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ABSTRACT 

 

As part of the next generation liquefaction (NGL) project, we are developing probabilistic 

triggering and manifestation models using laboratory data and cone penetration test (CPT) case 

histories in the NGL database. The case histories are used to develop probabilistic models for 

surface manifestation conditional on susceptibility, liquefaction triggering, soil properties, 

stratigraphic details, and other features. Susceptibility is interpreted as a sole function of soil 

composition and is expressed as a probabilistic function of soil behavior type index, Ic, obtained 

from CPT. A triggering model is derived based on laboratory tests on high-quality specimens 

from literature; this model captures mean responses and uncertainty reflective of data dispersion 

and is considered as a Bayesian prior that will subsequently be updated by field observation data. 

A manifestation model is then regressed from field case histories where surface manifestation 

was or was not observed, information on soil conditions that enables identification of layers 

likely to liquefy, and ground shaking conditions. We describe the approach applied to develop 

our manifestation model; for a given layer this model considers layer depth, thickness, CPT tip 

resistance, and Ic. The result of this process is a logistic function in which manifestation 

probability decreases with increasing depth, decreasing thickness, increasing tip resistance, and 

increasing Ic. Profile manifestation is then derived by aggregating individual layer manifestation 

probabilities. 

 

INTRODUCTION 

 

A three-step process is typically used to judge seismic hazards related to soil liquefaction, 

namely: (1) evaluation of liquefaction susceptibility, (2) evaluation of the potential for loss of 

stiffness and strength from liquefaction triggering, and (3) assessment of likely consequences of 

liquefaction or cyclic softening (e.g., instabilities or deformations). Case histories of field 

performance from liquefaction necessarily contain information on soil conditions and ground 

shaking (e.g., Stewart et al. 2016), but the condition that mainly limits their numbers is the 

requirement for post-earthquake observations of manifestation or lack thereof in past earthquake 

events. As a result, the case histories most directly provide information on the manifestation 

consequence, whereas in past work manifestation has generally been interpreted as being 

uniquely associated with triggering and lack of manifestation with no-triggering (e.g., Cetin et al. 

2004 and 2018; Idriss and Boulanger, 2008; and Boulanger and Idriss 2012 and 2016).  
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We take a different approach in which observation of surface manifestation or lack thereof is 

taken as only providing evidence of field performance and not (directly) whether liquefaction 

was or was not triggered. Using case histories in the Next Generation Liquefaction (NGL) 

Project database (Ulmer et al. 2023a, Brandenberg et al. 2020), we are developing a model for 

liquefaction manifestation of a soil profile that considers the manifestation potential of individual 

layers. For each triggered layer, manifestation is related to layer depth, thickness, corrected CPT 

tip resistance (qc1N or qc1Ncs), and Ic. The triggering is derived from laboratory cyclic test results, 

which has been separately presented (Ulmer et al. 2023b, Carlton et al. 2022); the focus of this 

paper is on presenting the framework being used to develop the manifestation model. The model 

itself is under development, and results presented herein are merely for illustrative purposes.  

 

SEPARATING TRIGGERING FROM MANIFESTATION 

 

Surface manifestation of liquefaction generally takes the forms of sediment boils, ground 

cracks, or similar effects. Historically, it has been common to interpret manifestation at case 

history sites as equivalent to triggering and absence of manifestation as indicating that triggering 

did not occur. However, it is possible for sand boils to develop at sites where thick, shallow, 

susceptible layers produce significant pore pressures that do not exceed the level of initial 

liquefaction (i.e., pore pressure ratio ru = 1.0) (Tokimatsu et al., 2012; Kramer et al., 2016). 

Furthermore, it is possible for liquefaction to be triggered in thin, deep susceptible layers without 

producing surface manifestation.  

Examples. Figure 1 shows a CPT profile for Wufeng Site A (Chu et al. 2008) that did not 

manifest liquefaction during the 1999 Chi-Chi earthquake. There are three layers labeled 4, 6, 

and 8 that have Ic values near or less than 2.6 and are therefore interpreted as being sand-like and 

susceptible to liquefaction, and a low qc1Ncs. Shaking intensity was strong for this site, and the 

magnitude- and overburden-corrected CSR (CSRM) values at the depth of the layers is between 

0.6 to 0.85 based on processing steps by Boulanger and Idriss (i.e., rd, MSF, etc.). These layers 

are predicted to liquefy by all published liquefaction models, but the site did not exhibit 

manifestation. We postulate that liquefaction did trigger in some or all of these layers but did not 

manifest due to the presence of the thick clay-like crust layer that is not susceptible to 

liquefaction. Furthermore, this profile exhibits significant interbedding, which has been 

associated with lack of surface manifestation at many sites in Christchurch, New Zealand. Sandy 

layers within these profiles would also be predicted to liquefy based on current liquefaction 

models (Cubrinovski et al., 2019, Hutabarat and Bray, 2021, 2022), but as in Wufeng, the non-

manifestations in these examples point to the importance of separating triggering from 

manifestation in analysis. 

Probabilistic Framework. The historical use of manifestation as an indicator of liquefaction 

triggering and lack of manifestation as an indicator of a lack of triggering implies that the 

probability of triggering is equal to the probability of manifestation, i.e., P[T] = P[M], and the 

probability of no triggering is equal to the probability of no manifestation P[NT] = P[NM]. We 

take a different approach by utilizing Bayes’ theorem to interpret relationships between 

triggering and manifestation. Consider for example the probability that the soil in the critical 

layer triggered conditioned on manifestation having been observed, i.e., P[T|M],  

 

 
(1) 
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Figure 1. (a) CPT WAC-3 from Wufeng Site A in Taiwan (Chu et al. 2008), with no surface 

manifestation of liquefaction despite having loose, sand in Layers 4, 6, and 8. (b) Critical 

layer values of qc1Ncs and CSR plotted on traditional triggering curves from Boulanger and 

Idriss (2016) and Moss et al. (2006). 

 

Table 1 lists three probabilities – those of triggering P[T], manifestation of a layer given 

triggering P[ML|T], and manifestation of a layer given no triggering P[ML|NT], where the 

subscript “L” denotes the manifestation from a single layer. Other pertinent probabilities can be 

computed from their complements, e.g., P[NT] = 1 – P[T]. 

 

Table 1. Descriptions of Probabilities in our Approach 

 

Term Definition 

P[S] Probability of susceptibility (e.g., Mauer et al. 2017) 

P[T] Probability that a layer triggers. Note that P[T] = P[S]*P[T|S] 

P[ML|T] 
Probability that a layer causes surface manifestation given that it 

triggers.  

P[ML|NT] 

Probability that a layer causes surface manifestation given that it does 

not trigger. This may result from high pore pressures (but not high 

enough to trigger liquefaction) that cause sand boils or other 

observations we usually interpret as manifestation of liquefaction.  
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Probability of Triggering. We utilized laboratory test data to develop a prior distribution for 

P[T] conditioned on relative density and CSR (Ulmer et al. 2023b, Carlton et al. 2022). This 

work is presented in Ulmer et al (2023c) and is omitted here due to length limitations. The 

laboratory-based prior will subsequently be investigated for potential revision using Bayesian 

inference. 

 

MODEL FRAMEWORK FOR PROFILE MANIFESTATION 

 

The framework computes a probability of profile manifestation based on probabilities of 

manifestation of each soil layer within the profile, which in turn is conditioned on the 

probabilities that each layer within the profile will trigger, along with other layer features. This 

framework does not require identification of a critical layer within the profile; rather we 

aggregate contributions of each layer (denoted with the subscript “L”) to the profile 

manifestation probability to compute the profile manifestation probability, P[MP], where the 

subscript “P” denotes profile. Layer boundaries and representative values can be interpreted 

from CPT profiles using judgement or algorithms (e.g., Hudson et al. 2023). Terminology is 

defined in Table 2. 

 

Table 2. Terminology for profile manifestation model 

 

Term Definition 

NL Number of layers in profile 

i Layer index counter 

 Model coefficient 

P[ML] Probability that layer causes surface manifestation  

 

Layer Manifestation Probability. The probability that a layer will manifest is computed 

using a logistic function. For example, Eq. 2 is a multivariate logistic function expressing 

probability of manifestation as a function of qc1N, Ic, and depth to the top of the layer (ztop).  

 

 

(2) 

 

where 0 to 3 are regressed coefficients. 

Figure 2 plots the resulting logistic function. The probability factor depends jointly on all 

three features, so multiple plots are required to demonstrate key aspects of the function. As 

evidenced in the top left subplot of Figure 2, a layer at the ground surface (ztop = 0m) with Ic = 1 

(represented as the darkest blue curve) has P[ML|T] ~ 1 at qc1N < 75. As qc1N increases, P[ML|T] 

decreases until it is approximately 0 at qc1N = 300. As Ic increases (the color of the curve gets 

warmer), for the same ztop and qc1N, the P[ML|T] decreases. Moving to different subplots from left 

to right and top to bottom, as ztop increases P[ML|T] decreases for the same qc1N and Ic values. We 

are currently exploring many different layer features, and the functions in Figure 2 are presented 

as preliminary results to illustrate the methodology. 

Manifestation Probability of a Profile. The probability of manifestation of a profile P[MP] 

is computed using Eq. 3, where NL is the number of layers in the profile, ti is the thickness of the 

ith layer, and tc is a constant characteristic thickness. Eq. 3 consists of multiple components that 
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warrant separate discussions. First, the expression 1 - P[ML|T]P[T] is equal to the probability that 

the layer will not manifest liquefaction, P[NML] = 1 - P[ML]. If none of the layers manifest 

liquefaction, then the profile does not manifest liquefaction. Therefore, P[NMP] is computed as a 

product sum of P[NML]. However, a direct product sum (i.e., without the t/tc term in the 

exponent) inherently assumes that P[NML] for each layer is statistically independent from all 

other layers. This is generally not true. For example, consider a profile composed of a 3m thick 

layer with P[ML|T] = 0.2 and P[TL] = 1.0. In this case, Eq. 3 would produce P[MP] = 0.2, which is 

the same as P[ML|T] since the layer and the profile are one and the same. However, if we sub-

divide the profile into three 1m thick layers each with P[ML|T] = 0.2 and P[T] = 1.0, and we 

compute a product sum without the ti/tc exponent, then Eq. 3 produces P[MP] = 0.488. This is an 

undesired outcome because the profile is the same in both cases, but the computed P[MP] 

depends strongly on discretization of the profile. 

 

Figure 2. Logistic function illustrating effects of overburden corrected cone tip resistance, 

qc1N, and soil behavior type index, Ic for reference top of the layer depths, ztop. 

 

To overcome this discretization problem, we introduce the ti/tc exponent. If the same 3m 

thick layer has P[ML|T] = 0.2, P[T] = 1.0, and tc = 3m, then Eq. 3 provides P[MP] = 0.2. If the 

layer is subdivided into three 1m thick layers, then Eq. 3 provides P[MP] = 0.2. The ti/tc exponent 

has removed the influence of discretization by tying layer thickness to the characteristic length. 

The characteristic thickness is the layer thickness for which P[ML|T] is statistically independent 

of the other layers. If all layers have a thickness equal to the characteristic thickness, then Eq. 3 

reduces to a simple product sum. If a layer is thicker than the characteristic thickness, it becomes 

more likely to manifest, and vice versa, as illustrated in Figure 3. We considered including 

thickness as a variable within the logistic regression instead of as an exponent, but ultimately 

decided to include it as an exponent instead for this reason. 

 

 

(3) 
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Consider the example profile in Figure 4, which has three layers with thicknesses of 3 m 

(also using tc = 3m for simplicity), and groundwater table at the ground surface. Layer 1 has a 

high qc1N and Ic (300 and 3.2, respectively), layer 2 has a low qc1N and high Ic (50 and 3.2, 

respectively), and layer 3 has low qc1N and low Ic (50 and 1.5, respectively). A strong motion 

with CSR=0.6 is assumed. The first step is to compute P[T|S] for each layer; layer 1 has P[T|S]~0 

due to its high qc1N, whereas layers 2 and 3 have relatively low qc1N and high CSR, therefore 

P[T|S]~1. The P[S] is low for layers 1 and 2 due to high Ic. The product of P[T|S] and P[S] is 

P[T], which is 0, 0, and 1 for layers 1, 2, and 3 respectively. The logistic functions in Figure 2 

and Eq. 2 are used with the profile data to compute P[ML|T]. Layer 1 has P[ML|T]=0, layer 2 has 

P[ML|T]=0, and layer 3 has P[ML|T]=0.5. These results are combined in Eq. 3 to provide profile 

manifestation probability P[MP]=0.5, which is entirely caused by layer 3. 

 

 
 

Figure 3. Influence of t/tc exponent on probability of layer manifestation. 

 

 
 

Figure 4. Simplified CPT profile demonstrating the computation of P[MP]. 

 

PROFILE-BASED REGRESSION FRAMEWORK 

 

The profile-based framework provides a value of P[MP] for a profile conditional on the 

properties of the layers within the profile, P[T|S] and P[S] for each layer, and the coefficients 

within the logistic functions. Independently regressing the logistic coefficients, P[T|S] and P[S] 

based on case history data was not attempted because (i) the amount of field case history data is 

inadequate to isolate so many different components, and (ii) there is a body of knowledge from 

laboratory testing that help us constrain P[S] and P[T|S]. Our approach is therefore to develop 

prior distribution functions for P[S] and P[T|S], and subsequently use Bayesian inference to 

obtain posterior distributions following regression of the logistic coefficients. This section 
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develops a regression framework that solves for the logistic function coefficients based on 

observations of manifestations at NGL sites. We assume P[ML|NT]=0 for this derivation, but we 

anticipate including it in future versions of the model. 

Frequentist regression requires a cost function J that must be minimized, while Bayesian 

inference requires a likelihood function L that must be maximized. In least-squares regression, 

constants are selected to minimize the sum of the square of the difference between the 

predictions and observations. This form of regression is not well-suited to binary observations, 

such as whether liquefaction did or did not manifest at a site, because the dependent variable is 

not continuous. Logistic regression is better suited to this purpose. We herein seek values of the 

logistic coefficients that minimize the cost function J given by Eq. 4, where yk is a binary 

indicator of whether manifestation was observed at the kth site (yk = 1 if manifestation was 

observed, yk=0 if it was not), and NP is the number of profiles. 

 

 ( ) ( )  ( )
1

1
ln 1 ln 1

PN

k P k Pk k
kP

J y P M y P M
N =

 = − + − −
                              (4) 

 

The cost function exhibits several notable properties. First, if yk=1, only the first expression 

contributes to the cost function for profile k, whereas if yk=0, only the second expression 

contributes. Second, if the prediction is a true positive (i.e., if yk=1 and P[MP]k = 1), or a true 

negative (i.e., if yk=0 and P[MP]k = 0), the contribution to the cost function from that profile is 

zero. Only values of P[MP] that do not match the observed manifestation contribute to the cost 

function. The ideal scenario would therefore be to select an optimal set of β’s that render P[MP] 

values that are either 0 or 1 and match the observations. In that case, the cost function would be J 

= 0. For real datasets, this is generally not feasible, and the value of J will therefore be larger 

than zero. To perform the minimization, the cost function must be written in terms of the desired 

regression variables, which is obtained by substituting Eq. 2 and 3 into Eq. 4.  

Traditional logistic regression problems are convex (i.e., they exhibit a single minimum) and 

are well-suited to convex optimization strategies like the gradient descent method. 

Unfortunately, the functional form we have adopted, which is a product of many multi-variate 

logistic functions raised to a power, is not convex. As a result, we must constrain the values of 

the model coefficients within a range of interest and try multiple initial guesses of the model 

coefficients to identify the minimum value of the cost function within the permissible space. We 

have adopted the limited memory Broyden–Fletcher–Goldfarb–Shanno constrained algorithm 

(Byrd et al., 1995), often called L-BFGS-B to solve this problem. 

 

CONCLUSIONS AND NEXT STEPS 

 

We have provided here a preliminary framework for separating the effects of liquefaction 

susceptibility, triggering, and manifestation during model development. These models represent 

“works in progress” and are not final recommendations. However, our framework presents useful 

steps towards more robust, fully probabilistic and performance-based approaches to assessing 

liquefaction potential. In this manuscript, we clarified the meaning of key terms in liquefaction 

analysis and provided a framework by which the different effects can be evaluated in a consistent 

and rational manner that is probabilistic and performance-based. We are continuing to explore 

other options in the model formulation including “profile-based” variables (e.g., interbeddedness 

of a profile, H1, and liquefaction potential index), alternative demand parameters (PGV, CAV), 
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and contributions to manifestation from ground failure caused by cyclic softening of clay-like 

soils. Future work will expand this framework to consider SPT and boring log data as a stand-

alone model or as a combined model with CPT. 

ACKNOWLEDGEMENTS 

 

“This work was supported with US Nuclear Regulatory Commission (Contract # 

31310018D0002) and US Bureau of Reclamation (contract # R20PG00126) support via the 

Geosciences and Engineering Dept. of the Southwest Research Institute. This paper is an 

independent product and does not necessarily reflect the view or regulatory position of the NRC 

or the USBR. The authors wish to acknowledge members of the NGL Advisory Board and other 

NGL Modeling Teams for their helpful insights. The work presented here does not necessarily 

represent the opinions, concurrence, or desired approaches of other NGL teams. 

 

REFERENCES 

 

Boulanger, R. W., and I. M. Idriss. (2016). “CPT-Based Liquefaction Triggering Procedure.” 

Journal of Geotechnical and Geoenvironmental Engineering, 142(2). 

Boulanger, R. W., and I. M. Idriss. (2012). “Probabilistic Standard Penetration Test-based 

Liquefaction-Triggering Procedure.” Journal of Geotechnical and Geoenvironmental 

Engineering. Vol. 138, No. 10. pp. 1,185–1,195. 

Brandenberg, S. J., et al. (2020) “Next-Generation Liquefaction Database.” Earthquake Spectra. 

Vol. 36, No. 2. pp. 939–959. 

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu. (1995). “A Limited Memory Algorithm for Bound 

Constrained Optimization.” SIAM Journal on Scientific Computing. Vol. 16, No. 5. pp. 

1,190-1,208. 

Carlton, B., K. Ulmer, T. Nguyen, and Q. Parker. (2022). Next Generation Liquefaction (NGL) - 

Supporting Studies: Overburden and Initial Shear Stress. DesignSafe-CI. 

Cetin, K. O., R. B. Seed, A. Der Kiureghian, K. Tokimatsu, L. F. Harder, R. E. Kayen, and R. E. 

S. Moss. (2004). “Standard Penetration Test-Based Probabilistic and Deterministic 

Assessment of Seismic Soil Liquefaction Potential.” Journal of Geotechnical and 

Geoenvironmental Engineering. Vol. 130, No. 12. pp. 1,314–1,340. 

Cetin, K. O., R. B. Seed, R. E. Kayen, R. E. S. Moss, H. T. Bilge, M. Ilgac, and K. Chowdhury. 

(2018). “SPT-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction 

Triggering Hazard. Soil Dynamics and Earthquake Engineering. Vol. 115. pp. 698–709. 

(Accessed date 27 August 2022). 

Chu, D. B., J. P. Stewart, R. W. Boulanger, and P.-S. Lin (2008). Cyclic softening of low 

plasticity clay and its effect on seismic foundation performance, J. Geotech. & Geoenv. 

Engrg., 134 (11), 1595-1608. 

Cubrinovski, M., A. Rhodes, N. Ntritsos, and S. van Ballegooy. (2019). “System Response of 

Liquefiable Deposits.” Soil Dynamics and Earthquake Engineering. Vol. 124. pp. 212–229. 

Hudson, K. S., K. J. Ulmer, P. Zimmaro, S. L. Kramer, J. P. Stewart, and S. J. Brandenberg 

(2023). Unsupervised Machine Learning for Detecting Soil Layer Boundaries from Cone 

Penetration Test Data, Earthquake Engineering & Structural Dynamics. 

Hutabarat, D., and J. D. Bray. (2021). “Effective Stress Analysis of Liquefiable Sites to Estimate 

the Severity of Sediment Ejecta. Journal of Geotechnical and Geoenvironmental 

Engineering. Vol. 147, No. 5. (Accessed date 27 August 2022). 

Geo-Congress 2024 GSP 349 159

© ASCE

 Geo-Congress 2024 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

K
en

ne
th

 H
ud

so
n 

on
 0

3/
01

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Hutabarat, D., and J. D. Bray. (2022). “Estimating the Severity of Liquefaction Ejecta Using the 

Cone Penetration Test. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 

148, No. 3. (Accessed date 30 August 2022). 

Idriss, I. M., and R. W. Boulanger. (2008). Soil Liquefaction During Earthquakes. D. Becker, 

editor. Earthquake Engineering Research Institute. 

Kramer, S. L., S. S. Sideras, and M. W. Greenfield. (2016). “The Timing of Liquefaction and Its 

Utility in Liquefaction Hazard Evaluation.” Soil Dynamics and Earthquake Engineering. 

Vol. 91. pp. 133–146. 

Maurer, B. W., S. van Ballegooy, L. M. Wotherspoon, and R. A. Green. (2017) “Assessing 

Liquefaction Susceptibility Using the CPT Soil Behavior Type Index.” 3rd International 

Conference on Performance-based Design in Earthquake Geotechnical Engineering. 

Vancouver. 

Moss, R. E. S., R. B. Seed, R. E. Kayen, J. P. Stewart, A. Der Kiureghian, and K. O. Cetin. 

(2006). “CPT-based Probabilistic and Deterministic Assessment of In Situ Seismic Soil 

Liquefaction Potential.” Journal of Geotechnical and Geoenvironmental Engineering. Vol. 

132, No. 8. pp. 1,032–1,051. 

Stewart, J. P., et al. (2016). PEER-NGL project: Open source global database and model 

development for the next-generation of liquefaction assessment procedures, Soil Dyn. 

Earthquake Eng., 91, 317–328. 

Tokimatsu, K., S. Tamura, H. Suzuki, and K. Katsumata. (2012). “Building Damage Associated 

with Geotechnical Problems in the 2011 Tohoku Pacific Earthquake.” Soils and Foundations. 

Vol. 52, No.5. pp. 956–74. 

Ulmer, K. J., et al. (2023a). Next-Generation Liquefaction Database, Version 2. Next-Generation 

Liquefaction Consortium. 

Ulmer, K. J., B. Carlton, T. Nguyen, and Q. Parker. (2023b). “An Expanded Data Set of 

Overburden (Kσ) and Initial Static Shear Stress (Kα) Correction Factors from Published 

Cyclic Laboratory Tests for Liquefaction Triggering Analyses.” In Geo-Congress 2023, pp. 

197-206. 

Ulmer, K. J., K. Hudson, S. J. Brandenberg, P. Zimmaro, R. Pretell, B. Carlton, S. L. Kramer, 

and J. P. Stewart. (2023c) Task 7b: Draft Final Report Documenting Probabilistic 

Liquefaction Models. Report to USNRC and USBR. August 2023. 

 

 

 

 

Geo-Congress 2024 GSP 349 160

© ASCE

 Geo-Congress 2024 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

K
en

ne
th

 H
ud

so
n 

on
 0

3/
01

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.




