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Longitudinal Models for Ordinal Data With Many
Zeros and Varying Numbers of Response Categories

Melissa McTernan and Shelley A. Blozis
University of California–Davis

Ordinal response scales are often used to survey behaviors, including data collected in longitu-
dinal studies. Advanced analytic methods are now widely available for longitudinal data. This
study evaluates the performance of 4 methods as applied to ordinal measures that differ by the
number of response categories and that include many zeros. The methods considered are hier-
archical linear models (HLMs), growth mixture mixed models (GMMMs), latent class growth
analysis (LCGA), and 2-part latent growth models (2PLGMs). The methods are evaluated by
applying each to empirical response data in which the number of response categories is varied.
The methods are applied to each outcome variable, first treating the outcome as continuous and
then as ordinal, to compare the performance of the methods given both a different number of
response categories and treatment of the variables as continuous versus ordinal. We conclude
that although the 2PLGM might be preferred, no method might be ideal.

Keywords: GMMM, HLM, ordinal data, two-part latent curve models, zero-inflated

Surveys are valuable tools that allow researchers to collect
longitudinal data in large samples. Commonly, survey items
rely on a response scale that is categorical in nature, with
response categories often following an incremental order.
Often the resulting response distribution is nonsymmetric
across response categories. A common instance of this is the
case for which a large proportion of the responses fall into
a single category, in particular, the “zero” category, often
referring to a “never” or “none” response for an outcome.

Response variables that include a large proportion of
zeros are common in behavioral research. Examples include
measures of problem behaviors, including alcohol and sub-
stance use, and time use. Consider a survey item, for
instance, that prompts participants to report how often they
engaged in binge drinking in the past month. Response cat-
egories might then include “never” (coded 0), “1–2 days”
(coded 1), “3–5 days” (coded 2), and so on. This survey item,
if used to measure the behavior in a general adolescent sam-
ple, for instance, might contain many zero responses due to
a low incidence of binge drinking for adolescents in general.
Further, the positive values will be positively skewed if most

Correspondence should be addressed to Shelley A. Blozis, Department
of Psychology, University of California–Davis, 135 Young Hall, 1 Shields
Avenue, Davis, CA 95616. E-mail: sablozis@ucdavis.edu

adolescents who do report drinking behaviors, for example,
tend to report relatively low frequencies of the behavior.

Several methods that were developed for analysis of
normally distributed longitudinal data have been applied
to ordinal outcomes that also include a high proportion
of zeros. Feldman, Masyn, and Conger (2009) examined
four methods in particular: hierarchical linear models
(HLMs), growth mixture mixed models (GMMMs), latent
class growth analysis (LCGA), and longitudinal latent
class analysis (LLCA). Although these advanced methods
might be applicable to ordinal data, there are often issues
concerning the estimation of these models in practice. As a
result, researchers might find a need to modify the approach
to a data analysis and use methods that might not provide
the best theoretical match to the given problem. In other
words, researchers could choose to sacrifice the use of more
theoretically sound approaches in exchange for an approach
that is more likely to provide results.

Bentler and Chou (1987) considered the use of struc-
tural equation models that assume normally distributed out-
comes to ordinal response measures. In their evaluation,
they recommended that if an ordered response is measured
using four or more response categories, then the response
could be treated as continuous to avoid the estimation prob-
lems often associated with categorical data analysis methods
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LONGITUDINAL MODELS FOR ORDINAL DATA 217

without much worry about a loss of information about the
measured response (Bentler & Chou, 1987, p. 88). Other
researchers have made similar observations (see Dolan,
1994). Rhemtulla, Brosseau-Liard, and Savalei (2012) per-
formed a simulation study to assess the performance of
continuous and categorical estimators on ordinal data under
varying conditions, including number of response categories,
asymmetric versus symmetric thresholds, and asymmetric
versus symmetric underlying distributions. They recom-
mended categorical methods if the number of response cate-
gories is fewer than five. Otherwise, they recommended the
direct application of maximum likelihood methods. Notably,
their simulation demonstrated that if data thresholds are
extremely asymmetric or if the underlying distribution is
asymmetric, parameter estimates are likely to be biased using
either continuous or categorical estimators.

This study applies these ideas in the context of modern
methods for longitudinal data that include many zeros by
comparing the performance of different models applied to
a set of ordinal measures that differ in terms of the num-
ber of response categories, with one category that includes
only zeros. The outcome is a substance use variable that
is likely to be asymmetrically distributed in the popula-
tion. The model is applied to each outcome variable as if
it were a continuous response and once again treating the
response as ordinal. Comparisons between the sets of results
within each method (e.g., HLM) and data treatment (as con-
tinuous vs. ordinal) are made based on the relatively best
fitting model, resulting parameter estimates and standard
errors, and whether interpretable parameter estimates could
be obtained.

Many of the methods prescribed for categorical response
data assume that underlying the observed response is a nor-
mally distributed variable. This is especially problematic for
data that include a high proportion of zeros and that are other-
wise positive. Thus, one of the goals of this study is to evalu-
ate the performance of several modern methods as applied to
such data but that vary with regard to the number of response
categories. This study seeks to further understand whether
continuous methods could serve as alternatives to categor-
ical methods for ordinal data that have many zeros and a
relatively large number of response categories.

MEASUREMENT OF ORDINAL RESPONSES

Ordinal scales require respondents to categorize behaviors
that might or might not be inherently categorical. Consider
again the example of measuring frequency of adolescent
binge drinking behavior. An individual who drinks once a
week drinks too often to include himself or herself in the
“never” category, but not often enough to be included in the
third category that is reserved for people who drink three to
four times a week. Thus, this participant falls in the second
response category of 1–2 days. For response scales such as
this, the structure of the scale forces responses into one of a

set of ordered categories. Importantly, the behavior itself is
quantifiable, although the measure is recorded as categorical
or, specifically, as ordinal.

In describing an ordered response that is assumed to have
an underlying continuous distribution, it is useful to provide
notation that could be used to define such variables. First,
let Yij denote an observed response and Y∗

ij denote the true
underlying continuous response. Let m refer to a response
category with m = 1, . . . , c, where c represents the cate-
gory that includes the maximum possible score. Further, let
υq represent a latent threshold parameter that separates the
ordered response categories with Q thresholds. Given this,

Yij = mq if υq ≤ Y∗
ij < υq+1.

With regard to an actual analysis of an ordinal variable, a
technique could be applied directly to the observed outcome
Y in which Y is treated as continuous, such as by applying a
model that assumes a normal response. Conversely, a method
could be applied in which the observed response is treated
as ordinal, and it is the underlying continuous response Y∗,
with Y∗ often assumed to be normal, that is modeled. Based
on the suggestions in Bentler and Chou (1987), this arti-
cle evaluates both approaches to understand if the former
approach might be reasonable for responses based on four or
more ordered response categories with the goal of obtaining
parameter estimates that perform well in describing the data
without a great computational burden that might otherwise
result from treating the response as ordinal.

METHODS FOR LONGITUDINAL DATA

Hierarchical Linear Models

HLMs can be used to model change in a normal response
variable over time. This approach allows for individual dif-
ferences in response trajectories, such as by including a
subject-specific intercepts and slopes (Bryk & Raudenbush,
1987; Raudenbush & Bryk, 2002). Take, for example, the
aforementioned adolescent binge drinking survey question.
It might be reasonable to assume that at the start of a study
when participants are young, all individuals will have an
intercept of zero (with time centered at the start of the study)
but that the rate of change in the frequency of binge drink-
ing behaviors for some individuals might be higher than that
of others. Thus, an appropriate model might include a fixed
response level at the start of the study (fixed intercept) and a
random time effect (random slope).

Let Yij denote a normal response measured for person i at
time j, where i = 1, . . . , N with N equal to the total number
individuals, and where j =1, . . . , ni, with ni denoting the
total number of observations for person i. Let tij denote the
particular time at which Yij is observed. Assuming that Yij

follows a two-level hierarchical linear model, Yij could be
expressed as
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218 McTERNAN AND BLOZIS

Level 1 : Yij = β0i + β1itij + eij

Level 2 : β0i = ϒ00 + u0i

β1i = ϒ10 + u1i

where β0i is the expected response for person i at tij = 0. The
coefficient β1i is the expected rate of change in Y ij for per-
son i per unit of time. At Level 2, the random intercept and
slope are each sums of a fixed effect (�00 and �10, respec-
tively) and a random effect (u0i and u1i, respectively). The
model here includes only a linear slope, but higher order
slopes might be included to account for nonlinear forms
of change in Yij. Additionally, covariates could be included
at the first level to account for occasion-to-occasion varia-
tion, controlling for change in Yij due to time, as well as at
the second level to account for individual differences in the
individual-level intercept and slope.

At the first level of the model, the set of individual and
time-specific errors, ei = (e1i,, . . . , eni_i),’ is assumed to be
normal with mean equal to zero and covariance matrix �.
The errors could be assumed to be independent with constant
variance across time, such that � = Iθ, where I is an identity
matrix of order ni, and θ is the common variance; other pat-
terns are possible. At the second level, the random effects u0i

and u1i are assumed to be normal with means equal to zero
and covariance matrix Ö, where � is usually unstructured
so as not to impose constraints on the variances and covari-
ances of the random coefficients. The Level 1 error and Level
2 random effects are assumed to be independent. The param-
eters of the model, expressed generally, are (�00,�01, . . . )’,
(φ1,φ2, . . . )’, and (θ1,θ2, . . . )’.

A hierarchical generalized linear model (HGLM; a.k.a.
generalized linear mixed model) is a generalization of HLM
to handle a range of response variables including normal,
ordinal, and nominal data. For an ordinal response and
assuming a logit link, the individual’s underlying response,
Y∗, is modeled by a linear mixed model:

Level 1 : Yij ∗ = β0i + β1itij + eij

Level 2 : β0i = ϒ00 + u0i

β1i = ϒ01 + u1i

where eij is assumed to be distributed according to a logistic

distribution, with expected value of zero and variance
(

π2

3

)

and to be independent across individuals and conditionally
independent across time points. The fixed intercept �00 is
fixed at zero given that the scale for the latent response is
arbitrary and therefore must be assigned a value for model
identification. The observed ordinal response Y ij is related to
the latent continuous response Yij

∗ by way of the thresholds
described earlier: Yij = mq if υq ≤ Y∗

ij < υq+1, where υq is

a threshold parameter for q =1, . . . , Q, and Q is the total
number of thresholds. Under the model for a longitudinal
response, the thresholds are typically assumed to be constant
across time. Similar to HLM, covariates could be included at
either level of the model. The parameters of the model to be
estimated are (γ 01, . . . )’, (φ1,φ2, . . . )’, and (υ1, . . . )’. See
Figure 1 for a structural representation of these models.

Growth Mixture Mixed Model

The random effects at the second level of HLM are assumed
to be normally distributed. An extension of HLM is a model
in which the random effects are assumed to be related to two
or more latent classes in what is called a GMMM (Verbeke
& Lesaffre, 1996). Models with latent classes are commonly
used to model substance use and risk-behaviors, for exam-
ple (Henry & Muthen, 2010; Laska, Pasch, Lust, Story, &
Ehlinger, 2009; Lubke & Muthén, 2005; Nylund, Bellmore,
Nishina, & Graham, 2007). Mixture models were devel-
oped for continuously distributed data in which a response
is assumed to be due to two or more latent classes. The data
are assumed to be normally distributed within classes but
not necessarily across classes. For longitudinal data, GMMM
allows for variation in the random effects that characterize
the individual-level responses to be due to a finite number of
classes (the number of which are specified by the researcher).

GMMM is similar to HLM but includes class-level infor-
mation. Assuming linear growth, the first level of the model
can be written as

Level 1 : Yijk = β0ik + β1iktijk + eijk

where k denotes a particular class, with k = 1, . . . , K and
K being the total number of classes. Assuming random vari-
ation in both coefficients of the Level 1 model, the second
level allows for variation across classes:

Level 2 : β0ik = ϒ00k + u0ijk

β1ik = ϒ01k + u1ijk

For an ordinal response and assuming linear growth,
Level 1 of the model can be written as

Yijk∗ = β0ik + β1iktijk + eijk

where Y ijk
∗ is the latent continuous response for individ-

ual i at time point j and in class k. The second level of
the model would be identical to Level 2 of the GMMM
that treats the response as continuous. GMMM for ordi-
nal response data also include threshold parameters that
are typically assumed to be equal across classes and time.
The distributional assumptions of GMMM are identical to
HLM conditional on the class-level information. Similar to

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

29
 1

7 
D

ec
em

be
r 

20
15

 



LONGITUDINAL MODELS FOR ORDINAL DATA 219

I

age
i1

I

age
i1

iu

im sm

su

u2u1

m1 m2 m3

u3

1

age
i1

age
i1

FIGURE 1 Hierarchical linear model/hierarchical generalized linear
model (HLM/HGLM; top), growth mixture mixed model/latent class
growth analysis (GMMM/LCGA; middle), and two-part latent growth
(bottom) conceptual models.

the model for continuous data, classes might have unique
mean and covariance structures. See Figure 1 for a structural
representation of GMMM.

Although GMMM has been applied to ordinal data (Li,
Duncan, Duncan, & Acock, 2001; Muthén & Muthén, 2000),

a study by Hipp and Bauer (2006) showed that if GMMM
is applied to ordinal data, estimates of the model are often
difficult to obtain. Although a solution to this has been to
apply constraints to the model or to provide starting values,
either approach could yield biased results given that the data
are not normally distributed (Hipp & Bauer, 2006).

Latent Class Growth Analysis

In cases where the estimation of a growth mixture model is
difficult due to low within-class variability, an option might
be to constrain one or more of these variances to zero. If all
of the variances of the latent growth coefficients are equal,
then the model reduces to what is often called a latent class
growth model. Thus, unlike GMMM, in which individual
differences can be represented by a series of normal dis-
tributions with each distribution representing a class, under
LCGA all individuals within a class are assumed to have
identical growth trajectories. Level 1 of the LCGA model
is identical to that of a growth mixture model. Level 2 of the
LCGA model can be expressed as

β0ik = ϒ00k

β1ik = ϒ01k

Similar to GMMM, LCGA may be applied to ordinal data
to handle the nonnormality of an outcome (Li et al., 2001;
Muthén & Muthén, 2000). LCGA, however, is a restricted
form of a GMMM, and consequently, the arguments in Hipp
and Bauer (2006) cautioning against this treatment might
apply. Figure 1 is a structural display of LCGA.

Two-Part Models for Semicontinuous Data

The problem of data with many zeros has been addressed
by a two-part model proposed by Duan, Manning, Morris,
and Newhouse (1983) for continuous cross-sectional data
that also include many zeros. In a two-part model, the orig-
inal response serves as the basis for the creation of two
new variables for analysis. The first variable is dichoto-
mous and coded 0 if the original response is equal to zero
and coded 1 if the original response is positive. Thus, this
variable is an indicator of whether an individual engaged
in the measured outcome. The second variable is equal to
the original response if greater than zero and is missing if
the original response is equal to zero. This second variable
is a measure of the magnitude or frequency of an out-
come given that an individual engaged in the behavior. The
two variables are analyzed separately using a model for the
dichotomous response (e.g., logistic regression) and a model
for the conditional continuous response (e.g., regression).

Olsen and Schafer (2001) extended a two-part model to
handle longitudinal data by allowing for random effects in
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220 McTERNAN AND BLOZIS

both model parts at the second level with possible covari-
ances between them. Indeed, ignoring nonzero covariances
between the random effects of the two model parts has been
shown to result in biased parameter estimates (Su, Tom, &
Farewell, 2009). Figure 1 includes a path model for a two-
part latent growth model that includes two growth functions
with random coefficients that covary. Thus, a two-part latent
growth model is one more approach to the analysis of lon-
gitudinal data with many zeros. Given an original response
variable that is measured on an ordinal scale, the second
part of a two-part latent growth model could be specified to
treat the response as continuous, or alternatively, to treat the
response by using a categorical model, such as an ordered
logistic model.

EMPIRICAL EXAMPLE

To test the performance of the four statistical methods, ordi-
nal response data were drawn from the National Longitudinal
Study of Adolescent Health (Add Health) conducted by
the Inter-University Consortium for Political and Social
Research (ICPSR) at the University of North Carolina,
Chapel Hill (Harris & Udry, 1994–2008). Data from this
study include survey responses on physical and psycho-
logical health and general well-being. There were four
waves of data collection, with the last occurring in 2008.
The first wave of the survey was conducted during the
1994–1995 school year and included 27,000 adolescents
who were in Grades 7 through 12. Schools were randomly
selected from the full national sample of high schools that
met two conditions: student enrollment equal to at least
30 students and the school included an 11th grade. Feeder
schools that included a seventh grade were then selected
from each community.

A random selection of schools from the initial sample
received follow-up in-home surveys. One year later, a second
wave of data collection included as many students as could
be located from the Wave 1 in-home sample, with the exclu-
sion of 471 disabled students and the majority of 12th graders
who had been interviewed at Wave 2 but then exceeded the
grade eligibility requirement (Harris & Udry, 1994–2008).
A third in-home survey occurred 6 years after the initial data
collection and included as many participants from Wave 1 as
could be located.

From this data set, we chose a substance use variable
that was publicly available for the first three waves of data
collection. This variable was chosen because it was con-
sidered representative of the kind of data researchers might
encounter in many kinds of behavioral studies, namely an
ordinal response that includes many zeros. The prompt for
this variable was, “In the past 12 months, on how many
occasions did you drink alcohol?” Respondents selected a
response from seven categories: 1 (every day/almost every
day), 2 (3–5 days per week), 3 (1 or 2 days per week), 4

(2 or 3 days per month), 5 (once a month or less; 3–12 times
in past 12 months), 6 (1 or 2 days in past 12 months), and 7
(never). There were also options for refused, don’t know, and
legitimate skip. The latter option was automatically selected
if the participant had responded to a filter question that they
had never had a drink (as asked in Wave 1) or had not had
a single drink since the previous data collection (as asked in
Waves 2 and 3).

Some preliminary steps were taken to simplify the data
analysis for the central purpose of this study. First, data were
limited to only White respondents. The data were also fil-
tered to include only those who were in the seventh or eighth
grade in Wave 1 to help limit the sample to exclude those
who would reach a legal drinking age during the study. For
those who by Wave 3 had reached the legal drinking age (21),
their Wave 3 data were excluded from analysis, although
their Waves 1 and 2 data were retained. Individuals identi-
fied as teetotalers were also excluded from analysis. These
individuals were selected according to responses given to a
filter question about drinking. At Wave 1, participants were
asked if they had ever tried alcohol and at Waves 2 and
3 they were asked if they had drunk any alcohol since the
previous interview. Participants who answered “No” at all
three waves or had any combination of “No” responses and
missing data for a filter question were considered teetotalers
and were excluded from analyses. All other response pat-
terns were included, for a final sample size of 1,038. The
mean age of the sample at Wave 1 was 13.5 years old (SD =
0.78). The average age at Wave 2 was 14.4 years old (SD =
0.82) and 19.5 years old (SD = 0.55) at Wave 3. At Waves 1,
2, and 3, the number of responses in the zero category were
641 (61.8%), 510 (49.1%), and 120 (11.6%), respectively.
Figure 2 displays the proportions of responses across time
for each of the scale versions.

Data Analysis

The Add Health study relied on a random sample of schools
and then a sampling of students within schools. Prior to con-
ducting the primary data analysis, variation in the drinking
variable was studied according to variation due to the nest-
ing of measures within children and children within schools.
Assuming a normal response, a three-level unconditional
means model that assumed constant variance across schools
and children was used to estimate the proportion of vari-
ance in the responses due to nesting. Neither of the intraclass
correlations was statistically different from zero based on a
deviance test that compared the model to a model that treated
the scores as independent between children and schools.
Assuming that these values were close to the true values
(given that the responses were measured using ordinal scales
and thus were not normal), the nesting of data within schools
was considered trivial and not studied further. To study the
dependencies of scores within children further, an uncondi-
tional means model was fit in which the variances could vary
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Percent missing = 0.67% Percent missing = 7.2% Percent missing = 29.5%

FIGURE 2 Histograms of the original response variables at Waves 1, 2, and 3.

between waves. The random intercept of this model was sta-
tistically significant, suggesting some degree of dependence
of scores within children. Thus, the need to account for the
nesting of data within children was considered important.

For HLM and GMMM, five growth models were tested:
(a) no growth with a random intercept, (b) linear growth
with a random intercept, (c) linear growth with a random
intercept and slope, (d) quadratic growth with a random
intercept, and (e) quadratic growth with a random inter-
cept and linear slope. A quadratic growth model with a
random linear and quadratic slope (assuming nonzero covari-
ances between the random intercept, linear, and quadratic
slopes) is not identified given that data were available for
at most three measurement waves. For the growth models
tested, the variances of the time-specific errors were allowed
to differ by measurement wave. For LCGA, three growth
functions (no growth, linear growth, and quadratic growth)
were tested. No growth, linear growth, and quadratic growth
forms (allowing for random intercepts and linear slopes as
considered for other methods) were tested under the two-
part latent growth model. Age was centered at 15 years for
all analyses. Methods involving two or more latent classes
(GMMM and LCGA) were fit assuming up to three classes.
An increase in the number of classes was discontinued if
after fitting a model with k classes the adjusted Lo–Mendell–
Rubin (LMR) statistic favored k – 1 classes. In such cases,
the k – 1 class model was selected as the final model.

Before applying the two-part latent growth model, a
dichotomous variable uij was coded 0 for an individual who
reported “never” to drinking at time j and was coded 1 if the
original response was in a higher response category. A sec-
ond variable mij was coded as missing at time j for any person

i who reported “never” drinking at that time point and was
coded as mij= Y ij if an individual reported any amount of
drinking at time j. For both variables, the values were coded
as missing if the original response was missing.

Models that treated the response as categorical were
specified first with a logit link. Under this specification, the
response is assumed to have an underlying latent continuous
distribution that follows a logistic distribution, and the
parameter estimates are in log-odds units. The models were
also evaluated by using a probit link function that assumes
that the underlying response follows a normal distribution.
Results from both treatments could be compared directly,
such as by comparing Akaike’s information criterion (AIC)
values.

To compare methods and data treatments across the
different numbers of response categories, the original
7-point response variable was transformed to create two new
variables. Specifically, the original seven response categories
were collapsed into five categories (0 = 0; 1 = 1; 2 = 2; 3
= 3, 4; 4 = 5, 6) to create a second response variable and
then into three categories (0 = 0; 1 = 1, 2, 3; 2 = 4, 5, 6) to
create a third response variable. Scores were collapsed so
that responses at the upper end of the distribution that tended
to be sparse were collapsed into fewer categories.

Full information maximum likelihood estimates with
robust standard errors (DiStefano, 2002) were obtained for
both response treatments using Mplus version 6.12 (Muthén
& Muthén, 1998–2011). Numerical integration was used
for analyses based on HLM, GMMM, and LCGA by using
ALGORITHM = INTEGRATION. Analyses were done
using a Core 2 Duo E8400 at 3 Ghz (one processor, two
cores) desktop computer with 4 GB of RAM. The computer
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222 McTERNAN AND BLOZIS

operated as a shared server computer, so it was not possible
to document meaningful computation times given that access
by multiple users could not be controlled.

RESULTS

For comparable models using the logit or probit link func-
tion, the AIC consistently favored the logit link, suggesting
a better approximation to the data under this model. Given
the consistency of this result, further discussion of cate-
gorical results is limited to models using a logit link. For
each method, data treatment, and number of response cate-
gories, model fit was evaluated using combined results from
model fit indices and the entropy value and the adjusted LMR
statistic if applicable. Model fit indices according to method
and data can be provided on request. For those models that
did not result in a converged solution given the default
settings in Mplus, we attempted to provide useful starting
values, increased the number of initial and final stage starts,
or increased the number of initial stage iterations or itera-
tions for the expectation maximization (EM) algorithm, as
applicable. Models provisionally selected as the final model
according to method, variable treatment, and number of
response categories are summarized in Table 1. Plots of the
fitted fixed values are shown in Figure 3 through 5. Fit statis-
tics are not reported for the final models because it would be
inappropriate to statistically compare models across number
of response categories, across variable treatment, or across
models with different numbers of classes.

HLM

Continuous treatment. Models based on HLM con-
verged quickly without difficulty across the numbers of
response categories relative to other methods. A linear
growth model with a random intercept and slope provided
the best fit to the data regardless of the number of response
categories. Overall, drinking increased with age according
to these models. The estimated fixed intercept and slope
increased in value as the number of response categories
increased, as would be expected. Similarly, the estimated
covariance between the intercept and slope increased as the
number of response categories increased.

Categorical treatment. All but 3 of the 15 HGLMs
resulted in a converged solution. The quadratic growth mod-
els with a random intercept only across the three versions of
the response scale failed to converge. In contrast to the con-
tinuous data treatment, the categorical treatment suggested
quadratic growth in drinking levels with individual differ-
ences in the response level and rate of change at age 15.
This was consistent across the numbers of response cate-
gories. The intercept and slope estimates of these models and
their covariances were also comparable across the varying
numbers of response categories.

TABLE 1
Final Models by Method, Variable Treatment, and Number of

Response Categories Considering HLM/HGLM, GMMM, and LCGA

Final Model

Method Treatment
Response
Categories Growth

Random
Coefficients Classes

HLM Continuous 3 Linear β0i, β1i N/A
5 Linear β0i, β1i N/A
7 Linear β0i, β1i N/A

Categorical 3 Quadratica β0i, β1i N/A
5 Quadratica β0i, β1i N/A
7 Quadratica β0i, β1i N/A

GMMM Continuous 3 Quadratica β0i 2
5 Quadratic β0i 3
7 Quadratic β0i, β1i 2

Categorical 3 Lineara β0i, β1i 2
5 Lineara β0i, β1i 2
7 Lineara β0i, β1i 2

LCGA Continuous 3 Quadratica N/A 2
5 Quadratic N/A 3
7 Quadratic N/A 3

Categorical 3 Lineara N/A 3
5 Lineara N/A 3
7 Lineara N/A 2

Note. HLM = hierarchical linear model; HGLM = hierarchical gener-
alized linear model; GMMM = growth mixture mixed model; LCGA =
latent class growth analysis.

aThese models were selected because one or more competing mod-
els (with more classes, different growth trajectory, or different random
coefficient combination) did not converge with trustworthy estimates. Fit
statistics for all models are available on request.

GMMM

Continuous treatment. GMMM under continuous
treatment of the response was notably more burdensome
than HLM and HGLM. Although estimates converged
quickly for those models in which solutions were obtained,
there were many estimation problems using this method.
The best fitting model under this approach was one based on
quadratic growth, across the number of response categories.
A random slope did not add any explanatory power in the 3-
or 5–point category models; only the 7-point scale preferred
the added random slope term. Two classes were adequate for
3- and 7-point scales, but three classes were preferred for the
5-point scale. As with the continuous data treatment under
HLM, the estimated fixed intercept and slope under this
method increased with the number of response categories as
expected.

Categorical treatment. Estimation of GMMM under
the categorical data treatment was most burdensome of all
the tested models. Ten of the 15 models resulted in esti-
mation difficulties, with results not obtained for 6 models.
Importantly, estimates could not be obtained for what was
the best fitting model when treating the data as continuous
under GMMM (quadratic growth with a random intercept
and fixed slope). The selected model across all numbers
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LONGITUDINAL MODELS FOR ORDINAL DATA 223

FIGURE 3 Fitted values under continuous data treatment. Columns 1 through 3 represent three-, five-, and seven-response category scales, respectively. Rows
1 through 3 represent hierarchical linear models (HLMs), growth mixture mixed models (GMMMs), and latent class growth analysis (LCGA), respectively.

FIGURE 4 Fitted values under categorical data treatment. Columns 1 through 3 represent three-, five-, and seven-response category scales, respectively.
Rows 1–3 represent hierarchical generalized linear models (HGLMs), growth mixture mixed models (GMMMs), and latent class growth analysis (LCGA),
respectively.

of response categories for GMMM with the categorical
treatment was a two-class linear growth model with a
random intercept and slope.

LCGA

Continuous treatment. Under LCGA with the contin-
uous data treatment, there were no estimation problems for
models that assumed two latent classes. For three classes
assumed, no solution was obtained for the 3-point response

scale (recall that this was also the case using GMMM). The
best fitting model to these data regardless of the number of
response categories was a quadratic growth model. Three
classes were favored for all models for which estimates could
be obtained. With the 3-point response scale, a three-class
model could not be estimated, thus the selected model was a
two-class model.

Categorical treatment. Estimation of the LCGA mod-
els with the categorical data treatment was slightly more

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
8:

29
 1

7 
D

ec
em

be
r 

20
15

 



224 McTERNAN AND BLOZIS

FIGURE 5 Fitted values for the two-part model. Columns 1 through 3 represent three-, five-, and seven-response category scales, respectively. Rows 1 and
2 represent continuous and categorical data treatment, respectively. The solid line represents the u part and the dashed line represents the m part of the model.

difficult than LCGA with continuous treatment. The selected
model across all numbers of response categories was one
that assumed linear growth. If a quadratic slope was
added to the models, no estimates could be obtained. This
result was consistent across the three numbers of response
categories. Three classes were favored for all estimated
models, with the exception of the 7-point response scale
model, for which the adjusted LMR statistic suggested
two classes were adequate to describe the data under this
model.

Two-Part Latent Growth Model

For the dichotomous response of the two-part model, uij,
parameter estimates were similar across all numbers of
response categories and data treatments, as expected given
that the dichotomous variable was treated identically across
all models, as categorical and with an estimated random
intercept and random linear slope. For all numbers of
response categories and data treatments, a linear growth
model provided the best fit for the conditional response, m,
with a random intercept and slope.

Given three response categories, the correlation between
the random intercepts of the two model parts if mij was
treated as continuous was .33 (90% CI = [.06, .59]) and if
treated as categorical was .33 (90% CI = [.08, .57]). Given
five response categories, the correlation between the ran-
dom intercepts of the two model parts if mij was treated
as continuous was .71 (90% CI = [.46, .95]) and if mij

was treated as categorical was .79 (90% CI = [.53, 1.05]).
Given seven response categories and continuous treatment
of mij, the correlation between the random intercepts of the
two model parts was .61 (90% CI = [.39, .85]). With mij

evaluated as a categorical outcome, the correlation was .68
(90% CI = [.68, .92]). Across the numbers of response cate-
gories, the correlations were slightly higher if mij was treated
as categorical. Across all results, these correlations suggest
a moderately strong association between the tendency to
engage in drinking and the frequency of engagement at age

15. Across the different number of response categories, given
the same data treatment, parameter estimates were generally
consistent.

Similar to the other methods that treated the response vari-
able as continuous, a two-part growth model was fit assum-
ing heterogeneity of the residual variances by wave for the
conditional continuous response. Unlike the results based on
other methods, likelihood ratio tests suggested that the resid-
ual variances were equal by wave under a two-part growth
model for the outcome based on five and seven response cat-
egories, χ2(2) = 1.64, p = .44, and χ2(2) = 1.27, p = .53,
respectively. For thee response categories, the test suggested
heterogeneity of variance by wave, χ2(2) = 34.05, p < .001.
These results suggest that if treating the outcome as a contin-
uous variable, a two-part growth model might be preferred
over the other methods considered here, particularly if the
number of response categories is at least five.

DISCUSSION

The use of ordinal rating scales in survey research often
creates a data analysis problem that is complex relative
to those involving continuous data. Further, some behav-
ioral data might also include a large proportion of zeros,
and thus, might not be well matched to statistical meth-
ods for ordinal response data that assume an underlying
normal response. Methods for ordinal data might also be
difficult to implement in practice, leading some researchers
to treat ordinal data as continuous. Indeed, such a strat-
egy has been shown to be useful if there are four or
more response categories. However, if a response departs
far from a normal distribution, treating the response as
continuous could bias parameter estimates no matter how
many response categories are observed (Rhemtulla et al.,
2012). This study investigated the utility of various longi-
tudinal methods that were applied to nonsymmetric, ordinal
response data with different numbers of response categories
and that also included many zeros at each measurement
occasion.
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Number of Response Categories and Treatment of
Outcome Variable

In the drinking example provided, no direct comparisons
could be made between treating the response variable as
continuous versus categorical, although some comments
should be made about the parameter estimates obtained
under the different treatments. Under HLM, parameter
estimates varied with respect to the number of response
categories, as expected (see Figure 3). Under HGLM the
estimates varied less, as shown in Figure 4, in which the
estimates are nearly indistinguishable across the numbers of
response categories. Thus, assuming a hierarchical model
is preferred to other methods, the categorical treatment
provided the most consistent results, and so, might be
preferred over treating the data as continuous. Relative
to other methods, the HLM/HGLM method might have
underestimated drinking levels of some adolescents.

Assuming multiple latent classes by using GMMM, the
results suggested a greater degree of variation in drinking
relative to that suggested by HLM or HGLM. Treating the
response as continuous under GMMM, the results suggested
a wide range in drinking frequency at age 15 with remark-
ably less variation by age 20, a finding that was consistent
across the numbers of latent classes and response categories.
Further, results from analysis of the 5- and 7-point response
scales resulted in relatively higher initial drinking levels than
were suggested from results based on the 3-point response
scale. These results were counter to those obtained if the
response was treated as categorical, however, in which initial
levels were highest for the 3-point scale and relatively low
for the 5- and 7-point scales. Similar patterns in the data
resulted from LCGA, a finding that was not surprising given
that the variances of the random coefficients under GMMM
were small and in some cases not statistically different from
zero.

As the original data were collected on an ordinal 7-point
scale, we considered as a reference the models that treated
the original 7-point response as categorical. Generally, it
appears that there is not a great loss in information if a
5-point scale was used. Speaking to whether categorical out-
comes could be treated as continuous without a loss of infor-
mation given five or more response categories, the example
presented here suggests that for data that include a high
proportion of zeros, there can be a difference in the inter-
pretation of results from the two treatments. Most notable
is the difference in the variation of drinking level estimates
for models that included latent classes. Specifically, treating
the response as continuous suggested less heterogeneity in
drinking relative to treating the response as categorical.

In general, if an outcome variable is treated as categor-
ical, the parameter estimates are easily interpreted, such
as the intercept of a longitudinal model as the log-odds
of engaging in the outcome at the given time point. This
interpretability might be a benefit of treating an ordinal
variable as categorical. Under a continuous data treatment,

the parameter estimates become less interpretable, as the
response is actually measured on a scale that was intended to
relate to a latent scale. For example, by treating the response
as continuous, the parameter estimates from our empirical
example did not offer clear information, such as estimates of
an intercept that relates to an individual’s expected alcohol
use at a given time. The estimates can be interpreted only
relative to other time points (e.g., frequency of use increases
with age).

The two-part latent growth model appears to have pro-
duced relatively consistent results across the two data treat-
ments and numbers of response categories relative to the
other methods. That is, parameter estimates were relatively
less sensitive to the number of response categories and to
whether the conditionally positive responses were treated as
categorical or continuous. Interestingly, the estimated resid-
ual variances for the conditionally positive responses were
best fit by a model that assumed homogeneity of variance
across occasions. Under all other methods, the residual vari-
ances were relatively dissimilar across the three time points.
This finding might suggest the need to consider two-part
growth models for data that include a sizable proportion of
zeros. However, such conclusions should be drawn with cau-
tion, as the results are limited to the empirical data used in
this study and might not be generalizable to other problems.
The two-part growth model was not evaluated by Feldman
et al. (2009) but might be a reasonable approach to handle a
high proportion of zeros, an attribute of data that is common
in psychological and behavioral data.

The limitations of this study might include the use of
empirical data without the use of simulated data to more fully
evaluate the utility of the methods considered. The empiri-
cal data evaluated here were measured on ordinal scales and
included many zeros. The type of distributions that generated
such data might be difficult to mimic, particularly given that
different types of zeros could be present in empirical data.
That is, a zero response might denote that an individual did
not engage in the behavior at a particular occasion but has
been known to engage at other times. A zero response could
also denote no engagement for an individual who does not
ordinarily engage in the behavior. Thus, using an empirical
example might afford a more realistic way to evaluate meth-
ods for such data because the underlying mechanism that
generated the zeros is not likely to be known. Future stud-
ies could still benefit from simulated data for which different
scenarios could be studied.

This study used different methods for handling data with
lots of zeros, including most that were evaluated by Feldman
and colleagues, in addition to a two-part latent growth model.
Although the methods considered here might handle the
characteristics of the data in different ways, we do not
believe that any of these approaches is yet ideal for ana-
lyzing ordinal data with many zeros. Even the two-part
latent growth model, which was intended to handle the high
proportions of zeros, has an assumption of normality for the
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226 McTERNAN AND BLOZIS

positive values, and was originally intended to handle con-
tinuous, not categorical data. Thus, more research is needed
to define an appropriate tool for handling such data.

In summary, despite the availability of advanced methods
for the analysis of longitudinal categorical data, applications
of these models to real data can present challenges. Whether
to use continuous or categorical methods might not always
be clear. One contributing factor could be that at this point in
time there is no fit statistic that allows for a direct compari-
son between a model that treats a variable as continuous and
a corresponding model that treats the same variable as cate-
gorical. Most fit statistics, including the widely used AIC and
Bayesian information criterion, are based on a log-likelihood
function that is defined differently for continuous and dis-
crete distributions, making it difficult to draw conclusions
about which approach might be most appropriate for a given
data set.
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