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ABSTRACT OF THE DISSERTATION 

 

Computational Analysis of RNA Editing in Brain Diseases 

 

by 

 

Mudra Choudhury 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2022 

Professor Xinshu Xiao 

 

It is well-established that RNA editing plays significant roles in brain function. 

Recent studies uncovered many RNA editing events with aberrant editing levels in 

neuropsychiatric and neurological diseases, such as Schizophrenia (SCZ) and 

Alzheimer’s disease (AD).  Yet, the underlying mechanisms of dysregulation of these 

RNA editing abnormalities and their contribution to disease processes are generally 

unknown. In this dissertation, we carried out in-depth studies of RNA editing to gain an 

improved understanding of its implications in brain diseases.  

 To better understand the roles of RNA editing in SCZ, we conducted global 

de novo RNA detection to probe editing differences between disease and control subjects 

in four independent SCZ cohorts. We observed reproducible and significantly reduced 

editing levels (i.e., hypoediting) in SCZ and an enrichment of dysregulated sites in genes 

involved in mitochondrial functions. Furthermore, we carried out experimental studies to 
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characterize the functional roles of dysregulated RNA editing located in coding and non-

coding regions. These studies again highlighted the important contributions of RNA 

editing to mitochondrial function.  

 Next, we examined the relationship between genomic variation, RNA 

editing and other post-transcriptional processes in SCZ via quantitative trait loci (QTL) 

analyses. Detection of editing QTL (edQTL), splicing QTL (sQTL), and expression QTL 

(eQTL) in the CommonMind SCZ cohort revealed both common and distinct loci among 

the three types of QTL. In addition, we investigated each QTL-type in both European (EU) 

and African American (AA) populations, and observed that AA-specific QTL were 

associated with larger effect sizes. Finally, we demonstrated the disease relevance of 

QTL through their colocalization with the GWAS summary statistics of SCZ, bipolar 

disorder (BPD), and major depressive disorder (MDD), respectively. 

 Recently, RNA editing was reported to significantly impact the 

immunogenicity of double-stranded RNAs (dsRNAs). Motivated by this relationship, we 

sought to examine dsRNA expression and RNA editing dysregulation in disease. To this 

end, we implemented a bioinformatic pipeline to predict dsRNA regions transcriptome-

wide. Using RNA-seq data of AD patients and controls, we identified global upregulation 

of dsRNAs and downregulation of RNA editing in AD, a disorder for which emerging 

evidence supports the importance of inflammation and innate immunity in disease 

mechanisms. Interestingly, while differentially expressed dsRNAs and reduced RNA 

editing are observed in nonoverlapping loci, they both significantly associated with 

interferon (IFN) response. Our data suggest that reduced RNA editing and increased 
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dsRNA expression collectively contribute to increased IFN response in AD, although 

through independent transcripts. 
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CHAPTER 1 - Introduction 

1.1 RNA EDITING OVERVIEW 

1.1.1 Prevalence of RNA Editing 

RNA editing, the alteration of targeted nucleotides on RNA molecules, notably 

reshapes our understanding of the central dogma of biology, which explains the transfer 

of information from DNA to RNA to protein. Most RNA editing sites involve the nucleotide 

conversion of adenosine to inosine (termed A-to-I editing) on double stranded pre-mRNA 

and are catalyzed by adenosine deaminase (ADAR) enzymes1. As the inosine nucleotide 

is interpreted as guanosine by cellular machinery, A-to-I editing is synonymously termed 

A-to-G editing. An alternative and less prevalent form of editing involves the substitution 

of cytosine with uracil (C-to-U), which is conducted by the apolipoprotein B mRNA editing 

catalytic polypeptide-like enzymes (APOBECs)2.  

Endogenous modification of RNA nucleotides has been observed across species, 

from single-celled protozoa to humans3,4. Furthermore, ADAR enzymes responsible for 

A-to-I editing originate in early metazoan evolution3,5. These proteins are highly 

conserved across a wide range of evolutionary scale, with considerable similarities 

among Drosophila, various cephalopods, mice, chimpanzees, and humans4. 

Nevertheless, humans exhibit a greater prevalence of RNA editing relative to other 

species5. 

 In addition to its preservation across species, RNA editing is pervasive throughout 

the human genome. While the majority of RNA editing occurs in introns and takes place 
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in the nuclear fraction of the cell, edited loci are observed in various regions of the 

transcriptome and in alternative subcellular locations6. ADAR binding occurs 

predominantly in repetitive elements, such as Alu regions that occupy 10% of the human 

genome7,8. Consequently, RNA editing is estimated to occur in the majority of human 

genes at over 100 million loci, most of which are in noncoding regions with unknown 

functions9. The ubiquity of RNA editing across the genome and its conservation among 

species indicate the significance of its role in post-transcriptional regulation.  

1.1.1 Functional Consequences of RNA Editing 

RNA modifications confer diversity to their transcripts, affecting splicing, stability, 

transcript localization, gene expression, and downstream protein function10–14. For 

example, RNA editing in 3’ splice site regions of highly conserved exons can cause 

dramatic reductions in splice site strength10. In addition, steady state transcript levels of 

disease-associated genes can be regulated through miRNA targeting of edited or 

unedited transcripts15. Finally, RNA editing can cause nonsynonymous changes to 

protein coding regions, such as the serine to glycine amino acid change in the brain-

specific splicing factor, Nova1, which regulates ~700 alternatively spliced exons in genes 

involved with synaptic function and axon guidance. Although the edited locus does not 

affect the protein’s splicing activity, it affects stability by doubling the protein’s half-life13. 

These examples illustrate the importance of RNA editing in diversifying transcriptome 

complexity and regulation. 

Furthermore, editing through ADAR proteins is known to be involved in the innate 

immune response in many species16. The ADAR gene in mammals gives rise to two 
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protein isoforms: a p110 isoform that is ubiquitously expressed, and a larger p150 isoform 

that is interferon-inducible17. Interestingly, Adar p150-/- mice are embryonically lethal due 

to their inability to protect against viral infection18, similar to the phenotype observed in 

Adar-/- mice that lack both the p110 and p150 isoforms. Moreover, the Adar p150 protein 

is predicted to regulate the interferon (IFN) response cascade18,19, and can edit viral 

dsRNAs to prevent sustained IFN expression and apoptosis during infection20. Overall, 

ADAR expression and RNA editing show multi-faceted roles in immune response. 

1.1.2 The role of dsRNA editing in interferon response 

Editing occurs in double-stranded RNA (dsRNA) regions that possess structural 

similarity to exogenous viral RNAs16,21. The RNA editing mechanism is utilized by the cell 

to distinguish between endogenous and exogenous RNAs, the latter of which can activate 

immune response21. The conversion of adenosine to inosine replaces the stable A:U base 

pair with the less stable I:U, introducing structural irregularities to the modified RNA 

duplex. Such structural changes prevent their recognition by viral RNA sensors, such as 

the Melanoma Differentiation-Associated factor 5 (MDA5), whose interaction with 

dsRNAs elicits antiviral signaling. Thus, RNA editing effectively marks endogenous 

dsRNA as “self” RNA and prevents unwanted IFN response21.  

Aberrant ADAR expression and editing can affect many cellular processes, such 

as dsRNA accumulation and innate immunity22,23. Hence, it is especially important to 

investigate the consequences of dysregulated RNA editing and dsRNA expression in 

disorders where immune response plays a role24. Indeed, decreased RNA editing and 

increased load of endogenous dsRNAs have been reported in the autoimmune disorder  
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psoriasis25, although the mechanisms underlying such changes and their functional 

implications in the disease remain unknown.  

1.2 DYSREGULATED RNA EDITING IN THE BRAIN 

Prior to the availability of next-generation sequencing, RNA editing studies were 

focused on a small number of editing sites with significant roles in neuronal function26. 

The first discovered A-to-G editing site was an RNA-DNA difference (RDD) causing a 

glutamine (Q) to arginine (R) amino acid change in the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor subunit GluA2 in the brain27. This Q/R change 

(CAG-to-CGG) rendered the AMPA receptor impermeable to the Ca2+ ion27. Due to its 

interesting functionality, this site has been the focus of many in-depth studies since its 

discovery28–31. The Q/R GluA2 locus is highly edited (> 90%) in neurons in the adult 

CNS29, and GluA2 subunits are almost all completely edited in embryonic and postnatal 

brains30,31. In mice, a reduction of the Q/R editing level to 75% leads to epilepsy, seizures, 

and premature lethality32–35. Moreover, decreased editing in GluA2 was found in motor 

neurons of patients with Amyotrophic Lateral Sclerosis (ALS) and is believed to impact 

motor neuron function36. Since the discovery of GluA2 editing, aberrant RNA editing in 

similar glutamate receptors (e.g. GRIK1 and GRIK2)37, serotonin proteins (e.g. 5-HT(2C) 

receptor)38, and other loci has been uncovered in multiple human neuropsychiatric 

diseases, such as Schizophrenia (SCZ), Autism Spectrum Disorder (ASD), Bipolar 

Disorder (BPD), and Alzheimer’s Disease (AD)38–42. 

Following the advent of high-throughput sequencing technologies, the landscape 

of RNA editing has been greatly expanded to encompass diverse diseases, tissues and 
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cell types43–45. RNA editing is a cell-type specific mechanism that exhibits the highest 

prevalence in the brain relative to other tissues46, motivating its investigation in brain-

related disease. While earlier studies have exemplified the importance of RNA editing in 

neurological disorders, many investigated only a few sites or did not characterize the 

functional consequences of differential editing between patient and control samples. 

Complete characterization of RNA editing differences has not been achieved for most 

neurological and neuropsychiatric diseases. Moreover, many edited loci remain 

undiscovered and their functional roles unexplained. These deficiencies highlight the 

need for further studies of RNA editing sites in brain diseases on the global and local 

scales.  

1.3 RNA EDITING IN SCZ 

1.3.1 Dysregulated RNA editing in SCZ 

 SCZ is a neuropsychiatric disorder characterized by delusional thinking, 

hallucinations, anxiety, and paranoia. Both genetic and environmental causes, such as 

stress, substance use, and maternal perinatal infection, can trigger the illness47. As SCZ 

is highly heritable (having a heritability score of 0.8)48, many studies have aimed to identify 

its genetic basis and the biological pathways implicated in its progression47,49,50. Genome-

wide association studies (GWAS) have highlighted genetic variants that appear to 

collectively influence the disorder49,50. However, the underlying biological mechanisms, 

especially those beyond genetic mutations involved in shaping the disorder, are largely 

unknown. Consequently, the investigation of SCZ at the transcriptional and post-
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transcriptional levels is increasing in popularity, which may yield novel insights into 

disease etiology51,52.  

One such post-transcriptional mechanism is RNA editing, which has been found 

to be dysregulated in SCZ and related neurological disorders, such as BPD38,39,53. For 

example, an editing site in the glutamate receptor, ionotropic kainate 2 (GRIK2) gene, 

causes a nonsynonymous I/V change with significant downstream functional 

consequences in the brain39. Similar to the GluA2 Q/R site, this locus modulates cellular 

Ca2+ permeability, and its dysregulation is predicted to contribute to the increased 

intracellular levels of Ca2+ observed in patients with BPD39. In addition to a handful of 

known functional editing sites, a global study of RNA editing in SCZ has examined its 

underlying genetic basis through RNA editing quantitative trait loci (edQTL) detection, and 

highlighted the disease relevance of such loci53. 

While these studies demonstrate the importance of RNA editing in 

neuropsychiatric disorders, the potential contribution of RNA editing to disease-related 

mechanisms is largely unknown. Additionally, investigation and comparison of global 

RNA editing in different ancestral groups has not been conducted. To address these 

gaps, Chapter 2 of this work methodically identifies de novo RNA editing sites in 

Europeans (EU) and African Americans (AA) in multiple SCZ cohorts, and characterizes 

the molecular pathways affected by differentially edited loci. We observed a reproducible 

global hypo-editing trend in SCZ for EU individuals. Importantly, we uncovered the 

potential connections of many aberrant RNA editing sites to mitochondrial function, which 

is known to be dysregulated in the disease54. We validated recoding RNA editing sites in 
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the mitochondrial gene, MFN1, and showed their impact on mitochondrial morphology 

and function. 

1.3.2 Genetic basis of RNA editing in SCZ 

Since SCZ is predicted to have a strong genetic basis48, many studies focused on 

the relationship between genetic variation and gene expression, splicing, or other cellular 

processes in the disease53,55,56. Nonetheless, as an epitranscriptomic process that rapidly 

responds to environmental stimulus57 and affects brain-related pathways, RNA editing 

may have close relevance to the mechanisms underlying SCZ. However, our 

understanding of the genetic basis for RNA editing in SCZ remains limited53. Previous 

analysis of quantitative trait loci associated with RNA editing (edQTL) by Breen et. al. 

reported a number of genetic variants associated with RNA editing loci, of which 11 

colocalized to SCZ GWAS loci53. This study motivates further characterization of edQTL 

in SCZ, including such investigations in multiple ethnicities. 

In Chapter 3, we aimed to further elucidate the association between RNA editing 

and genetic variation in SCZ for individuals of both EU and AA descent. In addition to 

edQTL detection, we conducted eQTL and sQTL analyses of the same cohort to compare 

the resulting loci and their targets. All QTL types showed higher effect sizes in AA-specific 

loci. Furthermore, we investigated RNA binding proteins (RBPs) that may regulate RNA 

editing or RNA splicing. We also conducted colocalization analysis of the QTL to GWAS 

loci from multiple brain disorders. While the three types of QTLs shared significant 

overlap, they were largely distinct and showed relevance to SCZ, major depressive 

disorder (MDD), and BPD. 
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1.4 DSRNA AND RNA EDITING DYSREGULATION IN ALZHEIMER’S DISEASE 

RNA editing dysregulation in dsRNA regions is prevalent in a wide range of human 

diseases in various stages of human lifespan58,59. The functional relevance of RNA editing 

in brain development60 makes it a significant focal topic for neurodevelopmental disorders 

including SCZ. However, its additional relevance to aging57,61, environmental stress57, 

and innate immunity62 makes it equally interesting for neurodegenerative diseases, such 

as Alzheimer’s disease (AD). 

1.4.1 Characterization of Alzheimer’s disease 

AD is a common neurodegenerative disorder that is currently the seventh leading 

cause of death, with the number of cases almost doubling every five years63. It is 

characterized by initial memory impairment and cognitive decline, which can affect 

behavior, speech and the motor system64. Having a mean onset-age of 65 years-old63, 

AD is one of the most common causes of dementia64. The disease’s defining 

neuropathological characteristics include the accumulation of extracellular amyloid-beta 

(A𝛽 ) plaques and intracellular neurofibrillary tangles (NFTs), loss of synapses, and 

neuronal death65. A definitive diagnosis of AD often requires examination of cerebrospinal 

fluid (CSF), positron emission tomography (PET) biomarkers, and newer criteria that aid 

diagnosis in living patients66,67. Due to its complex neuropathology, various metrics have 

been developed to quantify AD severity68. Through neuropsychological tests, an 

individual may be assigned a cognitive index69. Other often-used AD severity metrics 

include the CERAD score as a quantitative measure of the brain’s A𝛽 neuritic plaques70, 

and Braak stages reflecting the amount of NFTs71. 
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In addition to accumulation of plaques and tangles, AD is associated with increased 

neuroinflammation72. Persistent immune response in the brain has been shown to 

facilitate and exacerbate disease progression72. For example, the accumulation of A𝛽 

plaques can activate microglia expressing IFN stimulated genes (ISGs)72. Furthermore, 

the inflammatory response evoked by A𝛽 plaques can consequently expedite disease 

progression through the onset of tau pathology72. In contrast, IFN blockade in mouse 

models of AD reduces microglia activation and rescues synapse loss in vivo72,73. Overall, 

IFN dependent processes are integral to the neuropathology of AD. While IFN is primarily 

activated through innate immune sensors recognizing viral and self dsRNAs74, the direct 

mechanisms by which IFN is activated in AD remains unclear. 

1.4.2 RNA Editing and dsRNA expression in AD 

Dysregulated RNA editing in dsRNA regions has been shown to converge on brain 

and immune related pathways in AD75,76. While previous studies have provided valuable 

insights for RNA editing aberrations in the disease, the functional consequence of 

dysregulated editing in AD is largely uncharacterized. Furthermore, the relationship 

between editing dysregulation, dsRNA expression, and immune response in AD is 

unknown. The work presented in Chapter 4 aims to address these knowledge gaps. We 

detected editing enriched dsRNAs differentially expressed between AD and control brains 

and examined dysregulated editing in AD. We demonstrated that both of these processes, 

while occurring at distinct loci, associate with ISG expression.  
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1.5 SUMMARY 

Previous literature has demonstrated that dysregulated RNA editing is an important 

molecular signature in both neurodevelopmental and neurodegenerative diseases. 

However, many questions remain regarding the functional consequences of RNA editing 

and its impact on disease pathology. In this dissertation, we aimed to better characterize 

RNA editing in brain disorders of interest, specifically SCZ and AD. 
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CHAPTER 2 - Widespread RNA hypoediting in schizophrenia 

and its relevance to mitochondrial function 

2.1 ABSTRACT 

 RNA editing, the endogenous modification of nucleic acids, is altered in genes with 

significant neurological function in schizophrenia (SCZ). While RNA editing sites have 

been characterized in neuronal genes, such as glutamate and serotonin receptors, its 

role in SCZ-associated mitochondrial dysregulation has not been explored. Moreover, the 

global profile and molecular functions of disease-associated RNA editing remain unclear. 

Here, we analyzed RNA editing in postmortem brains of four SCZ cohorts and uncovered 

more than 26,000 unique differential editing sites between SCZ and controls. We discover 

a significant hypoediting trend in patients of European descent and report a set of SCZ-

associated editing sites via WGCNA analysis shared across cohorts. We show that 

differential editing patterns reflect editing differences in multiple cell types, including 

neurons, rather than cell compositional differences between conditions. Robustly 

identified differential editing sites were enriched in functionalities related to the brain and 

mitochondria (i.e. glutamate receptor activity and mitochondrial fragmentation in apoptotic 

processes). Indeed, using massively parallel reporter assays and bioinformatic analyses, 

we see differential 3’ UTR editing sites affecting host gene expression were also enriched 

for mitochondrial functions, such as cellular respiration. Furthermore, we characterized 

the impact of two recoding sites in the mitofusin 1 (MFN1) gene and showed their 

functional relevance to mitochondrial fusion, cytochrome C release, and cellular 
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apoptosis. To our knowledge, this is the first study to show replicable global reduced 

editing in SCZ and investigate its crucial molecular effects on mitochondrial activity. 

2.2 INTRODUCTION 

RNA editing, the alteration of targeted nucleotides on RNA molecules, notably 

reshapes our understanding of the central dogma of biology. Most RNA editing sites 

involve the nucleotide conversion from adenosine to inosine (termed A-to-I editing) on 

double-stranded pre-mRNAs catalyzed by the adenosine deaminase (ADAR) enzymes1. 

As inosines are interpreted as guanosines by the subsequent cellular machineries, A-to-

I editing is synonymously termed A-to-G editing. An alternative but less prevalent form of 

editing involves the substitution of cytosine with uracil (C-to-U or C-to-T editing), which is 

conducted by the apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) 

enzymes2. Occurring in both coding and non-coding regions, RNA editing greatly 

diversifies the transcriptome6. In addition to  altering protein sequences, RNA editing may 

affect many other processes, such as splicing10, RNA stability77, and translation9. Thus, 

identifying functionally meaningful editing sites can help to understand their primary 

biological roles and, moreover, elucidate how dysregulated editing contributes to various 

disorders. 

Previous studies of RNA editing have shown the significance of aberrant editing in 

neurological diseases78. One such disease is Schizophrenia (SCZ), in which differences 

in RNA editing have been profiled in both non-coding and coding regions53. SCZ is a 

neuropsychiatric disorder characterized by delusional thinking, hallucinations, anxiety, 

paranoia, and a variety of other psychiatric symptoms79. The disorder is influenced by 
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both genetic and environmental factors, such as stress, substance use, and maternal 

perinatal infection47. As SCZ is highly heritable, many studies have aimed to identify the 

genetic basis of the disease and understand the biological pathways implicated in its 

progression47. Genome wide association studies (GWAS) have identified genetic variants 

that may collectively influence the disorder49,80. However, the underlying biological 

mechanisms involved in shaping the condition beyond genetic mutations are largely 

unknown. Consequently, investigation of SCZ at the transcriptional and post-

transcriptional level has gained traction, as this may yield novel insights into disease 

etiology51,52.  

Various transcriptomic regions with altered RNA editing have been catalogued in 

SCZ and many of its related brain disorders. For example, an I/V editing site in the 

glutamate receptor, ionotropic kainate 2 (GRIK2), is known to cause a nonsynonymous 

change in its protein. GRIK2 modulates cellular Ca2+ permeability, and its dysregulation 

contributes to increased intracellular Ca2+ levels observed in patients with bipolar 

disorder, a mental disease sharing significant neuropathology with SCZ81,82. Additionally, 

global profiling of RNA editing in SCZ has shown dysregulation of hundreds of RNA 

editing sites, including those in genes involved in translation initiation and AMPA 

glutamate and ionotropic receptors53. These studies confirm the importance of editing in 

this neuropsychiatric disorder and motivate further in-depth investigations on the global 

profile, regulation and function of RNA editing in SCZ and related disorders.  

In this study, we characterized the RNA editomes in brain samples of SCZ patients 

and controls in multiple cohorts from the PsychENCODE consortium via de novo 

detection of RNA-DNA differences. Comparing data from SCZ and control individuals, we 
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identified 26,841 unique differential editing sites. Importantly, we observed a significant 

trend of hypoediting in SCZ, which was reproduced in 3 of the 4 cohorts of European 

individuals. Moreover, our study uncovered close relevance of RNA editing dysregulation 

to mitochondrial function from two perspectives: RNA editing in 3’ UTRs of mitochondria-

related genes and the impact of two recoding editing sites in the mitofusin 1 (MFN1) 

protein. Together, our study delineates a comprehensive landscape of RNA editing in 

SCZ, reports a replicable hypoediting bias in SCZ for the first time, and reveals novel 

functional relevance of RNA editing in mitochondria-related processes.  

2.3 RESULTS 

2.3.1 RNA Editing sites detected in SCZ patients and controls of the BRAINGVEX data 

We first aimed to identify global RNA editing profiles in SCZ to further understand 

novel functional pathways dysregulated in the disease. We obtained brain frontal cortex 

(FC) RNA-seq data of 170 samples from the BrainGVEX cohort in the PsychENCODE 

consortium83 (Supplementary Table 2-1). The RNA-seq libraries were generated using 

rRNA depleted total RNA83. On average, 41 million reads were uniquely mapped per 

sample (Supplementary Fig. 2-1a). Following sequence alignment and quality control 

procedures, 65 SCZ and 67 control samples were retained (Methods), the vast majority 

(96%) being from European populations. We ensured that metadata variables and data-

related metrics (e.g., age, gender, RIN, PMI and sequencing depth) did not significantly 

differ between SCZ and control individuals (Supplementary Fig. 2-2a, b). 

RNA editing sites were detected using our previously developed de novo RNA 

editing detection pipeline84–86. As editing sites are often close to one another within a 



 15 

region of the transcriptome, we further implemented a method to detect sites within these 

“hot-spots” that may be otherwise missed by conventional mapping software41,87 

(Methods). In total, we detected 4,576,706 RNA editing sites in the FC of the BrainGVEX 

cohort. In order to avoid sites with rare occurrences, we discarded those with nonzero 

editing in less than 10% of the samples. Following this filter, a total of 255,812 sites were 

retained, referred to as “common” RNA editing sites (Fig. 2-1a). Of these common sites, 

212,532 (83%) overlapped with known RNA editing sites cataloged in the REDIportal 

database88 (Supplementary Fig. 2-1b). 

Almost all samples had greater than 95% of A-to-G sites out of all common RNA 

editing sites detected in the respective sample, demonstrating the high accuracy of the 

de novo detection pipeline (Fig. 2-1b, Supplementary Fig. 2-1c). Consistent with previous 

studies86,89, the majority of editing sites resided in ALU elements (Supplementary Fig. 2-

1d) and intronic regions (Supplementary Fig. 2-1e).  As expected, the number of sites 

detected per sample correlated approximately with the total read coverage of each 

sample (Supplementary Fig. 2-1f). We calculated common site RNA editing average 

(CREA) per sample using all common sites with at least 5 reads. An ALU specific CREA 

was also calculated using common sites in ALU regions. Both CREA and ALU-CREA had 

significantly positive correlations with ADAR2 expression and negative correlations with 

ADAR3 expression, while both insignificantly correlated with the expression of ADAR1 

(Supplementary Fig. 2-1g). 
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2.3.2 Differential editing analysis in BrainGVEX data reveals reduced editing in 

Europeans with SCZ 

 Using our previous methods41, we detected 13,997 differential editing sites 

between SCZ and controls in the BrainGVEX cohort (Fig. 2-1a, Methods). To represent 

overall editing level of these differential editing sites per sample, we calculated the 

average editing ratio of all differential sites with ≥ 5 reads in each sample, hereby referred 

to as the differential site RNA editing average (DREA). In comparing SCZ and control 

samples, we observed significantly lower DREA values in the SCZ samples (Fig. 2-1c). 

The SCZ and control samples were clearly segregated when clustered based on the 

differential editing sites (Fig. 2-1d). In addition, differential sites that were hypoedited in 

SCZ greatly outnumbered those that have increased editing in the disease (Fig. 2-1e). 

Gene ontology (GO) analysis revealed that differential editing sites occurred in genes 

involved in various brain-related pathways such as motor neuron axon guidance, synaptic 

transmission and ion transport (Supplementary Fig. 2-1h). 

Among the differential editing sites, a number of them cause nonsynonymous 

amino acid changes, stop loss, or stop gain (recoding sites) (Fig. 2-1f). Some of these 

sites are known to have relevance in neuropsychiatric diseases. One example is the 

aforementioned I/V recoding site in GRIK2, a gene encoding the well-known ionotropic 

glutamate receptor implicated in mood disorders. In SCZ, we observed hypoediting of this 

site (Fig. 2-1f), which is similar to that reported in bipolar disorders81. This hypoediting 

event can lead to an increase in intracellular Ca2+ levels81. Furthermore, we observed 

significantly decreased editing for sites that have not been studied previously in SCZ, 
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such as a C-to-T site in the mitochondrial fusion gene MFN1 (Fig. 2-1f), which is further 

examined below. 

2.3.3 RNA editing detection and differentially edited gene expression in single-nucleus 

RNA-seq 

As RNA editing may be highly cell type-specific90, we next asked whether the 

differential editing patterns in SCZ may have originated from specific cell types. To 

address this question, we analyzed single-nucleus RNA-seq data from prefrontal cortex 

of control samples in a previous study91. Six major brain cell types, excitatory and 

inhibitory neurons, astrocytes, oligodendrocytes, microglia, endothelial, and 

oligodendrocyte progenitor cells (OPC), were obtained from 24 samples. We examined 

gene expression and editing profiles of each cell type (by pooling cells of the same type). 

Excitatory and inhibitory neurons expressed the highest fraction of genes that were 

differentially edited in the bulk brain tissue of SCZ, followed by oligodendrocytes, 

astrocytes, and OPCs (Fig. 2-1g). Next, we asked whether the differentially edited sites 

in the bulk brain of SCZ were edited in each cell type. Among all observed editing sites in 

each cell type, the fraction of sites that were differentially edited in the bulk data is highest 

in neurons (Fig. 2-1h). These observations suggest that differential RNA editing observed 

in the bulk RNA-seq analysis may reflect editing differences in neurons to a larger extent 

than in other cell types. 

Given the above RNA editing differences among cell types, we next asked whether 

cell type proportions were different between the bulk SCZ and control samples, which 

may contribute to the observed differential editing profiles. We used CIBERSORTx92 to 
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calculate the relative proportion for five cell types of brain frontal cortex – neurons, 

oligodendrocytes, microglia, endothelial cells, and astrocytes – using gene expression of 

known cell type signature genes93. We observed an insignificant difference in cell type 

proportion between SCZ and control samples (Supplementary Fig. 2-1i). Thus, the 

differential editing observed between the two groups may not have arisen from cell type 

proportion differences. In contrast, using differential editing sites located in the signature 

genes of each cell type, we observed that the mean DREA was reduced in SCZ for the 

majority of cell types (Supplementary Fig. 2-1j). These observations further support the 

global hypoediting trend observed in the bulk data of SCZ. 

2.3.4 Differential RNA editing analysis in additional cohorts 

In order to validate global editing patterns discovered in the BrainGVEX cohort, we 

identified RNA editing sites in an additional cohort in the PsychENCODE database, 

referred to as the CommonMind Consortium (CMC)94 (Supplementary Table 2-1). The 

same analysis methods used for the BrainGVEX data were adopted here. While the CMC 

cohort had a larger number of samples than the BrainGVEX cohort, close to half of the 

CMC subjects were above the age of 70 years old (an age group not present in the 

BrainGVEX cohort, Supplementary Fig 2-2a). Additionally, samples in the 70+ age group 

showed significantly lower RIN than the <70 age group, and their corresponding RNA-

seq data had lower proportion of mapped mRNA bases and a higher proportion of 

intergenic bases (Supplementary Fig 2-3a-c). Considering the possibility of lower data 

quality from samples with 70+ age and focusing on the goal of validating the global editing 

patterns of BrainGVEX, we only used CMC samples from subjects below 70 years of age. 



 19 

After quality control procedures and meta-data matching (Methods), 137 samples (79% 

European) were retained for RNA editing analysis and differential editing detection 

(Supplementary Fig. 2-4a, b). The total number of detected sites, common sites (edited 

in ≥10% of samples), differentially edited sites, and recoding sites are shown in Fig. 2-2a. 

Using the differential editing sites, we calculated the DREA for each sample, and 

observed a significant trend of reduced editing in SCZ (Fig. 2-2a), consistent with the 

observation in the BrainGVEX cohort.  

Next, we analyzed data from two additional PsychENCODE cohorts, the CMC 

Human Brain Collection Core (HBCC) and the Lieber Institute for Brain Development 

(LIBD). Since these two cohorts included samples from European origin along with a 

sizeable number of samples of African American descent, we analyzed data from the two 

ethnicities separately. After quality control procedures, we analyzed 18 SCZ, 23 controls 

and 17 SCZ, 20 controls of European-descent from HBCC and LIBD respectively. Despite 

the relatively small sample size, we observed a significant hypoediting trend in SCZ of 

the HBCC cohort (Fig. 2-2b). No significant difference was detected in the LIBD data 

(Fig. 2-2c). Thus, RNA editing levels were significantly reduced in SCZ in three of the four 

European-dominant cohorts. 

 Additionally, we analyzed data from 48 SCZ, 52 controls (HBCC) and 18 SCZ, 26 

controls (LIBD) of African American-descent. Opposite to the reduced editing in SCZ 

observed in European samples, a significant increase in DREA of SCZ relative to controls 

was detected in both cohorts (Supplementary Fig. 2-5a). Using CIBERSORTx, we did not 

observe a significant difference in cell type proportion between SCZ and controls 

(Supplementary Fig. 2-5b).  While the DREA of signature genes of each cell type was 
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higher in SCZ than controls for most cell types in both cohorts, it only reached significance 

in astrocytes (HBCC) and oligodendrocytes (LIBD) (Supplementary Fig. 2-5c). Thus, we 

hypothesize that the hyperediting trend in SCZ of African American individuals may be 

due to ethnicity-related differences in RNA editing, a topic that needs to be further 

investigated.  

2.3.5 WGCNA of edited loci yields robust modules of editing sites associated with SCZ 

We next examined whether differential editing sites were shared between the 

BrainGVEX and CMC data (the HBCC and LIBD cohorts were not included due to their 

relatively small numbers of European subjects). While 314 overlapping differentially 

edited sites were observed between the cohorts, the total overlap did not reach statistical 

significance (Supplementary Fig. 2-6a). However, genes harboring differential editing 

sites showed a significant overlap, suggesting a similarity in functional pathways being 

differentially edited (Supplementary Fig. 2-6b).  

To further evaluate SCZ-relevant editing sites shared between the two cohorts, we 

carried out the weighted gene co-expression network analysis (WGCNA)95 on common 

RNA editing sites (Methods) in each cohort. The goal of this analysis was to identify RNA 

editing modules (i.e., sites with correlated editing levels across samples) that are 

associated with disease condition. For each cohort, WGCNA yielded multiple modules 

(Supplementary Fig. 2-7a, b), the eigengenes of which were then correlated with the 

disease condition while considering confounding meta-data covariates (age, gender, RIN, 

etc., see Methods). We observed that the largest module – labeled as the “turquoise” 

module – significantly correlated with SCZ in BrainGVEX and CMC, respectively 
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(Supplementary Fig. 2-7c). Importantly, editing sites in turquoise modules of the two 

cohorts significantly overlapped with each other when considering editing sites testable 

in both cohorts (Fig. 2-2d, Supplementary Table 2-2).  

The two cohorts also shared a significant number of genes harboring turquoise 

module editing sites, as expected (Fig. 2-2e). Gene ontology (GO) analysis of the shared 

genes uncovered many pathways related to brain functionality and neuronal signaling, 

such as ionotropic glutamate receptor activity and synapse assembly (Fig. 2-2f). 

Interestingly, one of the top GO terms identified is related to mitochondrial fragmentation 

in apoptotic process (Fig. 2-2f). Together, these data support the existence of 

reproducible differential editing profiles in SCZ, many located in genes with functional 

relevance to brain function.  

2.3.6 Enrichment of potentially functional 3’UTR editing sites in mitochondria-related 

pathways 

Given the large number of differential editing sites in SCZ, it is important to 

investigate their functional relevance. To this end, we first focused on sites in the 3’ UTRs 

given the observed relative enrichment of differential sites in this region (Supplementary 

Fig. 2-6c). Since 3’ UTRs are enriched with cis-regulatory elements, RNA editing in the 3’ 

UTRs may affect post-transcriptional gene regulation, for example, mRNA abundance, as 

shown in previous studies77,96. To experimentally screen for functional 3’ UTR editing sites 

in regulating mRNA abundance, we performed a massively parallel reporter assay 

(MPRA), similar to those adopted to discover functional 3’ UTR SNPs97 (Fig. 2-3a, 

Methods). Although the edited version of the RNA editing site was hard-coded into the 
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DNA of the reporters, this design represents a reasonable approximation to assay for the 

impact of a 3’ UTR editing site on mRNA abundance. This is because such regulation 

most likely occurs in the cytoplasm, independent of the process of RNA editing.   

In the MPRA, we included a total of 770 differential editing sites located in 3’ UTRs 

from the BrainGVEX, CMC, HBCC, or LIBD data. Comparing the relative enrichment of 

the unedited and edited versions of a site in the plasmid DNA input and expressed mRNA, 

we identified 214 editing sites (28% of 770 testable sites, located in 160 genes, 

Supplementary Table 2-3) that resulted in significant reporter expression changes (FDR 

≤ 0.1 and |ln(Fold Change)| ≥ 0.1, Fig. 2-3b; Methods). Thus, a relatively large fraction of 

3’ UTR editing sites may regulate gene expression post-transcriptionally. Interestingly, 

the GO analysis of genes harboring significant sites identified in the MPRA revealed a 

number of pathways related to mitochondrial function or translational regulation (Fig. 2-

3c). 

 As a complementary approach, we examined the correlation between the editing 

levels of 3’ UTR differential editing sites (tested in the MPRA) and the expression levels 

of their host genes in the respective cohorts (Fig. 2-3d). We found that 74 out of 741 

bioinformatically testable editing sites were significantly correlated with gene expression 

(Methods). These sites were located in 65 genes, 30 of which overlapped with the genes 

with significant MPRA results (p = 1.7e-46, hypergeometric test). Consistent with the 

MPRA results, genes containing the 74 sites were significantly enriched with 

mitochondria-related pathways, such as respiratory electron transport chain, 

mitochondrial inner membrane, and mitochondrial matrix (Fig. 2-3c).  
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To further examine the potential function of genes whose 3’ UTR editing was 

associated with gene expression (3’ UTR EdEx genes), we analyzed functional pathways 

enriched among the union of 195 such genes discovered experimentally or 

bioinformatically. Via the GeneMANIA database98 and Cytoscape visualization tool99, we 

created a network of previously curated associations between the 195 3’ UTR EdEx 

genes, as well as 20 additional related genes. We observed that the 3’ UTR EdEx genes 

are highly interconnected, largely through genetic interactions (Fig. 2-3e). Among all 

modules of the network, mitochondrial processes harbored the most genes with the most 

significant enrichment level (Fig. 2-3e). Together, these analyses support that differential 

editing in the 3’ UTR may affect mitochondria-related genes by altering their gene 

expression in SCZ.   

2.3.7 RNA editing of MFN1 leads to reduced mitochondrial fusion 

 In addition to editing sites in non-protein coding regions, many of the protein 

recoding sites identified as differential in SCZ have interesting and diverse functionalities. 

As examples, we focused on two recoding sites in the gene MFN1 that encodes a 

mitochondrial membrane protein essential for mitochondrial fusion100. One of the sites 

included a C-to-T recoding event in MFN1 with differentially reduced editing levels in SCZ 

(Fig. 2-4a). Another A-to-G editing site is located in the adjacent codon to the C-to-T site, 

which was not differentially edited in SCZ. We confirmed the presence of both RNA editing 

sites in human brain samples (Fig. 2-4b). Further investigation revealed that both editing 

sites detected in our analyses are conserved across species such as Macaca mulatta101, 

mouse102, and zebrafish103 (Supplementary Fig. 2-8a). In addition, we observed that the 
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editing levels of the MFN1 C-to-T and A-to-G loci are correlated with each other, as editing 

of the A-to-G site is more likely if the C-to-T editing is present (Supplementary Fig. 2-8b). 

In mouse N2a cells, we confirmed that the C-to-T editing site is regulated by Apobec2 

(Fig. 2-4c, Supplementary Fig 2-8c), further supporting the validity of this edited locus.  

 Next, we examined the impact of the two editing sites on mitochondrial fusion, a 

well-established function of MFN1104. We first used mouse embryonic fibroblast (MEF) 

cells with Mfn1 and Mfn2 double knockout (dKO). Overexpression vectors of Mfn1 and its 

edited versions (I328V from A-to-G editing, S329L from C-to-T editing and I328V+S329L 

double editing) were generated and introduced into dKO MEF cells. Expression of the 

Mfn1 proteins were confirmed via Western blot (Fig. 2-4d). The mitochondria morphology 

was examined via mitoTracker (Fig. 2-4e). Consistent with previous literature104,105, we 

observed a severe fragmented mitochondria phenotype in Mfn1/2 dKO cells (Fig. 2-4e). 

In contrast, rescuing by the wildtype Mfn1 in the dKO background showed 48% long 

tubular mitochondria, indicating that Mfn1 overexpression restored mitochondrial fusion. 

Expression of single-edited Mfn1 mutant (I328V or S329L) led to moderate mitochondria 

morphologies encompassing fragmented, short, and long tubular phenotypes. Strikingly, 

the double-edited mutant (I328V+S329) induced significantly less long tubular (16%) and 

more short tubular (49%) mitochondrial phenotypes (Fig. 2-4e). Thus, our data suggest 

that the two recoding sites in Mfn1 reduced the protein’s function in mitochondrial fusion.  

 As an alternative strategy, we created mutant HEK293T cells that carried the 

edited bases in their genome by prime editing106. Specifically, cells with a single mutation 

(corresponding to the I328V or S329L site) or double mutations (I328V+S329L) were 

generated. Clones with heterozygous mutations were retained (Supplementary Fig. 2-8d). 
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We confirmed that there was no change in MFN1 and MFN2 expression between WT and 

mutant cells (Supplementary Fig. 2-8e). Note that wildtype (WT) HEK293T cells do not 

exhibit RNA editing in either editing site (data not shown). In WT HEK293T cells, we 

observed 63% long tubular and 14% fragmented mitochondria (Fig. 2-4f). In contrast, the 

double mutant cells had a significantly higher fraction of fragmented (51%) and lower 

fraction of long tubular (5%) mitochondria, whereas the single mutant cells demonstrated 

intermediate phenotypes between the WT and double mutant cells (Fig. 2-4f). Thus, the 

edited versions of MFN1 induced significant reduction of mitochondrial fusion. This 

observation is largely consistent with that observed in mouse cells, despite the differences 

in the two systems (e.g., presence of endogenous MFN2 in HEK293T cells vs. absence 

of MFN2 in MEF cells).  

 To further investigate the impact of MFN1 editing on mitochondrial fusion, we 

performed a stress-induced mitochondrial hyperfusion test107. We treated HEK293T cells 

with cycloheximide, a widely used inhibitor for translational elongation, as a stress to 

induce mitochondrial hyperfusion, similarly as in previous studies108. We observed that 

52% of WT cells had hyperfused mitochondria, whereas only 16% of double mutant cells 

underwent hyperfusion (Fig. 2-4g). Thus, cells with double-edited MFN1 had impaired 

hyperfusion response given cycloheximide, indicating a possible defect in adaptive stress 

response of these cells.  

2.3.8 RNA editing of MFN1 affects cellular apoptosis 

Mitochondria are central players in cell apoptosis. It is known that mitochondrial 

fission and fusion processes are closely implicated in apoptosis and loss of MFN1/2 leads 
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to increased apoptotic sensitivity109,110. Thus, we evaluated the potential impact of RNA 

editing of MFN1 on apoptosis. To this end, we measured the level of cytochrome C (Cyt 

C) in the cytoplasmic and mitochondrial fractions of the above WT and mutant HEK293T 

cells. Release of Cyt C from the mitochondria into the cytosol is a known hallmark of 

apoptosis111. As expected, in the WT cells, Cyt C was primarily localized in the 

mitochondrial fraction. In contrast, mutant cells with edited versions of MFN1 showed 

increased Cyt C in the cytosol, with the double edited cells showing the highest levels of 

Cyt C release (Fig. 2-5a).  

To corroborate the above observations, we measured the level of apoptosis via 

propidium iodide (PI) staining.  As shown in Fig. 2-5b, very few apoptotic cells were 

detected in the WT cells, as expected. In contrast, the mutant cells carrying one or both 

edits showed a significantly higher level of apoptosis, with the double edited cells being 

the highest.  This observation is consistent with the results obtained via the Cyt C release 

assay. Thus, both experiments suggest that the RNA editing sites in MFN1 indeed affect 

cellular apoptosis.  

2.4 DISCUSSION 

Our study yields the most comprehensive investigation of dysregulated RNA editing 

in SCZ to date. For the first time, we uncovered a common trend of hypoediting in 

individuals with SCZ across multiple cohorts of primarily European-descent. Furthermore, 

we investigated the possible functional consequences of differential editing sites in 3’ 

UTRs using MPRA. This experiment, complemented by bioinformatic analysis, revealed 

hundreds of 3’ UTR editing sites that may alter mRNA expression. Importantly, many of 
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these functional editing sites are located in genes with relevance to mitochondria function. 

We also uncovered novel functions of two recoding editing sites in MFN1, an important 

gene for mitochondrial fusion.  

Previous studies of neurological and neuropsychiatric disorders demonstrated the 

relevance of RNA editing to brain functionality. For example, our group’s work on autism 

spectrum disorders (ASD) revealed RNA editing changes in genes involved in glutamate 

receptor activity and synaptic transmission41, which are analogous to those uncovered in 

this study. Importantly, a significant hypoediting trend was observed in ASD. Other 

studies also identified reduced editing in brain disease for specific sites, such as those in 

the glutamate receptor GRIK2 in bipolar disorder39 and the AMPA/kainate receptor GluR2 

in amyotrophic lateral sclerosis (ALS)112. However, a recent global analysis of RNA 

editing in SCZ did not observe this distinct hypoediting trend for their reported differential 

sites, although reduced editing in AMPA-type glutamate receptors and postsynaptic 

density proteins was observed53. A number of factors may have contributed to the 

distinction between ours and the previous study. We implemented strict quality control 

procedures, focused on a consistent age range for all cohorts (<70 years), and carried 

out a rigorous de novo detection of RNA editing sites that allowed us to identify a large 

number of loci. Furthermore, the European and African American cohorts showed 

opposite overall trend of editing changes in SCZ, which were not analyzed separately in 

the previous study53.   

In contrast to the hypoediting trend in SCZ of the European cohorts, the African 

American cohorts showed an overall hyperediting bias in SCZ. Our analysis suggests that 

the hyperediting trend in African American samples exists in multiple cell types, as shown 
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when only cell type-specific marker genes were analyzed. These results suggest the 

possible existence of mechanistic differences in RNA editing regulation in SCZ between 

diverse ancestral populations, an aspect that needs to be investigated in the future.  

We observed that differential editing sites were enriched in genes functionally 

important to the brain and mitochondria. Indeed, mitochondrial dysregulation has been 

implicated in SCZ by many studies54,113–120. Disruption in gene networks related to 

mitochondrial processes may lead to dendritic spine deficits and onset of SCZ 

symptoms113. In addition, abnormal SCZ brain connectivity may be associated with 

aberrant mitochondrial dynamics116–120. Finally, a reduced number of mitochondria was 

observed in certain layers of the neuronal somata and axospinous synapse terminals of 

SCZ brains115. Our findings further bolster the important implications of mitochondrial 

function in SCZ by demonstrating the alteration of expression or function of mitochondria-

related genes by RNA editing. 

We highlighted the function of two RNA editing sites located in the MFN1 gene, 

one of which is hypo-edited in SCZ. Using both mouse and human cells, we observed 

that the RNA editing recoding sites affect MFN1 function in mitochondrial fusion and 

cellular apoptosis. Previous work has shown that the ablation of MFN1 in mice leads to 

midgestational death, for which the embryonic fibroblasts display fragmented 

mitochondria due to significant reduction in mitochondrial fusion104. MFN1-mediated 

mitochondrial fragmentation has been suggested to lead to neurotoxicity in iPSCs121. In 

addition, low expression of MFN1 can lead to neuropathy, such as Charcot-Marie-Tooth 

disease, a neurodegenerative disease characterized by the demyelination of peripheral 

nerves122. To our knowledge, the literature on the potential impact of RNA editing on 
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mitochondrial function is very limited. For example, C-to-U editing by the APOBEC3G 

protein were predicted to suppress mitochondrial respiration relative to glycolysis in 

HuT78 cells123. However, the specific editing sites involved in such functions remain 

unknown. Thus, our study fills a significant gap by connecting RNA editing to important 

mitochondrial processes. 

Mitochondria are highly dynamic and a balance between mitochondrial fusion and 

fission is important to brain development and function124,125. We observed a ~50% RNA 

editing level at the C-to-T recoding site and ~20% editing at the A-to-G site of MFN1 in 

normal brain samples (Fig. 2-4a), which appears to be conserved in mice (Supplementary 

Fig. 2-8a). We hypothesize that this intermediate level of RNA editing is important in 

maintaining the balance between mitochondrial fusion and fission. Higher or lower RNA 

editing may disrupt this balance and alter mitochondrial morphology and function. We 

observed that the edited versions of MFN1 generally led to reduced mitochondrial fusion, 

relative to the unedited protein, in both human and mouse cells, highlighting the functional 

relevance of the two RNA editing sites. However, it remains to be determined whether the 

reduction of RNA editing of the C-to-T site in SCZ patients from the nominal 50% causes 

mitochondrial fragmentation as reported in previous studies of SCZ brains54. Alternatively, 

it’s possible that reduced MFN1 editing in SCZ is a way to compensate for mitochondrial 

fragmentation in the disease. In vivo experiments in mice or other animal models are 

needed to address this question.  

Together, this work presents explicit evidence of the robust hypoediting trend in 

Europeans with SCZ, and supports the functional relevance of RNA editing in nuclear 

encoded mitochondrial genes. Although we cannot determine the contribution of RNA 
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editing to disease causality, we observed many functional pathways harboring various 

editing events that may contribute to disease risk (e.g., synaptic transmission and 

glutamate receptor activity). The large set of de novo editing sites resulting from our study 

will allow further elucidation of RNA editing differences observed in different ancestral 

groups. Taken together, our study provides an extensive characterization of RNA editing 

in SCZ and supplies valuable insight into the roles of dysregulated editing in mitochondrial 

function. 

2.5 METHODS 

2.5.1 RNA-seq data sets from PsychENCODE 

RNA-seq data from the brain frontal cortex (FC) or dorsolateral prefrontal cortex 

(DLPFC) region were extracted from four cohorts in the PsychENCODE consortium: 

BrainGVEX, CMC, HBCC, and LIBD94 (Supplementary Table 2-1). We followed strict 

quality control procedures to remove sample outliers in RIN, PMI, age, and other 

biological and technical variables41. Retained SCZ and control groups did not differ 

significantly in any biological or technical covariables (Supplementary Fig. 2-2, 2-4). The 

quality control procedure was conducted for European and African American samples 

separately in the HBCC and LIBD cohorts. All downstream analyses were conducted on 

each cohort and ethnicity separately in order to validate significant findings between 

cohorts and to limit noise due to potential cohort-specific batch effects. Final cohort sizes 

and number of case and control samples are provided in Supplementary Table 2-1. 
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2.5.2 Identification and annotation of RNA editing sites 

RNA-seq was mapped using hisat2126 to the human reference genome with default 

parameters, except allowing no mixed or discordantly mapped reads (--no-mixed, --no-

discordant). Only uniquely mapped read pairs were used for downstream analysis. 

Unmapped reads can often be generated from regions with clusters of editing sites (i.e., 

“hyper-edited” regions) that fail to map due to copious mismatches. We applied a 

previously developed method to alleviate this issue41,87. Briefly, all adenosines in 

unmapped reads and the reference genome were converted to guanosines. This was 

followed by hisat2 alignment as described above, and then restoration of the original 

adenosines in the reads. Uniquely mapped reads from this step were combined with the 

originally mapped reads and used in the following RNA editing analysis. 

RNA editing sites were identified using methods previously developed by our 

group84,127,128. Several filters were applied to remove loci resulting from spurious read 

mapping or sequencing errors127. Editing sites were supported by at least five samples, 

in which each was required to have at least two edited reads and five total reads. The loci 

occurring in at least 10% of samples within a cohort were labeled as “common” RNA 

editing sites, and used for downstream differential analysis (see below). Annotations of 

the genomic regions and host genes of RNA editing sites were obtained with the BiomaRt 

R package and Ensembl gene annotation129,130. The ANNOVAR131 software was used to 

label the functional categories of RNA editing sites. Finally, editing sites were overlapped 

with ALU regions from RepeatMasker132. 
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2.5.3 Differential RNA editing analysis 

Differential RNA editing analysis was conducted for each cohort separately. To this 

end, we used a method previously developed in our lab that uncovers sites with either (1) 

significantly different average editing levels between SCZ and controls, or (2) differential 

editing prevalence between the two conditions41. As described below, this method adopts 

a strategy to allow a flexible read coverage requirement for each editing site, in order to 

adapt to the different total read coverage available to specific sites41.  

For each editing site ei, we first identified the highest coverage possible (between 

a coverage of ≥20, 15, or 5 reads) at which there were a minimum of 5 samples per 

condition. After the highest possible read coverage C for ei was chosen, we calculated 

separate average editing level per condition (AiSCZ and AiControl) utilizing samples with a 

minimum of C coverage. We then considered samples that fulfilled lower read coverage 

thresholds (≥15, 10, or 5), and included these samples in AiSCZ or AiControl only if their 

inclusion did not alter the average editing level by > 0.03. A Wilcoxon rank-sum test was 

conducted to detect the difference in editing levels between SCZ and control groups. If 

an initial read coverage requirement C was not reached, then we tested all samples 

where ei had ≥5 read coverage for at least 20% SCZ and 20% control samples. 

Differential editing sites were those with Wilcoxon rank-sum P < 0.05 and an effect size 

> 5%. 

To identify differential editing sites that had significantly different editing prevalence 

between SCZ and controls, we used a Fisher’s Exact test to compare the total numbers 

of SCZ and control samples with non-zero editing level vs. zero editing level, as previously 

described in Tran et. al.41. The adaptive procedure for minimum read coverage 
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requirements described above was also applied here. Editing sites with differential 

prevalence between the groups were those with P < 0.05 and effect size > 5%.  

Differential RNA editing average (DREA) was calculated per sample using the 

mean editing level across all differential editing sites with read coverage ≥ 5 reads. A 

Wilcoxon rank-sum test was conducted to determine the significance of overall DREA 

trend between SCZ and control. Heatmaps of differential editing levels throughout the 

study were generated with the R package gplots133. 

2.5.4 Weighted gene co-expression network analysis (WGCNA) 

We detected clusters of loci whose editing levels associated with SCZ diagnosis 

using the WGCNA package95 in R for the BrainGVEX and CMC cohorts separately. We 

focused on common editing sites and those that showed large variations across samples. 

Specifically, 1) the site must be labeled as “common” in the cohort (defined above), 2) the 

site must have ≥ 5 reads in ≥ 90% of samples, and 3) the editing levels of the site must 

have a standard deviation > 0.1 across samples. WGCNA was conducted using automatic 

network construction and module detection, for which the soft threshold powers were set 

to be 2 or 3 for the BrainGVEX or CMC cohorts, respectively, to fit a scale-free topology95.  

The WGCNA network construction and consensus modules were chosen using 

the blockwiseConsensusModules function with default parameters, except for the soft 

threshold powers mentioned above. The eigengenes of each module were correlated with 

condition to identify the module most relevant to disease status. This correlation was 

conducted using a linear regression model, where biological (age and gender) and 

technical covariates (RIN, PMI, and total reads) were included. The largest module (the 
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turquoise module) significantly associated with disease status in both BrainGVEX and 

CMC (Supplementary Fig. 2-7).  

2.5.5 Gene ontology (GO) enrichment of genes of interest 

GO terms were obtained for a query gene set using the R package BiomaRt  and 

Ensembl annotation129,130. For each query gene, we randomly picked a control gene with 

matched gene expression and gene length (±10% relative to that of the query gene). The 

controls of all query genes constitute one set of control genes. This process was repeated 

10,000 times. Query genes without a matched control were excluded from the analysis. 

For each GO term, the number of its occurrences in the 10,000 sets of random controls 

was fit into a Gaussian distribution. The frequency of the term in the query gene set was 

then compared to this distribution to obtain an enrichment P value. Only terms that contain 

at least two genes in the query were considered. In rare cases, a particular GO term does 

not occur in the control sets. Its p value was set to 1e-100 for visualization purposes.  

2.5.6 Cell type proportion from bulk RNA-seq 

FPKM for bulk RNA-seq was calculated based on read counts per gene obtained 

using the HTSeq software134 and total mapped reads from hisat2135. Cell type proportion 

for five main cell types in the human brain (neurons, astrocytes, oligodendrocytes, 

microglia, and endothelial cells) were estimated using the “impute cell fractions” method 

in the CIBERSORTx software92. CIBERSORTx was provided with bulk gene expression 

and a cell type signature matrix of genes, which was derived from single-cell RNA-seq of 

human prefrontal cortex (PFC) in previous studies96,136. After obtaining normalized cell 
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type proportion values for each sample and cell type, we conducted Wilcoxon rank sum 

tests between conditions for each cell type to determine differences in proportion. Cell 

types with FDR adjusted p < 0.05 were marked with red asterisks (Supplementary Fig. 2-

1i and Supplementary Fig. 2-5b). 

2.5.7 Cell type-specific differential RNA editing average (DREA) 

Cell type specific DREA was calculated by taking the average editing level of all 

differential editing sites located in the signature genes of a cell type. Differential editing 

sites with at least 5 reads were included. A Wilcoxon rank sum test was conducted 

between conditions to ascertain cell type DREA differences (red asterisk denoting FDR 

adjusted p < 0.05, Supplementary Fig. 2-1j, Supplementary Fig. 2-5c). 

2.5.8 Single-nucleus RNA-seq data and RNA editing quantification 

We obtained previously published single-nucleus transcriptomes of six major brain 

cell types – neurons (both excitatory and inhibitory), astrocytes, oligodendrocytes, 

microglia, endothelial, and oligodendrocyte progenitor cells – from the PFC of 24 control 

subjects91. Data of the same cell type were combined for RNA editing detection and 

transcripts per million (TPM) calculation, which were conducted similarly as described 

above. 

For each cell type in each sample, we estimated the fraction of genes expressed 

with TPM ≥ 5 among all differentially edited genes in the BrainGVEX cohort (Fig. 2-1g). 

In addition, we estimated the fraction of differentially edited sites in the BrainGVEX cohort 

that have detectable editing in each cell type. That is, for each cell type in each sample, 
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we obtained the ratio between the number of detected RNA editing sites and the total 

differential editing sites in BrainGVEX (Fig. 2-1h). 

2.5.9 MPRA of 3’ UTR differential editing sites 

 A total of 770 differential editing sites located in 3’ UTRs from the BrainGVEX, 

CMC, HBCC, or LIBD data were included in the MPRA experiment in HEK293 cells. 

Specifically, we synthesized 200nt-long oligos (Twist Biosciences) containing cloning 

adaptors and 158nt-long test sequences with the editing site at the center of the test 

region. If the editing site is close to either boundary of the 3’ UTR, the flanking regions of 

the editing site were adjusted such that the 158nt-long test sequence resided within the 

3’ UTR. The edited (G) and unedited (A) versions of the editing sites were both 

synthesized. The test sequences were cloned into the 3’ UTR of the eGFP gene in the 

master plasmids. The plasmid library was then electroporated into HEK293 cells followed 

by RNA extraction 24 h post cell transfection. Finally, the test sequences were amplified 

from both plasmid library and mRNA to generate DNA-seq and RNA-seq libraries, 

similarly as in previous MPRA experiments137,138. Sequencing data of the plasmid DNA 

and mRNA were compared to identify sites associated with significant expression 

differences between the two alleles (A and G) using MPRAnalyze139. FDR ≤ 0.1 and 

|ln(Fold Change)| ≥ 0.1 were required to call significance. 

2.5.10 Correlation between 3’UTR editing and gene expression 

For each differential editing site in the 3’ UTR, we correlated the editing levels and 

the expression levels of the host gene (log FPKM) across all samples, using a linear 
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regression model that included sample PMI, RIN, age of death, and sex as covariates. 

Only sites with ≥ 5 reads in ≥ 10 samples were deemed to be testable. This analysis was 

conducted for each of the four cohorts separately. However, FDR correction was applied 

to p values obtained from all cohorts combined. The t-statistic, the number of standard 

deviations by which the correlation deviated from zero, was used to determine association 

directionality for visualization (Fig. 2-3c). 

2.5.11 Gene regulatory network analysis 

We used GeneMANIA98 to obtain known genetic interactions for 195 genes whose 

3’ UTR differential editing sites were significantly associated with their respective gene 

expression. GeneMANIA identified 20 additional genes strongly connected with the 195 

genes. The gene regulatory network encompassing 215 genes was visualized using 

Cytoscape v3.8.299. GO enrichment was conducted for the 195 genes to identify 

functional categories. Genes that fell into similar categories were grouped together in the 

network visualization. FDR corrected p values (q values) for the GO categories were 

labeled on the network. For those categories with multiple GO terms, the most significant 

q value was shown (Fig. 2-3e). 

2.5.12 MFN1 editing in zebrafish 

RNA-seq extracted from zebrafish (Danio rerio) brain tissue was obtained from 

Wong et. al. using NCBI's Gene Expression Omnibus database (GSE61108)103. The 

neurotranscriptome profiles for a total of four strains and 160 samples were analyzed. 

Same-sex individuals were pooled into a biological replicate. A total of 16 RNA-seq 
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datasets (2 biological replicates from each sex for each strain) were mapped to genome 

assembly GRCz11 using the hisat2126 software as described previously. Editing ratios for 

orthologous MFN1 sites (mfn1b in zebrafish) were manually calculated based on the 

integrative genomics viewer (IGV)140. 

2.5.13 Cell culture 

Mfn1 and Mfn2 double knockout mouse embryonic fibroblasts (MEF) were kindly 

gifted by Dr. David Chan (California Institute of Technology). HEK293 cells were kindly 

gifted by Dr. Jing Huang (UCLA). Mouse neuro2a (N2a) and human embryonic kidney 

(HEK293T) cells were obtained from ATCC. Cells were maintained with Dulbecco's 

modified eagle medium (Gibco, 10569010) supplemented with 10% fetal bovine serum 

(Gibco, 10082147) and 1x antibiotic-antimycotics (Gibco, 15240096) at 37 °C and 5 % 

CO2. For the neuronal differentiation of N2a cells, the cells were seeded at 40 - 50% of 

density and grown for 24h in complete medium. Following this, the cells were washed 

with 1x Dulbecco's phosphate-buffered saline (Gibco, 14190144) and then replaced in 

serum-free medium.  

2.5.14 MFN1 editing constructs 

Human and mouse MFN1 constructs were kindly gifted by Dr. Orian Shirihai 

(UCLA). MFN1 editing mutations were generated by the Q5 site directed mutagenesis kit 

(NEB, E0554S), then cloned into pqCXIP (Clontech, 631516) for stable Mfn1 expression 

in MEF cells.  
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2.5.15 RNA isolation, RT-PCR amplification and analysis of RNA editing 

Cultured cells and brain tissues were homogenized in TRIzol (Thermo Fisher 

Scientific, 15596018). The mixture was incubated on ice for 15 min. Chloroform was 

added to the mixture and incubated at room temperature for 10 min. The mixture was 

centrifuged at 12,000x g for 15 min, and the top layer was carefully extracted. An equal 

volume of 100% ethanol was added to the top chloroform layer and mixed thoroughly. 

Total RNA of N2a cells was also extracted using the TRIzol reagent. RNA was further 

purified using the Direct-zol RNA MiniPrep Plus kit (Zymo Research, R2072) according 

to the manufacturer’s protocol. Reverse transcription was performed on 1 μg total RNA 

for 1h at 42 °C using random hexamer primer and SuperScript IV (Thermo Fisher 

Scientific, 18090050). The cDNA product was detected by PCR using the Mfn1 gene-

specific primer set. Amplification was performed for 30 cycles, consisting of 30s at 95 °C, 

30s at 55 °C, and 1 min at 72 °C. The products from RT-PCR were resolved on 1% 

agarose gels. The appropriate PCR product was excised and the DNA was extracted, 

purified and analyzed by Sanger sequencing. C-to-T editing levels were calculated as 

relative peak heights (that is, ratio between the T peak height and the combined height of 

C and T peaks: height T / (height C + height T)). 

2.5.16 TOPO cloning and clonal sequencing 

PCR products were run on 1% agarose gel and visualized under ultraviolet light. 

The band with the expected size was isolated by Zymoclean Gel DNA Recovery kit (Zymo 

Research, D4002) according to the manufacturer’s protocol. The PCR product was 

inserted into kanamycin-resistant pCR 2.1-TOPO vector (Thermo Fisher Scientific, 
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450641). Ligated clones were transformed into One Shot TOP10 Chemically 

Competent E. coli (Thermo Fisher Scientific, C404003). Transformed cells were streaked 

on LB-agar plates containing kanamycin and X-Gal as selection markers and incubated 

overnight at 37 °C. Ten white colonies were randomly selected and each colony was 

inoculated overnight in LB containing kanamycin. Plasmid was extracted using Plasmid 

DNA Miniprep Kits (Thermo Fisher Scientific, K210011). Miniprep samples were subject 

to Sanger sequencing. The number of clones presenting a thiamine (T, representing C>U 

editing) or guanine (G, representing A>I editing) peak at the editing sites in the Mfn1 gene 

was counted to determine the editing ratio. 

2.5.17 Production of lentivirus and cell transduction for protein knockdown 

Constructs containing pLKO1 non-target control shRNA (SHC016), Apobec2-

targeting shRNA (TRCN0000112015) or Apobec3-targeting shRNA (TRCN0000197906) 

were used. We produced lentiviruses via co-transfection of pCMV-d8.91, pVSV-G and 

pLKO1 into HEK293T cells using Lipofectamine 3000 (Thermo Fisher Scientific, 

L3000015). Transduction was carried out according to the standard protocol of the 

ENCODE consortium. Briefly, viruses were collected from conditioned media after 48h 

co-transfection. Lentivirus-containing medium was mixed with the same volume of DMEM 

containing polybrene (8 μg/mL), which was used to infect N2a cells. After 24h, cells were 

incubated with 3 μg/mL puromycin for 24h. Knockdown efficiency was evaluated by real-

time quantitative PCR (Bio-Rad).  
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2.5.18 Analysis of mitochondrial morphology 

Mfn1 and Mfn2 double knockout MEF cells were seeded and incubated for 24h in 

384-well plates (E&K Scientific, EK-30091) and then stained with 200 nM MitoTracker 

Green FM (Invitrogen, M7514) for 30 min at 37 °C. Mitochondria were visualized with the 

Zeiss LSM 780 confocal microscope and ZEN software (Zeiss).  

2.5.19 Propidium iodide staining 

Cells were stained using 1 μg/mL Propidium iodide (Invitrogen, V13242) and 1 

μg/mL Hoechst 33342 (Invitrogen, H3570) for 10 min. Images were obtained using 

confocal microscopy and analyzed by the ImageJ software (http://imagej.nih.gov/ij/).  

2.5.20 Mitochondrial fractionation 

Mitochondrial and cytosol fractions were isolated using the mitochondria isolation 

kit for cultured cells (Thermo Fisher Scientific, 89874). Briefly, 80% confluent cells in 

10cm culture dish were resuspended in 800μl of reagent A and incubated for 2 min on 

ice. Then 10μl reagent B was mixed by vortexing for 5 min. Samples were mixed with 

800μl reagent C and centrifuged at 700x g for 10 min at 4 °C. Supernatant was transferred 

to a new tube and centrifuged at 12,000x g for 15 min at 4 °C. The supernatant was then 

collected as the cytosol fraction. The mitochondrial fraction in the pellet was washed once 

with 500μl DPBS and centrifuged at 12,000x g for 5 min at 4 °C. The mitochondrial fraction 

was dissolved in 200ul DPBS with sonication at 25% amplitude for 10 s (twice) with an 

Ultrasonic Processor 120 W, 20KHz (Thermo Fisher Scientific). 
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2.5.21 Western Blot 

Cells were lysed and separated via the Novex NuPAGE system (Invitrogen, 

NP0008, NP0001 and LC3675) and the ExpressPlus PAGE Gel (GenScript). PVDF 

membranes (Millipore, IPVH304F0) were used for transfer, and then probed with the 

following primary antibodies in 3% BSA / 0.1% TBST: β-Tubulin (Santa Cruz 

Biotechnology, sc-23949), ATP5a (Abcam, ab14748), cytochrome C (Santa Cruz 

Biotechnology, sc-13156), MFN1 (Abcam, ab57602), MFN2 (Abcam, ab56889), β-actin 

(Santa Cruz Biotechnology, sc-47778). The antibodies were detected using horseradish 

peroxidase-conjugated antibodies (Invitrogen, 31430), the ECL Prime Western Blotting 

System (GE Healthcare, RPN2232) and the Syngene Pxi Imager. 

2.5.22 MFN1 genome editing 

We introduced MFN1 editing sites to the genome of HEK293T cells via Prime 

editing106. The spacer and extension sequences were designed according to the 

guidelines provided previously106. The designed oligos were cloned into the pU6-

pegRNA-GG-acceptor (Addgene, 132777) to generate both pegRNA and nick gRNA 

expressing constructs (oligo sequences were listed in Supplementary Table 2-4). 

Plasmids expressing pegRNA (250ng), nick gRNA (83ng) and prime editor (750ng), 

namely pCMV-PE2 (Addgene, 132775), were co-transfected into HEK293T (7,500 

cells/well in 48-well plates) with Lipofectamine™ 3000 Transfection Reagent (Thermo 

Fisher Scientific, Cat# L3000015) according to the manufacturer’s protocol. After 72 

hours, genomic DNA was extracted, amplified by PCR and sequenced via Sanger 

sequencing to confirm genome editing events. To optimize the editing efficiency, different 
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combinations of pegRNAs and nick gRNAs (PE2, PE3, and PE3b) were tested. The prime 

binding site (PBS) and reverse transcription (RT) template were also optimized to 9nt for 

PBS and 19nt for RT template. The optimal condition (PE3b, 9nt PBS, and 19nt RT 

template) was used in scaled-up experiments to generate single-cell clones with MFN1 

genome editing by serial dilution. 

2.5.23       Mitochondria hyperfusion test 

HEK293T cells were seeded on the 4-chambered coverglass (Nunc, Lab-TekII). 

10 μM of Cycloheximide (CHX) was added to 70% confluent cells for 30 min and then 

stained with MitoTracker™ Green FM (Invitrogen, M7514) for 30 min at 37 °C. 

Mitochondria images were obtained using the Leica DMI-4000 confocal microscope and 

Leica application suite software. The mitochondrial hyperfusion score was calculated as 

described previously107. 

2.5.24 Statistics for MFN1-related experimental data 

GraphPad Prism 9 was used for statistical analysis and graphical display of the 

data. All graphs represent mean ± standard error of the mean (SEM). Statistical tests 

and significance values were indicated in the figure legends. 
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2.9 FIGURES 

 

Figure 2-1. Overview of RNA editing analysis in the BrainGVEX cohort.  

a, Summary of editing sites detected in each step of the RNA editing analysis. Top to bottom: All detected RNA-DNA 

differences (RDDs), common sites with non-zero editing in ≥10% of samples, sites differentially edited between SCZ 

and control (see Methods), and nonsynonymous protein recoding sites among the differential sites. N=132: total 

number of samples included in the analysis. b, Proportion of each type of RDD among common sites detected per 
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sample. c, Differential RNA editing averages (DREA) per sample separated by condition for all differential sites 

covered by least 5 total reads. P value was calculated via Wilcoxon rank sum test. d, Hierarchical clustering of 

differential editing sites (rows) and samples (columns). Z-scores were calculated for each site across all samples. e, 

Average editing levels of differential editing sites in SCZ and controls. Numbers (N) of editing sites that were up- or 

down-regulated in SCZ are shown, which were compared via Chi-squared test (p value shown at the top). f, Editing 

levels in controls or SCZ of each differential protein recoding site. Error bars correspond to the standard error of 

mean (SEM). g, Proportion of genes with ≥ 5 TPM in each cell type among all differentially edited genes in the single-

nucleus RNA-seq data. Ex: excitatory neurons, In: inhibitory neurons, Olig: oligodendrocytes, Ast: astrocytes, OPC: 

oligodendrocyte progenitor cells, Mic: microglia, End: endothelial cells.  h, Proportion of observed editing sites in each 

cell type among all differentially edited sites. Cell type abbreviations are the same as in g. 
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Figure 2-2. Comparison of RNA editing across cohorts.  

a-c. Summary of editing sites detected in each step of the RNA editing analysis for the CMC, HBCC and LIBD cohort, 

respectively, similar as Fig. 1a and 1c. d, Overlap between RNA editing sites in the turquoise modules resulting from 

WGCNA of the BrainGVEX and CMC cohorts. Only sites testable for both cohorts are displayed. P value was 

determined via the hypergeometric test. e, Similar to d but for genes harboring editing sites in the turquoise modules. 

f, GO enrichment analysis of genes shared by the BrainGVEX and CMC analysis in e.  
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Figure 2-3. 3’ UTR editing associated with gene expression.  

a, Schema of the MPRA experiment to identify functional 3’ UTR editing sites that alter gene expression. b, Expression 

fold change (FC) and adjusted p value (see Methods) of 3’ UTR editing sites included in the MPRA. Purple and orange 

dots correspond to editing sites that significantly alter gene expression (FDR ≤ 0.1 and |ln(Fold Change)| ≥ 0.1). c, GO 
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enrichment analysis of genes containing 3’ UTR differential editing sites associated with gene expression through 

experimental (MPRA) or bioinformatic (RPKM correlation) analysis. d, Significance (p value) and directionality (t-

statistic, jittered for visualization) of the correlation between editing levels of 3’ UTR differential editing sites and their 

respective gene expression levels. Orange and purple colors denote p < 0.05. e, Gene network constructed by 

GeneMANIA98 for the union of significant genes in b and d. Genes are grouped into biological categories based on GO 

enrichment analysis. The most significant q-value for the overarching GO category is displayed. 
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Figure 2-4. Functional characterization of MFN1 editing in mouse and human.  

a, MFN1 C-to-T and A-to-G editing levels per cohort for SCZ and Control samples. *p < 0.05, **p < 0.001, Wilcoxon 

rank sum test. b, Experimental validation of the C-to-T and A-to-G MFN1 RNA editing sites in four human brain samples 

(S1-S4). Sanger sequencing traces of genomic DNA (top) and cDNA (bottom) are shown, with the A-to-G (left) and C-

to-T (right) editing sites underlined. c, Experimental testing of the C-to-T editing site (underlined) in mouse N2a cells 

with control shRNA (shControl) or shRNA targeting Apobec2 or Apobec3, respectively. Sanger sequencing traces of 

cDNAs are shown. d, Stable expression of wildtype (WT) Mfn1 and editing mutants (Mfn1 I328V, S329L, I328V/S329L) 

(with Myc tags) in Mfn1/2 dKO MEF cells measured by Western blot. Control: empty vector expression. e, Mitochondrial 

morphology in Mfn1/2 dKO MEF cells with stable expression of WT and mutant Mfn1/2 as shown in d. Mitochondria 

was stained by 100nM MitoTracker (green) for 30 min. Scale bar, 10 μm. Bar plots show quantification of mitochondrial 

morphology of 120 cells in 3 biological replicates. Fragmented mitochondria (blue), short tubular mitochondria (white), 

long tubular mitochondria (green) were quantified separately (*p < 0.05, **p < 0.001, ***p<0.0001, unpaired two-tailed 
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t-test). Error bars show ±SEM.  f, Mitochondrial morphology in HEK293T cells with WT MFN1 or MFN1 editing mutants 

(MFN1 I328V, S329L, I328V/S329L). Green: MitoTracker staining for mitochondria, red: Hoechst staining for nucleus. 

Scale bar, 10 μm. Bar plots show quantification of mitochondrial morphology of 100 cells in 3 biological replicates, 

similarly as in e. (*p < 0.05, **p < 0.001, ***p<0.0001, unpaired two-tailed t-test). Error bars show ±SEM. g, 

Mitochondrial morphology of WT and mutant HEK293T cells treated with cycloheximide for 30 min. Mitochondria were 

stained by MitoTracker (green). Scale bar, 10 μm. Bar plots indicate cell counts with hyperfused mitochondria (*p < 

0.05, unpaired two-tailed t-test). Error bars show ±SEM. 
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Figure 2-5. The effect of MFN1 editing on cytochrome C release and apoptosis.  

a, Western blot of Cytochrome C, β-Tubulin (cytoplasmic marker) and ATP5a (mitochondrial marker) in mitochondrial 

and cytoplasmic fractions of HEK293T cells (WT and MFN1 mutants). b, PI staining of HEK293T cells (WT and MFN1 

mutants) to measure cytotoxicity. Scale bar, 10 μm. Bar plots show % of dead cells (*p < 0.05, unpaired two-tailed t-

test). Error bars correspond to ±SEM. 
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2.10 SUPPLEMENTARY FIGURES 

 

Supplementary Figure 2-1. Additional characterization of BrainGVEX editing sites.  

a, The number of total reads or uniquely aligned reads for the BrainGVEX RNA-seq samples. b, Overlap between RNA 

editing sites detected in the BrainGVEX cohort and those cataloged by the REDIportal database. P value was calculated 

via the hypergeometric test. c, Total count of common sites detected per sample grouped by RDD type. d, Donut plot 

of common sites in ALU regions (outside) and non-ALU regions (inside) grouped by RDD type. e, Distribution of 

common sites in different types of genomic region. f, Pearson correlation between the number of uniquely mapped 
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reads and the total number of common sites detected per sample. g, Pearson correlation between the expression levels 

of ADARs and common RNA editing average (CREA) for all common sites (left) or common sites in ALU regions (right). 

h, GO enrichment results for all differentially edited genes in the BrainGVEX cohort. i, Average cell type proportions in 

control and SCZ samples determined via CIBERSORTx. No significant difference was observed (FDR > 0.05, Wilcoxon 

rank sum test). j, Average DREA for control and SCZ samples calculated for differential sites in the signature genes of 

each cell type established in Yu et. al93. Red asterisks: FDR < 0.05 comparing SCZ and controls by Wilcoxon rank sum 

test.  
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Supplementary Figure 2-2. Comparison of potential confounding variables between SCZ and controls of the 

BrainGVEX cohort.  

P values were calculated via Pearson correlation and Fisher’s exact test for numeric and categorical covariates, 

respectively. a, Biological and technical covariates for SCZ and controls after completing the sample QC procedure 

(Methods). b, RNA-seq mapping metrics for SCZ and controls after completing the sample QC procedure (Methods). 
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Supplementary Figure 2-3. Meta data for CMC individuals below and above 70 years of age.  

Distribution of RIN (a), proportion of bases mapped to intergenic regions (b) and proportion mapped mRNA bases (c) 

in the two age groups.  
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Supplementary Figure 2-4. Comparison of potential confounding variables between SCZ and controls of the 

CMC cohort.  

Similar to Fig.S2-2, for CMC samples (<70 years of age) after completing the QC procedure for samples below 70 

years of age.  
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Supplementary Figure 2-5. RNA editing in African American samples of the HBCC and LIBD cohorts.  

a, Overview of all, common, differential, and recoding sites observed in each cohort. Boxplots show sample DREAs 

separated by condition. P values were calculated via Wilcoxon rank sum test. b, Average cell type proportions in SCZ 

and controls determined by CIBERSORTx. No significant difference was observed (FDR > 0.05, Wilcoxon rank sum 

test). c, Average DREA of SCZ and controls calculated for differential sites in the signature genes of each cell type 

established in Yu et. al93. No differential editing sites were detected in neuronal genes in the LIBD cohort. Red asterisks: 

FDR < 0.05 between SCZ and controls, Wilcoxon rank sum test. 
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Supplementary Figure 2-6. Overlap of BrainGVEX and CMC and 3’ UTR enrichment.  

a, Overlap between differential editing sites in the BrainGVEX and CMC cohorts. P value was calculated via 

hypergeometric test. b, Similar to a, for differentially edited genes. c, Distribution of REDIportal sites, differential sites 

in CMC or BrainGVEX in different types of genomic regions. 3’ UTR enrichment p value for each cohort relative to 

REDIportal was determined via Chi-squared test. 
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Supplementary Figure 2-7. WGCNA of BrainGVEX and CMC cohorts.  

a-b, Dendrograms of all WGCNA testable editing sites and their respective modules for the BrainGVEX cohort (a) and 

the CMC cohort (b). c, Correlation between eigengenes of a WGCNA module and disease condition for the top five 

largest modules detected in each cohort. Bars are colored by module size. The total number of sites in the largest 

disease-correlated modules are labeled. 
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Supplementary Figure 2-8. Further investigation of MFN1 C-to-T and A-to-G editing. 

 a, C-to-T and A-to-G editing levels in zebrafish and mouse. A-to-G editing was examined in Rhesus Monkey. However, 

C-to-T editing was not studied. Sources are given in the last column of the table. b, Number of reads with combinations 

of A/G vs. C/T nucleotides in BrainGVEX samples. The odds ratio is calculated between the editing-dependent model 

and editing-independent models to determine editing dependency between the two loci (Chi-squared test was used to 

determine significance). c, Apobec2 and Apobec3 KD conducted in mouse N2a cells. Bar plots show average 

expression or C-to-T editing levels. Error bars correspond to ±SEM. d, Confirmation of prime editing in HEK293T cells 

of MFN1 via Sanger sequencing of genomic DNA. A-to-G and C-to-T loci are highlighted. e, Western blot of MFN1 and 

MFN2 expression in HEK293T cells. The panel for MFN1 displays two bands capturing MFN1 (bottom) and MFN2 

(top). The two proteins, sharing 63% homology, are both captured by the MFN1 antibody. 
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2.11 SUPPLEMENTARY TABLES 

Cohort Ethnicity Brain 
Region 

RNA Library 
type 

(paired end) 

SCZ 
(after QC) 

Control 
(after QC) 

Total 
(after QC) 

BrainGVEX 96% Euro, 
1% AA, 

3% other* 

FC rRNA 
depleted 

(stranded) 

65 67 132 

CMC 79% Euro, 
18% AA, 
3% other* 

DLPFC rRNA 
depleted 

(unstranded) 

65 72 137** 

HBCC 100% Euro DLPFC rRNA 
depleted 

(stranded) 

18 23 41 

HBCC 100% AA DLPFC rRNA 
depleted 

(stranded) 

48 52 100 

LIBD 100% Euro DLPFC Poly-A 
selected 

(unstranded) 

16 20 36 

LIBD 100% AA DLPFC Poly-A 
selected 

(unstranded) 

18 26 44 

*other: Asian, Hispanic, or non-white  
**Only samples < 70 years of age were used in the final analysis (see text for details) 
FC: frontal cortex 
DLPFC: Dorsolateral Prefrontal Cortex 

 

Supplementary Table 2-1. Summary of datasets analyzed in this study.  

Ethnicity, brain region, RNA library type, and total samples are shown per cohort. European and African American 

samples in the HBCC or LIBD cohorts were analyzed separately. 

 

 

 

 

Supplementary Tables 2-2 to 2-4 are attached. 
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CHAPTER 3 - The genetic landscape of RNA editing and 

other aspects of gene expression in schizophrenia  

3.1 ABSTRACT 

 Genome wide association studies (GWAS) have been conducted over the past 

decades to investigate the underlying genetic origin of neuropsychiatric diseases, such 

as SCZ. While these studies demonstrated the significance of disease-phenotype 

associations, there is a pressing need to fully characterize the functional relevance of 

disease-associated genetic variants.  Functional genetic loci can affect transcriptional and 

post-transcriptional phenotypes such as RNA editing, splicing, and gene expression that 

may contribute to disease pathology. Here, we investigate the associations between 

genetic variation and RNA editing, splicing, and gene expression through identification of 

quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that 

editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both 

unique and common gene targets, which are involved in many disease-relevant 

pathways, including brain function and immune response. We investigate each QTL-type 

in both European (EU) and African American (AA) populations, and find that AA-specific 

QTL are associated with larger effect sizes. In addition, we observe that the mitochondrial 

RNA binding protein AKAP1 had enriched binding sites among edQTL, including a variant 

shared by all 3 types of QTL. Finally, we conduct colocalization with various brain 

disorders and find that all QTL have top colocalizations with SCZ and related 

neuropsychiatric diseases. This work presents the investigation of multiple QTL types in 
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parallel and demonstrates how they target both distinct and overlapping SCZ-relevant 

genes and pathways.  

3.2 INTRODUCTION 

Schizophrenia (SCZ) is a neuropsychiatric disorder that affects 1% of the population 

and is characterized by complex behavioral and cognitive symptoms, such as 

hallucinations and disoriented thinking141. The disease is assumed to arise from genetic 

and/or environmental disruption of brain development. SCZ has profound impact on both 

the individual and broader society, resulting in billions of dollars per year in economic 

costs141,142. Understanding the underlying mechanisms of SCZ will lead to the 

development of novel therapies, for which there is a pressing need142. With the availability 

of large case-control cohorts, rapid progresses have been made towards unveiling the 

genetic basis of the disease49,143,144 . However, it is challenging to identify specific 

downstream disease mechanisms for this complex polygenic disorder, with hundreds (or 

possibly thousands) of distinct genetic loci involved at the population level141. 

 While disease-related genome wide association studies (GWAS) uncover 

relationships between genetic loci and traits of interest, they are often uninformative of 

the specific functional pathways impacted by complex polygenetic disorders like SCZ. For 

this reason, association between genetic variants and molecular phenotypes of diseases 

are increasingly examined. Identification of quantitative trait loci (QTL), such as splicing 

QTL (sQTL), expression QTL (eQTL), and RNA editing QTL (edQTL), has been 

conducted for various neuropsychiatric disease cohorts53,56,76,145.  For example, sQTL 

were shown to colocalize to SCZ GWAS loci56, and both sQTL and eQTL identified in 
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fetal brains associate with Autism (ASD) and SCZ145. The latter study also revealed 

multiple sQTL-associated RNA binding proteins (RBPs), which may regulate spicing by 

binding to genetic loci of interest145. More recently, the importance of edQTL detection in 

diseases is gaining recognition. For examples, edQTL detected across GTEx tissues 

showed a strong association with inflammatory diseases146, and those found in 

Alzheimer’s disease (AD) were predicted to contribute to the differences observed in RNA 

editing between European (EU) and African American (AA) individuals76. In addition, 

edQTL and eQTL have been identified in SCZ and shown to colocalize to SCZ GWAS 

loci53.  

While edQTL, sQTL, and eQTL detection in various cohorts has been conducted, 

the detection of all three types of loci within the same cohort is rare. Indeed, to our 

knowledge, these three QTL types have not been studied concurrently in any brain 

disorder. Since gene expression, splicing and RNA editing are regulated by both distinct 

and inter-related mechanisms10,147, we hypothesize that investigation of the 3 molecular 

aspects in the same cohort may identify genetic loci that affect multiple processes and 

those that are unique to one process. To this end, we analyzed edQTL, sQTL, and eQTL 

in SCZ from the CommonMind Consortium83,148 (CMC) for both AA and EU ethnicities. 

We highlighted QTL of interest that were associated with all three phenotypic categories, 

which we refer to as “seedQTL”, and observed that distinct QTL between ethnicities 

showed higher effect sizes in AA. Additionally, we identified RBPs with binding sites 

enriched for QTL, and colocalized QTL with GWAS summary statistics for various 

neuropsychiatric diseases of interest. This study provides a foundation to a broader 



 66 

understanding of the relationship between genetic loci and disease-relevant 

transcriptional and posttranscriptional pathways.  

3.3 RESULTS 

3.3.1 Quantification of RNA Editing, Splicing, and Expression in SCZ and Controls 

We first quantified transcriptome-wide RNA editing, gene expression and splicing 

in SCZ patients and controls. To this end, we used RNA-seq data of dorsolateral 

prefrontal cortex (DLPFC) samples in the CMC consortium148. As we sought to 

characterize QTL for both EU and AA ethnicities, we conducted all downstream analyses 

for the two groups separately. A total of 434 EU and 85 AA samples were obtained and 

then filtered by our stringent quality control procedures149. In our previous work149, we 

observed that samples over the age of 70 in CMC displayed lower quality metrics, such 

as RIN and mRNA proportion. Therefore, we chose to exclude 218 samples over the age 

of 70 years from the EU cohort. We ensured that metadata variables did not differ 

between SCZ and control samples for each ethnicity, respectively149 (Supplementary Fig. 

3-1, Supplementary Fig. 3-2). Due to low sample size in the AA cohort, we chose to 

conduct strict QC for this cohort regardless of age (although 75% of samples were < 70 

years-old). Following these procedures, we retained 140 EU and 65 AA high quality 

samples matched for meta data between SCZ and controls (Fig. 3-1, Supplementary Fig. 

3-2).  

With the above datasets, we applied our previously established de novo RNA 

editing detection pipeline86,127,150 and identified 4,513,844 and 1,607,763 RNA editing 

sites in the EU and AA cohorts, respectively. For the edQTL analysis, we focused on 
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editing sites that occur in at least 10% of samples per ethnicity, as QTL detection is most 

meaningful for loci occurring in multiple samples. These editing loci are referred to as 

“common sites”. An additional editing level variance cutoff of > 0.005 was applied to retain 

editing sites demonstrating variation across the cohorts. A total of 134,696 and 56,280 

common RNA editing sites were used for downstream edQTL detection in the EU and AA 

cohorts, respectively (Fig. 3-1). The RNA-seq data was further analyzed to calculate gene 

expression (RPKM) and  quantify intron excision ratios (PSI, via LeafCutter151) (Methods). 

We retained 21,772 and 22,220 genes, 109,939 and 75,615 introns in the EU and AA 

samples, respectively (Methods). 

3.3.2 Identification of Quantitative Trait Loci 

To carry out QTL analysis, we obtained high-density genotype data for all samples 

in the CMC cohort from the PsychENCODE Knowledge Portal83,148. After normalization 

and filtering via the PLINK software152, 5,456,564 and 7,317,154 SNPs were retained in 

the EU and AA cohorts, respectively (Methods, Fig. 3-1). We conducted PCA on the 

genotype data for each cohort to determine genotype covariates. Hidden covariates for 

gene expression, splicing, and RNA editing sites were determined via the hidden 

covariates with prior (HCP) methodology153. We adopted the FastQTL method154 to 

identify cis-edQTL, cis-sQTL, and cis-eQTL using known and inferred covariates 

(Methods, Fig. 3-1). The total numbers of each cis-QTL type and their corresponding 

targets in both ethnicities are summarized in Table 3-1. 
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3.3.3 Characterization and comparison of cis-edQTL, cis-sQTL, and cis-eQTL 

With the QTL results (Table 3-1, Supplementary Fig. 3-3a, b), we next compared 

the significance of each QTL type at different distance ranges relative to their 

corresponding molecular targets. We observed that QTL closer to their targets showed 

more significant associations with their targeted traits for all three QTL types (Fig. 3-2a-

c, Supplementary Fig. 3-3c-e). This observation is consistent with the expectation that 

cis-acting genetic variants regulating gene expression, splicing or RNA editing tend to 

reside in the close vicinity of their targets. Additionally, we examined the distances 

between the QTL and features of their regulatory targets. This analysis showed that, 

compared to random control SNPs (Methods), edQTL were significantly closer to editing 

sites (Fig. 3-2d), eQTL were significantly closer to transcriptional start and end sites (Fig. 

3-2e), and sQTL were closer to exon start and exon end regions (Fig. 3-2f). Thus, the 

above results support the validity of the QTL analyses.  

 Since RNA editing, splicing and total RNA expression are inter-related aspects of 

gene expression155,156, we examined whether the three types of QTL and their target 

genes overlap with each other or whether they are largely distinct. In the EU cohort, we 

observed that the QTL of all three types significantly overlapped with each other (Fig. 3-

2g), although many QTL uniquely target one category. Interestingly, two SNPs were 

identified to be shared as sQTL, eQTL, and edQTL (s/e/edQTL) (Fig. 3-2g). We hereby 

refer to such SNPs as seedQTL. For example, one seedQTL (rs146498205) is associated 

with editing level (exonic editing site), splicing, and expression of the same lncRNA gene, 

RP11-156P1.3 (Fig. 3-2h, i). Importantly, the expression of this lncRNA has been 

associated with intracranial volume through TWAS145 and was found to be a diagnostic 
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and therapeutic marker in hepatocellular carcinoma157. For the AA cohort, no seedQTL 

were identified (Supplementary Fig. 3-4a). Although few pairwise overlaps were identified 

between the QTL in AA, they also reached statistical significance, similarly as in the EU 

cohort (Supplementary Fig. 3-4a).  

 The three types of QTL analyses demonstrated a larger number of overlaps among 

target genes than at the level of specific QTL, all of which were statistically significant in 

the EU cohort (Fig. 3-2j). In addition, 33 genes were targeted by all three QTL categories 

(Fig. 3-2j). Gene ontology (GO) enrichment analysis of the 33 genes revealed multiple 

GO categories relevant to SCZ, such as toll-like receptor signaling158 and nervous system 

development (Fig. 3-2k). Unlike the EU cohort, we did not see any genes targeted by all 

three QTL categories in AA. However, we see a significant overlap in target genes 

between edQTL and sQTL, and between sQTL and eQTL (Supplementary Fig. 3-4b).  

Next, we asked whether the target editing levels (EL), PSI, and RPKMs of 

overlapping QTL (seedQTL, s/eQTL, s/edQTL, or e/edQTL) showed correlations with one 

another. Interestingly, the aforementioned loci at rs146498205 was the only seedQTL 

that had significant correlations for all 3 pairs of comparisons: EL vs. PSI, EL vs. RPKM, 

and PSI vs. RPKM (Methods, Supplementary Fig. 3-4c). The second seedQTL identified 

in this study only showed association between EL and PSI. Finally, 25 out of 129 e/sQTL 

showed significant associations between target PSI and RPKM (Supplementary Fig. 3-

4c). Thus, our results suggest that there exists overlap between the target genes and the 

associated genetic loci of the three types of QTL. Nonetheless, it is notable that the vast 

majority of genetic loci were not shared across different types of QTL, possibly reflecting 
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the distinct regulatory mechanisms underlying RNA editing, splicing and mRNA 

abundance.  

3.3.4 Distinct and shared QTL in European and African American populations 

We next explored whether the same QTL were detected for the EU and AA 

populations. As shown in Fig. 3-3a-c, all three QTL types had a significant number of 

overlapping loci between the two ethnicities. Thus, we investigated the directionality of 

effect that QTL had on their targets for the overlapping and non-overlapping QTL, 

respectively. To this end, effect size values were utilized to characterize the magnitude 

and directionality of the association between each QTL allele and phenotype (Methods). 

We observed that QTL sharing the same targets in AA and EU also showed highly 

correlated effect sizes on their respective QTL targets (Fig. 3-3d-f). This result strongly 

supports that genetic factors are the main drivers for the variations of the corresponding 

molecular phenotypes associated with these QTL.   

Intriguingly, for edQTL and sQTL that are unique to AA or EU, we observed overall 

higher effect sizes in AA compared to EU (Fig. 3-3d-f). For example, there exist more 

edQTL with positive effect sizes than negative ones, which suggests that alternative 

alleles often associate with higher editing in the AA cohort (Fig. 3-3d). Similar 

observations were made for the effect sizes of distinct sQTL and eQTL between the two 

ethnicities. In general, AA individuals showed higher PSI and RPKM values associated 

with their alternative alleles. This observation supports the hypothesis that 

nonoverlapping genetic variants in the ethnicities can show distinct impact on their target 

phenotypes. 
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3.3.5 RBP Enrichment in QTL Regions 

As post-transcriptional steps of RNA processing, both RNA editing and splicing are 

closely regulated by a repertoire of cis-acting elements associated with trans-factors (e.g., 

RBPs). Increasing evidence showed that genetic variants often affect post-transcriptional 

regulation by altering cis-elements, such as RBP-binding sites159–161. Thus, we next 

examined the enrichment of edQTL and sQTL within the binding sites of RBPs. To this 

end, we analyzed the binding peaks of 120 and 103 RBPs in the K562 and HepG2 cells, 

respectively, with eCLIP-seq data generated by the ENCODE consortium162,163 

(Methods). Using random control SNPs as backgrounds, we identified a number of RBPs 

that preferentially bind to edQTL or sQTL (Fig. 3-4a, b), with the most significant 

enrichment observed for the A-Kinase anchor protein 1 (AKAP1) associated with edQTL 

and the DEAD-box helicase 3 X-linked (DDX3X) protein for sQTL.  

AKAPs bind and target protein kinase A (PKA) to specific compartments of the cell. 

Specifically, AKAP1 localizes PKA to the mitochondrial membrane, and is highly involved 

in mitochondrial oxidative metabolism164,165. We identified four edQTL overlapping 

AKAP1 binding sites that are associated with editing at five different loci (Fig. 3-4c). 

Interestingly, one of these overlaps is with the seedQTL previously highlighted at 

rs146498205 (Fig. 3-2h). Thus, AKAP1 binding at this region may influence not only 

editing, but also expression and splicing of the lncRNA RP11-156P1.3.  We observed that 

both the QTL and the editing site target are in inverted ALU regions, making them highly 

likely to form a dsRNA structure. To further support this hypothesis, we conducted 

BLASTn166 alignment on the ALUs and identified a 59 bp region with 73% identity between 
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the two inverted ALUs. These portions of the ALU regions contained both the seedQTL 

and the target editing site (Supplementary Fig. 3-5).  

 AKAP1 also binds to an edQTL region in the 3’UTR of Cathepsin B (CTSB) (Fig. 

3-4c, d), a lysosomal cysteine protease that has been associated with neuropathology in 

disorders such as Alzheimer’s disease, traumatic brain injury, and dementia167. 

Importantly, the edQTL targets two editing sites within the same 3’ UTR of CTSB, which 

have lower editing associated with the QTL alternative allele (Fig. 3-4d, e). Both the 

editing sites and edQTL are located in ALU elements. As a result, the region 

encompassing these sites fold into a strong dsRNA structure based on RNAfold168 (Fig. 

3-4f). In the predicted dsRNA structure, the edQTL and one of its editing target sites are 

counterparts in a loop region flanked by highly base-paired sequences. Furthermore, we 

observe the lowest minimum free energy (MFE), which yields a more stable dsRNA 

structure, when we include the reference allele and editing at both target ES compared 

to no editing (Fig. 3-4f). Upon investigation of all possible structures, we found two major 

3’UTR CTSB configurations, determined by the edited or unedited nucleotide in the loop 

region (Supplementary Fig. 3-6a, b). The stability of these two structures are determined 

by the pairing of the edQTL and its opposing editing site (Supplementary Fig. 3-6a-h). 

These examples highlight the possible interplay between RBP binding, edQTL, and their 

regulation of target editing sites.  

Similar to edQTL, sQTL also showed enriched overlap with a number of RBP 

binding sites, the top one being DDX3X (Fig. 3-4b). DDX3X overlapped with 9 sQTL 

targeting 20 introns (Supplementary Table 3-1). This RBP is a stress granule protein and 

has many known nuclear roles including transcriptional regulation, mRNP assembly, pre-
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mRNA splicing, and mRNA export169,170. Additionally, it has been associated with brain 

developmental abnormalities and multiple cancers, including brain tumor development in 

intellectually disabled females170,171.  Another RBP enriched with sQTL was G3BP1, 

which has an essential role in stress granule formation, is part of the RAS signal 

transduction pathway, and promotes innate immune response172. Next, we asked whether 

genes targeted by the RBPs with enriched sQTL (Fig. 3-4b) showed interesting functional 

pathways. To this end, we conducted GO enrichment of 34 genes whose introns were 

targeted by the RBP-associated sQTL. We found a number of functional pathways related 

to immune response and apoptosis, such as natural killer cell lectin-like receptor binding, 

modulation by virus of host morphology or physiology, and regulation of apoptotic process 

(Fig. 3-4g). 

3.3.6 QTL Colocalization with GWAS of Neurological and Neuropsychiatric Diseases  

 To further investigate the disease relevance of the QTL, we carried out 

colocalization analysis with GWAS of neurological and neuropsychiatric diseases. 

Specifically, we aggregated GWAS summary statistics for SCZ, BPD, major depressive 

disorder (MDD), ASD, attention deficit hyperactivity disorder (ADHD), post-traumatic 

stress disorder (PTSD) and alcohol dependency (ALD, as a negative control) from the 

Psychiatric Genomics Consortium (PGC) (Supplementary Table 3-2)143,144,173–177. These 

GWAS summary statistics were colocalized to QTL in both EU and AA using the COLOC 

software178,179 (Methods).  

Among the disorders included in this analysis, SCZ, BPD and MDD yielded the 

most colocalizations in the three QTL types (Fig. 3-5a). This observation is consistent 
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with the fact that SCZ, BPD, and MDD are known to share specific disease etiologies 

including similar causal factors and genetic loci linked to the diseases180,181. Aggregating 

colocalizations identified with all disease GWAS and all QTL-trait associations, we 

identified a total of 8, 33, 53 unique colocalizations for edQTL-ES, sQTL-intron, and 

eQTL-gene respectively (PP H4 > 50, Methods, Supplementary Table 3-3). These 

colocalizations were in 6, 19, and 35 unique disease-GWAS loci respectively (within 

±1MB of GWAS P < 5e-8, Supplementary Table 3-3). The edQTL colocalization with the 

highest posterior probability was located at rs34819784 and colocalized with SCZ GWAS 

(Fig. 3-5b, Supplementary Table 3-3). This SNP in the protein kinase PRKD3 is 

associated with an editing site in the 3’UTR of CEBPZ-AS1, which is known to be an 

integral part of the mitochondrial membrane182. Although CEBPZ-AS1 has not been well 

studied, its association to editing and SCZ further support the importance of mitochondrial 

regulation in neuropsychiatric diseases149. 

We also identified an edQTL that colocalized to SCZ GWAS at rs1058298 located 

in the adenosine deaminase like (ADAL) gene (Supplementary Fig. 3-7a). ADAL protein 

catalyzes the hydrolysis of the free cytosolic methylated adenosine nucleotide N(6)-

methyl-AMP (N6-mAMP) to produce inositol monophosphate, making it essential for m6a 

regulation183. In addition, we observed two edQTL that colocalize to MDD GWAS at 

rs56238203 and rs73168402 located in the gene LSAMP, a possible gene target for 

neuropsychiatric diseases that has been associated to panic disorder and social 

behavior184–186. These genetic loci target two editing sites in the lncRNA RP11-384F7.2 

(Supplementary Fig. 3-7b, c). While the lncRNA has not been well studied in the brain, it 

is a known risk indicator for lung cancer187.   
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Among the colocalizations between GWAS diseases and eQTL and sQTL, we 

identified many target genes with interesting functionalities (Supplementary Table 3-3). 

Examples of top colocalizations for the sQTL and eQTL are shown in Figs. 3-5c and 3-5d 

(PP H4 > 90, GWAS P < 5e-8) between SCZ and the target genes PSMA4 and FURIN, 

respectively. While the PSMA4 gene has been linked to SCZ, tobacco addiction, and 

cancer188,189, FURIN is known to contain SCZ risk variants that synergistically affect 

synaptic function190. Finally, we highlight a strong colocalization between SCZ GWAS 

summary statistics and the eQTL at rs6439649 affecting expression of the PCCB gene, 

which encodes the beta subunit of the mitochondrial enzyme and for which expression 

difference has been observed in both SCZ and ASD (Supplementary Fig. 3-7d)191.  

Due to low AA sample sizes in disease GWAS and brain RNA-seq, we did not 

observe significant colocalizations between QTL and SCZ, BPD, or MDD in this ethnicity. 

The lack of results indicates the necessity for more comprehensive GWAS in the AA 

population. Overall, the above colocalization results demonstrate the potential disease 

relevance of the three types of QTL, with top hits occurring in genes with functions related 

to the brain and mitochondria. 

3.4 DISCUSSION 

We present the first study, to our best knowledge, of edQTL, eQTL, and sQTL within 

the same SCZ cohort and for two different ethnicities. We detected largely distinct QTL 

of each type, but with statistically significant pairwise overlaps between the 3 QTL types. 

Upon comparison between QTL in AA and EU, we observed common QTL of each type 

between the two ethnicities, for which we also observed similar effect sizes. In contrast, 
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QTL unique to one ethnicity showed higher effect sizes in AA. Finally, we identified RBPs 

enriched with edQTL and sQTL, and observed colocalizations at various loci between all 

QTL types and SCZ, BPD, and MDD. 

Our concurrent examination of edQTL, sQTL and eQTL detected significant 

pairwise overlaps between the 3 QTL types. We also identified a small number of 

seedQTL associated with all 3 QTL categories. These observations suggest that genetic 

regulations of RNA editing, splicing and RNA abundance may be inter-related, sharing 

common mechanisms. The example seedQTL at rs146498205 and its target are located 

in inverse ALU elements that may form a dsRNA structure (Fig. 3-2h). We postulate that 

structural alteration by the QTL may explain its association with all 3 molecular 

phenotypes, although future work is needed to confirm this possibility. Apart from 

individual loci overlap, the target genes of the 3 types of QTL overlap significantly, 

enriched in pathways related to brain development and immunity. This observation 

supports the hypothesis that genetically driven variations in RNA editing, splicing and 

abundance influence similar functional pathways. Nevertheless, existence of a large 

number of QTL unique to each molecular trait indicates that the 3 molecular processes 

make diverse contributions and represent distinct (but inter-related) layers of gene 

regulation. Therefore, our results support the need to investigate multiple QTL types in 

parallel.  

 In our previous work149, we observed distinct patterns in RNA editing of SCZ 

patients between the AA and EU populations. Specifically, SCZ patients in the AA cohort 

had enhanced RNA editing levels compared to controls, which was opposite to the 

reduced editing observed in SCZ patients of the EU cohort. We hypothesized that 
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differences in the general genetic background between the two ethnicities may have led 

to this distinction. Our current analysis showed that, although the EU and AA cohorts had 

significant overlap of all QTL, the many unique QTL between the two ethnicities support 

existence of ancestry-specific regulation of the three molecular phenotypes. Furthermore, 

we observed a higher effect size for QTL unique to AA subjects compared to those unique 

to EU subjects (Fig. 3-3d-f). A similar trend was reported for AA-specific eQTL in previous 

literature192,193. While the specific reasoning behind these ancestry-specific observations 

are elusive, it has been demonstrated that the AA genomes possess greater genetic 

diversity, population differentiation, and difference in LD structure when compared to 

those of EU192. Therefore, genetic ancestry is a relevant factor for most QTL-phenotype 

analyses, and may influence downstream transcriptional and post-transcriptional 

regulation. It should be noted that we observed much smaller numbers of QTL for the AA 

cohort than the EU cohort, likely due to the smaller sample sizes for AA. This limitation 

calls for enhanced data acquisition efforts across multiple ethnicities, which will greatly 

facilitate future large-scale integrative analyses.  

The identification of QTLs further enabled investigations of their relevant regulatory 

mechanisms. To this end, we focused on the possible involvement of RBPs in edQTL and 

sQTL regulation. We highlighted one RBP, AKAP1, binding to the seedQTL at 

rs146498205 and a few other edQTL. AKAP1 has many essential functions related to 

neuronal regulation and mitochondrial function. For example, inhibition of mitochondrial 

fission by an outer mitochondrial complex containing this RBP protects neurons from 

ischemic stroke through maintenance of respiratory chain activity, inhibition of superoxide 

production, and delay of Ca2+ deregulation194. RBPs enriched at sQTL included stress 
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granule proteins DDX3X and G3BP1, which are both associated with 

neurodevelopmental disorders, including ASD, intellectual disability, and ADHD195,196. 

The gene targets of these and other RBPs enriched at sQTL were involved in pathways 

related to immune response and apoptosis, both relevant to the disease mechanisms of 

SCZ197,198. The above results suggest that edQTL and sQTL are enriched with functional 

genetic variants that are implicated in disease-related pathways. However, we note that 

as an association analysis, QTL does not necessarily capture the functional variants that 

cause alterations in the molecular phenotypes under study. Future methods that pinpoint 

the causal variants are needed to further understand the genetic regulation of splicing 

and RNA editing161. 

 The colocalization analysis of QTL with GWAS of neurological and 

neuropsychiatric diseases uncovered a number of QTL with potential disease relevance. 

As highlighted in the Results, a number of genes related to brain function harbor QTL 

colocalized with GWAS loci. These findings are consistent with the conjecture that RNA 

editing, splicing and RNA abundance are all important contributors to SCZ mechanisms, 

likely explaining a substantial amount of GWAS signals. A previous study identified 11 

edQTL in the CMC cohort that colocalized to 6 SCZ GWAS loci53. These loci did not 

overlap with the GWAS-colocalized edQTL we identified. The lack of overlap could be 

due to the different methods used to identify RNA editing sites, and the relatively small 

sample size used in our analysis as we excluded samples over 70 years of age in the EU 

population due to their limited data quality.  

In summary, our study highlights the disease relevance of RNA editing, splicing 

and RNA abundance regulation, making unique and common contributions in different 
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ethnicities. Indeed, adding further QTL characterization, such as epigenetic QTL, and 

increasing sample size for EU and AA high quality brain tissue RNA-seq, can bolster such 

findings. This work motivates future large-scale multi-QTL investigations to more 

comprehensively reveal the possible interplay between genetic and disease-relevant 

mechanisms. 

3.5 METHODS 

3.5.1 Data extraction and Quality Control 

Data extraction and processing was conducted as described in our previous 

work149. Briefly, unstranded rRNA-depeleted RNA-seq data from the DLPFC brain region 

were extracted from the CMC consortium83,148. We followed strict quality control 

procedures to remove sample outliers in RIN, PMI, age, and other biological and technical 

variables41. The quality control procedure was conducted for EU and AA samples 

separately. Retained SCZ and control groups did not differ significantly in any biological 

or technical covariates (Supplementary Figs. 3-1, 3-2).  

3.5.2 RNA editing detection and normalization 

We used our previously developed methods for RNA detection and 

processing86,127,150. RNA-seq was aligned using hisat2 v.2.0.4126 with default parameters, 

but allowing no discordant reads. Unmapped reads were extracted for re-alignment of 

hyperedited reads as described in previous work41,87. Briefly, hyperedited reads contain 

copious mismatches relative to the reference genome, which may prevent them from 

aligning to the correct genomic position. To address this challenge, all adenosines in both 
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the reference genome and reads were converted to guanosines. A second round of 

mapping with hisat2 was completed using the converted genome and reads. 

Subsequently, all guanosines were changed back to their original adenosines, and 

uniquely mapped reads were combined with those identified in the first step alignment for 

downstream processing. After identifying mismatches in the reads relative to the 

reference genome, several filters were applied to remove loci likely resulting from 

spurious read mapping or sequencing errors127. The final editing sites were required to 

be supported by at least five samples, and, in each sample, have at least two edited reads 

and five total reads. The loci occurring in at least 10% of samples within a cohort were 

labeled as “common” RNA editing sites. Common RNA editing sites in autosomes with > 

0.005 variance were retained for downstream analysis. The missMDA R package was 

used to impute missing data via the principal component methods199. 

RNA editing values were normalized per site as z-scores from a rank normalized 

distribution. This normalization technique was recommended by MatrixEQTL200 to 

remove systematic inflation of test statistics. Specifically, for an editing site (e) all samples 

(i) were ranked by editing level (the average was taken for tied rankings). For each site 

(e), average and standard deviation of ranks was used to create a normal distribution. 

Finally, a per sample (i) z-score was calculated according to each site’s normal 

distribution and deemed the normalized RNA editing level for site (e) and sample (i).  

3.5.3 PSI and RPKM Quantification 

 The Leafcutter software151 (v 0.2.7) was used to detect reads that span introns and 

to quantify clusters of spliced introns. Bam files from hisat2 alignment were converted into 
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junction files, and intron clustering was conducted using default settings in Leafcutter (50 

reads per cluster and intron length ≥ 500kb). The prepare_phenotype_table script was 

then implemented to calculate intron excision ratios and filter out introns used in less than 

40% of individuals with < 0.005 variation (default parameters). Intron excision ratios (PSI) 

were standardized and quantile normalized.  We obtained RPKM values from our 

previous study of RNA editing in SCZ149. Briefly, RNA-seq bam files were used to 

calculate read counts per gene with the HTSeq software (v 0.6.1)134 and total mapped 

reads from hisat2. Rank normalization of RPKM values was conducted similarly as for 

RNA editing values detailed above (see RNA editing detection and normalization). 

Missing PSI and RPKM values were imputed using missMDA199, similarly as for RNA 

editing ratios. 

3.5.4 Genotype filtering 

 Whole-genome genotype data for EU and AA DLPFC samples with standard 

imputation protocols were extracted from the CMC consortium148. The PLINK software 

(v1.90b6.24)152 was used to identify sites of interest with the following criteria: 1) bi-allelic 

SNPs, 2) Minor allele frequency (MAF) > 0.05, 3) Imputation score > 0.8, 4) Hardy 

Weinberg Equilibrium (HWE) P-value < 1.0e-6, and 5) Missingness < 0.20.  

3.5.5 Covariate selection 

 To measure hidden batch effects and confounders for phenotype data (EL, PSI, 

and RPKM), we performed covariate detection using the HCP method153. This algorithm 

predicts hidden confounding factors in datasets with known measured covariates. We 
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calculated HCPs separately for each QTL type and ethnicity. RNA-seq PICARD summary 

metrics were used as covariates for each cohort, which included median 5’ to 3’ bias, GC 

dropout, AT dropout, proportion HQ aligned bases, proportion mRNA bases, and 

proportion intergenic bases. We calculated 0-50 HCPs in increments of 10 and identified 

the component number that maximizes the total number of QTL-phenotype associations 

detected by the FastQTL154 software (see cis-QTL detection). For the range of HCPs 

resulting in the maximum associations, we tested increments of 2 and 5 to further pinpoint 

the most fitting HCP component number (Supplementary Fig. 3-8a-f). We ran PCA on 

SNPs for the EU and AA cohorts respectively to obtain the top 1-10 genotype PC 

eigengenes. We included 3 genotype PCs in the final model by testing for population 

inflation of trans-QTL identified through MatrixEQTL200 (see cis-QTL detection, 

Supplementary Fig. 3-8a-f). 

3.5.6 cis-QTL detection 

 The FastQTL154 software (v2.184) was used to perform cis-edQTL, cis-sQTL, and 

cis-eQTL mapping in autosomes. A window of ±100 KB from target editing sites was 

defined as cis for edQTL detection, while ±1 MB from the start of genes or introns was 

tested for eQTL and sQTL, respectively. We included the HCPs (see above, Table 3-1, 

Supplementary Fig. 3-8a-f), age, RIN, sex, and 3 genotype PCs as covariates in 

FastQTL’s permutation pass mode (1000 permutations) to identify the beta-approximated 

p-values. The number of genotype PCs was chosen based on the control analysis using 

trans-eQTL as described in the paragraph below. The output QTL consist of SNPs with 

the best nominal association per phenotype, yielding p-values through beta 
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approximation that utilizes a permutation approach to correct for the multiple variants 

tested per phenotype154. We conducted Storey and Tibshirani FDR correction201 on beta-

approximated p-values to account for multiple testing across all phenotypes. Significant 

edQTL, sQTL, and eQTL were defined as those with FDR q-value < 0.1. QTL-phenotype 

effect sizes were calculated using Spearman correlation 𝜌 values. 

 In order to assess possible inflation of p-values, we randomly selected 10 editing 

sites, introns, or genes and carried out trans-edQTL, trans-sQTL, and trans-eQTL 

detection using the Matrix_eQTL_main() function (part of the MatrixEQTL (v2.3) R 

package) with default parameters200. All SNPs in the genome were included for the QTL 

analyses, and the same covariates were used as for the cis-QTL analyses. QQ plots of 

trans-QTL detection showed zero to very low inflation, indicating that the resulted QTL 

were not confounded by population stratification (Supplementary Fig. 3-8a-f). The 

MatrixEQTL detection was carried out for varying numbers of genotype PCs (1-10). We 

observed the least population inflation via inclusion of 3 genotype PCs. Therefore, 3 

genotype PCs were used in the final model for all QTL types and both ethnicities. 

3.5.7 Distance to regulatory elements 

QTL distance to editing sites, transcriptional start sites (TSS), transcriptional end 

sites (TES), exon start, and exon end was calculated and compared to random SNPs for 

the EU cohort. Specifically, all common RNA editing sites detected in the CMC EU 

samples were considered to determine the closest distance between edQTL and editing 

sites. TSS, TES, exon start, and exon end sites were obtained from ENSEMBL 99130. For 

genes with multiple isoforms, the most upstream start and downstream end were 



 84 

documented as the TSS and TES, respectively. Exon start and end sites were first and 

last coordinates of all aggregated exons documented in ENSEMBL130. As controls, 

random bi-allelic (non-QTL) SNPs of the CMC cohort were used. 

For eQTL, edQTL, and sQTL, we extracted 100 sets of random SNPs, each set 

with the same number of QTL as the test set, respectively.  For all QTL and random SNPs, 

we obtained their distances to editing sites, TES, TSS, exon start, and exon end regions. 

We calculated an AUC value using the eCDF for distances for each set of random SNPs 

(and the test set QTL). A Gaussian distribution was generated using the mean and 

standard deviation of the 100 AUCs from randomizations. The AUC for the test set 

distances was compared to the Gaussian distribution to calculate enrichment p-values. 

3.5.8 Gene ontology (GO) enrichment 

 GO enrichment was conducted similarly as described in our previous work149 with 

the exception that genes matched for expression were determined via average 

expression calculated from the CMC EU samples. GO enrichment conducted on 34 genes 

targeted by sQTLs that were enriched with RBP binding sites had an extra step to prune 

parent GO terms if a child term was significant. This step was implemented to avoid 

presenting repetitive pathways. 

3.5.9 Target correlation between overlapping QTL 

We tested the categorical correlation between target EL and PSI, EL and RPKM, 

and PSI and RPKM for s/eQTL, s/edQTL, e/edQTL and seedQTL in EU (Supplementary 

Fig. 3-4c). We separated samples into groups with either low or high EL, PSI, or RPKM 
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to populate a 2x2 contingency table. Low and high normalized editing level cutoffs were 

chosen to be < -1 and > 0, respectively. Low and high cutoffs were chosen to be < 0.2 

and > 0.3 for PSI and > -1 and < 1 for normalized RPKM, respectively. Each contingency 

table represents a pairwise comparison between two QTL types with the number of 

samples in each (low/high) category. Pearson’s Chi-squared tests were conducted to 

determine the significance between two target molecular phenotypes.   

3.5.10 RBP enrichment 

We obtained ENCODE eCLIP data from 120 and 103 RBPs from the K562 and 

HepG2 cells lines, respectively163. eCLIP peaks with fold change (FC) > 3.0, relative to 

the paired size-matched background input within each region, were combined between 

both cell lines. We conducted RBP enrichment for edQTL and sQTL separately. For each 

RBP, we calculated the number of edQTL or sQTL overlapping the eCLIP peaks of the 

RBP. As a control, we obtained  a set of random SNPs from SNPsnap202, matching the 

set of edQTL or sQTL in total SNP count, ±5% MAF, ±50% distance to nearest gene, 

±50% gene density, and ±50% total ‘LD buddies’ (SNPs in LD, r2 = 0.5). We then created 

a 2x2 contingency table for each RBP populated by the total non-overlapping and 

overlapping counts of the QTL of interest or those of random control SNPs. Fisher’s Exact 

p-values and odds ratios were obtained to determine enrichment significance for each 

RBP. 
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3.5.11 Colocalization Analysis 

 GWAS summary statistics were obtained for SCZ, BPD, MDD, PTSD, Alcohol 

dependence, ASD, and ADHD from the psychiatric genomics consortium (PGC) 

(Supplementary Table 3-2)143,144,173–176,203. For significant loci (p < 5e-8) in the GWAS 

summary statistics, we extracted all variants within ±1MB and determined if such variants 

were edQTL, sQTL, or eQTL (referred to as a query QTL). If confirmed, this ±1MB region 

was defined as a testable region for colocalization between the specific query QTL’s 

phenotype and GWAS disease. For all testable regions, we conducted extended FastQTL 

analysis to obtain nominal p-values for associations between the phenotype of interest 

and SNPs within ± 1 MB of the query QTL. Nominal FastQTL p-values and GWAS 

summary statistic p-values for matching SNPs (MAF > 0.05) within ±1 MB of the query 

QTL loci were input into the COLOC software (v 5.1.0) to test for disease colocalization179.  

The COLOC algorithm obtained posterior probabilities of five hypotheses: H0) no 

GWAS or QTL signal, H1) GWAS signal only, H2) QTL signal only, H3) GWAS and QTL 

signal are present but not colocalized, H4) GWAS and QTL signals are present and 

colocalized. We retain colocalizations with PP H4 > 50, similarly as in previous literature53, 

and report all colocalizations in Supplementary Table 3-3. We then obtained 

colocalization enrichment per QTL and disease, by calculating the percentage of QTL 

colocalized with disease GWAS among all QTL of the same type (Fig. 3-5a). 

Colocalizations of interests were visualized using the locuscomparer R tool204. 

Colocalization analysis was run on both EU and AA cohorts separately. However, very 

few significant colocalizations were identified for the AA cohort. Thus, AA colocalizations 

are not presented here. 
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3.9 FIGURES  

 

Figure 3-1. Overview of QTL detection and downstream analyses.  

DLPFC RNA-seq data was extracted from the CMC consortium and processed for quantification of RNA editing, gene 

expression, and intron excision values (PSI). Filtered genotypes, hidden covariates, known covariates, and phenotype 

data were input into linear regression models in the FastQTL software for QTL detection. Finally, downstream analyses 

were conducted to characterize QTLs, including investigation of relevant regulatory RBPs and disease association 

through GWAS colocalization. 
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Figure 3-2. QTL characterization.  

a-c, QQ plot of edQTL, sQTL, and eQTL detected in EU, grouped by their distance from the associated molecular 

targets. d, Distances between edQTL, sQTL, or eQTL and common editing sites. Grey curves represent the distances 

between random control SNPs and common editing sites, based on which the p values were calculated (Methods). For 

visualization, distances of variants within ±2KB from ES are displayed. e, Similar to (d), but for the distances of eQTL 

and edQTL to transcription start sites and transcription end sites. f, Similar to (d), but for the distances of sQTL and 

edQTL to exon starts and exon ends. g, Overlap between edQTL, eQTL, and sQTL detected in the EU cohort. 

Hypergeometric p values are shown to evaluate the overlap between each pair. h, Genomic region harboring the 
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seedQTL rs146498205, its target editing site, target intron region, and target gene region. The AKAP1 RBP binding 

site is also shown. i, Target intron PSI, editing level (EL) of the target editing site (ES), and RPKM of the target gene of 

the seedQTL rs146498205 for different genotype groups. j, Overlap between the genes targeted by the eQTL, edQTL, 

and sQTL, respectively in the EU cohort. Hypergeometric p values are shown to evaluate the overlap between each 

pair. k, GO enrichment results of the 33 genes targeted by all three QTL types. 
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Figure 3-3. QTL detection in EU vs. AA.  

a, edQTL overlap between EU and AA . Hypergeometric p value is shown to assess the significance of overlap between 

ethnicities. b, Similar to (a), but for sQTL overlap between ethnicities. c, Similar to (a), but for eQTL overlap between 

ethnicities. d, Effect sizes of overlapping edQTL between EU and AA (top). Effect sizes of edQTL unique to AA or EU 

(bottom). Wilcoxon rank-sum test p values are shown to evaluate difference in effect sizes of unique edQTL between 

ethnicities. e, Similar to (d), but for sQTL. f, Similar to (d), but for eQTL. 
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Figure 3-4. Enrichment of edQTL and sQTL in RBP binding sites.  

a, Enrichment of edQTL within RBP binding sites. Fisher’s Exact test p value and odds ratio for each RBP were 

calculated via comparisons between edQTL and random SNPs (Methods). b, Similar to (a), but for sQTL. c, edQTL 

within AKAP1 binding sites and their target editing sites (ES). d, The 3’UTR of CTSB with an AKAP1 binding site, 

edQTL, and target editing sites. e, Normalized editing level of two editing sites associated with the CTSB edQTL, 

samples grouped by the genotype of the edQTL. RNA editing levels were normalized per site by calculating z-scores 

from a rank normalized distribution across samples (see Methods). f, RNA structure of the CTSB 3’UTR predicted by 
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Figure 4. Enrichment of edQTL and sQTL in RBP binding sites. 
a, Enrichment of edQTL within RBP binding sites. Fisher’s Exact test p value and odds ratio for each RBP were calculated via comparisons between edQTL 
and random SNPs (Methods). 
b, Similar to (a), but for sQTL. 
c, edQTL within AKAP1 binding sites and their target editing sites (ES). 
d, The 3’UTR of CTSB with an AKAP1 binding site, edQTL, and target editing sites. 
e, Normalized editing level of two editing sites associated with the CTSB edQTL, samples grouped by the genotype of the edQTL. RNA editing levels were 
normalized per site by calculating z-scores from a rank normalized distribution across samples (see Methods). 
f, RNA structure of the CTSB 3’UTR predicted by RNAfold, given the reference allele of the edQTL and the edited or unedited base at the 
editing site (ES). The two example structures show the strongest and weakest dsRNA structures according to minimum free energy (MFE). 
g, Enriched GO categories of the 34 genes targeted by sQTLs located in RBPs labeled in (b). 
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RNAfold, given the reference allele of the edQTL and the edited or unedited base at the editing site (ES). The two 

example structures show the strongest and weakest dsRNA structures according to minimum free energy (MFE). g, 

Enriched GO categories of the 34 genes targeted by sQTLs located in RBPs labeled in (b).  
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Figure 3-5. QTL Colocalization with GWAS loci of different diseases.  

a, Colocalizations detected with GWAS summary statistics for each QTL category. Enrichment score: a ratio between 

the number of QTL that colocalized to a disease and the total number of QTL of the respective type. b, Example 

colocalization between SCZ GWAS (top) and an edQTL (bottom). The target editing site (ES) is located in the 

mitochondrial membrane gene CEBPZ-AS1 (PP H4 = 92.5). c, Example colocalization between SCZ GWAS (top) and 

a sQTL (bottom). The target splicing event is located in the gene PSMA4 (PP H4 = 96). d, Example colocalization 

between SCZ GWAS (top) and an eQTL (bottom) of the FURIN gene (PPH4 = 97). 
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3.10 SUPPLEMENTARY FIGURES 

 

Supplementary Figure 3-1. Comparison of potential confounding variables between SCZ and controls of the 

EU cohort.  

Biological covariates, technical covariates, and RNA-seq mapping metrics for SCZ and control EU samples after 

completing the sample QC procedure (Methods). P values were calculated via Pearson correlation and Fisher’s exact 

test for numeric and categorical covariates, respectively.  
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Supplementary Figure 3-2. Comparison of potential confounding variables between SCZ and controls of the 

AA cohort.  

Biological covariates, technical covariates, and RNA-seq mapping metrics for SCZ and control AA samples after 

completing the sample QC procedure (Methods). P values were calculated via Pearson correlation and Fisher’s exact 

test for numeric and categorical covariates, respectively.  
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Supplementary Figure 3-3. Supplementary Figure S3. QTL significance in EU and AA cohorts.  

a, QQ plot of all QTL detected in EU, grouped by QTL type. b, QQ plot of all QTL detected in AA, grouped by QTL type. 

c, QQ plot of edQTL in AA, grouped by their distance to the associated molecular targets. d, Similar to (c), but for sQTL 

in AA. e, Similar to (c), but for eQTL in AA. 
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Supplementary Figure 3-4. Overlaps among the 3 types of QTL or their respective molecular targets.  

a, Overlaps among eQTL, edQTL, and sQTL in the AA cohort. Hypergeometric p values are shown to evaluate the 

overlap between each pair. b, Overlaps among the genes targeted by the 3 types of QTL in the AA cohort. 

Hypergeometric p values are shown to evaluate the overlap between each pair. c, Pearson’s chi-square p values 

(Methods) between pairs of molecular targets (EL: editing level, PSI or RPKM) for loci shared by each pair of QTL in 

EU. Only loci with at least one significant pairwise correlation are shown (i.e., p value < 0.05).  
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Supplementary Figure 3-5. BLASTn alignment of regions harboring the seedQTL (rs146498205) and its target 

editing site.  

BLASTn alignment was conducted on two inverted ALUs containing a seedQTL (rs146498205) and its target editing 

site, respectively. Alignment results are shown between the reference allele of the seedQTL and the edited base of its 

target (top) and between the alternative allele of the seedQTL and the unedited base of its target (bottom). 
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Supplementary Figure 3-6. CTSB 3’ UTR predicted structures.  

a, RNA structure of the CTSB 3’UTR predicted by RNAfold, given the reference allele of the edQTL, the edited allele 

at chr8:11700373, and the unedited allele at chr8:11700685. MFE: minimum free energy. b, Similar to (a), given the 

reference allele of the edQTL, the unedited allele at chr8:11700373, and the edited allele at chr8:11700685. c, Similar 

to (a), given the reference allele of the edQTL and both editing sites (ES) unedited. d, Similar to (a), given the reference 

allele of the edQTL and both ES edited. e, Similar to (a), given the alternative allele of the edQTL, the edited allele at 
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chr8:11700373, and the unedited allele at chr8:11700685. f, Similar to (a), given the alternative allele of the edQTL, 

the unedited allele at chr8:11700373, and the edited allele at chr8:11700685. g, Similar to (a), given the alternative 

allele of the edQTL and both ES unedited. h, Similar to (a), given the alternative allele of the edQTL and both ES edited. 
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Supplementary Figure 3-7. Additional QTL-GWAS colocalizations.  

a, Example colocalization between SCZ GWAS (top) and an edQTL (bottom) targeting an editing site in the adenosine 

deaminase-like gene, ADAL. b-c, Example colocalizations between MDD GWAS (top) and two edQTL (bottom) 

targeting the same editing site in the lncRNA RP11-384F7.2. d, Example colocalization between SCZ GWAS (top) and 

an eQTL (bottom) targeting the mitochondrial gene PCCB. 
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Supplementary Figure 3-8. Selection of HCP and genotype PCs.  

a, Total edQTL in EU detected by FastQTL for different hidden covariates (HCPs) included in the model (top). 

Population structure was evaluated by generating QQ plots of trans-associations using MatrixEQTL (bottom). The 

nonzero HCP value that yielded the most QTL from FastQTL and 3 genotype PCs were used in the final FastQTL 

model (Methods). b, Similar to (a), but for edQTL in AA. c, Similar to (a), but for sQTL in EU. d, Similar to (a), but for 

sQTL in AA. e, Similar to (a), but for eQTL in EU. f, Similar to (a), but for eQTL in AA. 
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3.11 TABLES 

Ethnicity 
QTL 

type 

HCPs 

(n) 

Genotype PCs 

(m) 
Distance 

Total QTL 

(FDR p <0.1) 

Total QTL 

targets 

Total QTL-target 

associations 

EU edQTL 5 3 100 KB 626 677 ES 677 

AA edQTL 5 3 100 KB 113 115 ES 115 

EU sQTL 2 3 1 MB 2,859 3,625 introns 3,626 

AA sQTL 2 3 1 MB 558 732 introns 732 

EU eQTL 30 3 1 MB 4,870 5,006 genes 5,017 

AA eQTL 8 3 1 MB 629 647 genes 647 

Table 3-1. Overview of total QTL detected in EU and AA, respectively. 
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3.12 SUPPLEMENTARY TABLES 

Supplementary Table 3-1. sQTL overlapping eCLIP-seq peaks of DDX3X and the associated target introns.  

(Attached) 

 

 

Disease 

Ethnicity N case N control N Source 

SCZ European 52,017 75,889 127,906 Trubetskoy et al. (2022) Nature 

SCZ AA 5,998 3,826 9,824 Trubetskoy et al. (2022) Nature 

MDD European 170,756 329,443 500,199 Howard et al. (2019) Nat. Neuro. 

BPD European 24,972 449,593 474,217 Mullins et al. (2021) Nat. Gen. 

ADHD European 19,099 34,194 53,293 Demontis et al. (2019) Nat. Gen. 

ASD European 18,383 27,969 46,352 Grove et al. (2019) Nat. Gen. 

PTSD European 12,080 33,446 45,526 Nievergelt et al (2019) Nat. Comm. 

PTSD AA 4,363 10,976 15,339 Nievergelt et al (2019) Nat. Comm. 

Alcohol 

Dependence 

European 10,206 28,480 38,686 Walters et al (2018) Nat. Neuro. 

Alcohol 

Dependence 

AA 2,991 2,808 5,799 Walters et al (2018) Nat. Neuro. 

Supplementary Table 3-2. Sources for GWAS summary statistics. 

 

 

Supplementary Table 3-3 All significant QTL-GWAS colocalizations (PP H4 > 50).  

(Attached)
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CHAPTER 4 – Genome-wide alteration of dsRNA expression 

and RNA editing in Alzheimer’s disease 

4.1 ABSTRACT 

Dysregulation of endogenous dsRNA expression and editing can trigger aberrant 

inflammatory responses within the cell. However, the profile, function and regulation of 

editing enriched dsRNAs in humans are unknown and have not been studied in most 

diseases. Here, we used known RNA editing sites and RNA structure prediction 

methodology to develop a pipeline for the detection of long dsRNAs. We identified 62,008 

high-confidence editing enriched dsRNAs genome-wide, most of which overlap with 

introns and ALU repeat elements. The pipeline was applied to the dorsolateral prefrontal 

cortex (DLPFC) of individuals with Alzheimer’s disease (AD) and controls from the 

ROSMAP consortium. We observed that the majority of differentially expressed dsRNAs 

were upregulated in AD and associated with increased interferon (IFN) stimulated gene 

expression. Furthermore, we observed reduced RNA editing at loci distinct from 

differential dsRNAs that were also associated with increased IFN response and AD 

severity. The results suggest that the global upregulation of dsRNAs and reduced RNA 

editing in nonoverlapping regions may collectively influence inflammatory response in AD.  

4.2 INTRODUCTION 

Long double-stranded RNAs (dsRNAs) are typically associated with viral 

propagation in mammalian cells and can trigger cellular response against infection205. 

Cytoplasmic dsRNA binding proteins (dsRBPs), such as DEXD/H-box helicase 58 
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(DDX58, also known as RIG-I) and melanoma differentiation-associated protein 5 

(MDA5), detect and label such dsRNAs to be exogenous intruders within the cell, thus 

activating expression of type 1 interferons (IFN1) and other pro-inflammatory cytokines206. 

While dsRNAs originate in viruses, these structures are also endogenously produced in 

invertebrates and vertabrates207–209. Long endogenous dsRNAs are edited by adenosine 

deaminases (ADARs), a family of dsRBPs, that mark them as “self” RNAs210–212. RNA 

editing by ADARs converts adenosines to inosines (which are recognized as guanosines 

by downstream mechanisms), and enables dsRNAs to escape from dsRBP sensing and 

IFN activation210–212, most likely by altering the dsRNA structure. In fact, the presence of 

A-to-I editing has been used as evidence for dsRNA structure formation, thus providing a 

means to detect dsRNAs genome-wide (referred to as the dsRNAome)213. Although 

detection of editing enriched regions (EERs) and prediction of their associated long 

dsRNAs have been carried out in previous literature207,208,213, the total repertoire of long 

endogenous edited dsRNAs within the human transcriptome is largely unestablished. 

Despite the fact that the function of the dsRNAome is poorly understood, 

dysregulation of dsRNAs, dsRBPs, and ADAR is known to cause aberrant recognition of 

endogenous transcripts, inducing IFN response213. Mutations in MDA5 may enhance its 

dsRNA binding capacity and can enable recognition of edited dsRNAs that normally 

escape from MDA5 sensing. Such MDA5 mutations have been associated with immune 

hypersensitivity in the Aicardi–Goutières syndrome (AGS)214. In addition to intramolecular 

dsRNAs, intermolecular dsRNAs can form between sense-antisense transcripts, such as 

between the transcript for β secretase-1 (BACE1) and its natural antisense transcript 

(BACE1-AS) in the context of Alzheimer’s disease (AD)215. Indeed, dysregulated dsRNA 



 108 

expression, such as dsRNA accumulation, and abnormal editing have been associated 

with autoimmune and neurodegenerative disorders like AGS, ALS, and AD75,212,215–218. 

However, the global characterization of these dsRNAs and their related RNA editing 

profiles has not been conducted in most immune and neurological diseases. 

AD is a neurodegenerative brain disorder characterized by the toxic accumulation 

of amyloid-beta peptide (Aβ) and tau proteins, which lead to memory loss, cognitive 

decline, and death associated with aging219,220. Furthermore, dysregulated inflammatory 

processes, such as proinflammatory cytokines and IFNγ stimulation, have been 

recognized as distinct contributors of AD progression221. Thus far, only a few studies have 

reported RNA editing dysregulation and specific differentially expressed dsRNAs in 

AD75,124,215,222,223. These works motivate global dsRNA and RNA editing detection in AD 

to further understand the differential dsRNAome in the disease.  

Here, we developed a pipeline to detect endogenously expressed, editing 

enriched, long dsRNAs. We applied the method to RNA-seq data of the dorsolateral 

prefrontal cortex (DLPFC) of AD and control samples (184 and 163 samples, respectively) 

from the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP), 

referred to as ROSMAP69. Given the known role of RNA editing in modulating dsRNA 

sensing, we also investigated differential RNA editing in AD using our in-house protocols. 

Both differential RNA editing sites and differentially expressed dsRNAs occurred in 

repetitive elements known as ALUs, and the majority fell into introns and intergenic 

regions. We observed that editing was significantly lower in AD patients and the majority 

of differential dsRNAs were upregulated in AD relative to controls. Despite dysregulated 

RNA editing and dsRNA expression occurring in distinct regions, both are significantly 
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associated with interferon stimulated genes (ISGs). To our knowledge, our study presents 

the first comprehensive bioinformatic dsRNA detection and characterization in AD and its 

relationship to RNA editing. Our results suggest that dysregulation of RNA editing and 

dsRNA expression in nonoverlapping regions may synchronously contribute to increased 

immune response in AD. 

4.3 RESULTS 

4.3.1 Overview of dsRNA detection 

We expanded upon a previously published method to detect editing enriched 

regions (EERs)208 and developed a pipeline to identify and characterize dsRNAs genome-

wide based on RNA editing sites from REDIportal88 (Methods). An overview of the pipeline 

is presented in Fig. 4-1. Briefly, we merged editing enriched 50 bp sliding windows that 

were ≤ 1kb apart. We retained those EERs between 300 bp and 4 kb (Fig. 4-1) and found 

that most EERs identified were < 1 kb in length (Fig. 4-2a). We obtained high-confidence 

dsRNAs through structure annotations by utilizing both the RNAfold software168 and 

additional methods developed in our lab (Fig. 4-1, Methods). The average minimum free 

energy (AMFE) value of each dsRNA was used to determine structure stability (Methods). 

As expected, the majority of EERs were located in ALU regions (98% with AMFE 

< -0.35, Fig. 4-2b). Furthermore, most EERs were in introns or intergenic regions (41% 

and 36% with AMFE < -0.35, respectively). This was followed by 12% of EERs spanning 

both introns and exons (AMFE < -0.35, Fig. 4-2c). We empirically selected an AMFE cutoff 

of < -0.35 for dsRNAs to be considered “high-confidence” predictions. This cutoff was 

determined through examination of the overall AMFE distribution (Fig. 4-2d) and example 
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dsRNA structures from RNAfold168 (Fig. 4-2e, Supplementary Fig. 4-1a, b). After applying 

the AMFE cutoff, a total of 62,008 dsRNAs were retained for downstream analyses. Fig. 

4-2e demonstrates a predicted dsRNA with the lowest AMFE value and most stable 

structure. Example dsRNAs with less stability (higher AMFE values) are presented to 

exemplify the range of structures predicted through the dsRNA pipeline (Supplementary 

Fig. 4-1a, b). 

4.3.2 Differential dsRNA detection and IFN response in AD 

 We obtained RNA-seq data from the DLPFC region of control and AD ROSMAP 

samples69,224,225. A total of 633 samples were mapped using hisat2126, and unmapped 

reads were realigned with a pipeline developed to resolve mapping of hyper-edited RNA-

seq reads41,87 (Methods). To detect dsRNAs that were differentially expressed in AD, we 

used CERAD scores, which quantify neuritic plaques within the brain70, to choose subsets 

of samples for differential comparison. Samples with CERAD scores 1 and 4 were labeled 

as AD (n = 184) and controls (n = 163), respectively. We utilized the HTSeq134 software 

and dsRNA coordinates to obtain raw read counts for all regions. The Limma-Voom226 

package was applied next, which identified a total of 1,566 differentially expressed 

dsRNAs between AD and controls (FDR adjusted P < 0.05, Methods). Interestingly, we 

found that 1,097 (70%) out of all differential dsRNAs had upregulated expression in AD 

(Fig. 4-3a).  

As dsRNA upregulation is known to elicit innate immune response205,227, we asked 

whether differential dsRNAs detected in AD may induce ISG expression. We correlated 

the expression of 1,097 upregulated dsRNAs with that of known IFN-induced genes228 
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using a linear regression model, including age and sex as covariates (Methods). We 

observed a clear pattern of positive correlation between almost all upregulated dsRNAs 

and the majority of ISGs (Fig. 4-3b). This observation supports that increased dsRNA 

expression in AD may lead to increased targeting of these transcripts by immune 

response dsRNA sensors, such as MDA5205,210,227. Therefore, upregulated dsRNA 

expression may be one underlying cause for increased immune response observed within 

AD229,230. 

4.3.3 Differential RNA editing in AD 

 As RNA editing is known to occur in endogenous dsRNAs and modulate their 

immunogenicity, we were motivated to investigate differential editing in AD. We analyzed 

RNA editing using two methodologies: 1) detecting de novo differential RNA editing in AD 

using previously developed protocols41,149, and 2) associating ALU editing index (AEI) 

with AD severity. For the purpose of differential RNA editing detection between AD and 

controls, we grouped the samples by CERAD scores, as conducted in previous 

literature231,232. Those with little to no AD pathology (CERAD scores 3 and 4) were 

considered as control samples, while those with high AD pathology (CERAD scores 1 

and 2) were labeled as AD. We conducted quality control methods described 

previously41,149 to ensure that no metadata covariates differed between conditions 

(Supplementary Fig. 4-2). After the data processing and quality control procedures, we 

retained 415 samples (202 AD and 213 controls) for downstream differential RNA editing 

analysis.  
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We applied our RNA editing detection pipeline84,127,128 and identified 3,131,119 

RNA-DNA differences in all samples (Methods). A total of 556,688 loci occurring in at 

least 10% of samples were referred to as “common” RNA editing sites and used for 

downstream analyses (Methods). Over 95% of editing sites detected per sample were A-

to-G sites (Supplementary Fig. 4-3a), demonstrating the high accuracy of our pipeline. 

Furthermore, the vast majority of common sites were in ALU regions (Supplementary Fig. 

4-3b). We identified 4,438 RNA editing sites with either significant difference in editing 

ratios or editing prevalence between AD and controls (Methods, Supplementary Fig. 4-

4a). Differential sites were primarily located in intergenic and intronic regions, followed by 

the 3’UTRs (Supplementary Fig. 4-3c). 

We calculated differential RNA editing average (DREA) for all samples (Methods), 

and found that AD samples have significantly reduced editing compared to controls 

(Supplementary Fig. 4-4b). Based on the editing levels for all differential sites, samples 

were generally clustered by disease condition (Supplementary Fig. 4-4c). We identified 8 

differential editing sites causing nonsynonymous change to their proteins, hereby referred 

to as “recoding” sites. The majority of recoding sites (5 out of 8) showed lower average 

editing in AD (Supplementary Fig. 4-4d), including an A-to-G recoding site in GRIA4, a 

glutamate receptor associated with nicotine dependence and major depression233. To 

examine functional enrichment of differential loci, we conducted gene ontology (GO) 

analysis of differentially edited genes. This yielded interesting pathways related to brain 

function and immune response, such as synaptic plasticity, antigen processing and 

presentation via MHC class II, and neuromuscular process (Supplementary Fig. 4-4e).  
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Finally, we asked whether differential RNA editing sites overlapped differentially 

expressed dsRNAs. We found that only 2% of the differential dsRNAs harbored 

differentially edited loci (1% of the differential editing sites), which was insignificant when 

compared to random common RNA editing sites in ROSMAP (Chi-squared P = 0.90). 

Thus, the differential RNA editing sites and differential dsRNAs in AD appeared to reside 

in distinct regions. Next, we asked whether differential RNA editing sites in our analysis 

(showing global hypo-editing) also correlated with ISG stimulation, as seen for 

upregulated dsRNAs. Indeed, we observed that DREA from these distinct RNA editing 

loci frequently showed significantly negative correlation with ISGs (Supplementary Fig. 4-

4f). 

4.3.4 ALU editing index associated with AD 

Next, we aimed to examine the global hypo-editing trend relative to AD severity and 

the distinction between differentially edited loci and differentially expressed dsRNAs. To 

this end, we analyzed RNA editing with the metric ALU editing index (AEI) using the 

RNAEditingIndexer tool234. Specifically, AEI summarizes editing levels within all ALU 

regions. We associated AEI with AD severity through ordinal regression (Methods). AD 

severity was determined via alternative metrics, including Braak stage, cognitive index, 

and CERAD score. While Braak stage refers to cognitive decline measured via 

neurofibrillary tangles in the brain71, CERAD score is a semiquantitative measure of 

neuritic plaques70. The cognitive index differs from these two metrics as it combines the 

results of 19 different neuropsychological tests into a single “Global Cognitive Score”69.  
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Ordinal regression of each ALU’s AEI value with AD severity was conducted for all 

633 samples, including age and sex in the model (Methods). We observed that the 

majority of ALU regions that were significantly associated with at least one AD metric 

(FDR adjusted P < 0.05), had negative correlation between editing and AD severity (Fig. 

4-4a). This observation is consistent with our findings of hypoediting of individual editing 

sites in AD in the previous section. We then conducted GO enrichment analyses of two 

groups of genes: those containing ALUs negatively correlated with AD severity and those 

with positive correlations. The first group yielded the most interesting functional pathways, 

such as mitochondrial inner membrane, post-synaptic density, and skeletal muscle tissue 

development (Fig. 4-4b). These terms were similar to those associated with differential 

editing in other brain disorders, such as SCZ41,149. 

Finally, we examined whether ALUs associated with AD severity fell into 

differentially expressed dsRNAs. Consistent with our observation with the individual RNA 

editing sites, we found that only two differential dsRNAs contained differentially edited 

ALUs (< 1% of ALUs and dsRNAs). Therefore, this analysis confirms that hypo-editing in 

AD occurs in dsRNA forming regions that are distinct from those dsRNAs differentially 

expressed in the disease. We infer that dysregulated RNA editing, which is known to 

induce aberrant immune response, and upregulated dsRNA expression may be two 

independent molecular mechanisms correlated with higher IFN in AD. 
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4.4 DISCUSSION 

We developed a pipeline to identify genome-wide dsRNAs, which can be applied to 

a wide range of diseases. Through dsRNA detection in AD, we identified 1,566 

differentially expressed dsRNAs, the majority of which were upregulated in the disease 

and positively associated with ISG expression. As RNA editing occurs in dsRNA regions, 

we further conducted differential RNA editing analysis and overlapped these loci with 

aberrantly expressed dsRNAs. We showed a global reduction in RNA editing in AD 

DLPFC and found that differential editing occurred in regions distinct from upregulated 

and downregulated dsRNAs.  

In our comprehensive identification of dsRNA-forming structures, we focused on 

long transcripts that can be targeted by dsRBP sensors for IFN response, such as MDA5. 

As expected, most dsRNAs fell into ALU elements, as ALU:ALU hybrids were reported to 

serve as the primary endogenous ligands for MDA5 activation214. Consistent with 

previous literature, we observed that the majority of dsRNAs were located in intronic and 

intergenic regions213,235. Intronic dsRNAs may have been observed in the RNA-seq data 

due to intron retention associated with the disease236. Furthermore, intron retention in AD 

often occurs within genes involved in innate immune response236. It is possible that 

retained introns harbor immunogenic dsRNAs detected by dsRBPs. In general, 

accumulation of intronic and intergenic inverted retroelements (IIIRs) can activate 

endogenous dsRNA responses including OAS3/RNase L and PKR235. These immune 

sensors, which are distinct from the MDA5 and RIG-I IFN activation pathways, act as 

monitors for nuclear RNA decay through detection of the cytosolic escape of IIIRs235. 
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Therefore, increased intron retention may be associated with multiple possible 

explanations for increased dsRNA expression observed in AD. 

Previous analyses have detected differential RNA editing in AD brains75,222,223. 

While it is possible that lower editing in AD may lead to upregulation in dsRNAs, especially 

those dsRNAs residing in ISGs, we found that differential dsRNAs did not significantly 

overlap ISGs compared to random dsRNAs (Chi-squared P = 0.29). Therefore, we 

propose that reduced RNA editing and increased expression of dsRNAs are two 

independent (or indirectly linked) processes that can both lead to IFN response observed 

in AD (Fig. 4-5). The interplay between reduced RNA editing and aberrant dsRNA levels 

is complex. For example, RNA editing and dsRNA expression dysregulation may occur 

in distinct cell types, the effects of which cannot be disentangled using bulk RNA-seq. 

Alternatively, increased dsRNA expression at certain loci may strain the editing 

machinery, such as ADAR, leading to hypo-editing in other transcripts. Furthermore, 

deciphering the complex pathways by which these dysregulated molecules activate 

innate immune response by dsRNA sensors, such as MDA5, RIG-I, PKR, and TRL3, is 

challenging237. Therefore, experimental examination of the interplay between reduced 

editing and upregulation of dsRNAs in relation to ISG expression is necessary to provide 

further mechanistic insight in the future.  

In summary, we present the first study to show globally reduced RNA editing and 

dsRNA accumulation within AD, and predict its collective impact on IFN response in the 

disease. Our work motivates future studies to examine the contribution of these two 

mechanisms to the innate immunity changes in AD.  
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4.5 METHODS 

4.5.1 dsRNA detection pipeline 

 Building upon a method to identify EERs208, we developed a pipeline to detect long 

editing enriched dsRNAs genome-wide. Our dsRNA detection pipeline included six steps 

outlined in Fig. 4-1. First, we obtained 15,683,855 human RNA editing sites from the 

REDIportal database88 for the purpose of identifying loci with clusters of editing. To this 

end, we determined EERs by implementing a 50 bp sliding window across the genome, 

and aggregating those with ≥ 3 RNA editing sites. EERs within 1 kb of each other were 

merged together. This length was chosen empirically by determining a distance that 

would allow for merging of EERs within the same transcript, but not those in separate 

transcripts. Additionally, larger merge distances yielded longer dsRNAs that would 

sacrifice downstream structure prediction accuracy by RNAfold238,239. 

 To exclude EERs that were too short for MDA5 recognition240 or too long for 

accurate structure prediction238, we next applied minimum and maximum length 

thresholds to merged EERs (Fig. 4-1). We chose to retain regions between 300 bp - 4 kb 

in length, which were cutoffs determined both empirically and from previous literature240. 

Edited dsRNAs that can be targeted by immune response proteins of interest, such as 

MDA5, must have long stem regions. These dsRBPs prefer dsRNAs > 2 kb, but can bind 

to dsRNAs as short as 300 bp in length240. Upon investigation of EER length distribution, 

we found that most EERs were < 1 kb (Fig. 4-2a). We chose a 4KB maximum length, as 

we were able to retain most EERs (>95%) with little compromise to RNAfold prediction 

accuracy168. 
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 We determined high confidence dsRNAs by applying the RNAfold software from 

the Vienna Package (v2.0)168 to all EERs. We obtained minimum free energy (MFE) 

values and dot-bracket notations for the predicted RNA secondary structures with 

highest-confidence. Dot-bracket notations were interpreted for each nucleotide of a 

dsRNA, labeling stem, loop, single stranded, and bulge regions. Only EERs with a stem 

length of at least 200 bp containing < 20% mismatches were retained as dsRNAs. 

DsRNAs were overlapped with ALUs in RepeatMasker132 and gene regions were 

annotated using ENSEMBL v99130. We calculated AMFE values by dividing RNAfold MFE 

by dsRNA length. An AMFE cutoff was determined by investigating AMFE distribution 

(Fig. 4-2d) and visualizing RNA structures with various AMFEs (Fig. 4-2e, Supplementary 

Fig. 4-1a, b). All dsRNAs with AMFE < -0.35 were retained to reach the final list of 62,008 

high-confidence dsRNAs.  

4.5.2 RNA-seq data analysis  

 We obtained stranded poly-A selected RNA-seq data from the DLPFC brain region 

of AD and controls from ROSMAP224,225. A total of 634 samples were obtained, which 

constitute the largest batch of the ROSMAP data225. The RNA-seq data were extracted 

as bam files originally mapped via STAR241. However, to maintain consistency with our 

previous methodologies41,149, we ran the bamtofastq function from BedTools (v 2.3.0)242 

to convert all reads into unmapped fastq files. The fastq files were then mapped using 

hisat2 (v 2.0.4)135, with default parameters other than not allowing discordant reads. 

Unmapped reads were re-aligned to regions enriched with editing sites that are usually 
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missed by standard mapping procedures41,87. Uniquely mapped reads were extracted and 

combined for downstream analyses. 

4.5.3 Differential dsRNA detection in AD 

 We obtained read counts for all dsRNA regions using the HTSeq software (v 

0.6.1)134. For differential analysis, we used only samples with extreme CERAD scores ‘1’ 

and ‘4’ (AD and Control, respectively) which may possess the most differences in 

expression. A total of 347 samples were retained (184 AD and 163 controls). DsRNAs 

with ≥	2 reads in 20% of the 347 samples and those with ≥ 20% difference in effect size 

(i.e. mean difference in CPM between AD and control samples) were considered for 

differential dsRNA expression analysis through the Limma-Voom software (v 3.46.0)226. 

Briefly, the model.matrix() function was used to create a linear model including sample 

condition, age, and sex. The voom() function was used to transform raw counts to logCPM 

and perform mean-variance modeling before lmFit() was applied to fit the linear model. 

Finally, the significance of differential dsRNA expression was tested using the eBayes() 

function. DsRNAs with FDR < 0.05 were defined as differentially expressed between AD 

and controls. Positive or negative log fold change values were utilized to determine 

whether a dsRNA’s expression was upregulated or downregulated, respectively, in AD. 

4.5.4 Differential dsRNA expression associated with interferon response 

All significantly upregulated dsRNAs in AD were tested for association with known 

ISGs from previous literature228. DsRNAs and IFN genes were required to be expressed 

(FPKM > 0) in at least 20% of samples. Log dsRNA FPKM was correlated to log IFN gene 
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FPKM by fitting a linear model for each ISG with normalized dsRNA expression, sex, and age 

of death of the individual sample as covariates. The square-root of the correlation (R) and P 

value of the resulting model were used to summarize the association significance. To 

visualize correlation directionality between upregulated dsRNAs and IFN response genes, 

the resulting R was made positive or negative to be consistent with the positive or negative 

dsRNA expression coefficient in the model. 

4.5.5 Differential RNA editing in AD 

 We detected RNA-DNA differences (RDDs) using our previously developed 

methodogies84,127,128. We retained loci that had at least 2 edited reads and 5 total reads 

in at least 10% of samples. These sites were referred to as “common” RNA editing sites, 

and were used for downstream analyses. 

We labeled samples as AD and Control for differential editing detection using 

CERAD scores, which is commonly used to categorize AD in the literature231,232. Those 

with CERAD scores ‘1’ and ‘2’ were categorized as AD samples, while those with ‘3’ and 

‘4’ were considered as controls. We conducted quality control (QC) procedures to ensure 

that AD and control samples did not have a significant difference in any meta data 

variables, such as age, gender, RIN, and other mapping metrics41,149 (Supplementary Fig. 

4-2). A total of 415 samples (202 AD and 213 controls) passed our QC analysis.  

We used a method previously developed in our lab that uncovers sites with 

difference in editing ratio or editing prevalence between AD and controls41,149. This 

method allows a flexible read coverage requirement to adapt to the different total read 

coverage available per site41,149. Briefly, we identified the highest coverage (C) possible 

(between ≥20, 15, or 5 reads) for each site (ei) with a minimum of 5 samples per condition. 
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Average editing level per condition (AiAD and AiControl) was calculated using samples with 

a minimum of C coverage. Samples that fulfilled lower read coverage thresholds (≥15, 

10, or 5) were considered and included in AiAD or AiControl if their inclusion did not alter the 

average editing level by > 0.03. Occasionally, an initial read coverage requirement C was 

not reached due low read coverage for too many samples. In this case, we calculated 

average editing level per condition for ei using samples with ≥5 read coverage, as long 

as 20% of samples from each condition reached this coverage requirement. Significant 

editing difference in AD and control groups were determined via Wilcoxon rank-sum tests. 

Differential editing sites were those with Wilcoxon rank-sum P < 0.05 and an effect size 

> 5%. 

Fisher’s exact tests were conducted to compare the total numbers of AD and 

control samples with non-zero editing level vs. zero editing level (using the adaptive read 

coverage requirements described above)41. Those sites with P < 0.05 and effect 

size > 5% were considered to have differential prevalence in editing between conditions.  

We calculated differential RNA editing average (DREA) per sample using the mean 

editing level across all differential editing sites with read coverage ≥ 5 reads. To determine 

the significance of overall DREA between AD and controls, Wilcoxon rank-sum test was 

conducted. A heatmap of differential RNA editing levels per sample was generated via 

the R package gplots133, similarly to that generated in our previous work149. 

4.5.6 DREA association with ISG expression 

 We calculated the association between global differential editing levels and the 

expression of ISGs. Spearman correlation was conducted between sample DREA and 
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expression levels of IFN stimulated genes228. Spearman 𝜌 coefficients and P values were 

used to evaluate correlation directionality and significance. 

4.5.7 AEI associated with AD severity 

 We conducted ordinal regression analysis between ALU editing index (AEI) and 

pathological measures in AD, including CERAD score, cognitive index, and Braak stage. 

We ran the RNAEditingIndexer234 software with default parameters to generate read 

pileups for all adenosines within each ALU region annotated by RepeatMasker132. Briefly, 

mismatches and matches (i.e. G and A in plus strand reads, respectively; C and T in 

minus strand reads, respectively) for each base within an ALU were obtained. For each 

ALU, the sum of all mismatches within its start and end coordinate was divided by the 

sum of total mismatches and matches and then multiplied by 100 to obtain AEI. ALU AEI 

values were scaled so that each ALU had mean = 0 and variance = 1 across samples. 

We conducted ordinal regression between each disease pathological measure and 

corresponding sample AEI values, including age of death and sex as model covariates. 

ALUs were required to be expressed in at least 25% of samples in each CERAD group 

to be included in the ordinal analysis. Ordinal regression was conducted using the clm() 

function in the ordinal R package243. P values and the AEI coefficient obtained from 
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ordinal regression were plotted using the ComplexHeatmap R software244. AEI 

coefficients with p-value < 1e-4 were considered significant.  

4.5.8 GO enrichment 

 GO enrichment was conducted using methodologies previously developed41,149, 

with the exception that genes matched for expression were determined via average 

expression calculated from all ROSMAP samples.   
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4.9 FIGURES  

 

Figure 4-1. dsRNA detection pipeline.  

RNA Editing sites from REDIportal were extracted (step 1) and 50bp sliding windows throughout the genome with ≥3 

editing sites were aggregated (step 2). All windows within 1KB of each other were merged (step 3), and those between 

300 bp and 4 kb where retained (step 4). We applied the RNAfold software to get dot and bracket RNA structure 

notation for each EER along with average minimum free energy (AMFE) (step 5, Methods). Dot and bracket notation 

was translated into RNA structure annotations for loop, stem, bulge, or single-stranded regions (step 5). Stable “high-

confidence” dsRNA structures were defined as those with stem length > 200bp, stem nucleotide mismatch ratio < 20%, 

and AMFE < -0.35 (step 6). 
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Figure 4-2. Overview of predicted dsRNAs.  

a, Distribution of EER length after minimum and maximum thresholds were applied (300 bp and 4 kb, respectively). b, 

Total count of EERs overlapping (or not overlapping) ALU regions, separated by applied AMFE threshold. c, Total 

count of EERs overlapping genomic regions, separated by applied AMFE threshold. Upstream and downstream labels 

refer to regions 2 kb before the transcription start site and after the transcription end site of an annotated gene, 

respectively. d, Distribution of AMFE values for all EERs (between 300 bp and 4 kb in length) tested by RNAfold. Lower 

AMFE values represent more stable dsRNA structures. e, Example dsRNA with one of the most stable structures 

according to AMFE and dsRNA stem length. 
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Figure 4-3. Differential dsRNA expression associated with IFN response.  

a, The significance and fold change (FC) of dsRNA expression in AD relative to controls, as calculated by LimmaVoom. 

Orange and purple points represent dsRNAs with significantly upregulated and downregulated expression in AD, 

respectively (adjusted p < 0.05). b, Correlation between 1,097 significantly upregulated dsRNAs in AD and expression 

of known ISGs. Correlation coefficients (R) were calculated via a linear model associating dsRNA expression to each 

ISG, including age and sex as covariates (Methods). 
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Figure 4-4. Differential AEI and functional enrichment.  

a, ALU AEI associated with all three measures for AD severity. Coefficient estimates were obtained from ordinal 

regression of each ALU’s AEI over the AD measure of interest, including age and sex as covariates. Only ALUs with 

significant correlation (P < 1e-4) in at least one AD measure are plotted. b, GO enrichment of genes with ALUs that 

were negatively or positively correlated (correlation estimate < 0 or > 0, respectively) across all AD measures and 

reached significance (P < 1e-4) for at least one AD measure.  
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Figure 4-5. Overview of dysregulated editing, dsRNA expression, and IFN response in AD.  

Reduced RNA editing and increased dsRNA expression in AD occur in separate transcripts. Nevertheless, both 

mechanisms significantly associate with increased IFN response in the disease. 
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4.10 SUPPLEMENTARY FIGURES 

 

Supplementary Figure 4-1. Example EER structures predicted by RNAfold.  

a, Example of a weak EER structure predicted by RNAfold. This region was considered unstable as the AMFE was > -

0.35 and the stem length was < 200 bp. b, Example of a predicted structure from RNAfold that passed the minimum 

requirements to be considered a “high-confidence” long dsRNA region (AMFE < -0.35, stem length > 200bp). 

 



 130 

 

Supplementary Figure 4-2. Comparison of potential confounding variables between AD and controls in 

ROSMAP.  

Biological covariates, technical covariates, and RNA-seq mapping metrics for AD and controls after completing the 

sample QC procedure (Methods). P values were calculated via the Pearson correlation and Fisher’s exact test for 

numeric and categorical covariates, respectively. 
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Supplementary Figure 4-3. Characterization of de novo RNA editing sites detected in ROSMAP.  

a, The total number of common editing sites detected for each ROSMAP sample, grouped by RNA-DNA difference 

(RDD) categories. b, Common sites in ALU regions and non-ALU regions, grouped by RDD categories. c, Distribution 

of differential sites in different genomic regions. 
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Supplementary Figure 4-4. Differential RNA editing in AD. 

 a, Summary of editing sites detected in each step of the RNA editing analysis. Top to bottom: All detected RDDs, 

common sites with non-zero editing in ≥10% of samples, sites differentially edited between AD and control, and 
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nonsynonymous protein recoding sites among the differential sites. b, Differential RNA editing average (DREA) per 

sample for all differential loci covered by least 5 reads. Wilcoxon rank sum p value is shown to evaluate difference 

between conditions. c, Hierarchical clustering of differential editing sites (rows) and samples (columns). Editing level z 

scores were calculated for each site across all samples. d, Editing levels in controls or AD of each differential protein 

recoding site. Error bars correspond to the standard error of the mean (SEM). e, GO enrichment results for all 

differentially edited genes. f, DREA association with ISG expression. Spearman correlation was utilized for 𝜌 estimates 

and to evaluate significance of association (orange: P < 0.05). 
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CHAPTER 5 - Concluding remarks 

5.1 SUMMARY 

Dysregulation of RNA editing has significant consequences in brain function and 

immunity. While the functional roles of editing have been demonstrated for a small 

number of sites, the majority of RNA editing events, especially those in noncoding 

regions, were rarely studied for their function. To fill in this gap, we carried out global 

investigation of RNA editing in SCZ and AD. We demonstrated the role of editing in 

mitochondrial dysregulation and its potential implications in SCZ-related disease 

processes. Furthermore, we identified genomic loci associated with post-transcriptional 

RNA processing, including RNA editing, that colocalized with SCZ GWAS statistics. 

Finally, we applied dsRNA detection to the neurodegenerative disorder, AD, and 

investigated the association between dsRNA expression, editing and IFN response. Our 

body of work enables an improved understanding of RNA editing in brain diseases, and 

paves ways for the development of future novel therapies. 

In Chapter 2, we identified RNA editing differences in the DLPFC of SCZ and 

control samples in four cohorts. We found a consistent pattern of reduced editing in the 

disease, and identified editing sites in various 3’UTR loci that affect mRNA abundance. 

Furthermore, we showed that differential editing is enriched in genes with mitochondrial 

functions, such as cellular respiration. Following experimental validations, we described 

novel functions of RNA editing sites in the mitochondrial gene, MFN1, which affect 

mitochondrial fission, fusion, and Cytochrome C release. 
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In Chapter 3, we examined edQTL, sQTL, eQTL in both EU and AA ancestries. 

Although shared QTL between the two ethnicities showed concordant effects on their 

targets, QTL unique to AA had significantly higher effect sizes than those unique to EU. 

These results indicate that QTL associations can be influenced by ancestral lineage, and 

should be considered in analyses of disease-specific editing or expression. We observed 

significant overlap between QTL types, although the majority of QTL were distinct. We 

highlighted a seedQTL located at rs146498205, which is also bound by AKAP1, an RBP 

known to anchor PKA to the mitochondria. Finally, we demonstrate the disease relevance 

of QTLs detected through colocalizations with SCZ, BPD, and MDD GWAS. 

 In Chapter 4, we reported dsRNAs with differential expression in AD, most of which 

were upregulated in the disease. We demonstrated the association between dsRNA 

expression and upregulated IFN response. Differentially edited loci, while demonstrating 

reduced editing in the disease, do not fall into differentially upregulated dsRNAs. We 

hypothesize that these phenomena may independently influence ISG activation. Future 

work is needed to decipher the mechanisms underlying the upregulation of dsRNAs and 

downregulation of RNA editing. 

5.2 FUTURE DIRECTIONS 

We demonstrated RNA editing detection in various large cohorts. Nevertheless, 

growing sample sizes in disease studies and rapid advances in experimental technologies 

continue to encourage deeper dives into disease pathologies. Our studies in no way 

complete the characterization of dysregulated editing in SCZ or AD, but instead, provide 

opportunities for further discoveries in brain disorders.  
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The mechanistic consequences of hypo-editing in SCZ remains to be understood. 

We speculate that reduced editing may lead to immune activation in the disease, which 

is an interesting avenue for future study. Furthermore, the dysregulation of editing in 

mitochondrial genes and its relationship to mitochondrial dysregulation in SCZ is unclear. 

Examination of functional editing sites, such as those in MFN1, represent the surface of 

a vast network of dysregulated molecular pathways that may contribute to disease 

etiology. Future investigations of noncoding and recoding sites are necessary to more 

specifically discern their functional consequences. For example, in vivo mouse models 

with differential recoding in Mfn1 may demonstrate its direct influence on mitochondrial 

dysregulation in brain function. 

RNA-sequencing in bulk tissues is not informative of cell types or cellular 

compartments that undergo aberrant editing. It is likely that cell types in the brain, 

including neuronal subtypes, tailor their RNA editomes to flexibly adapt to their specific 

functionalities or cellular environments.   Exploration of RNA editing in specific cellular 

compartments, phases, or cell types would greatly contribute to understanding the 

progression of editing dysregulation in brain diseases. Although accompanied by its own 

obstacles, RNA editing detection in single cells may allow to address many questions 

related to cell-type specific contributions to disease pathology. 

Finally, great opportunities exist in examining and characterizing RNA editomes of 

various brain regions, which are known to have distinct but equally important 

functionalities. RNA editing has been shown to have significant functionalities in synaptic 

regulation and control. However, the relationship between brain regions and the effect of 

RNA editing on their inter-play are unknown. Such challenging questions must be 
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addressed to fully understand the functionality of RNA editing in the brain and develop 

novel therapies for relevant brain disorders. 
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