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Stepwise Square Integrable Representations:
the Concept and Some Consequences

Joseph A. Wolf

Abstract There are some new developments on Plancherel formula and growth of
matrix coefficients for unitary representations of nilpotent Lie groups. These have
several consequences for the geometry of weakly symmetric spaces and analysis
on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional)
locally nilpotent Lie groups. Many of these consequences are still under develop-
ment. In this note I’ll survey a few of these new aspects of representation theory for
nilpotent Lie groups and parabolic subgroups.

1. Introduction.

There is a well developed theory of square integrable representations of nilpotent
Lie groups [17]. It is based on the general representation theory of Kirillov [12] for
connected nilpotent real Lie groups. A connected simply connected Lie group N
with center Z is called square integrable if it has unitary representations π whose
coefficients fu,v(x) = 〈u,π(x)v〉 satisfy | fu,v| ∈L 2(N/Z). If N has one such square
integrable representation then there is a certain polynomial function P(γ) on the
linear dual space z∗ of the Lie algebra of Z that is key to harmonic analysis on
N. Here P(γ) is the Pfaffian of the antisymmetric bilinear form on n/z given by
bλ (x,y) = λ ([x,y]) where γ = λ |z . The square integrable representations of N are
certain easily–constructed representations πγ where γ ∈ z∗ with P(γ) 6= 0, Plancherel
almost irreducible unitary representations of N are square integrable, and up to an
explicit constant |P(γ)| is the Plancherel density of the unitary dual N̂ at πλ . This
theory has some interesting analytic consequences [26].

More recently there was a serious extension of that theory [28]. Under certain
conditions, the nilpotent Lie group N has a decomposition into subgroups that have
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2 Joseph A. Wolf

square integrable representations, and the Plancherel formula then is synthesized
explicitly in terms of the Plancherel formulae of those subgroups. In particular the
extended theory applies to nilradicals of minimal parabolic subgroups [28]. With a
minor technical adjustment it has just been extended to nilradicals of arbitrary real
parabolics [32]. The consequences include explicit Plancherel and Fourier inversion
formulas. Applications include analysis on minimal parabolic subgroups [29] and,
more generally, on maximal amenable subgroups of parabolics [32], They also in-
clude analysis on commutative spaces, i.e. on Gelfand pairs [31]. We sketch some
of these developments. Due to constraints of time and space we pass over many as-
pects of operator theory and orbit geometry, for example those described in [2], [3]
and [4], related to stepwise square integrable representations.

In Section 2 we recall the basic facts [17], with a few extensions, on square
integrable representations of nilpotent Lie groups. In Section 3 we recall the concept
and main results for stepwise square integrable nilpotent Lie group.

In Section 4 we show how nilradicals of minimal parabolic subgroups have
the required decomposition for stepwise square integrability. This is a construction
based on concept of strongly orthogonal restricted roots.

In Section 5 we indicate the consequences for homogeneous compact nilman-
ifolds, and in Section 6 we mention the application to analysis on commutative
nilmanifolds.

In Section 7 we start the extension of stepwise square integrability results from
the nilradical N of a minimal parabolic P = MAN to various subgroups that contain
N. This section concentrates on the subgroup MN and takes advantage of principal
orbit theory. That gives a sharp simplification to the Plancherel and Fourier Inversion
formulae. In Section 8 we look at P and its subgroup AN. They are not unimodular,
so we introduce the Dixmier-Púkanszky operator D whose semi–invariance balances
that of the modular function. It is a key point for the Plancherel and Fourier Inversion
formulae.

Sections 9 and 10 are a short discussion of work in progress on the extension
of results from minimal parabolics to parabolics in general. There are two places
where matters diverge from the minimal parabolic case. First, there is a technical
adjustment to the definition of stepwise square integrable representation, caused
by the fact that in the non–minimal case the restricted roots need not form a root
system. Second, again for technical reasons, the explicit Plancherel Formula only
comes through for the maximal amenable subgroups UAN of G, and not for all of
the parabolic.

This work was partially supported by a Simons Foundation grant and by the
award of a Dickson Emeriti Professorship. It expands a talk at the 11-th International
Workshop “Lie Theory and Its Applications in Physics” in Varna. My thanks to Prof.
Vladimir Dobrev and the others on the organizing committee for hospitality at that
Workshop.
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2. Square Integrable Representations.

Let G be a unimodular locally compact group with center Z, and let π be an
irreducible unitary representation. We associate the central character χπ ∈ Ẑ by
π(z) = χπ(x) ·1 for z ∈ Z. Consider a matrix coefficient fu,v : x 7→ 〈u,π(x)v〉. Then
| fu,v| is a well defined function on G/Z. Fix Haar measures µG on G, µZ on Z and
µG/Z on G/Z such that dµG = dµZ dµG/Z . The following results are well known.

Theorem 2.1. The following conditions on π ∈ Ĝ are equivalent.
(1) There exist nonzero u,v ∈Hπ with | fu,v| ∈L 2(G/Z).
(2) | fu,v| ∈L 2(G/Z) for all u,v ∈Hπ .
(3) π is a discrete summand of the representation Ind G

Z (χπ).

Theorem 2.2. If the conditions of Theorem 2.1 are satisfied for an irreducible π ∈
Ĝ, then there is a number degπ > 0 such that∫

G/Z
fu,v(x) fu′,v′(x)dµG/Z(xZ) = 1

degπ
〈u,u′〉〈vv′〉 (1)

for all u,u′,v,v′ ∈Hπ . If π1,π2 ∈ Ĝ are inequivalent and satisfy the conditions of
Theorem 2.1, and χπ1 = χπ2 , then∫

G/Z
〈u,π1(x)v〉〈u′,π2(x)v′〉dµG/Z(xZ) = 0 (2)

for all u,v ∈Hπ1 and all u′,v′ ∈Hπ2 .

The main results of [17] shows exactly how this works for nilpotent Lie groups:

Theorem 2.3. Let N be a connected simply connected Lie group with center Z, n
and z their Lie algebras, and n∗ the linear dual space of n. Let λ ∈ n∗ and let πλ

denote the irreducible unitary representation attached to Ad∗(N)λ by the Kirillov
theory [12]. Then the following conditions are equivalent.

(1) πλ satisfies the conditions of Theorem 2.1.
(2) The coadjoint orbit Ad∗(N)λ = {ν ∈ n∗ | ν |z = λ |z.
(3) The bilinear form bλ (x,y) = λ ([x,y]) on n/z is nondegenerate.
(4) The universal enveloping algebra U (z) is the center of U (n).

The Pfaffian polynomial Pf(bλ ) is a polynomial function P(λ |z) on z∗, and the set
of representations πλ for which these conditions hold, is parameterized by the set
{γ ∈ z∗ | P(γ) 6= 0} (which is empty or Zariski open in z∗).

We will say that the connected simply connected Lie group N is square integrable
if there exists λ ∈ n∗ such that P(λ |z) 6= 0}. For convenience we will sometimes
write P(λ ) for P(λ |z) and πγ for πλ where γ = λ |z .

Theorem 2.4. Let N be a square integrable connected simply connected Lie group
with center Z. Then Plancherel measure on N̂ is concentrated on {πλ | P(λ ) 6= 0},
and there the Plancherel measure is given by the measure |P(λ )dλ | on z∗ and the
formal degree degπλ = |P(λ |z)|.
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Given γ ∈ z∗ with P(γ) 6= 0 and a Schwartz class (C (N)) function f on N we write
O(γ) for the co-adjoint orbit Ad∗(N)γ = γ + z⊥ , fγ for the restriction of f · exp to
O(γ), and f̂γ for the Fourier transform of fγ on O(γ).

Theorem 2.5. Let N be a square integrable connected simply connected Lie group
with center Z and f ∈ C (N). If γ ∈ z∗ with P(γ) 6= 0 then the distribution character
of πγ is given by

Θπγ
( f ) = trace

∫
N

f (x)πγ(x)dµG(x) = c−1|P(γ)|−1
∫

ν∈O(γ)
f̂γ dν (3)

where c = d!2d and d = dim(n/z)/2 and dν is ordinary Lebesgue measure on the
affine space O(γ) . The Fourier Inversion formula for N is

f (x) = c
∫
z∗

Θγ(rx f )|P(γ)|dγ where (rx f )(y) = f (yx) (right translate). (4)

There also are multiplicity results on L 2(N/Γ ) where N is square integrable and
Γ is a discrete co-compact subgroup, but they are the same as in the stepwise square
integrable case, so we postpone their description.

3. Stepwise Square Integrability.

In order to to go beyond square integrable nilpotent groups, we suppose that the
connected simply connected nilpotent Lie group decomposes as

N =L1L2 . . .Lm−1Lm where

(a) each Lr has unitary representations with coeff in L 2(Lr/Zr),
(b) Nr := L1L2 . . .Lr is normal in N with Nr = Nr−1 oLr ,

(c) [lr,zs] = 0 and [lr, ls]⊂ v for r > s with lr = zr +vr

where n= s+v, s=⊕zr and v=⊕vr .

(5)

We will use the following notation.

(a) dr =
1
2 dim(lr/zr) so 1

2 dim(n/s) = d1 + · · ·+dm ,

and c = 2d1+···+dmd1!d2! . . .dm!
(b) bλr : (x,y) 7→ λ ([x,y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . .Zm = Z1×·· ·×Zm where Zr is the center of Lr

(d) P : polynomial P(λ ) = Pf(bλ1)Pf(bλ2) . . .Pf(bλm) on s∗

(e) t∗ = {λ ∈ s∗ | P(λ ) 6= 0}
(f) πλ ∈ N̂ for λ ∈ s∗ with P(λ ) 6= 0, irreducible unitary representation

of N = L1L2 . . .Lm constructed as follows.

(6)
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Start with the representation πλ1 ∈ N̂1 specified by λ1 ∈ z∗1 with Pf(bλ1) 6= 0.
Choose an invariant polarization p′1 ⊂ n2 for the linear functional λ ′1 ∈ n∗2 that agrees
with λ1 on n1 and vanishes on l2. Since Lr centralizes Sr−1, ad∗(l2)(λ ′1)|z1+l2 = 0,
so p′1 = p1 + l2 where p1 is an invariant polarization for λ1 ∈ n∗1. The associated
representations are π ′

λ1
∈ N̂2 and πλ1 ∈ N̂1. Note that N2/P′1 = N1/P1 , so the rep-

resentation spaces Hπ ′
λ1

= L 2(N2/P′1) = L 2(N1/P1) = Hπλ1
. In other words, π ′

λ1

extends πλ1 to a unitary representation of N2 on the same Hilbert space Hπλ1
, and

dπλ ′1
(z2) = 0. Now the Mackey Little Group method gives us

Lemma 3.1. The irreducible unitary representations of N2, whose restrictions to N1

are multiples of πλ1 , are the π ′
λ1
⊗̂γ where γ ∈ L̂2 = N̂2/N1 .

Given λ2 ∈ z∗2 with Pf(bλ2) 6= 0 we have πλ2 ∈ L̂2 with coefficients in L 2(L2/Z2).
In the notation of Lemma 3.1 we define

πλ1+λ2 ∈ N̂2 by πλ1+λ2 = π
′
λ1
⊗̂πλ2 . (7)

Proposition 3.2. The coefficients fz,w(xy) = 〈z,πλ1+λ2(xy)w〉 of πλ1+λ2 belong to

L 2(N2/S2), in fact satisfy || fz,w||2L 2(Nr/Sr)
= ||z||2||w||2

deg(πλ1
)...deg(πλr )

.

Proposition 3.2 starts a recursion using Nr+1 = Nr oLr+1. We fix nonzero λi ∈
z∗i for 1 5 i 5 r + 1, and we start with the representation πλ1+···+λr constructed
step by step from the square integrable representations πλi ∈ L̂i for 1 5 i 5 r. The
representation space Hπλ1+···+λr

= Hπλ1
⊗̂ . . .⊗̂Hπλr

. The coefficients of πλ1+···+λr

have absolute value in L 2(Nr/Sr). They satisfy

|| fz,w||2L 2(Nr/Sr)
= ||z||2||w||2

deg(πλ1
)...deg(πλr )

. (8)

Then πλ1+···+λr extends to a representation π ′
λ1+···+λr

of Lr+1 on the same Hilbert
space Hπλ1+···+λr

, and it satisfies dπ ′
λ1+···+λr

(zr+1) = 0. As in Lemma 3.1,

Lemma 3.3. The irreducibles π ∈ N̂r+1, whose restrictions to Nr are multiples of
πλ1+···+λr , are the π ′

λ1+···+λr
⊗̂γ where γ ∈ L̂r+1 = N̂r+1/Nr .

As in Proposition 3.2, define πλ1+···+λr+1 = π ′
λ1+···+λr

⊗̂πλr+1 . Then

Proposition 3.4. The coefficients fz,w(x1 . . .xr+1) = 〈z,πλ1+···+λr+1(x1x2 · · ·xr+1)w〉
of πλ1+···+λr+1 belong to L 2(Nr+1/Sr+1), in fact satisfy

|| fz,w||2L 2(Nr+1/Sr+1)
= ||z||2||w||2

deg(πλ1
)...deg(πλr+1

) .

Since degπλr = |Pf(bλr)|, Proposition 3.4 is the recursion step for our construc-
tion. Passing to the end case r+ 1 = m we see that Plancherel measure is concen-
trated on {πλ | λ ∈ t∗}. Using (5)(c) to see that conjugation by elements of Ls has
no effect on the Pf(bλr) for r < s, we arrive at
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Theorem 3.5. Let N be a connected simply connected nilpotent Lie group that satis-
fies (5). Then Plancherel measure for N is concentrated on {πλ | λ ∈ t∗,P(λ ) 6= 0}.
If λ ∈ t∗, P(λ ) 6= 0 and u,v∈Hπλ

, then the coefficient fu,v(x) = 〈u,πν(x)v〉 satisfies

|| fu,v||2L 2(N/S) = ||u||
2||v||2/|P(λ )| . (9)

The distribution character Θπλ
: f 7→ trace

∫
G f (x)π(x)dx of πλ is given by

Θπλ
( f ) = c−1|P(λ )|−1

∫
O(λ )

f̂λ (ξ )dνλ (ξ ) for f ∈ C (N) (10)

where C (N) is the Schwartz space, O(λ ) = Ad∗(N)λ = s⊥ + λ , fλ is the lift
fλ (ξ ) = f (exp(ξ )), f̂λ is its classical Fourier transform, and dνλ is the translate
of normalized Lebesgue measure from s⊥ to Ad∗(N)λ . Further,

f (x) = c
∫
t∗

Θπλ
(rx f )|P(λ )|dλ for f ∈ C (N). (11)

Definition 3.6. The representations πλ of (6(f)) are the stepwise square integrable
representations of N relative to (5). ♦

The left action (l(x) f )(g)= f (x−1g) and the right action (r(y) f )(g)= f (gy) of N
on functions carries over to coefficients of π as l(x)r(y) fu,v = fπ(x)u,π(y)v. If π = πλ

stepwise square integrable, u,v ∈Hπλ
are C∞ vectors, and if Φ and Ψ belong to

the universal enveloping algebra U (n), then l(Φ)r(Ψ) fu,v = fdπ(Ψ)u,dπ(Φ)v is just
another coefficient, C∞ and L 2(N/S). If ζλ ∈ Ŝ is the quasicentral character of πλ

it follows that fu,v belongs to the relative Schwartz space C (N/S,ζλ ). In particular
it follows that | fu,v| ∈L p(N/S) for all p = 1. Taking Schwartz class wave packets
over S of coefficient functions of stepwise square integrable representations of N one
can express the Plancherel formula of Theorem 3.5 in terms of coefficient functions.

4. Nilradicals of Minimal Parabolics.

Fix a real simple Lie group G, an Iwasawa decomposition G = KAN, and a minimal
parabolic subgroup Q = MAN in G. Let m = rankRG = dimR A . As usual, write k
for the Lie algebra of K, a for the Lie algebra of A, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra h of g. Then h = t+ a with t = h∩ k. Now we
have root systems

∆(gC,hC): roots of gC relative to hC (ordinary roots),
∆(g,a): roots of g relative to a (restricted roots),
∆0(g,a) = {α ∈ ∆(g,a) | 2α /∈ ∆(g,a)} (nonmultipliable).

(12)
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Here ∆(g,a) and ∆0(g,a) are root systems in the usual sense. Any positive root
system ∆+(gC,hC)⊂ ∆(gC,hC) defines positive systems

∆
+(g,a) = {γ|a | γ ∈ ∆

+(gC,hC) and γ|a 6= 0},
∆
+
0 (g,a) = ∆0(g,a)∩∆

+(g,a).
(13)

We can (and do) choose ∆+(g,h) so that

n is the sum of the positive restricted root spaces and

if γ ∈ ∆(gC,hC) and γ|a ∈ ∆
+(g,a) then γ ∈ ∆

+(gC,hC).
(14)

Two roots are called strongly orthogonal if their sum and their difference are not
roots. Then they are orthogonal. The Kostant cascade construction is

β1 ∈ ∆
+(g,a) is a maximal positive restricted root and

βr+1 ∈ ∆
+(g,a) is a maximum among the roots of ∆

+(g,a)

that are orthogonal to all βi with i 5 r

(15)

Then the βr are mutually strongly orthogonal. Each βr ∈ ∆
+
0 (g,a), and β1 is unique

because ∆(g,a) is irreducible. For 1 5 r 5 m define

∆
+
1 = {α ∈ ∆

+(g,a) | β1−α ∈ ∆
+(g,a)} and

∆
+
r+1 = {α ∈ ∆

+(g,a)\ (∆+
1 ∪·· ·∪∆

+
r ) | βr+1−α ∈ ∆

+(g,a)}.
(16)

Lemma 4.1. If α ∈ ∆+(g,a), either α ∈ {β1, . . . ,βm} or α belongs to just one ∆+
r .

Lemma 4.2. ∆+
r ∪{βr}= {α ∈ ∆+ | α ⊥ βi for i < r and 〈α,βr〉> 0}. In particu-

lar, [lr, ls]⊂ lt where t = min{r,s}.

Lemma 4.1 shows that the Lie algebra n of N is the direct sum of its subspaces

lr = gβr +∑∆
+
r
gα for 1 5 r 5 m (17)

and Lemma 4.2 shows that n has an increasing foliation by ideals

nr = l1 + l2 + · · ·+ lr for 1 5 r 5 m. (18)

Now we will see that the corresponding group level decomposition N = L1L2 . . .Lm
and the semidirect product decompositions Nr = Nr−1 oLr satisfy (5). Denote

sβr is the Weyl group reflection in βr and

σr : ∆(g,a)→ ∆(g,a) by σr(α) =−sβr(α).
(19)

Note that σr(βs) =−βs for s 6= r, +βs if s = r. If α ∈ ∆+
r we still have σr(α)⊥ βi

for i < r and 〈σr(α),βr〉 > 0. If σr(α) < 0 then βr − σr(α) > βr contradicting
maximality of βr. Thus, using Lemma 4.2, σr(∆

+
r ) = ∆+

r .
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Lemma 4.3. If α ∈ ∆+
r then α +σr(α) = βr. (It is possible that α = σr(α) = 1

2 βr

when 1
2 βr is a root.). If α,α ′ ∈ ∆+

r and α +α ′ ∈ ∆(g,a) then α +α ′ = βr .

Lemma 4.4. Let n be a nilpotent Lie algebra, z its center, and v a vector space
complement to z in n. Suppose that v= u+u′, u= ∑ua and u′ = ∑u′a , and z= ∑zb
with dimzb = 1 in such a way that (i) each [ua,ua] = 0 = [u′a,u

′
a], (ii) if a1 6= a2 then

[ua1 ,u
′
a2
] = 0 and (iii) for each a there is a nondegenerate pairing ua⊗u′a→ zba , by

u⊗u′ 7→ [u,u′]. Then n is a direct sum of Heisenberg algebras zba +ua +u′a and the
commutative algebra that is the sum of the remaining zb .

Now one runs through a number of special situations: (1) If g is the split real
form of gC then each Lr has square integrable representations. (2) If g is simple but
not absolutely simple then each Lr has square integrable representations. (3) If G
is the quaternion special linear group SL(n;H) then L1 has square integrable repre-
sentations. (4) If G is the group E6,F4 of collineations of the Cayley projective plane
then L1 has square integrable representations. (5) The group L1 has square integrable
representations. (6) If g is absolutely simple then each Lr has square integrable rep-
resentations. Putting these together, Theorem 3.5 applies to nilradicals of minimal
parabolic subgroups:

Theorem 4.5. Let G be a real reductive Lie group, G = KAN an Iwasawa de-
composition, lr and nr the subalgebras of n defined in (17) and (18), and Lr and
Nr the corresponding analytic subgroups of N. Then the Lr and Nr satisfy (5). In
particular, Plancherel measure for N is concentrated on {πλ | λ ∈ t∗}. If λ ∈ t∗,
and if u and v belong to the representation space Hπλ

of πλ , then the coefficient

fu,v(x) = 〈u,πλ (x)v〉 satisfies || fu,v||2L 2(N/S) =
||u||2||v||2
|P(λ )| . The distribution character

Θπλ
of πλ satisfies Θπλ

( f ) = c−1|P(λ )|−1 ∫
O(λ ) f̂λ (ξ )dνλ (ξ ) for f ∈ C (N). Here

C (N) is the Schwartz space, O(λ ) is the coadjoint orbit Ad∗(N)λ = s⊥+ λ , fγ

is the lift fγ(ξ ) = f (exp(ξ )) to s⊥+λ , f̂γ is its classical Fourier transform , and
dνλ is the translate of normalized Lebesgue measure from s⊥ to Ad∗(N)λ . The
Plancherel formula on N is f (x) = c

∫
t∗Θπλ

(rx f )|P(λ )|dλ for f ∈ C (N).

5. Compact Nilmanifolds.

Here are the basic facts on discrete uniform (i.e. co-compact) subgroups of con-
nected simply connected nilpotent Lie groups. See [21, Chapter 2] for an exposition.

Proposition 5.1. The following are equivalent.

• N has a discrete subgroup Γ with N/Γ compact.
• N ∼= NR where NR is the group of real points in a unipotent linear algebraic

group defined over the rational number field Q
• n has a basis {ξ j} for which the coefficients ck

i, j in [ξi,ξ j] = ∑ck
i, jξk are rational

numbers.
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Under those conditions let nQ denote the rational span of {ξ j} and let nZ be the in-
tegral span. Then exp(nZ) generates a discrete subgroup NZ of N = NR and NR/NZ
is compact. Conversely, if Γ is a discrete co-compact subgroup of N then the Z–span
of exp−1(Γ ) is a lattice in n for which any generating set {ξ j} is a basis of n such
that the coefficients ck

i, j in [ξi,ξ j] = ∑ck
i, jξk are rational numbers.

The conditions of Proposition 5.1 hold for the nilpotent groups studied in Section
4; there one can choose the basis {ξ j} of n so that the ck

i, j are integers.
The basic facts on square integrable representations that occur in compact quo-

tients N/Γ , as described in [17, Theorem 7], are

Proposition 5.2. Let N be a connected simply connected nilpotent Lie group that
has square integrable representations, and let Γ a discrete co-compact subgroup.
Let Z be the center of N and normalize the volume form on n/z by normalizing Haar
measure on N so that N/ZΓ has volume 1. Let P be the corresponding Pfaffian
polynomial on z∗. Note that Γ ∩ Z is a lattice in Z and exp−1(Γ ∩ Z) is a lattice
(denote it Λ ) in z. That defines the dual lattice Λ ∗ in z∗. Then a square integrable
representation πλ occurs in L 2(N/Γ ) if and only if λ ∈ Λ ∗, and in that case πλ

occurs with multiplicity |P(λ )|.
Definition 5.3. Let N = NR be defined over Q as in Proposition 5.1, so we have a
fixed rational form NQ. We say that a connected Lie subgroup L ⊂ N is rational if
L∩NQ is a rational form of L, in other words if l∩nQ contains a basis of l. We say
that a decomposition (5) is rational if the subgroups Lr and Nr are rational. ♦

The following is immediate from this definition.

Lemma 5.4. Let N be defined over Q as in Proposition 5.1 with rational structure
defined by a discrete co-compact subgroup Γ . If the decomposition (5) is rational
then each Γ ∩Zr in Zr , each Γ ∩Lr in Lr , each Γ ∩Sr in Sr , and each Γ ∩Nr in Nr ,
is a discrete co-compact subgroup defining the same rational structure as the one
defined by its intersection with NQ .

Now assume that N and Γ satisfy the rationality conditions of Lemma 5.4. Then
for each r, Zr ∩Γ is a lattice in the center Zr of Lr, and Λr := log(Zr ∩Γ ) is a
lattice in its Lie algebra zr. That defines the dual lattice Λ ∗r in z∗r . We normalize the
Pfaffian polynomials on the z∗r , and thus the polynomial P on s∗, by requiring that
the Nr/(Sr · (Nr ∩Γ )) have volume 1.

Theorem 5.5. Let λ ∈ t∗. Then a stepwise square integrable representation πλ of N
occurs in L 2(N/Γ ) if and only if each λr ∈Λ ∗r , and in that case the multiplicity of
πλ on L 2(N/Γ ) is |P(λ )|.

6. Commutative Spaces.

A commutative space X = G/K, or equivalently a Gelfand pair (G,K), consists of a
locally compact group G and a compact subgroup K such that the convolution alge-
bra L 1(K\G/K) is commutative. When G is a connected Lie group it is equivalent
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to say that the algebra D(G,K) of G–invariant differential operators on G/K is com-
mutative. We say that the commutative space G/K is a commutative nilmanifold if
it is a nilmanifold in the sense that some nilpotent analytic subgroup N of G acts
transitively. When G/K is connected and simply connected it follows that N is the
nilradical of G, that N acts simply transitively on G/K, and that G is the semidirect
product group NoK, so that G/K = (NoK)/K. In this section we study the role of
square integrability and stepwise square integrability for commutative nilmanifolds
G/K = (N oK)/K.

The cases where G/K and (G,K) are irreducible in the sense that [n,n] (which
must be central) is the center of n and K acts irreducibly on n/[n,n], have been
classified by E. B. Vinberg ([22], [23]). See [26, §13.4B] for the Lie algebra structure
v× v→ z. The classification of commutative nilmanifolds is based on Vinberg’s
work and was completed by O. Yakimova in [34] and [35].

It turns out that almost all commutative manifolds correspond to nilpotent groups
that are square integrable. The exceptions are those with a certain direct factor, and
in those cases the nilpotent group is stepwise square integrable in two steps, so in
those cases the Plancherel formula follows directly from the general result above.
See [31] for the details.

7. Minimal Parabolics: Subgroup MN.

Fix an Iwasawa decomposition G = KAN for a simple Lie group G and the minimal
parabolic subgroup Q = MAN. As usual, write k for the Lie algebra of K, a for
the Lie algebra of A, m for the Lie algebra of M, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra h of g. Then we have root systems ∆(gC,hC),
∆(g,a) and ∆0(g,a) described in (12). M is the centralizer of A in K. Write 0 for
identity component; then Q0 = M0AN.

Recall the Pf–nonsingular set t∗ = {λ ∈ s∗ | Pf(bλ ) 6= 0} of (6e); so Ad∗(M)t∗ =
t∗. Further, if λ ∈ t∗ and c 6= 0 then cλ ∈ t∗, in fact Pf(bcλ ) = cdim(n/s)/2Pf(bλ ).

Fix an M–invariant inner product (µ,ν) on s∗ . So Ad∗(M) preserves each sphere
s∗t = {λ ∈ s∗ | (λ ,λ )= t2}. Two orbits Ad∗(M)µ and Ad∗(M)ν are of the same orbit
type if the isotropy subgroups Mµ and Mν are conjugate, and an orbit is principal if
all nearby orbits are of the same type. Since M and s∗t are compact, there are only
finitely many orbit types of M on s∗t , there is only one principal orbit type, and the
union of the principal orbits forms a dense open subset of s∗t whose complement
has codimension = 2. See [5, Chapter 4, Section 3] for a complete treatment of this
material, or [10, Part II, Chapter 3, Section 1] modulo references to [5], or [18, Cap.
5] for a basic treatment, still with some references to [5].

The action of M on s∗ commutes with dilation so the structural results on the st
also hold on s∗ =

⋃
t>0 s

∗
t . Define the Pf-nonsingular principal orbit set as follows:
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u∗ = {λ ∈ t∗ | Ad∗(M)λ is a principal M-orbit on s∗}. (20)

Now principal orbit set u∗ is a dense open set with complement of codimension
= 2 in s∗. If λ ∈ u∗ and c 6= 0 then cλ ∈ u∗ with isotropy Mcλ = Mλ . If λ ∈ u∗t :=
u∗∩s∗t , so Ad∗(M)λ is a Pf -nonsingular principal orbit of M on the sphere s∗t , then
Ad∗(M0)λ is a principal orbit of M0 on s∗t . Principal orbit isotropy subgroups of
compact connected linear groups are studied in [11] and the possibilities for the
isotropy (M0)λ are essentially known. The following lets us go from (M0)λ to Mλ .

Proposition 7.1. ([29]) Suppose that G is connected and linear. Then M = FZGM0

where ZG is the center of G, F = (exp(ia)∩K) is an elementary abelian 2–group,
and Ad∗(F) acts trivially on s∗. If λ ∈ u∗ then the isotropy Mλ = FZG(M0)λ .

Thus the groups Mλ are specified by the work of W.–C. and W.–Y. Hsiang [11].

Given λ ∈ u∗ the stepwise square integrable representation πλ ∈ N̂ one proves
that the Mackey obstruction ε ∈H2(Mλ ;U(1)) is trivial, and in fact that πλ extends
to a unitary representation π

†
λ

of N oMλ on the representation space of πλ .

Each λ ∈ u∗ now defines classes

E (λ ) :=
{

π
†
λ
⊗ γ | γ ∈ M̂λ

}
, F (λ ) :=

{
Ind NM

NMλ
(π†

λ
⊗ γ) | π†

λ
⊗ γ ∈ E (λ )

}
(21)

of irreducible unitary representations of N oMλ and NM. The Mackey little group
method, plus the fact that the Plancherel density on N̂ is polynomial on s∗ , and
s∗ \u∗ has measure 0 in t∗, gives us

Proposition 7.2. Plancherel measure for NM is concentrated on
⋃

λ∈u∗F (λ ), equiv-
alence classes of irreducible representations ηλ ,γ := Ind NM

NMλ
(π†

λ
⊗ γ) such that

π
†
λ
⊗ γ ∈ E (λ ) and λ ∈ u∗. Further

ηλ ,γ |N =
(

Ind NM
NMλ

(π†
λ
⊗ γ)

)∣∣∣
N
=
∫

M/Mλ

(dimγ)πAd∗(m)λ d(mMλ ).

There is a Borel section σ to u∗→ u∗/Ad∗(M) that picks out an element in each
M-orbit so that M has the same isotropy subgroup at each of those elements. In other
words in each M-orbit on u∗ we measurably choose an element λ = σ(Ad∗(M)λ )
such that those isotropy subgroups Mλ are all the same. Let us denote

M♦: isotropy subgroup of M at σ(Ad∗(M)λ ) for every λ ∈ u∗ (22)

We replace Mλ by M♦, independent of λ ∈ u∗, in Proposition 7.2. That lets us
assemble to representations of Proposition 7.2 for a Plancherel Formula, as follows.
Since M is compact, we have the Schwartz space C (NM) just as in the discussion
of C (N) between (6) and Theorem 3.5, except that the pullback exp∗C (NM) 6=
C (n+m). The same applies to C (NA) and C (NAM)
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Proposition 7.3. Let f ∈ C (NM) and write ( fm)(n) = f (nm) = (n f )(m) for n ∈ N
and m ∈ M. The Plancherel density at Ind NM

NM♦(π
†
λ
⊗ γ) is (dimγ)|Pf(bλ )| and the

Plancherel Formula for NM is

f (nm) = c
∫
u∗/Ad∗(M)

∑
F (λ )

traceηλ ,γ(n fm) ·dim(γ) · |Pf(bλ )|dλ

where c = 2d1+···+dmd1!d2! . . .dm! , from (6), as in Theorem 3.5.

8. Minimal Parabolics: MAN and AN.

Let G be a separable locally compact group of type I. Then [14, §1] the Plancherel
formula for G has form

f (x) =
∫

Ĝ
traceπ(D(r(x) f ))dµG(π) (23)

where D is an invertible positive self adjoint operator on L2(G), conjugation–semi-
invariant of weight equal to the modular function δG, and µ is a positive Borel mea-
sure on the unitary dual Ĝ. If G is unimodular then D is the identity and (23) reduces
to the usual Plancherel formula. The point is that semi-invariance of D compensates
any lack of unimodularity. See [14, §1] for a detailed discussion. D⊗µ is unique (up
to normalization of Haar measures) and one tries to find a “best” choice of D. Given
any such pair (D,µ) we refer to D as a Dixmier–Pukánszky Operator on G and to µ

as the associated Plancherel measure on Ĝ. We will construct a Dixmier–Pukánszky
Operator from the Pfaffian polynomial Pf(bλ ).

Let δAN and δQ denote the modular functions on AN and on Q = MAN. As M is
compact and AdQ(N) is unipotent on p, they are determined by their restrictions to
A, where they are given by δ (exp(ξ )) = exp(trace(ad(ξ ))) with ξ = loga ∈ a.

Lemma 8.1. Let ξ ∈ a. Then 1
2 (dim lr +dimzr) ∈ Z for 1 5 r 5 m and

(i) the trace of ad(ξ ) on lr is 1
2 (dim lr +dimzr)βr(ξ ),

(ii) the trace of ad(ξ ) on n and on p is 1
2 ∑r(dim lr +dimzr)βr(ξ ),

(iii) the determinant of Ad(exp(ξ )) on n and on p is ∏r exp(βr(ξ ))
1
2 (dim lr+dimzr),

(iv) δQ(man) = ∏r exp(βr(loga))
1
2 (dim lr+dimzr) and δAN = δQ|AN .

Now compute

Lemma 8.2. Let ξ ∈ a and a= exp(ξ )∈A. Then ad(ξ )Pf =
( 1

2 ∑r dim(lr/zr)βr(ξ )
)

Pf

and Ad(a)Pf =
(

∏r exp(βr(ξ ))
1
2 dim(lr/dimzr)

)
Pf .

At this point it is convenient to introduce some notation and definitions.

Definition 8.3. The algebra s is the quasi–center of n. The polynomial function
Dets∗(λ ) := ∏r(βr(λ ))

dimgβr on s∗ is the quasi–center determinant.
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For ξ ∈ a and a= exp(ξ )∈ A compute (Ad(a)Dets∗)(λ ) =Dets∗(Ad∗(a−1)(λ ))
= ∏r(βr(Ad(a−1)∗λ ))dimgβr = ∏r(βr(exp(βr(ξ ))λ ))

dimgβr . In other words,

Lemma 8.4. Let a = exp(ξ ) ∈ A. Then Ad(a)Dets∗ =
(
∏r exp(βr(ξ ))

dimzr
)

Dets∗
where ξ = loga ∈ a.

Combining Lemmas 8.1, 8.2 and 8.4 we have

Proposition 8.5. The product Pf ·Dets∗ is an Ad(MAN)–semi–invariant (and thus
Ad(AN)–semi–invariant) polynomial on s∗ of degree 1

2 (dimn+dims) and of weight
equal to the respective modular functions of Q and AN.

From n= v+ s we have N =V S where V = exp(v) and S = exp(s). Now define

D : Fourier transform of Pf ·Dets∗ , acting on the S variable of N =V S. (24)

Theorem 8.6. The operator D of (24) is an invertible self–adjoint differential op-
erator of degree 1

2 (dimn+ dims) on L2(MAN) with dense domain C (MAN), and
it is Ad(MAN)-semi-invariant of weight equal to the modular function δMAN . In
other words |D| is a Dixmier–Pukánszky Operator on MAN with domain equal to
the space of rapidly decreasing C∞ functions. This applies as well to AN.

Since λ ∈ t∗ has nonzero projection on each summand z∗r of s∗, and a ∈ A acts
by the positive real scalar exp(βr(log(a))) on zr,

Aλ = exp({ξ ∈ a | each βr(ξ ) = 0}), independent of λ ∈ t∗. (25)

Because of this independence, and using a♦ = {ξ ∈ a | each βr(ξ ) = 0}, we define

A♦ = Aλ for any (and thus for all) λ ∈ t∗. (26)

Lemma 8.7. If λ ∈ σ(u∗) then the stabilizer (MA)λ = M♦A♦ .

There is no problem with the Mackey obstruction:

Lemma 8.8. Let λ ∈ σ(u∗). Recall the extension (before (21)) π
†
λ

of πλ to NM♦ .

Then π
†
λ

extends to π̃λ ∈ N̂M♦A♦ with the same representation space as πλ .

When λ ∈ σ(u∗), Â♦ consists of the unitary characters exp(iφ) : a 7→ eiφ(loga)

with φ ∈ a∗♦. The representations of Q corresponding to λ are the

πλ ,γ,φ := Ind NMA
NM♦A♦(π̃λ ⊗ γ⊗ exp(iφ)) where γ ∈ M̂♦ and φ ∈ a∗♦ . (27)

Ad∗(A) fixes γ because A centralizes M, and it fixes φ because A is commutative, so

πλ ,γ,φ ·Ad((ma)−1) = πAd∗(ma)λ ,γ,φ (28)
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Proposition 8.9. Plancherel measure for Q is concentrated on the the set of all
πλ ,γ,φ for λ ∈ σ(u∗), γ ∈ M̂♦ and φ ∈ a∗♦ . The equivalence class of πλ ,γ,φ depends
only on (Ad∗(MA)λ ,γ,φ).

Representations of AN are the case γ = 1. In effect, let π ′
λ

denote the obvious
extension π̃λ |AN of the stepwise square integrable representation πλ from N to NA♦
where π̃λ is given by Lemma 8.8. Denote

πλ ,φ = Ind NA
NA♦(π

′
λ
⊗ exp(iφ)) where λ ∈ u∗ and φ ∈ a∗♦. (29)

Corollary 8.10. Plancherel measure for AN is concentrated on the set of all πλ ,φ for
λ ∈ u∗ and φ ∈ a∗♦ . The equivalence class of πλ ,φ depends only on (Ad∗(MA)λ ,φ).

A result of C.C. Moore implies

Lemma 8.11. The Pf–nonsingular principal orbit set u∗ is a finite union of open
Ad∗(MA)–orbits.

Let {O1 , . . .Ov} denote the (open) Ad∗(MA)–orbits on u∗. Denote λi =σ(Oi), so
Oi = Ad∗(MA)λi and (MA)λi = M♦A♦ for 1 5 i 5 v. Then Proposition 8.9 becomes

Theorem 8.12. Plancherel measure for MAN is concentrated on the set (of equiva-
lence classes of ) unitary representations πλi,γ,φ for 1 5 i 5 v, γ ∈ M̂♦ and φ ∈ a∗♦ .

Now the Plancherel Theorem for Q = MAN is
The Plancherel Formula (or Fourier Inversion Formula) for MAN is

Theorem 8.13. Let Q = MAN be a minimal parabolic subgroup of the real re-
ductive Lie group G. Given πλ ,γ,φ ∈ M̂AN as described in (27) let Θπλ ,γ,φ

: h 7→
traceπλ ,γ,φ (h) denote its distribution character. Then Θπλ ,γ,φ

is a tempered distribu-
tion. If f ∈ C (MAN) then

f (x) = c
v

∑
i=1

∑
γ∈M̂♦

∫
a∗♦

Θπλi ,γ,φ
(D(r(x) f ))|Pf(bλi)|dimγ dφ

where c > 0 depends on normalizations of Haar measures.

The Plancherel Theorem for NA follows similar lines. For the main computation
in the proof of Theorem 8.13 we omit M and γ . That gives∫

a∗♦

traceπλ0,φ (Dh)dφ =
∫

Ad∗(A)λ0

traceπλ (h)|Pf(bλ )|dλ (30)

In order to go from an Ad∗(A)λ0 to an integral over u∗ we use M to parameterize the
space of Ad∗(A)–orbits on u∗. If λ ∈ u∗ one proves Ad∗(A)λ ∩Ad∗(M)λ = {λ}.
That leads to

Proposition 8.14. Plancherel measure for NA is concentrated on the equivalence
classes of representations πλ ,φ = Ind NA

NA♦(π
′
λ
⊗exp(iφ)) where λ ∈ Si :=Ad∗(M)λi ,
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1 5 i 5 v, π ′
λ

extends πλ from N to NA� and φ ∈ a∗� . Representations πλ ,φ and
πλ ′,φ ′ are equivalent if and only if λ ′ ∈ Ad∗(A)λ and φ ′ = φ . Further, πλ ,φ |N =∫

a∈A/A♦
πAd∗(a)λ da.

Theorem 8.15. Let Q = MAN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. If πλ ,φ ∈ ÂN let Θπλ ,φ

: h 7→ traceπλ ,φ (h) denote its distribution
character. Then Θπλ ,φ

is a tempered distribution. If f ∈ C (AN) then

f (x) = c
v

∑
i=1

∫
λ∈Ad∗(M)λi

∫
a∗♦

traceπλ ,φ (D(r(x) f ))|Pf(bλ )|dλdφ .

where c > 0 depends on normalizations of Haar measures.

9. Parabolic Subgroups in General: the Nilradical.

In Sections 7 and 8 we studied minimal parabolic subgroups Q = MAN in simple
Lie groups, along with certain of their subgroups MN and AN. This section and the
next form a glance at more general parabolics. This material is taken from [32],
which is a work in progress, and is limited to the part that I’ve written down. We
start with the structure of the nilradical.

The condition (c) of (5) does not always hold for nilradicals of parabolic sub-
groups. In this section and the next we weaken (5) to

N =L1L2 . . .Lm−1Lm where

(a) each Lr has unitary representations with coefficients in L2(Lr/Zr),
(b) each Nr := L1L2 . . .Lr = Nr−1 oLr semidirect,
(c) if r = s then [lr,zs] = 0.

(31)

The conditions of (31) are sufficient to construct stepwise square integrable repre-
sentations, but are not always sufficient to compute the Pfaffian that is the Plancherel
density. So we refer to (5) as the strong computability condition and make make use
of the weak computability condition

Let lr = l′r⊕ l′′r where l′′r ⊂ zr and vr ⊂ l′r; then [lr, ls]⊂ l′′s +vs for r > s. (32)

where we retain lr = zr +vr and n= s+v.

Consider an arbitrary parabolic subgroup of G. It contains a minimal parabolic
Q = MAN. Let Ψ denote the set of simple roots for the positive system ∆+(g,a).
Then the parabolic subgroups of G that contain Q are in one to one correspondence
with the subsets Φ ⊂Ψ , say QΦ ↔Φ , as follows. Denote Ψ = {ψi} and set
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Φ
red =

{
α = ∑ψi∈Ψ

niψi ∈ ∆(g,a) | ni = 0 whenever ψi /∈Φ

}
Φ

nil =
{

α = ∑ψi∈Ψ
niψi ∈ ∆

+(g,a) | ni > 0 for some ψi /∈Φ

}
.

(33)

On the Lie algebra level, qΦ =mΦ +aΦ +nΦ where

aΦ = {ξ ∈ a | ψ(ξ ) = 0 for all ψ ∈Φ}= Φ
⊥ ,

mΦ +aΦ is the centralizer of aΦ in g, so mΦ has root system Φ
red , and

nΦ = ∑α∈Φnilgα , nilradical of qΦ , sum of the positive aΦ –root spaces.

(34)

Since n= ∑r lr, as given in (17) and 18) we have

nΦ = ∑r(nΦ ∩ lr) = ∑r

(
(gβr ∩nΦ)+∑∆

+
r
(gα ∩nΦ)

)
. (35)

As ad(m) is irreducible on each restricted root space, if α ∈ {βr}∪∆+
r then gα ∩nΦ

is 0 or all of gα .

Lemma 9.1. Suppose gβr ∩nΦ = 0. Then lr ∩nΦ = 0.

Lemma 9.2. Suppose gβr ∩nΦ 6= 0. Define Jr ⊂ ∆+
r by lr ∩nΦ = gβr +∑Jr gα . De-

compose Jr = J′r∪J′′r where J′r = {α ∈ Jr | σrα ∈ Jr} and J′′r = {α ∈ Jr | σrα /∈ Jr}.
Then gβr +∑J′′r gα belongs to a single aΦ –root space in nΦ , i.e. α|aΦ

= βr|aΦ
, for

every α ∈ J′′r .

Lemma 9.3. Suppose lr ∩ nΦ 6= 0. Then the algebra lr ∩ nΦ has center gβr +

∑J′′r gα , and lr ∩ nΦ = (gβr +∑J′′r gα) + (∑J′r gα)). Further, lr ∩ nΦ =
(
∑J′′r gα

)
⊕(

gβr +
(
∑J′rgα

))
direct sum of ideals.

It will be convenient to define sets of simple aΦ –roots

Ψ1 =Ψ and Ψs+1 = {ψ ∈Ψ | 〈ψ,βi〉= 0 for 1 5 i 5 s}. (36)

Note that Ψr is the simple root system for {α ∈ ∆+(g,a) | α ⊥ βi for i < r}.

Lemma 9.4. If r > s then [lr ∩nΦ , gβs +∑J′′s gα ] = 0.

For our dealings with arbitrary parabolics it is not sufficient to consider linear
functionals on ∑r gβr . Instead we have to look at linear functionals on ∑r

(
gβr +

∑J′′r gα

)
. of the form λ = ∑λr where λr ∈ g∗

βr
such that bλr is nondegenerate on

∑r ∑J′r gα . We know that (5(c)) holds for the nilradical of the minimal parabolic q
that contains qΦ . In view of Lemma 9.4 it follows that bλ (lr, ls) = λ ([lr, ls] = 0 for
r > s. For this particular type of λ , the bilinear form bλ has kernel ∑r

(
gβs +∑J′′s gα

)
and is nondegenerate on ∑r ∑J′r gα . Then NΦ = (L1 ∩NΦ)(L2 ∩NΦ) . . .(Lm ∩NΦ)
satisfies the first two conditions of (5). That is enough to carry out the construction
of stepwise square integrable representations πλ of NΦ , but one needs to do more
to deal with Pfaffian polynomials as in (5(c)) and (32).
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Let I1 = {i | βi|aΦ
= βq1 |aΦ

} where q1 is the first index of (5) with βq1 |aΦ
6= 0.

Next, I2 = {i | βi|aΦ
= βq2 |aΦ

} where q2 is the first index of (5) such that q2 /∈ I1 and
βq2 |aΦ

6= 0. Continuing as long as possible, Ik = {i | βi|aΦ
= βqk |aΦ

} where qk is the
first index of (5) such that qk /∈ (I1 ∪ ·· · ∪ Ik−1) and βqk |aΦ

6= 0. Then I1 ∪ ·· · ∪ I`
consists of all the indices i for which βi|aΦ

6= 0. For 1 5 j 5 ` define

lΦ , j = ∑i∈I j
(li∩nΦ) =

(
∑i∈I j

li

)
∩nΦ and l†

Φ , j = ∑k= jlΦ ,k . (37)

Lemma 9.5. If k = j then [lΦ ,k, lΦ , j] ⊂ lΦ , j . For each index j, lΦ , j and l†
Φ , j are

subalgebras of nΦ and lΦ , j is an ideal in l†
Φ , j .

Lemma 9.6. If k > j then [lΦ ,k , lΦ , j]∩∑i∈I j gβi = 0.

In the notation of Lemma 9.2, if r ∈ I j then

lr ∩nΦ = l′r + l′′r where l′r = gβr +∑J′r
gα and l′′r = ∑J′′r

gα . (38)

For 1 5 j 5 ` define
zΦ , j = ∑i∈I j

(gβi + l′′i ) (39)

and decompose

lΦ , j = l′Φ , j + l′′Φ , j where l′Φ , j = ∑i∈I j
l′i and l′′Φ , j = ∑i∈I j

l′′i . (40)

Lemma 9.7. Recall l†
Φ , j = ∑k= jlΦ ,k from (37). For each j, both zΦ , j and l′′

Φ , j are

central ideals in l†
Φ , j , and zΦ , j is the center of lΦ , j.

Decompose

nΦ = zΦ +vΦ where zΦ = ∑
j
zΦ , j , vΦ = ∑

j
vΦ , j and vΦ , j = ∑

i∈I j

∑
α∈J′i

gα . (41)

Then Lemma 9.7 gives us (32) for the lΦ , j: lΦ , j = l′
Φ , j⊕ l′′

Φ , j with l′′
Φ , j ⊂ zΦ , j and

vΦ , j ⊂ l′
Φ , j.

Lemma 9.8. For generic λ j ∈ z∗
Φ , j the kernel of bλ j on lΦ , j is just zΦ , j, in other

words bλ j is is nondegenerate on vΦ , j ' lΦ , j/zΦ , j. In particular LΦ , j has square
integrable representations.

Theorem 9.9. Let G be a real reductive Lie group and Q a real parabolic subgroup.
Express Q = QΦ in the notation of (33) and (34). Then its nilradical NΦ has de-
composition NΦ = LΦ ,1LΦ ,2 . . .LΦ ,` that satisfies the conditions of (5) and (32) as
follows. The center ZΦ , j of LΦ , j is the analytic subgroup for zΦ , j and
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(a) each LΦ , j has unitary representations with coefficients in L2(LΦ , j/ZΦ , j),

(b) each NΦ , j := LΦ ,1LΦ ,2 . . .LΦ , j is a normal subgroup of NΦ

with NΦ , j = NΦ , j−1 oLΦ , j semidirect,

(c) [lΦ ,k,zΦ , j] = 0 and [lΦ ,k, lΦ , j]⊂ vΦ , j + l′′Φ , j for k > j.

(42)

In particular NΦ has stepwise square integrable representations relative to the de-
composition NΦ = LΦ ,1LΦ ,2 . . .LΦ ,` .

10. Amenable Subgroups of Semisimple Lie Groups.

In this section we apply the results of Section 9 to certain important subgroups of
the parabolic QΦ = MΦ AΦ NΦ , specifically its amenable subgroups AΦ NΦ , UΦ NΦ

and UΦ AΦ NΦ where UΦ is a maximal compact subgroup of MΦ .

The theory of the group UΦ NΦ goes exactly as in Section 7. When NΦ =
LΦ ,1LΦ ,2 . . .LΦ ,` is weakly invariant we can proceed more or less as in [29]. The
argument, but not the final result, will make use of

Definition 10.1. The decomposition NΦ = LΦ ,1LΦ ,2 . . .LΦ ,` of Theorem 9.9 is in-
variant if each ad(mΦ)zΦ , j = zΦ , j, equivalently if each Ad(MΦ)zΦ , j = zΦ , j, in
other words whenever zΦ , j = g[Φ ,β j0 ]

. The decomposition NΦ = LΦ ,1LΦ ,2 . . .LΦ ,`

is weakly invariant if each Ad(UΦ)zΦ , j = zΦ , j . ♦

Set

r∗Φ = {λ ∈ s∗Φ | P(λ ) 6= 0 and Ad(UΦ)λ is a principal UΦ –orbit on s∗Φ}. (43)

Then r∗
Φ

is dense, open and UΦ –invariant in s∗
Φ

. By definition of principal orbit the
isotropy subgroups of UΦ at the various points of r∗

Φ
are conjugate, and we take a

measurable section σ to r∗
Φ
→UΦ\r∗Φ on whose image all the isotropy subgroups

are the same,

U ′Φ : isotropy subgroup of UΦ at σ(UΦ(λ )), independent of λ ∈ r∗Φ . (44)

The principal isotropy subgroups U ′
Φ

are pinned down in [11]. Given λ ∈ r∗
Φ

and
γ ∈ Û ′

Φ
let π

†
λ

denote the extension of πλ to a representation of U ′
Φ

NΦ on the space
of πλ and define

πλ ,γ = IndUΦ NΦ

U ′
Φ

NΦ
(γ⊗π

†
λ
). (45)

The first result in this setting, as in [29, Proposition 3.3], is

Theorem 10.2. Suppose that NΦ = LΦ ,1LΦ ,2 . . .LΦ ,` as in (31). Then the Plancherel
density on ÛΦ NΦ is concentrated on the representations πλ ,γ of (45), the Plancherel
density at πλ ,γ is (dimγ)|P(λ )|, and the Plancherel Formula for UΦ NΦ is
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f (un) = c
∫
r∗

Φ
/Ad∗(UΦ )

∑γ∈Û ′
Φ

traceIndUΦ NΦ

U ′
Φ

NΦ
run( f ) ·dim(γ) · |P(λ )|dλ

where c = 2d1+···+d`d1!d2! . . .d`! as in (6).

Recall the notion of amenability.. A mean on a locally compact group H is a
linear functional µ on L∞(H) of norm 1 and such that µ( f )= 0 for all real–valued
f = 0. H is amenable if it has a left–invariant mean. Solvable groups and compact
groups are amenable, as are extensions of amenable groups by amenable subgroups.
In particular EΦ :=UΦ AΦ NΦ and its closed subgroups are amenable.

We need a technical condition [15, p. 132]. Let H be the group of real points in
a linear algebraic group whose rational points are Zariski dense, let A be a maximal
R–split torus in H, let ZH(A) denote the centralizer of A in H, and let H0 be the
algebraic connected component of the identity in H. Then H is isotropically con-
nected if H = H0 · ZH(A). More generally we will say that a subgroup H ⊂ G is
isotropically connected if the algebraic hull of AdG(H) is isotropically connected.

Proposition 10.2. [15, Theorem 3.2]. The groups EΦ := UΦ AΦ NΦ are maximal
amenable subgroups of G. They are isotropically connected and self–normalizing.
The various Φ ⊂Ψ are mutually non–conjugate. An amenable subgroup H ⊂ G is
contained in some EΦ if and only if it is isotropically connected.

The isotropy subgroups are the same at every λ ∈ t∗
Φ

,

A′Φ : isotropy subgroup of AΦ at λ ∈ r∗Φ . (46)

Given a stepwise square integrable representation πλ where λ ∈ s∗
Φ

, write π
†
λ

for
the extension of πλ to a representation of A′

Φ
NΦ on the same Hilbert space. That

extension exists because the Mackey obstruction vanishes. The representations of
A′

Φ
NΦ corresponding to πλ are the

πλ ,φ := Ind AΦ NΦ

A′
Φ

NΦ
(exp(iφ)⊗π

†
λ
) where φ ∈ a′Φ . (47)

Note also that

πλ ,φ ·Ad(an) = πAd∗(a)λ ,φ for a ∈ AΦ and n ∈ NΦ . (48)

The resulting formula f (x) =
∫

Ĥ traceπ(D(r(x) f ))dµH(π), H = AΦ NΦ , is

Theorem 10.3. Let QΦ = MΦ AΦ NΦ be a parabolic subgroup of the real reductive
Lie group G. Given πλ ,φ ∈ ÂΦ NΦ as described in (47), its distribution character
Θπλ ,φ

: h 7→ traceπλ ,φ (h) is a tempered distribution. If f ∈ C (AΦ NΦ) then

f (x) = c
∫
(a′

Φ
)∗

(∫
s∗

Φ
/Ad∗(AΦ )

Θπλ ,φ
(D(r(x) f ))|Pf(bλ )|dλ

)
dφ

where c = 2d1+···+d`d1!d2! . . .d`! .
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The representations of UΦ AΦ NΦ corresponding to πλ are the

πλ ,φ ,γ := IndUΦ AΦ NΦ

U ′
Φ

A′
Φ

NΦ
(γ⊗ exp(iφ)⊗π

†
λ
) where φ ∈ a′Φ and γ ∈ Û ′

Φ
. (49)

Combining Theorems 10.2 and 10.3 we arrive at

Theorem 10.4. Let QΦ = MΦ AΦ NΦ be a parabolic subgroup of the real reductive
Lie group G and decompose NΦ = LΦ ,1LΦ ,2 . . .LΦ ,` as in (31). Then the Plancherel
density on ̂UΦ AΦ NΦ is concentrated on the πλ ,φ ,γ of (49), the Plancherel density
at πλ ,φ ,γ is (dimγ)|P(λ )|, the distribution character Θπλ ,φ ,γ

: h 7→ traceπλ ,φ ,γ(h) is
tempered, and if f ∈ C (UΦ AΦ NΦ) then

f (x) = c∑
Û ′

Φ

∫
(a′

Φ
)∗

(∫
s∗

Φ
/Ad∗(UΦ AΦ )

Θπλ ,φ ,γ
(D(r(x) f ))deg(γ) |Pf(bλ )|dλ

)
dφ

where c = 2d1+···+d`d1!d2! . . .d`! .
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