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Abstract

Background: Estrogens are thought to contribute to breast cancer risk through cell cycling and 

accelerated breast aging. We hypothesize that lifetime estrogen exposure drives early epigenetic 

breast aging observed in healthy women. In this study, we examined associations between 

hormonal factors and epigenetic aging measures in healthy breast tissues.

Methods: We extracted DNA from breast tissue specimens from 192 healthy female donors to 

the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center. Methylation 

experiments were performed using the Illumina EPIC 850K array platform. Age-adjusted 

regression models were used to examine for associations between factors related to estrogen 

exposure and five DNA methylation-based estimates: Grim age, Pan-tissue age, Hannum age, 

Phenotypic age, and Skin and Blood Clock age.

Results: Women were aged 19–90 years, with 95 pre-menopausal, and 97 nulliparous women. 

The age difference (Grim age - chronologic age) was higher at earlier ages close to menarche. We 

found significant associations between earlier age at menarche and age-adjusted accelerations 

according to the Grim clock, the Skin and Blood clock, and between higher body mass index 

(BMI) and age-adjusted accelerations in the Grim clock, Hannum clock, Phenotypic clock, and 

Skin and Blood clock.

*Corresponding author: Mary E. Sehl, MD, PhD, Division of Hematology-Oncology, Department of Medicine, Department of 
Computational Medicine, UCLA David Geffen School of Medicine, 100 UCLA Medical Plaza, Suite 550, Los Angeles, CA 90095, +1 
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Conclusion: Earlier age at menarche and higher BMI are associated with elevations in DNA 

methylation-based age estimates in healthy breast tissues, suggesting that cumulative estrogen 

exposure drives breast epigenetic aging.

Impact: Epigenetic clock measures may help advance inquiry into the relationship between 

accelerated breast tissue aging and an elevated incidence of breast cancer in younger women.

Keywords

DNA methylation; epigenetic clock; aging; breast cancer; cancer risk; estrogen exposure; cell 
cycling

Introduction

Advancing age is a major risk factor for many cancers, including breast cancer. However the 

linear log-log relationship between cancer incidence and age does not hold for breast cancer 

patients (1). The concept of ‘breast tissue age’ developed by Malcolm Pike brings the age-

incidence curve of breast cancer in line with other cancers, and explains key risk factors for 

breast cancer, including early menarche, late first full-term pregnancy, late menopause, and 

post-menopausal weight (1–6). In this model, breast tissues begin an accelerated aging 

process at menarche, and there is an initial slowing of the rate of breast aging with first full 

term pregnancy, followed by a gradual slowing of this rate during the perimenopausal period 

until the last menstrual period (1). Estrogens are thought to modulate breast cancer risk 

through chronic cell cycling and breast epithelial cell mitotic activity associated with the 

normal menstrual cycle (1,7). Estrogens and progesterone/progestins together are thought to 

be associated with greater cell proliferation.

We have previously shown that DNA methylation age, estimated using the pan-tissue 

epigenetic clock (8), is elevated in normal breast tissue compared with matched peripheral 

blood samples in healthy women(9). We further found that the age difference (breast age - 

blood age) is greatest at earlier ages closest to menarche, and that this gap closes as women 

approach ages close to the menopausal transition (9). These findings suggest that chronic 

cell cycling related to cumulative exposure to either estrogen alone or the combination of 

estrogens and progesterone/progestins may contribute to epigenetic age acceleration of 

breast tissue. We hypothesize that elevations in epigenetic age beginning shortly before 

menarche and ending in the post-menopausal period are related to the same risk factors 

associated with ‘breast tissue age’ identified in the models of Pike et al. (1), including early 

age at menarche, nulliparity, late first full-term pregnancy, and body mass index (BMI). In 

this study we examine the relationship between elevations in epigenetic age of breast tissue 

and self-reported measures of lifetime exposure to estrogens and progesterone. In addition to 

the pan tissue DNA methylation age, we examine four new additional estimates of 

epigenetic age: Grim Age, Hannum Age, Phenotypic Age, and Skin and Blood Age.
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Materials and Methods

Study Population

We utilized specimens from the Susan G. Komen Tissue Bank (KTB) at the Indiana 

University Simon Cancer Center. This unique repository of breast tissue samples, donated by 

healthy women without a known history of breast cancer, is a resource to breast cancer 

researchers. Its goals are to promote an understanding of normal breast biology in order to 

better understand disruption occurring during breast carcinogenesis, and to promote breast 

cancer prevention research. Each tissue sample is richly annotated with information about 

the donor’s ethnicity, height, weight, family history, medical history, reproductive history, 

and medication use.

We requested samples from a subset of 200 healthy women donors who had fresh frozen 

breast tissue specimens available and did not have any history of breast cancer. We selected 

women from four groups: 1) pre-menopausal and nulliparous, 2) pre-menopausal and with at 

least 1 live birth, 3) post-menopausal and nulliparous, and 4) post-menopausal and with at 

least 1 live birth. This study was approved by the UCLA Institutional Review Board.

DNA extraction, bisulfite conversion, and methylation experiments

Each donor underwent six core biopsies with samples taken from the upper outer quadrant 

of one breast under local anesthesia. One of the six core biopsies for each donor was placed 

into an embedding cassette, within five minutes of procurement, and the cassettes were 

placed into 10% buffered formalin and stored at room temperature. The specimens were then 

embedded in paraffin. For the five remaining core biopsies for each donor, tissues were flash 

frozen in liquid nitrogen, then placed in labeled, chilled, cryovials, and stored in liquid 

nitrogen at −166.2 °C. 200 breast tissue samples, with 50 mg of breast tissue per sample, 

were shipped to the Neurogenetics Core Sequencing Laboratory at UCLA (UNGC).

DNA and RNA were extracted using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, 

cat # 80224). 30 mg of frozen tissue was lysed with 600 ul guanidine-isothiocyanate-

containing Buffer RLT Plus in a 2.0 ml micro centrifuge tube, and homogenized using 

TissueLyser II (Qiagen) with 5 mm stainless steel beads. Tissue lysate was continued with 

the AllPrep protocol for simultaneous extraction of genomic DNA and total RNA using 

RNeasy Mini spin column technology. Extracted DNA was then used for bisulfite 

conversion and methylation analyses.

Methylation studies were performed using the Illumina Human Methylation EPIC (850K) 

array BeadChip (Illumina, San Diego, CA). 500 ng DNA was bisulfite-converted using the 

EZ-methylation kit (Zymo Research). Upon bisulfite treatment, unmethylated are converted 

to uracils, while methylated cytosines remain unchanged. Following bisulfite conversion, the 

DNA is then hybridized to the EPIC array, using site-specific probes, designed for 

methylated and unmethylated sites respectively. Fluorescence data from the hybridized chip 

were scanned on an iScan (Illumina) and analyzed to determine the level of total methylation 

for each interrogated locus, by calculating the ratio of the fluorescent signals from the 

methylated versus unmethylated sites. A well-designed selection of samples was drawn from 

each group (pre- or post-menopausal, nulliparous vs. at least 1 live birth). DNA methylation 
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levels (beta-values) were determined by calculating the ratio of intensities between 

methylated (signal A) and un-methylated (signal B) sites. We used the “noob” normalization 

method implemented in the minfi R package (10,11). Specifically, the beta value was 

calculated from the intensity of the methylated (M corresponding to signal A) and un-

methylated (U corresponding to signal B) sites, as the ratio of fluorescent signals beta = 

Max(M,0)/[Max(M,0) + Max(U,0) + 100]. Thus, beta values range form 0 (completely un-

methylated) to 1 (completely methylated).

Epigenetic Clocks

We examined five measures of epigenetic age, estimated from weighted regression models 

using methylation values at selected CpGs from our bisulfite sequencing data. These 

measures include Grim age, based on 1030 CpGs (12), Pan-tissue age, based on the pan 

tissue clock comprised of 353 CpGs (8), Hannum age, based on 71 CpGs (13), Phenotypic 

Age, based on 513 CpGs (14), and Skin and Blood Age, based on 391 CpGs (15). All of 

these measures are strongly correlated with chronologic age. Pan-tissue age (8) was 

developed as an age estimator in multiple tissues and has been shown to be accelerated in 

various disease states (16–18), and predictive of mortality (19–21). In this study, we focused 

our analysis on Grim age, a second-generation epigenetic clock designed to be predictive of 

both health span and lifespan. The Grim age clock stands out in terms of its association with 

time to cancer and age at menopause (12,22,23). The remaining four clocks were examined 

to provide a robustness analysis to confirm association of epigenetic age estimates with 

variables we examine in this study. Supplementary Table 1 compares features of the five 

epigenetic clocks examined in our study. Measures of age acceleration for each variable are 

calculated by taking the residuals from a linear regression of each methylation age measure 

on chronologic age.

We used the minfi R function preprocessNoob perform quality control assessments. Data 

integrity were confirmed by examining the “corSampleVSgoldstandard” quality statistic for 

detecting outlying samples. For the Grim, Pan-tissue,Phenotypic, Skin and Blood clocks, 

imputation was performed using the impute.knn function based on a small subset (n=2381) 

of CpGs to fill in missing values. For the Hannum clock, missing values get omitted, as the 

coefficients in the Hannum formula are set to zero. Each of the epigenetic clock measures 

was normally distributed and did not require transformation.

Statistical Analysis

We examined the relationship between breast epigenetic age acceleration (dependent 

variable) and measures of lifetime estrogen exposure (independent variables). Four measures 

of age acceleration included Age Acceleration Residual (from Pan-tissue age), Hannum Age 

Acceleration, Phenotypic Age Acceleration, Grim Age Acceleration, and Skin and Blood 

Age Acceleration. All models were adjusted for chronologic age. Measures of lifetime 

estrogen and progesterone exposure included age at menarche, menstrual status, total 

menstrual years, gravidity, parity, age at first full term birth, breast feeding duration, and 

BMI (given the role of adipose tissue in peripheral aromatization of androgens leading to 

increased estrogen exposure in post-menopausal women), as well as variables related to 

exogenous estrogen administration including oral contraceptive use and hormone 
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replacement therapy. Total menstrual years was defined as the age difference (current age – 

age at menarche) for premenopausal women, and the age difference (age at menopause - age 

at menarche) for postmenopausal women. In addition, we examined additional covariates 

related to cancer risk including tobacco smoking (current, ever, never, and pack-years), 

alcohol use, and BMI (measured at the time of specimen collection). BMI was examined as 

a continuous variable and in categories including underweight (BMI <18.5), normal (18.5 ≤ 

BMI < 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30). Because only three women 

were characterized as underweight, we collapsed underweight and normal individuals 

(N=69) into one reference category. There were balanced numbers of individuals in the 

underweight/normal (N=72), overweight (N=55), and obese (N=65) categories. Because the 

majority of women experienced menarche from age 12–14, with 32 women reporting history 

of early menarche from 9–11 years, and 21 women reporting history of late menarche from 

15–19 years, we modeled menarche as a discrete variable. Likewise, we modeled gravidity 

and parity as discrete variables as these variables carry more information than their binary 

counterparts. We initially examined bivariate models comparing each covariate with each 

measure of age acceleration, and constructed multivariate models using all variables found 

significant in the bivariate analyses. In multivariate analyses, we excluded variables where 

only a small number of individuals were present in the high risk category (e.g. ethnicity and 

heavy tobacco smoking). In order to examine whether associations between hormonal 

factors and breast epigenetic age differ for pre- and post-menopausal groups, we performed 

additional analyses, stratified by menopausal status. We use a p-value cutoff of 0.05 to test 

for significance in our main analysis focused on Grim age as outcome. Because the 

epigenetic clocks in our robustness analysis are not independent, and a Bonferonni 

correction for 5 clocks would be overly conservative, we adjusted for multiple testing using 

a Bonferroni correction of 0.05/2.

Results

Table 1 reveals the demographic and clinical characteristics of our study sample. Women 

were aged 19–90 years of age, with an average age of 50.7 ± 12 years. All of the women in 

our sample were white, and the majority were non-Hispanic (N=183), with 9 Hispanic 

women. Donors aged 50 years and over were more likely to have ever smoked tobacco 

(36%, compared with 26% of women under 50 years), and those who smoked did so for a 

longer number of years on average (18 years, compared with 12 years for women under 50 

years) and smoked more cigarettes per day. Women in both age groups had comparable 

percentages of women who currently drink any alcohol (68% young vs. 67% older women. 

However, women aged over 50 years who drank had more drinks per week.

Difference between epigenetic age and chronologic age

The raw age difference (Grim age - chronological age) is significantly higher with younger 

age (β = −0.34 per year of age, p<0.0001). This difference is also higher in pre-menopausal 

women (β = 5.9, p<0.0001) compared with post-menopausal women. Likewise, the age 

difference (Pan-tissue age - chronologic age) is higher with younger age (β = −0.33 per year 

of age, p<0.0001) and in pre-menopausal women (β = 5.2, p<0.0001). These findings are 

visualized in Figure 1.
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Epigenetic age acceleration is associated with earlier age at menarche and higher BMI

Because measures of lifetime estrogen exposure are strongly correlated with chronologic 

age, we need to examine an age-adjusted measure of epigenetic acceleration. Supplementary 

Table 2 reveals results of our bivariate analysis examining associations between each 

measure of epigenetic age acceleration and each predictor variable of interest. Figure 2 

shows the association of age at menarche with each of the age-adjusted measures of 

epigenetic age acceleration. We found that earlier age at menarche was associated with a 

higher degree of age-adjusted acceleration of the Grim and Skin and Blood clocks.

Elevated BMI is significantly associated with age-adjusted acceleration in Grim age, as well 

as Hannum, Phenotypic, and Skin and Blood clocks. Figure 3 reveals the association of BMI 

with each epigenetic acceleration measure. When we examine BMI as a categorical variable, 

we find that being overweight and obese are both significantly associated with age-adjusted 

acceleration in the Grim age clock (see Supplementary Table 2). In addition, being 

overweight is significantly associated with acceleration of the Phenotypic age clock, and 

obesity is significantly associated with acceleration in the Hannum, Phenotypic, and Skin 

and Blood clocks. Hannum and Skin and Blood age were accelerated in overweight 

individuals, although these findings were of borderline significance.

In our full sample, we did not identify significant associations between epigenetic age 

acceleration and gravidity and parity (see Supplementary Table 2). Exogenous estrogen was 

not significantly associated with elevation in age-adjusted epigenetic age acceleration 

measures. While women who take post-menopausal hormone replacement therapy had 

higher age-adjusted acceleration in both Grim age and Pan-tissue age (see Supplementary 

Table 2), these findings were not significant. We found that age-adjusted acceleration in Pan-

tissue age was higher in nulliparous women, women with higher age at first full term birth, 

and earlier age at menarche, though these findings did not meet statistical significance. 

However, when we remove participants who undergo menopause early (age <45 years, 

N=27), we find that age at menarche is significantly associated with age-adjusted 

acceleration in Pan-tissue age (β=−0.43 for each year of age of later menarche, p=0.023).

Results of multivariate regression models examining factors associated with epigenetic age 

are shown in Table 2. We included three covariates for which significant associations were 

found with any of the measures of epigenetic age: chronologic age, BMI (categorical 

variable), and age at menarche. In multivariate models, being overweight or obese remained 

significantly associated with Grim age, as well as Hannum age, Phenotypic age, and Skin 

and Blood age. Women with earlier age at menarche had a higher degree of acceleration in 

Grim age, as well as Skin and Blood age, although in multivariate models, these associations 

were now of borderline significance. After adjustment for multiple comparisons, we find 

that being overweight or obese is significantly associated with acceleration in Grim age, 

while being obese is associated with acceleration in Hannum, Phenotypic, and Skin and 

Blood age.
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Differential effects of hormonal factors on breast epigenetic age acceleration based on 
menopausal status

Because the association of BMI with breast cancer risk differs for pre- and post-menopausal 

women, we examined factors associated with breast epigenetic age acceleration in separate 

analyses stratified by menopausal status. Supplementary Table 3 reveals the results of 

bivariate analyses performed in pre-menopausal and post-menopausal women separately. 

Table 3 reveals results of multivariate analyses, stratified by menopausal status, with models 

adjusted for age at menarche and BMI (categorical). We found that both having earlier age at 

menarche and being overweight were significantly associated with acceleration in Grim age 

in premenopausal women, whereas in post-menopausal women, being obese was 

significantly associated with acceleration in Grim age. Additionally, in pre-menopausal 

women, being overweight or obese was associated with acceleration in Hannum age and 

being overweight was associated with acceleration Phenotypic age. For post-menopausal 

women, obesity was associated with acceleration in Phenotypic age.

Discussion

This is the one of the first and largest studies of normal breast tissue examining epigenetic 

age estimates. We have confirmed that epigenetic age acceleration in healthy breast is 

highest at earlier ages. We have identified factors associated with the degree of epigenetic 

age acceleration, including earlier age at menarche, and BMI. Because age at menarche did 

not remain significant after adjustment for body mass index in multivariate analyses of our 

full population, the association between earlier age at menarche and epigenetic clock 

estimates is likely driven by BMI. However, in additional multivariate analyses stratified by 

menopausal status, both earlier age at menarche and BMI are significantly associated with 

acceleration in Grim age in pre-menopausal women. These findings suggest that estrogen 

exposure from early menarche may drive chronic cell cycling and accelerated breast aging 

during pre-menopause. Notably, in premenopausal women, higher BMI is inversely 

associated with breast cancer risk, whereas in our study we find that methylation-based 

aging markers are higher in premenopausal women with higher BMI. Because elevated BMI 

is not thought to substantially raise the estrogen levels above the level at which proliferation 

is further affected in premenopausal women, our findings suggest that BMI mediates 

increased breast cellular aging through additional mechanisms, such as inflammation. By 

contrast, in post-menopausal women, a major source of estrogen comes from peripheral 

aromatization of androgens, and higher BMI is thought to contribute substantially to 

estrogen exposure. Thus, a combination of increased estrogen exposure and chronic cell 

cycling, as well as inflammation, may contribute to accelerated breast aging in post-

menopausal women.

Our finding that earlier age at menarche is associated with accelerated aging in breast is 

consistent with a recent study demonstrating that Pan-tissue age acceleration in peripheral 

blood was associated with faster pubertal development in girls (24). Recent studies have 

shown that comparing breast tumor tissues of very young women (age ≤ 35 years) with those 

of older women, the age difference (Pan-tissue age - chronologic age) is higher in breast 

tumor tissue from younger women with breast cancer (25). These findings, taken together 
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with our finding that the difference (Pan-tissue age - chronologic age) is higher at younger 

ages, suggest that accelerated epigenetic aging may drive breast carcinogenesis in young 

women.

The highest degree of acceleration in breast methylation age occurs at earlier ages closer to 

menarche and we hypothesize that accelerated breast aging contributes to pre-menopausal 

breast cancer risk. While we observe in our study that the age difference (breast age -

chronologic age) approaches zero as healthy women reach the age of the menopausal 

transition, there are a population of postmenopausal women in our study who have 

persistently high breast epigenetic age relative to their chronologic age. We hypothesize that 

these women may be at higher risk of developing post-menopausal breast cancer. Further 

studies with long-term follow up are needed to investigate these questions.

Our finding that elevated BMI is associated with several age-adjusted epigenetic age 

acceleration measures is consistent with previous studies showing obesity is associated with 

acceleration in Pan-tissue age in fatty liver tissue (16) and peripheral blood (26), as well as 

previous findings that higher BMI is associated with intrinsic and extrinsic epigenetic age 

acceleration (27) and Grim Age acceleration (12) in peripheral blood. Studies have shown 

that BMI is associated with higher breast cancer risk in postmenopausal women (28), and 

that epigenetic age of breast is observed in normal breast tissue of luminal breast cancer 

patients (29), raising the question whether accelerated epigenetic aging of breast tissue 

mediates this risk. Notably, the influence of BMI on postmenopausal breast cancer risk is 

greater in women with greater familial risk (28). A recent study demonstrated that age-

adjusted breast tissue aging, a measure estimated using the Pike model, carries different 

associations with breast cancer risk by family history and breast density (30). Further studies 

are needed to investigate the link between BMI, accelerated breast aging, and breast cancer 

risk, particularly in women at high familial risk of breast cancer.

An important limitation of our study is the restriction of our analyses to an all white sample 

of women. Future studies are needed to examine the relationship between breast aging and 

hormonal factors in more diverse racial groups. These proposed studies are feasible as 

diverse groups of donors are well-represented in the Komen Tissue Bank. Cross-sectional 

studies are limited in their ability to examine for causal relationships between accelerated 

breast aging and duration of exposure to a risk factor, such as time since menarche. 

Prospective studies are needed to examine for longitudinal changes in accelerated breast 

aging associated with variables such as time since menarche. Another limitation is the lack 

of information on the type and formulation of hormonal medication, both for oral 

contraceptives and hormone replacement, as these were not always specified in patient 

survey responses. Different formulations have been shown to have different effects on the 

breast, and follow up studies are needed to examine epigenetic changes in the breast by 

exogenous hormone type. A further limitation is the use of biomarkers that were developed 

in peripheral blood. While the Pan-tissue clock was developed in multiple tissues and cell 

types, and has shown to be associated with chronologic age across multiple tissues including 

breast (8), the Hannum, Phenotypic, and Grim clocks were all developed in peripheral 

blood. Hannum age was developed in peripheral blood, using an elastic net regression for 

selection of a set of markers that were highly predictive of chronologic age (13). Phenotypic 
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Age is estimated by formulating a weighted composite of ten clinical characteristics known 

to be associated with mortality and regressing that phenotypic measure on CpGs (14). Grim 

Age was developed by a regression of time-to-death on DNA methylation-based surrogate 

biomarkers of smoking pack-years and a selection of plasma proteins previously associated 

with mortality or moribidity (12). Skin and Blood Age was developed as an age estimator in 

multiple cell types, including human fibroblasts, keratinocytes, buccal cells, endothelial 

cells, lymphoblastoid cells, skin, blood, and saliva samples (15). All of these clocks show a 

significant correlation with chronologic age in breast tissue (see Supplementary Figure 1).

In our study, as demonstrated in other epigenetic studies, we note that even the most 

consistent associations (e.g. epigenetic age and chronologic age, epigenetic age and BMI) 

vary across the five epigenetic clock measures examined. In addition to being derived using 

different methods, each epigenetic clock captures different features of the aging process. 

Supplementary Table 1 describes the comparative features of each of the clocks. We focused 

our analysis on Grim age, as it is most strongly correlated with lifespan and healthspan, and 

it has been shown to be predictive of time to cancer. The other four clocks were examined as 

a robustness analysis to confirm whether the direction and strength of the association agreed 

with that of the Grim clock. For example, the Grim clock and the Phenotypic clock were 

designed as mortality risk predictors while the Hannum and Skin and Blood clocks were 

designed as predictors of chronologic age. In spite of these contrasting and complementary 

features, the Hannum, Phenotypic, and Skin and Blood clocks all confirmed that higher BMI 

was associated with accelerated breast aging in multivariate analyses.

In normal breast tissue, myeloid and lymphoid cells are present in lobules, while cytotoxic T 

cells, CD4 T cells, B cells, and dendritic cells are integrated in the ductal epithelium. While 

Grim, Phenotypic, and Hannum ages correlate with age-related changes in cell composition, 

correcting for estimated cell-specific composition carries the risk of eliminating informative 

signals. For example, Grim and Phenotypic age capture aspects of inflammation that may be 

relevant to breast aging and risk of carcinogenesis. Future studies are needed to examine 

whether Grim age and other clocks differ for cells that compose breast tissue, including 

ductal epithelial cells, myoepithelial cells, and immune cells within the breast.

Global methylation analyses in peripheral blood demonstrate a relationship between 

epigenetics and breast cancer risk. A recent study compared peripheral blood epigenetic 

patterns of 440 women in the EPIC-Italy with 440 unaffected women (31). Global 

methylation analysis revealed an epigenetic signature associated with a 5% increase in breast 

cancer risk for 1 year longer lifetime estrogen exposure. Pathways identified in this analysis 

include genes associated with cell-cell adhesion (CTTNA2), interaction with receptor 

tyrosine kinase signaling (GRB10), tumor suppressor genes (RPH3AL), and long non-

coding RNA that binds RNA and may be involved in cancer progression (TINCR) (31). 

Future studies are needed to examine global methylation studies in breast to identify 

pathways associated with lifetime estrogen exposure.

Our findings lend support to the hypothesis that cumulative estrogen exposure is associated 

with elevations in breast epigenetic aging, as measured by a variety of epigenetic clocks. We 

further identify an association between BMI and accelerated breast epigenetic aging, which 
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raises questions about the role of adipose and chronic inflammation in breast aging and 

carcinogenesis. Understanding biological pathways that underlie accelerated aging in breast 

tissue will aid in the development of prevention and therapeutic strategies (32). Further 

studies are needed to examine how gene expression patterns change with methylation 

patterns, whether accelerated aging is dramatically elevated in women at high risk for breast 

cancer, and to test whether the identification of accelerated aging signatures may play a role 

in earlier breast cancer detection and prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Difference between estimated epigenetic age and chronological age, by age and 
menopausal status.
The raw age difference (estimated epigenetic age - chronological age) is significantly higher 

with younger age, for both Grim age (Panel A) and Pan-tissue age (Panel B). Regression 

lines demonstrate the linear relationship between this difference and chronologic age. The 

difference (estimated epigenetic age - chronologic age) is also higher in pre-menopausal 

women compared with post-menopausal women for both Grim age (Panel C) and Pan-tissue 

age (Panel D). These bar plots demonstrate the mean value (y-axis) and one standard error, 

with p-values from the results of a non-parametric group comparison test (Kruskal-Wallis).
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Figure 2. Relationship between age at menarche and age-adjusted measures of epigenetic age 
acceleration.
Earlier age at menarche is significantly associated with a higher degree of age-adjusted 

acceleration of the Grim (Panel A), and Skin and Blood (Panel E) clocks.
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Figure 3. Relationship between BMI and age-adjusted measures of epigenetic age acceleration.
Elevated BMI is significantly associated with age-adjusted acceleration in Grim age (Panel 

A), Hannum (Panel C), Phenotypic (Panel D), and Skin and Blood (Panel E) clocks.
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Table 1.

Characteristics of the study sample

Age < 50 years
N=89

Age ≥ 50 years
N=103

p-value

Demographics

 Age (years), mean (SD) 40.8 (7.7) 59.3 (7.1) <0.0001

 Ethnicity, No. (%)

  Hispanic 3 (3) 6 (6) 0.64

 Tobacco Smoking

  Ever smoked, No. (%) 16 (26) 37 (36) 0.009

  Years smoked, mean (SD) 12 (8.5) 18 (12) 0.035

  Current smoker 7 (8) 4 (4) 0.38

  Cigarettes per day

   1–10 9 (10) 18 (17) 0.042

   11–20 10 (11) 12 (12)

   21–40 1 (1) 8 (8)

   41–60 0 (0) 2 (2)

 Alcohol Use

  Currently drink, No. (%) 61 (68) 69 (67) 0.94

  Drinks per week

   <1 1 (1) 7 (7) 0.017

   1–7 51 (57) 42 (41)

   14–21 9 (10) 20 (19)

   >21 1 (1) 0

 Ashkenazi Jewish, No. (%) 2 (2) 2 (2) 1

 Body mass index, mean (SD) 28.2 (7.3) 28.8 (6.5) 0.57

  Underweight, No. (%) 1 (1) 2 (2)

  Normal, No. (%) 44 (46) 25 (26)

  Overweight, No. (%) 28 (29) 27 (28)

  Obese, No. (%) 22 (23) 43 (44)

 Gail score*, mean (SD) 19.1 (39) 15.5 (36) 0.52

Gynecological history

 Age at menarche (years), mean (SD) 12.79 (1.6) 12.77 (1.6) 0.93

 Postmenopausal, No. (%) 8 (9) 89 (86) <0.0001

 Age at menopause (years, mean (SD) 36.7 (7) 47.4 (7) 0.008

 Total menstrual years (years, mean (SD) 27.5 (8) 35.4 (7) <0.0001

Reproductive history

 Gravidity

  0 40 (45) 46 (45) 0.26

  1 8 (9) 13 (13)

  2 15 (17) 26 (25)
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Age < 50 years
N=89

Age ≥ 50 years
N=103

p-value

  3 14 (16) 11 (11)

  4+ 12 (13) 7 (7)

 Parity

  0 40 (45) 54 (52) 0.39

  1 5 (6) 12 (12)

  2 25 (28) 20 (19)

  3 12 (13) 12 (12)

  4+ 4 (4) 5 (5)

Age at first live birth, years mean (SD) 27.3 (5.3) 26.1 (4.8) 0.24

Breastfeeding

 Ever, No. (%) 36 (40) 35 (34) 0.44

 Total months, mean (SD) 14 (13) 20 (13) 0.26

Hormonal Therapy

 Ever, No. (%) 1 (1) 44 (43) <0.0001

Birth control,

 No. (%) 22 (25) 8 (8) 0.0025

*
Gail score is estimated risk for breast cancer based on age, first menstrual period, age at first live birth, first-degree relatives with breast cancer, 

previous breast biopsy, race, and ethnicity.
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