognition.

Importantly, cross-reactivity is not necessarily symmetric as typically assumed; differ-

ences in biophysical conditions among other factors may well render disparate criteria for

antigen removal and receptor activation [209, 210], i.e., Rinh ̸= Ract. For instance, removing

an antigen may only require modest on rate (wide reaction range, large Rinh) of multiple

receptors that together coat its surface, which boils down to multivalent binding and cross-

linking at thermal equilibrium. Whereas activating an immune cell expressing a unique type
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of receptors can demand lasting antigen stimulation hence small off rate (close match of

shape, small Ract), so that downstream events leading to a response can finish. How this

asymmetry impacts coevolution is our focus.

6.3 Results

6.3.1 Phases under local predator-prey interactions

This reaction-diffusion system (Eq. 6.1) presents a homogeneous fixed point of population

densities, As = λ2/(α2Ω2) and Bs = λ1/(α1Ω1), where Ω1 =
∫

dr⃗S1(|r⃗|;Rinh) and Ω2 =∫
dr⃗S2(|r⃗|;Ract) are respectively the shape-space volume of the “inhibition sphere” centered

at an antigen and that of the “activation sphere” surrounding a receptor. When receptor-

antigen interactions are local, depending on the ratio of the rates λ1/λ2 and diffusivity

D1/D2, coevolving populations exhibit two main phases within the chosen parameter range

(Fig. 6.2A): antigen early extinction (colored region) and persistence (white region); the

latter divides into two subphases, steady traveling waves (upper) and uniform coexistence

(lower); as seen in typical kymographs of the 1D density fields (insets), starting from localized

antigens and uniform receptors.

Extinction is expected when antigens replicate fast (large λ1/λ2) but mutate slowly (small

D1/D2): after a brief delay during which antigen reaches a sufficient prevalence to trigger

receptor proliferation, receptors rapidly expand in number and mutate to neighboring types;

the pioneer receptors stay ahead of mutating antigens and eliminate them before escape

mutants arise. Once antigen is cleared, the receptor population regresses to the resting level

(Fig. 6.2B upper panel). With sufficiently high replication rates, faster mutation allows

antigen mutants to lead the arms races against receptors resulting in a persistent evolving

state — a traveling wave Red Queen state, similar to that shown in a recent model of

influenza evolution under cross-immunity [211]. Interestingly, as λ1/λ2 increases, while the

rate of extinction (color-coded in the phase region) increases, a smaller D1/D2 is needed
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Figure 6.2: Phases in a 1D reaction-diffusion system under local predator-prey interactions.

(A) Phase diagram on the plane spanned by the ratio between diffusion constants D1/D2 and

that between birth and death rates λ1/λ2 of antigens (activators) and receptors (inhibitors).

Dynamics start from a local dose of antigens and uniform receptors. The early extinction

phase is color coded for the logarithm of the inverse time to antigen extinction. The persis-

tence phase (blank) divides into a propagating wave state (upper) and a uniform coexistence

state (lower). Insets show typical kymographs in each subphase, red for antigen and blue for

receptor; the upper pair corresponds to the filled circle at λ1/λ2 = 200, D1/D2 = 10−2, and

the lower one corresponds to the open circle at λ1/λ2 = 10, D1/D2 = 10−2. (B) Representa-

tive abundance trajectories. Top: λ1/λ2 = 20, D1/D2 = 10−3 (red dot in panel A); bottom:

λ1/λ2 = 10, D1/D2 = 10−2 (white dot in panel A). Corresponding phase plots are shown

on the right; vertical dashed lines indicate the extinction threshold. Bin = 10, α1 = 10−3,

α2 = 10−4.
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for transition to the traveling wave state. On the other hand, at modest λ1/λ2, a uniform

coexistence phase is reached following population cycles dampened by mutation (Fig. 6.2B

lower panel). Under local interactions, this homogeneous fixed point is stable to perturbation

and does not support spontaneous antigen speciation (i.e., breakup of a continuum into

fragments in the shape space). Thus, in what follows, we start from this uniform steady

state and introduce the key ingredient — asymmetric nonlocal interaction — to show how

it drives spontaneous organization.

6.3.2 Simultaneous patterning under asymmetric cross-reactivity

The analogy between antigen-immunity interaction and predation has been made before [212,

213, 159, 166]; however, spontaneous speciation has not been described yet. On the other

hand, for general activator-inhibitor systems — in the physical space — Turing patterns can

emerge, either from demographic stochasticity which prevents the system from reaching its

homogeneous fixed point [186, 214], or, more classically, from prohibitively large differences

in diffusivity between the autocatalytic and the inhibitory reactants [178]. Here, using

a simple phenomenological model accounting for cross-reactivity (Eq. 6.1), we show that

coevolutionary speciation is possible, without requiring any of the aforementioned patterning

mechanisms.

To identify the onset of patterning instability, we perturb the uniform stationary state

(As, Bs) with non-uniform variations. We define A(x, t) = As +
∑

k δAk exp(ωkt + ik · x)

and B(x, t) = Bs +
∑

k δBk exp(ωkt + ik · x). Then we linearize the equation of motion

(Eq. 6.1) around the homogeneous fixed point (As, Bs) and work in the Fourier space. This

gives

ω(k)

δAk

δBk

 =

 −D1k
2 −α1AsŜ1(k)

α2BsŜ2(k) −D2k
2

δAk

δBk

 , (6.2)

where Ŝ1(k) and Ŝ2(k) are the Fourier transform of interaction kernels S1(r) and S2(r),

respectively. Solving this characteristic equation gives the dispersion relation, i.e., the linear
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Figure 6.3: Asymmetric cross-reactive interactions simultaneously organize receptor and

antigen distributions. (A and B) The pattern wavelength, λ, identical for both popula-

tions, is symmetric under the interchange of the interaction ranges Rinh and Ract. (A) The

scaled wavelength increases with the extent of asymmetry γ ≡ (Rinh − Ract)/(Rinh + Ract);

Rinh + Ract = 0.015, 0.02, 0.03 from top to bottom. (B) Pattern diagram in the (Ract, Rinh)

plane. The white region corresponds to stable behavior, whereas patterning occurs in the

colored areas. Solid lines indicate the instability onset (Eq. 6.8). The color bar shows the

values of the wavelength determined from the critical mode. (C) Typical mutual distribu-

tions of receptor (blue) and antigen (red) in a 1D trait space with coordinate x. The actual

(solid line) and effective (dashed line) population densities (scaled by total abundance) show

mismatch for receptors (antigens) when Rinh > Ract (Rinh < Ract), leading to colocalized

(alternate) density peaks between two populations, as indicated by the yellow bars. Shaded

are the effective density fields Aeff(x) and Beff(x). These two examples correspond to the

open circle (Rinh = 0.025, Ract = 0.005) and the filled circle (Rinh = 0.005, Ract = 0.025) in

panel B. λ1 = 10, λ2 = 1, α1 = 10−3, α2 = 10−4, D1 = 10−6, D2 = 10−4.
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Figure 6.4: Distinct regimes of coevolutionary dynamics. Population trajectories (top row)

and concomitant pattern evolution (lower rows) of antigen (red) and receptor (blue) are

shown for late antigen extinction (A), persistent coexistence (B) and antigen escape (C),

which are realized by varying the range of cross-reactivity and the size of carrying capacity.

Concentration changes progress via three distinct stages: uniform steady state, stationary

pattern, and oscillatory pattern. An extinction threshold is crucial for the termination of

branches (A, B) and the formation of forks (B) shown in the evolutionary kymographs.

Color bars code for population densities. (A) Rinh = 0.025, Ract = 0.005, θ2 = ∞; (B)

Rinh = 0.005, Ract = 0.025, θ2 = ∞; (C) Rinh = 0.005, Ract = 0.025, θ2 = 3.5 × 105. Other

parameters are identical to those in Fig. 6.3.
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growth rate of the Fourier modes:

ω(k) = −(D1 + D2)k
2 +

√
(D1 −D2)2k4 − 4λ1λ2

Ŝ1(k)Ŝ2(k)

Ŝ1(0)Ŝ2(0)
. (6.3)

Turing instability occurs when the least stable mode (with a wavevector kc) begins to grow,

namely,

Re[ω(kc)] ≥ 0, (6.4)

where the wavenumber of the critical mode can be determined by ∂kω|k=kc = 0. This gives

the pattern-forming condition:

D1D2

λ1λ2

≤ − 1

k4
c

Ŝ1(kc)Ŝ2(kc)

Ŝ1(0)Ŝ2(0)
, (6.5)

where Ŝ1(k) and Ŝ2(k) are the Fourier transform of the interaction kernels. It immediately

follows that Turing instability in our system is purely driven by asymmetric nonlocal in-

teractions and independent of diffusion: if the kernels were symmetric, i.e., S1(r;Rinh) =

S2(r;Ract), the right hand side of Eq. 6.5 can never be positive and hence patterns do not

develop; on the other hand, when D1D2 = 0, the patterning condition is most readily sat-

isfied, implying that diffusion is not necessary. In fact, the commonly assumed Gaussian

kernel represents a marginal case which does not robustly warrant instability [184]. Instead,

Ŝ(k) < 0 is guaranteed if the strength of interaction decreases steeply with increasing sep-

aration across the edge of the interaction range. For simplicity, we assume step-function

kernels, S1(r) = Θ(Rinh − r) and S2(r) = Θ(Ract − r). Then the Fourier transform are

Ŝ
(n)
1 (k) =

( 2π

kRinh

)n
2
Rinh

nJn
2
(kRinh), Ŝ

(n)
2 (k) =

( 2π

kRact

)n
2
Rn

actJn
2
(kRact). (6.6)

where n is the dimension of the shape space. Jα(x) is the Bessel function. The most

unstable wavenumber can be determined under a modest extent of asymmetry, i.e., γ ≡

(Rinh − Ract)/(Rinh + Ract) ≪ 1. To the lowest order of γ, we find kc satisfies Jn
2
(kc(Rinh +

Ract)/2) = 0. Therefore, pattern-forming condition can be explicitly expressed in terms of
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γ:

|γ| ≥ γc ≡
Cn

(Rinh + Ract)2

√
D1D2

λ1λ2

, (6.7)

or equivalently,

|R2
act −R2

inh| ≥ Cn

√
D1D2

λ1λ2

. (6.8)

Here Cn is a constant that only depends on the dimension, n, of the shape space,

Cn =
x
1+n

2
∗

2
n
2
−2Γ(1 + n

2
)J1+n

2
(x∗)

, (6.9)

where x∗ is the smallest positive root of Jn
2
(x) = 0. This suggests a rapid increase of

Cn with n, indicating that stable uniform coexistence extends to stronger asymmetry as

the phenotypic space involves higher dimensions. Therefore, under sufficient asymmetry, a

continuum of antigen (receptor) types spontaneously segregates into species-rich and species-

poor domains with densities on either side of As (Bs). The spacing between adjacent antigen

or receptor density peaks, i.e., the pattern wavelength λ ≃ 2π/kc, is modestly larger than

the sum of activation and inhibition radii (Fig. 6.3A) due mainly to asymmetry and slightly

to diffusion. Note that the minimum level of asymmetry required for patterning decreases

with increasing range of cross-reactivity as γc ∼ (Rinh + Ract)
−2 (Eq. 6.7); furthermore, the

pattern wavelength is symmetric under the interchange of Ract and Rinh (Figs. 6.3A and

6.3B).

However, mutual distributions of receptor and antigen break the symmetry (Fig. 6.3C):

co-localized patterns form when Ract < Rinh (left panel) while alternate patterns emerge

when Ract > Rinh (right panel). This seemingly counterintuitive behavior can be explained

by a rather general mechanism. When 2Rinh > λ, the “inhibition sphere” of an antigen may

enclose adjacent receptor density peaks. As a result, locations between the peaks, where

the actual receptor density B(x) (blue solid line) is in fact the lowest, are instead the worst

positions for antigens to be in, because the effective receptor density field acting on antigens

at position x, Beff(x) =
∫ x+Rinh

x−Rinh
B(y)dy (blue dashed line), is maximal when x is right amid

receptor peaks. Thus the antigen distribution winds up tracking the receptor distribution
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Figure 6.5: Theory predicts pattern amplitudes and abundance shift induced by coupling

between Turing modes. Shown are scaled first (A) and second (C) order pattern amplitudes

and abundance shift (B) as a function of ϵ, the dimensionless deviation from D∗
1. Lines

are analytical predictions; symbols are numerical solutions. Solid line and filled symbol:

Rinh = 0.025, Ract = 0.005; dashed line and open symbol: Rinh = 0.005, Ract = 0.025. Red

(blue) for antigen (receptor). θ2 = ∞.

(yellow bar, left panel). Conversely, when 2Ract > λ, the “activation sphere” of a receptor

may encompass adjacent antigen peaks; the stimulation for receptor replication is strongest

in between the peaks, according to the effective antigen densities Aeff(x) =
∫ x+Ract

x−Ract
A(y)dy

(red dashed line). Consequently, receptors view antigens as most concentrated in positions

where they are actually least prevalent (red solid line). Therefore, depending on whether

Rinh or Ract is larger, colocalized or alternate distributions result, which reflect a mismatch

between the actual distribution and the effective one seen by the apposing population. In

what follows we show that distinct spatial phase relations between mutual distributions will

lead to drastically different pattern dynamics and evolutionary outcomes.

6.3.3 Coevolutionary regimes and ecological feedback

Multi-stage patterning. Shown in Fig. 6.4 are the abundance trajectories (top row) and

kymographs of concurring patterns (lower rows) demonstrating their concomitant progression

and mutual influence. Depending on the sign of asymmetry and the size of carrying capacity,

qualitatively distinct regimes appear, including late antigen extinction, persistence, and
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escape (panels A to C).

Intriguingly, concentrations and patterns evolve via three distinct stages: uniform steady

state, stationary pattern, and oscillatory pattern. Right after co-patterns spontaneously

emerge from the homogeneous steady state, concentration changes in both populations are

observed: in the absence of homeostatic constraints (panels A and B), antigen abundance

(red) shifts downward whereas receptor prevalence (blue) shifts upward. This is unantici-

pated because patterning instability in a density field is not expected to alter the overall

abundance: growing unstable modes merely redistribute densities in space without chang-

ing the average concentration. This appears to break down when patterns develop in two

interacting density fields. In fact, the most unstable modes (with wavenumber kc) from

both populations couple and modify the zero modes, resulting in a shift in mean population

densities.

Co-localized and alternate quasispecies. A weakly nonlinear analysis close to the

critical point quantitatively captures both the phase relation between patterns and the shift

in overall abundances (Fig. 6.5). For analytical tractability, we perform the calculation in

1D. Below, we only stress the essential results.

Close to the patterning transition, D1 = D⋆
1(1 − ϵ), where D⋆

1 is the critical diffusion

constant of antigen and ϵ is small and positive, we seek stationary solutions of the form

A(x) = As(1 + u(x)) and B(x) = Bs(1 + v(x)), where the deviation w = (u(x), v(x))T from

the homogeneous steady state (As, Bs)
T is expanded in powers of ϵ1/2 to the second order:

w = w
(1)
1 cos(kcx)Aϵ1/2 +

(
w

(0)
2 + w

(2)
2 cos(2kcx)

)
A2ϵ. (6.10)

w
(1)
1 = (u

(1)
1 , v

(1)
1 )T , w

(0)
2 = (u

(0)
2 , v

(0)
2 )T , and w

(2)
2 = (u

(2)
2 , v

(2)
2 )T are coefficients to be deter-

mined by linearizing Eq.6.1. The saturated amplitude A of the perturbation is determined

by the amplitude equation at the order of ϵ3/2. The spatial phase difference between the

leading pattern modes in antigen and receptor populations, u
(1)
1 and v

(1)
1 , respectively, can
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be found from

ξ ≡ v
(1)
1

u
(1)
1

=
λ2

D2k2
c

sin(kcRact)

kcRact

= −D⋆
1k

2
c

λ1

kcRinh

sin(kcRinh)
, (6.11)

which implies that ξ ∝ sin
(

2π
λ

(Ract+Rinh)
2

(1 − γ)
)

= sin
(
π 1−γ

λ/(Ract+Rinh)

)
, with λ being the

pattern wavelength and γ = (Rinh − Ract)/(Rinh + Ract). It immediately follows that when

γ < 0 (i.e., Ract > Rinh), 1−γ > λ/(Ract +Rinh) > 1 (see Fig. 6.3A), thus ξ < 0; when γ > 0

(i.e., Rinh > Ract), 1 − γ < 1 < λ/(Ract + Rinh), thus ξ > 0. Therefore, the spatial patterns

of antigen and receptor distributions are either in phase (ξ > 0) or out of phase (ξ < 0),

purely determined by the sign of asymmetry (Fig. 6.5A). This provides rigor to the intuitive

argument we made earlier in relation to Fig. 6.3C.

Furthermore, the changes in the overall abundance of antigens and receptors are pro-

portional to u
(0)
2 and v

(0)
2 , respectively. At O(ϵ), we find u

(0)
2 ∝ −ξ sin(kcRact) < 0 and

v
(0)
2 ∝ −ξ sin(kcRinh) > 0, i.e., the direction of abundance shift is independent of the sign of

asymmetry, in line with numerical solutions (Figs. 6.4A and 6.4B, top row; Fig. 6.5B). Im-

portantly, u
(0)
2 , v

(0)
2 ∝ u

(1)
1 v

(1)
1 , indicating that shift in abundance indeed results from coupling

between simultaneous Turing modes.

Dynamic transients. A further surprise comes at longer times: the stationary co-patterns

are only metastable. Soon after abundance shift takes place, instability starts to grow,

visible as increasingly strong oscillations that eventually drive the antigen population to pass

below the extinction threshold (Fig. 6.4A top panel). By perturbing around the abundance-

shifted stationary patterns, we indeed identify a growing oscillatory instability from the

dispersion relation of linearized dynamics. The interrupted oscillation amplitudes at later

times arise from asynchronous extinction of local antigen clusters (Fig. 6.4A middle panel).

Note that this late extinction phase only occurs to colocalized population densities, i.e., when

Rinh > Ract.

Upon interchange of Rinh and Ract (Fig. 6.4B), pattern evolution exhibits new features:

as some antigen clusters go extinct as a result of oscillatory instability, neighboring clusters
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migrate to these just vacated sites, where receptors decay due to a lack of stimulation and

delay in response, thus locally and temporarily evading immune inhibition. These surviving

clusters then go through successive branching events (i.e., widening then splitting), forming

a tree-like structure over time. The coevolving receptor population drives the branching and

subsequently traces the newly formed branches. Such coevolutionary speciation, enabled by

mutation, persists for extended periods of time so that it effectively overcomes the growing

oscillations and maintains antigen at modest prevalence indefinitely. Note that the persistent

ramifying pattern only emerges from alternate density peaks, i.e., when Ract > Rinh.

Finite repertoire. Is there a chance that antigen population can achieve a global escape

from immune control, as is often envisaged as a catastrophic failure? This does happen

as soon as we turn on a sufficiently strong homeostatic constraint on receptor abundance

(Fig. 6.4C).

Considering global homeostasis, the decay rate of receptors now is given by λ2B(x, t)(1+∫ 1

0
B(y, t)dy/θ2), which includes an additional contribution from the global constraint char-

acterized by carrying capacity θ2. Interestingly, reducing the immune capacity appears to

alter the nature of the instability (Fig. 6.6C): a critical value of θ2 marks the transition from

supercritical bifurcation (yellow region), where nonlinearity acts to saturate the growth of

the perturbation, to subcritical bifurcation (red region) where higher order processes have to

intervene for stabilization. The latter corresponds to the antigen escape phase (Fig. 6.4C):

an unrestrained growth indicates a loss of immune control.

Higher dimension. Similar progression of patterns and population dynamics in distinct

regimes is also seen in 2D starting from the uniform steady state. An analogous “branching”

scenario in the persistence phase is particularly intriguing: antigen droplets deform and

migrate to neighboring vacant loci and resist elimination. Oscillations of dense spots in

both populations resemble the “twinkling eyes” pattern proposed for synthetic materials.

It has been suggested [215] that oscillatory patterns can arise in a system consisting of

two coupled reaction-diffusion layers, one capable of producing Turing patterns while the
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Figure 6.6: Asymmetric cross-reactivity yields diverse phases. (A) Without homeostatic con-

straints on lymphocyte counts (θ2 = ∞), above the critical asymmetry (beyond the light blue

region), patterns form. The pattern-forming boundaries are symmetric about the diagonal.

The boundary between the late antigen extinction phase (blue) and the persistent patterned

phase (yellow) is determined by tracking the prevalence trajectories until t = 100. (B) Under

a finite carrying capacity (θ2 = 3 × 105), the pattern-forming region is no longer symmetric

and an antigen escape phase (red) emerges at the small-Rinh large-Ract corner, where the

phase boundary corresponds to the transition between supercritical and subcritical bifurca-

tions. (C) First order pattern amplitudes as a function of carrying capacity θ2. Lines are

analytical solutions of amplitude equations, and symbols are numerical values extracted from

Fourier spectrum of stationary patterns right after abundance shift. Insets show examples

of population dynamics in escape (subcritical) and persistence with pattern (supercritical)

phases; pattern amplitudes diverge near the transition. Red (blue) for antigen (receptor).
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other supporting Hopf instability. Distinct from these built-in mechanisms, instabilities in

our system are self-generated: interacting populations spontaneously fragment in the trait

space, and the resulting Turing modes resonate in space, leading to abundance shift and

subsequent growing oscillations.

Phase diagram. To stress the role of asymmetric cross-reactivity in governing the diverse

behaviors, we present phase diagrams on the (Ract, Rinh) plane (Fig. 6.6). Without home-

ostatic constraints (θ2 = ∞, panel A), patterns form above the critical asymmetry marked

by solid lines that are symmetric about the diagonal; the enclosed patternless phase (light

blue region) corresponds to stable homogeneous coexistence like for local interactions. On

the Rinh > Ract side, the late extinction phase (blue) transitions to the persistent patterned

phase (yellow) at a boundary (dashed line) determined by tracking the prevalence trajectories

until t = 100; longer tracking time would expand the extinction phase.

Under a finite carrying capacity (θ2 = 3 × 105, panel B), two major changes occur:

First, the pattern-forming region is no longer symmetric but expands on the Ract > Rinh side

toward the diagonal. Second, the antigen escape phase (red region) emerges at the small-Rinh

large-Ract corner; the phase boundary corresponds to the transition between supercritical and

subcritical bifurcations in the amplitude equation. The escape phase enlarges as the carrying

capacity diminishes. Thus, our model predicts expansion of the antigen escape phase with

age, owing to diminishing counts of renewable lymphocytes [216]. The regime of persistence

with pattern (yellow), irrespective of the homeostatic constraint, differs between the flanks;

while oscillations occur on both sides off the diagonal, antigen branching (Fig. 6.4B) only

appears when Ract > Rinh, manifesting the potential for evasion.

6.4 Discussion

Environment becomes a relative concept in light of coevolution. We present a general model

of mutual organization between continuous distributions of antigens and receptors that in-
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teract cross-reactively. In a shared phenotypic space, the receptor repertoire and antigen

population constitute each other’s environment and adapt to mutually constructed fitness

seascapes. This phenomenological approach allows us to describe the interplay between eco-

logical and evolutionary processes that do not separate in timescales, thus revealing a variety

of dynamic transients observed in nature, such as antigen extinction, chronic persistence, and

unrestrained growth until saturation.

We propose that the transient nature of host-pathogen coevolution could, at least in

part, stem from distinct conditions for receptor activation and antigen inhibition. On the

one hand, the ability of antigens to be recognized by the immune system, i.e., antigenicity,

can be reduced to the level of chemistry and measured by in vitro lymphocyte proliferation

and cytokine production. On the other hand, the ability to induce protective immunity,

i.e., immunogenicity, depends on complex interactions with various elements in the host

immune system, thus demanding immunization studies in vivo. Indeed, experiments have

demonstrated for diverse pathogens that strong antigenicity does not guarantee protection

and vice versa; this lack of correlation has posed significant challenges to vaccine design [180,

181, 182].

Our simple model accounts for this intrinsic asymmetry and predicts its influence on

antigen-immunity coevolution. While it might be intuitive that under reciprocal cross-

reactivity, antigen and receptor populations simultaneously fragment in the phenotype space

(Fig. 6.3), more surprises come after the co-pattern emerges (Fig. 6.4): When two distribu-

tions are in phase (Ract < Rinh), spatial resonance between the lowest Turing modes precedes

growing oscillations in the overall abundance, driving antigens to extinction; when apposing

populations are out of phase (Ract > Rinh), strong homeostatic constraints on immune cells

alter the nature of pattern instability from supercritical to subcritical, leading to uncontrolled

growth. The intuitive picture is, when Ract < Rinh, antigens are inhibited by receptors that

they do not activate and hence fail to evade immune attack; when Ract > Rinh, receptors are

activated by antigens that they cannot inhibit, thus, under resource limits, an increasingly
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weaker defense results. Such multi-stage patterning and its feedback to population dynamics,

triggered by asymmetric non-local interactions, is a qualitatively new phenomenon, clearly

different from speciation due to competitive exclusion in a single population. Our predictions

are supported by experiments: strong oscillations in antigen abundance prior to crash to ex-

tinction have been seen in viral evolution within humans and attributed to cross-reactive

antibody response [217], whereas strategies of distracting immune attention are indeed used

by many viruses that create a vast excess of defective particles than functional ones [218].

These predictions can potentially be tested by tracking both the pathogen load and

diversity history via high-throughput longitudinal sequencing of receptors and antigens [11,

202, 203, 204]. In addition, phenotypic assays for binding and neutralization [201] can inform

the extent of asymmetry. Combining these two sets of experiments in different individuals

would allow to correlate the degree of asymmetry with evolutionary outcomes.

Our results also suggest that, the immune system may have evolved to exploit the asym-

metry between activation and inhibition by differentiating these processes physically and

biochemically. A remarkable example is affinity maturation of B lymphocytes [3] in which

rapid Darwinian evolution acts to select for high affinity clones: Immature B cells are trained

in lymphoid tissues where antigens are presented in a membrane form and decline in avail-

ability; fierce competition for limited stimuli thus provides a sustained selection pressure

that constantly raises the activation threshold, i.e., decreasing Ract. In contrast, mature B

cells then released into circulation encounter soluble antigens at higher abundance, corre-

sponding to Rinh > Ract. As a result, enhanced asymmetry between conditions for immune

stimulation and antigen removal facilitates elimination of pathogens. Conversely, pathogens

evolve immunodominance [219] and make fitness-restoring mutations [220] that increase Ract

and decrease Rinh, both of which aid in evasion.

Another implication of this study is persistent coevolution, often pictured as an asymp-

totic state, can only be sustained when asymmetry is not too strong. It might be favorable

if asymmetry stays near the edge between persistence and imbalance, which adjusts to the
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tension between the need for defense against foreign pathogens (γ > γc) and that for tol-

erance toward benign self tissues (|γ| ≤ γc). Interestingly, critical asymmetry γc increases

with the number of phenotypic dimensions, suggesting that dynamic balance could be easier

to maintain for more complex antigens.

Because the present model of antigen-immunity coevolution is a sufficiently abstract one,

having properties which seem quite robust and independent of the details of predation, we

expect that the results and predictions are relevant for a wide range of coevolving systems, in-

cluding cancer cells and T lymphocytes, embryonic tissues and self-reactive immune cells, as

well as bacteria and bacteriophage. This model can be adapted to be more biologically faith-

ful, e.g., by incorporating preexisting antigenic landscapes, taking rates to be age-dependent,

and treating cross-reactivity as an evolvable character.

Stochasticity arising from demographic noise does not change qualitative model behaviors

in all regimes. Albeit not required for pattern formation, stochastic fluctuations appear to

speed up instability growth, thus accelerating antigen extinction; this observation and other

effects of demographic noise will receive a careful analysis in future work.

We hope that this work proves useful in providing a framework for understanding and test-

ing how cross-reactive interactions — ubiquitous and crucial for biological sensory systems

— can lead, in part, to the generation, maintenance and turnover of diversity in coevolving

systems. More broadly, our work provides the basis for a theory of evolution in responsively

changing environments, highlighting that ecological feedback in pattern-forming systems can

yield dynamic transients and drive evolution toward non-steady states that differ from the

Red Queen persistent cycles.
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CHAPTER 7

Conclusions and Discussions

“A complex system can be

characterized by the fact that it must

be attacked via many models. No single

model will ever suffice. Moreover, the

more models required, the more

complex the system must be.”

Lee A. Segel

The immune system is a good instant of a highly complex system, characterized by the

need to employ a large number of models for a comprehensive system description. Beginning

with Bell [221], Perelson [66] and other pioneer scholars, for several decades modelers have

been dedicated to understanding the immune system by developing a variety of models

ranging from the molecular interactions to the evolution of immune system in the lifespan

of a single organism [222]. Recent discoveries made by cell and molecular biologists have

raised various novel questions that could not be addressed by existing models. Here, we

are attempting to understand one of the vital components of adaptive immune response

— affinity maturation — from different perspectives. Specifically, chapter 2, 4 and 5 look

at the same antigen extraction process but have different levels of details (single antigen

vs clusters), focus on different stages (extraction only vs cluster formation and extraction)

and emphasize different aspects (dynamics, information or control). Chapter 3 combines

the insights of antigen extraction together with models of B cell evolution by mapping the

161



molecular binding quality to clonal fitness via tug-of-war antigen extraction. This theoretical

framework allows us to explore how physical constrains shape selection pressure. Chapter 6

takes further coarse graining and focus on the long-term coevolution between antigen and B

cells.

One of the main questions discussed in my dissertation is how and why B cells expend

mechanical energy to physically extract antigens. In chapter 2, we have demonstrated that

a tugging force is able to regulate the extraction chance by lowering the potential barri-

ers (if barriers are high) that separates bound state and broken state, or influencing the

bond rupture kinetics (if barriers are low or do not exist). We show that this regulation

at the molecular level may serve to shift and expand the discrimination sensitive window.

By utilizing a large force pulling against a stiff APC, high affinity B cells become distin-

guishable even with low-affinity tethers. Furthermore, chapter 3 shows that this effect helps

to increase the evolved affinity (without antibody feedback), enhance the adaptation rate

(with antibody feedback) or change the evolution direction (if bond stiffness is mutable) of

B cells during a GC reaction but sacrifices the GC survival chance. Therefore, a favorable

level of mechanical energy expense acting on single receptors is selected on the population

level, which balances the needs to adapt both rapidly and sustainably. Nevertheless, this

treatment of antigen extraction is mean-filed only. To incorporate the many-body effect, we

have introduced a stochastic model to describe the extraction of antigen clusters in chapter

4. Our model suggested that the affinity information encoded in the measuable readouts,

which is closely related to the discrimination ability (quantified by the selection fidelity),

depends on the applied force. For instance, the coupling between different receptors due to

force-sharing is able to further expand the sensitive window. In chapter 5, by assuming B

cells were able to adjust the force magnitude on the fly according to the binding configura-

tion between receptors and ligands, we investigated the role of mechanical feedback during

antigen extraction. We have demonstrated that the negative feedback provided by a sensing

force was able to decouple ligand quality from ligand quantity, resulting in absolute affinity
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discrimination. Another interesting insight is that a sensing force allows B cells to optimize

both the discrimination ability and speed via utilizing the criticality near the bifurcation

point of the antigen extraction system.

In addition, my dissertation has discussed in many aspects how different strategies could

benefit the affinity maturation. First, in chapter 3 we highlighted the importance of tether

strength s. It determines not only the minimum affinity for B cells to extract enough antigen

to survive but also the affinity value above which all B cells can extract most antigens and

thereby become indistinguishable. Moreover, a dynamical tether, either achieved by antibody

feedback or passive immunization, can help to maintain the selection pressure while avoiding

GC extinction. Second, chapter 3 suggests that the evolvability of receptor stiffness may play

an important role in determining the evolution direction and the output antibody flexibility

and binding quality. The mismatch between the conditions under which training and testing

of B cells for antigen recognition are conducted may result in a discrepancy between antibody

quality as well as B cell fitness. Therefore, one potential strategy is to restrict the stiffness

evolvability so that the selection is acting on the binding affinity only. Lastly, our analysis

in chapter 4 implies that it is important to switch focus during affinity maturation. This is

because the relative amount of affinity information encoded in measurable readouts varies

as affinity improves.

In what follows, I provide an outlook and some future directions.

Experimental tests Predictions of our theory can be tested using various experimental

techniques. At the molecular level, different unbinding pathways can be distinguished by

labeling tethers, antigens and receptors with different fluorophore [33]. This allows one to

quantify the extracted antigen percentage using relative fluorescence intensity [33]. Then, the

dependence on tugging force can be seen via inhibition of cytoskeleton motors such as myosin

IIa [2]. Additionally, dynamic force spectroscopy [41] can be used to measure the extraction

dynamics under different linear ramping forces to test our prediction of η̃ = η(⟨F ⟩).
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At the cellular level, the effect of antibody feedback can be tested using mice models

that are deficient in secreting antibodies. In fact, Zhang et al. [73] observed a significantly

reduced affinity of GC B cells in mice deficient in the secreted form of IgM (without antibody

feedback), compared to the control group (with antibody feedback). However, it was unclear

whether this phenomenon was due to masked antigens or improved tethers. To test our

hypothesis of antibody feedback, the comparison between single epitope antigen and multi-

epitope antigen might be necessary.

T cell/B cell interaction One omitted component in our theory is the T cell/B cell

interaction. It is well established in experiments that the germinal center reaction relies on

tightly regulated bidirectional interactions between follicular helper T cells (Tfh) and B cells.

On the one hand, B cells with different affinities are discriminated and selected by Tfh cells.

On the other hand, the maintenance and expansion of Tfh cells require sustained antigenic

stimulation presented by B cells. Recently, it was recently discovered that the interaction

between Tfh cells and GC B cells also favor affinity-based selection of Tfh cells in the GC

[223].

In our theory, this intricate interaction is represented by a phenomenological expression

that links the number of extracted antigen with B cell replication rate (see Eq. 3.3), which

resembles the logistic growth model. This simplification has been adopted in many studies of

GC evolution [76, 75]. An alternative selection rule assumed that a fixed fraction of B cells

having the highest antigen extraction would receive Tfh help and survive [69, 20]. Whether

such high-level simplicity is indeed an emergent property of the strongly interacting parts is

yet unclear. It requires a quantitative study of the T cell/B cell interaction to elucidate how

T cells control the proliferation or apoptosis of B cells.

Moreover, the affinity-based selection of Tfh cells suggests that the selection is bidirec-

tional. Therefore, it is possible that the affinity difference between similar B cells (desired

signal) becomes amplified through some positive feedback mechansims during T cell/B cell
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interaction, and so do the fluctuations. Then, it is important to understand how the informa-

tion collected in the antigen extraction step influences the coupled T cell/B cell population

dynamics.

Spatial degree of freedom Another interesting aspect for future study is to include the

spatial degree of freedom in the model of antigen extraction. Our theory assumed receptors

and ligands are homogeneous and free to move. Nevertheless, it was suggested that the

synaptic architecture regulated selection of high-affinity B cells in GCs [32]. B cells with

different affinities may form different patterns of complexes [31].

The pattern formation during interaction between B cell and APC may introduce nontriv-

ial effect on antigen extraction. First, the membrane introduces cooperative effects between

bonds [224, 225], which changes the nucleation and dissociation dynamics of ligand-receptor

clusters [226], especially when an out-of-plane tugging force presents [227]. Second, as we

noted in chapter 4, the cluster size m0 is critical for the initial force per bond (F/m0), which

is one of the key factors that determine the overall extraction chance. These may characterize

a preferred cluster size that optimizes the discrimination function. It will be very interesting

to explore whether a favored cluster size requires active regulation or could naturally emerge

from the membrane-mediated ligand receptor interactions.

In summary, the research in my thesis examines several key steps in the affinity matu-

ration process, illustrates its dynamics and identifies the key components that give rise to

the observed behavior. I hope my study will inspire and motivate further work on principles

that govern the immune response.
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CHAPTER 8

Appendices

8.1 Derive the MFPT of a two-dimensional cusp-harmonic poten-

tial surface

In chapter 2 we considered a linear-cubic potential as an example to calculate the MFPT

explicitly. Another widely used potential is the so called cusp-harmonic potential [16, 17, 47].

Explicitly,

U(xa, xb) =


∆G‡

a

(
xa

x‡
a

)2
+ ∆G‡

b

(
xb

x‡
b

)2 − F (xa + xb), xa ≤ x‡
a and xb ≤ x‡

b,

−∞, otherwise.

(8.1)

For short, we let fa = 2∆G‡
a/x

‡
a, fb = 2∆G‡

b/x
‡
b. The potential has a minimum at (xa =

F/fa, xb = F/fb) and a cusp-like barrier at the boundary (xa = x‡
a or xb = x‡

b).

To find the MFPT for the cusp-harmonic potential at each boundary, we introduce

Talkner’s method [58]. According to Talkner [58], the MFPT in the n−dimensional space Ω

with boundary ∂Ω can be expressed in terms of a stationary state probability distribution

w(x⃗) of the Fokker Planck equation (L̂w = 0) and the probability flux passing through the

boundary. Define the relative MFPT f(x⃗) = τ(x⃗)/τ along the escaping pathway, where τ(x⃗)

is the MFPT starting from the position at x⃗, satisfying the Kolmogorov backward equation

given by

L̂†τ(x⃗) = 0. (8.2)

Here L̂† is the adjoint operator of the Fokker-Planck equation. τ is the MFPT starting from
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the potential minimum. By Gauss’ theorem [58],∫
Ω

wdΩ = −
∫
∂Ω

∑
i

dsi · w
∑
j

Dij
∂τ(x⃗)

∂xj

= −τ

∫
∂Ω

∑
i

dsi · w
∑
j

Dij
∂f(x⃗)

∂xj

, (8.3)

where d⃗s is the oriented surface element at the boundary ∂Ω. D is the diffusion matrix.

Index j loops through all degrees of freedom. The right-hand side describes the probability

flux through the boundary ∂Ω. This gives

τ =

∫
Ω
wdΩ

−
∫
∂Ω

∑
i dsi · w

∑
j Dij

∂f(x⃗)
∂xj

. (8.4)

To evaluate the right-hand side, one can estimate w(x⃗) and f(x⃗) using WKB approximations

[58]. This is because, given a potential with a high barrier separating the attractor and

boundary, a trajectory starting within Ω will typically first approach the attractor and

stay within its neighborhood for a long time until an occasional fluctuation drives it to the

boundary (see Fig. 8.1). Thus, we can assume f(x⃗) = 1 for all x⃗ ∈ Ω, except for a thin layer

∆Ω along the boundary ∂Ω. Therefore, f(x⃗) follows

L̂†f(x⃗) = 0, x⃗ ∈ ∆Ωi (8.5)

f(x⃗) = 0, x⃗ ∈ ∂Ωi

f(x⃗) = 1, x⃗ ∈ Ω − ∆Ωi

This can be solved by making ansatz about the form of f(x⃗) and Taylor expanding the

coefficient near the boundary.

We first write down the Fokker-Planck operator and its adjoint explicitly.

L̂ =
∂

∂xa

κaxa − κbxb

γa
+

∂

∂xb

(κbxb − κaxa

γa
+

κbxb − F

γb

)
+

kBT
( 1

γa

∂2

∂x2
a

+
γa + γb
γaγb

∂2

∂x2
b

− 2

γa

∂2

∂xa∂xb

)
, (8.6)

L̂† = −κaxa − κbxb

γa

∂

∂xa

−
(κbxb − κaxa

γa
+

κbxb − F

γb

) ∂

∂xb

+

kBT
( 1

γa

∂2

∂x2
a

+
γa + γb
γaγb

∂2

∂x2
b

− 2

γa

∂2

∂xa∂xb

)
.
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Ω-∆Ω

∆Ω

∂Ω

Figure 8.1: The WKB approximation used in Talkner’s method. A typical trajectory will

stay within the neighborhood of the attractor for a long time until it suddenly escapes from

the domain. Thus, we divide the domain Ω into three parts, the bulk region (Ω − ∆Ω), a

thin layer (∆Ω), and the boundary ∂Ω.

Here κa = 2∆G‡
a/(x‡

a)
2 and κb = 2∆G‡

b/(x‡
b)

2 are curvatures. We can see this corresponds

to the multivariate Ornstein-Uhlenbeck process, characterizing the noisy relaxation process.

Then we find the stationary probability distribution ω(x⃗) by solving the stationary

Fokker-Planck equation. This gives,

ω(xa, xb) = c exp[−U(xa, xb)/kBT ], (8.7)

which takes the form of Boltzmann distribution with c being a normalization constant that

will be canceled later. This can be verified by plugging into L̂ω(x⃗) = 0. The stationary

distribution takes the Gaussian form, so we can easily evaluate the numerator of Eq. 8.4,

given by,∫
Ω

wdΩ ≈
∫ ∞

−∞

∫ ∞

−∞
w(xa, xb)dxadxb = c

2πkBT√
κaκb

exp

[
(
F 2

2κa

+
F 2

2κb

)/kBT

]
. (8.8)

Note that we assumed the probability distribution is localized at the attractor so that we

can replace the integrating limit by infinities.

Then we calculate the dependence of MFPT on initial position, f(x⃗). Eq. 8.2 now
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becomes

L̂†f = 0 ⇒ −κaxa − κbxb

γa

∂f

∂xa

−
(κbxb − κaxa

γa
+

κbxb − F

γb

) ∂f

∂xb

+

kBT
( 1

γa

∂2f

∂x2
a

+
γa + γb
γaγb

∂2f

∂x2
b

− 2

γa

∂2

∂xa∂xb

)
= 0 (8.9)

Note that we have to consider two boundaries separately. Each boundary corresponds to a

distribution function f(x⃗). For the boundary at xa = x‡
a, we can utilize the WKB approxi-

mation (Eq. 8.5) and focus on the thin layer x‡
a− δ < xa < x‡

a. Since f(x‡
a, xb) = 0 for all xb,

we have approximately ∂xb
f = 0. Evaluating the coefficient in Eq. 8.9 at the ‘saddle’ point

Sa at (xa = x‡
a, xb = F/κb) gives

∂2f

∂x2
a

=
1

kBT
(fa − F )

∂f

∂xa

. (8.10)

This can be solved based on the boundary condition f
∣∣
xa≪x‡

a
= 1 and f

∣∣
xa=x‡

a
= 0. After

calculation, we get

f(xa, xb) = 1 − exp
[
−(fa − F )(x‡

a − xa)/kBT
]
. (8.11)

Similarly, for the boundary at xb = x‡
b, we focus on the thin layer x‡

b − δ < xb < x‡
b and

evaluate the coefficient in Eq. 8.9 at the ‘saddle’ point Sb at (xa = F/κa, xb = x‡
b). This

yields

∂2f

∂x2
b

=
1

kBT
(fb − F )

∂f

∂xb

. (8.12)

With boundary condition f
∣∣
x‡
b

= 0, f
∣∣
xb≪x‡

b

= 1, this gives,

f(xa, xb) = 1 − exp
[
−(fb − F )(x‡

b − xb)/kBT
]
. (8.13)

With the stationary probability distribution ω(x⃗) (Eq. 8.7), the MFPT distribution f(x⃗)

(Eq. 8.11 or Eq. 8.13), and the diffusion matrix (Eq. 2.17) in hand, we are ready to calculate

MFPT using Eq. 8.4. For the boundary at xa = x‡
a, the denominator of the right-hand-side
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in Eq. 8.4 is given by

−
∫ ∞

−∞
w(x‡

a, xb)
kBT

γa

∂f

∂xa

∣∣∣∣
xa=x‡

a

dxb =

∫ ∞

−∞
ce−U(x‡

a,xb)/kBT
kBT

γa

1

kBT
(fa − F )dxb

= c
fa − F

γa

√
2πkBT

κb

exp

[
−(∆G‡

a − Fx‡
a −

F 2

2κb

)/kBT

]
.

For the boundary at xb = x‡
b, we have

−
∫ ∞

−∞
w(xa, x

‡
b)(

kBT

γa
+

kBT

γb
)
∂f

∂xb

∣∣∣∣
xb=x‡

b

dxa =

∫ ∞

−∞
ce−U(xa,x

‡
b)/kBT (

kBT

γa
+

kBT

γb
)

1

kBT
(fb − F )dxa

= c
fb − F

γaγb/(γa + γb)

√
2πkBT

κa

exp

[
−(∆G‡

b − Fx‡
b −

F 2

2κa

)/kBT

]
.

Therefore, we have

τa =
√
πkBTγa√

κa(κax
‡
a−F )

e∆G‡
a(1− F

fa
)2/kBT ,

τb =

√
πkBT

γaγb
γa+γb√

κb(κbx
‡
b−F )

e
∆G‡

b(1−
F
fb

)2/kBT . (8.14)

Recall that fa = 2∆G‡
a/x

‡
a, fb = 2∆G‡

b/x
‡
b, κa = 2∆G‡

a/(x‡
a)

2, κb = 2∆G‡
b/(x‡

b)
2.

8.2 Fisher information provides an upper bound of selection fi-

delity

In chapter 4, I used the Fisher information and selection fidelity to quantify the discrimina-

tion performance. Here, I show a connection between Fisher information and the selection

fidelity: The Fisher information provides an upper bound on the selection fidelity. This im-

plies that the Fisher information can tell us when the discrimination performance is expected

to be poor.

Consider nB B cells with affinity E1, E2, ..., EnB
(we use E to denote the affinity in this

section). Without losing generality, we assume E1 is the highest affinity, E1 > E2, E3, .... Let

Pi(y) be the readout distribution associated with affinity Ei (i = 1, ..., nB, here we assume y
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is continuous and Pi(y) is differentiable). Then the probability to rank the best B cell (the

first B cell with affinity E1) highest is given by

ξY =

∫ ∞

−∞
dy1P1(y1)

nB∏
i=2

∫ y1

−∞
dyiPi(yi). (8.15)

The fidelity is equivalent to the top-K precision which is a widely used evaluation measure

of ranking algorithms. Here we focus on the case of K = 1. The generalization of ξY to

selection of top-K B cells (the probability to rank the top-K B cells higher than the rest of

B cells) is straightforward.

In the hard discrimination regime, we can Taylor expand the readout distributions near

P1(y),

Pi(y) = P1(y) − P1(y)s(y)ϵi + o(ϵ2i ), (8.16)

where ϵi = E1 − Ei > 0, i = 2, ..., nB. s(y) = ∂ ln(P1(y))
∂E

∣∣
E1

is the score function. Then to the

linear order of ϵi, Eq. 8.15 can be written as

ξY ≈
∫ ∞

−∞
dy1P1(y1)

[( nB∏
i=2

∫ y1

−∞
dyiP1(yi)

)
−

nB∑
j=2

( nB∏
i=2,i ̸=j

∫ y1

−∞
dyiP1(yi)

)∫ y1

−∞
dyjP1(yj)s(yj)ϵj

]
.

We consider each term on the right hand side separately. First,∫ ∞

−∞
dy1P1(y1)

( nB∏
i=2

∫ y1

−∞
dyiP1(yi)

)
=

∫ ∞

−∞
dy1P1(y1)(F (y1))

nB−1 = ⟨(F (y1))
nB−1⟩ =

1

nB

,

where F (y) is the CDF of distribution P1(y) and we used the property ⟨F (y)α⟩ = 1/(1 + α)

we proved before. Besides, for each index j (here 1 < j ≤ nB),∫ ∞

−∞
dy1P1(y1)

( nB∏
i=2,i ̸=j

∫ y1

−∞
dyiP1(yi)

)∫ y1

−∞
dyjP1(yj)s(yj)ϵj

=

∫ ∞

−∞
dy1P1(y1)(F (y1))

nB−2

∫ y1

−∞
dyjP1(yj)s(yj)ϵj

=

∫ ∞

−∞
dyjP1(yj)s(yj)ϵj

∫ ∞

yj

dy1P1(y1)(F (y1))
nB−2

=

∫ ∞

−∞
dyjP1(yj)s(yj)ϵj

1

nB − 1
(1 − F (yj)

nB−1)

= − 1

nB − 1
⟨s(yj)F (yj)

nB−1⟩ϵj,
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where we used the equality∫ ∞

yj

dy1P1(y1)(F (y1))
nB−2 = F (y1)

nB−1

∣∣∣∣∞
yj

− (nB − 2)

∫ ∞

yj

dy1P1(y1)(F (y1))
nB−2

to get ∫ ∞

yj

dy1P1(y1)(F (y1))
nB−2 =

1

nB − 1
(1 − F (yj)

nB−1).

In the last step, we used ⟨s(yj)⟩ = 0. All the averages are taking over P1(y). Hence, Eq. 8.15

now becomes

ξY ≈ 1

nB

+
1

nB − 1
⟨s(y)F (y)nB−1⟩

nB∑
j=2

ϵj, (8.17)

which depends on the covariance between the score function and CDF to the power of nB−1.

According to the triangle inequality,

⟨s(y)F (y)nB−1⟩2 ≤ var(s(y)) · var(F (y)nB−1) = IY ·
( 1

2nB − 1
− 1

n2
B

)
, (8.18)

where we used var(F (y)nB−1) = ⟨F (y)2nB−2⟩ − ⟨F (y)nB−1⟩2. Finally we arrive at a simple

upper bound for the discrimination fidelity between many B cells.

ξY ≤ 1

nB

+
1

nB

√
2nB − 1

√
IY

nB∑
j=2

ϵj +

nB∑
j=2

o(ϵ2j). (8.19)

For exactly same B cells, the fidelity is 1/nB, as expected because the chance to choose E1

is 1/nB under random selection.

If the readout distribution is discrete, it seems there is no general and simple relation

between ξY and Fisher information like Eq. 8.19. However, in some special cases, we can get

similar results. For example, consider the selection of one advantageously mutated B cell

from many identical wide-type B cells, then we have E1 > E2 = E3 = ... = EnB
. One can

replace the the integral in Eq. 8.15 with sum and Taylor expand P1(y) at P2(y) (readout

distribution of wild-type B cells). After calculation, we get

ξY ≈ ⟨F (y)nB−1⟩ + ⟨s(y)F (y)nB−1⟩ϵ,
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where ϵ = E1 − E2. Using the covariance inequality, we arrive at

ξY ≤ ⟨F (y)nB−1⟩ +
√

IY

√
var(F (y)nB−1)ϵ + o(ϵ2), (8.20)

which relies on the moments of its CDF, like the case of a continuous distribution. When

the number of states is large, Eq. 8.20 is expected to converge to Eq. 8.19.
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[111] Paul François and Grégoire Altan-Bonnet. The case for absolute ligand discrimination:
Modeling information processing and decision by immune t cells. Journal of Statistical
Physics, 162(5):1130–1152, 2016.

[112] Mayer Andreas, Balasubramanian Vijay, Walczak Aleksandra M., and Mora Thierry.
How a well-adapting immune system remembers. Proceedings of the National Academy
of Sciences, 116(18):8815–8823, 2022/05/09 2019.

183



[113] Duncan Kirby, Jeremy Rothschild, Matthew Smart, and Anton Zilman. Pleiotropy
enables specific and accurate signaling in the presence of ligand cross talk. Physical
Review E, 103(4):042401–, 04 2021.

[114] Robert C. Rickert. New insights into pre-bcr and bcr signalling with relevance to b
cell malignancies. Nature Reviews Immunology, 13(8):578–591, 2013.

[115] Wanli Liu, Pavel Tolar, Wenxia Song, and Tae Jin Kim. Editorial: Bcr signaling and
b cell activation. Frontiers in Immunology, 11, 2020.

[116] Munir Akkaya, Javier Traba, Alexander S. Roesler, Pietro Miozzo, Billur Akkaya,
Brandon P. Theall, Haewon Sohn, Mirna Pena, Margery Smelkinson, Juraj Kabat, Eric
Dahlstrom, David W. Dorward, Jeff Skinner, Michael N. Sack, and Susan K. Pierce.
Second signals rescue b cells from activation-induced mitochondrial dysfunction and
death. Nature Immunology, 19(8):871–884, 2018.

[117] Ashraf M. Khalil, John C. Cambier, and Mark J. Shlomchik. B cell receptor sig-
nal transduction in the gc is short-circuited by high phosphatase activity. Science,
336(6085):1178, 06 2012.

[118] Jackson Steed Turner, Fang Ke, and Irina Leonidovna Grigorova. B cell receptor
crosslinking augments germinal center b cell selection when t cell help is limiting. Cell
Reports, 25(6):1395–1403.e4, 2018.

[119] Julie Zikherman. Gc b cells ‘akt’to blunt bcr signaling. Nature Immunology, 20(6):671–
674, 2019.

[120] N. G. VAN KAMPEN. Chapter VI - ONE-STEP PROCESSES, pages 134–165. Else-
vier, Amsterdam, 2007.

[121] Dibyendu Kumar Das, Yinnian Feng, Robert J. Mallis, Xiaolong Li, Derin B. Keskin,
Rebecca E. Hussey, Sonia K. Brady, Jia-Huai Wang, Gerhard Wagner, Ellis L. Rein-
herz, and Matthew J. Lang. Force-dependent transition in the t-cell receptor β-subunit
allosterically regulates peptide discrimination and pmhc bond lifetime. Proceedings of
the National Academy of Sciences, 112(5):1517, 02 2015.

[122] Peter Bretscher and Melvin Cohn. A theory of self-nonself discrimination. Science,
169(3950):1042, 09 1970.

[123] T W McKeithan. Kinetic proofreading in t-cell receptor signal transduction. Proceed-
ings of the National Academy of Sciences, 92(11):5042, 1995.

[124] Raman S. Ganti, Wan-Lin Lo, Darren B. McAffee, Jay T. Groves, Arthur Weiss,
and Arup K. Chakraborty. How the t cell signaling network processes information to
discriminate between self and agonist ligands. Proceedings of the National Academy of
Sciences, 117(42):26020, 10 2020.

184



[125] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul Grasman, and Eric-Jan
Wagenmakers. A tutorial on fisher information, 2017.

[126] Harald Cramer. Mathematical methods of statistics. Princeton University Press,
Princeton, 1999.

[127] Srividya Iyer-Biswas and Anton Zilman. First passage processes in cellular biology,
2015.

[128] Thorsten Erdmann and Ulrich S. Schwarz. Stochastic dynamics of adhesion clusters
under shared constant force and with rebinding. The Journal of Chemical Physics,
121(18):8997–9017, 2019/12/26 2004.

[129] Jefferson Foote and Herman N. Eisen. Breaking the affinity ceiling for antibodies and
t cell receptors. Proceedings of the National Academy of Sciences, 97(20):10679, 09
2000.

[130] T. Erdmann and U. S. Schwarz. Stability of adhesion clusters under constant force.
Physical Review Letters, 92(10):108102–, 03 2004.

[131] Todd A. Sulchek, Raymond W. Friddle, Kevin Langry, Edmond Y. Lau, Huguette
Albrecht, Timothy V. Ratto, Sally J. DeNardo, Michael E. Colvin, and Aleksandr Noy.
Dynamic force spectroscopy of parallel individual mucin1–antibody bonds. Proceedings
of the National Academy of Sciences of the United States of America, 102(46):16638,
11 2005.

[132] M. Stein, A. Mezghani, and J. A. Nossek. A lower bound for the fisher information
measure. IEEE Signal Processing Letters, 21(7):796–799, 2014.

[133] Ranjith Nair and Mankei Tsang. Far-field superresolution of thermal electromagnetic
sources at the quantum limit. Phys. Rev. Lett., 117:190801, Nov 2016.

[134] Tomasz Jetka, Karol Niena ltowski, Sarah Filippi, Michael P H Stumpf, and Micha l Ko-
morowski. An information-theoretic framework for deciphering pleiotropic and noisy
biochemical signaling. Nature Communications, 9(1):4591, 2018.

[135] Pieter Rein ten Wolde, Andrew Mugler, Ronald Hancock, and Kwang W. Jeon. Chap-
ter Twelve - Importance of Crowding in Signaling, Genetic, and Metabolic Networks,
volume 307, pages 419–442. Academic Press, 2014.

[136] James Mueller, Mehrdad Matloubian, and Julie Zikherman. Cutting edge: An in vivo
reporter reveals active b cell receptor signaling in the germinal center. The Journal of
Immunology, 194(7):2993, 04 2015.

[137] Ofer Feinerman, Ronald N. Germain, and Grégoire Altan-Bonnet. Quantitative chal-
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