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Abstract

Among Atlantic scleractinian corals, species diversity is highest in the Caribbean, but low diversity and high endemism are
observed in various peripheral populations in central and eastern Atlantic islands and along the coasts of Brazil and West
Africa. The degree of connectivity between these distantly separated populations is of interest because it provides insight
into processes at both evolutionary and ecological time scales, such as speciation, recruitment dynamics and the
persistence of coral populations. To assess connectivity in broadly distributed coral species of the Atlantic, DNA sequence
data from two nuclear markers were obtained for six coral species spanning their distributional ranges. At basin-wide scales,
significant differentiation was generally observed among populations in the Caribbean, Brazil and West Africa. Concordance
of patterns in connectivity among co-distributed taxa indicates that extrinsic barriers, such as the Amazon freshwater plume
or long stretches of open ocean, restrict dispersal of coral larvae from region to region. Within regions, dispersal ability
appears to be influenced by aspects of reproduction and life history. Two broadcasting species, Siderastrea siderea and
Montastraea cavernosa, were able to maintain gene flow among populations separated by as much as 1,200 km along the
coast of Brazil. In contrast, brooding species, such as Favia gravida and Siderastrea radians, had more restricted gene flow
along the Brazilian coast.
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Introduction

The ability to disperse over long distances and maintain

connectivity over large geographical areas has important reper-

cussions for the population dynamics of a species. Over ecological

time scales, connectivity contributes to the persistence of

populations [1,2,3], as the influx of migrants from neighboring

healthy ecosystems can buffer mortality due to local disturbances.

Large populations are expected to preserve more genetic variety

than smaller populations which are susceptible to loss of genetic

diversity through the effects of genetic drift [4]. Populations

interconnected by regular dispersal and gene flow can behave as

large populations and bypass the negative effects of drift. On the

other hand, isolated populations can become locally adapted and

the origination of new species can occur over evolutionary time

scales [5,6], contributing to the overall diversity of a region.

Peripheral populations, those found towards the edges of a species

range, are more likely to have reduced numbers of individuals and

lower genetic diversity because they are isolated from the central

core and because they are found at the environmental limits of the

species range [7]. Understanding connectivity with respect to

peripheral populations can provide insight into (1) how these

populations are able to persist despite withstanding suboptimal

conditions and (2) whether they can contribute evolutionary

novelty and distinctiveness to the overall population.

Many marine organisms have broad geographical distributions,

but it is unclear whether these distributions reflect the ability to

maintain frequent long-distance dispersal or if populations are

fragmented across their range. In the Atlantic, the most extensive

and diverse tropical reef ecosystems are found in the Caribbean

Sea, but reefs with low overall species richness yet high endemism

are also found along the coast of Brazil, on mid-Atlantic islands

and in West Africa [8,9,10]. Species whose distribution spans the

Atlantic provide an interesting natural experiment to explore

basin-scale dispersal in benthic marine organisms and the role of

peripheral populations in the evolution of biodiversity.

Dispersal in benthic marine organisms can be achieved in

various ways. Long-lived pelagic larvae are capable of traversing

hundreds of kilometers [11] either by feeding in the water column

or by relying on nutritional resources imparted by the parents.

Rafting of recruits or adults on floating debris [12] also allows

organisms to colonize distant locations. Habitat preferences also

play a role [13], and species able to survive in a wide range of

environments or whose habitat is large and continuous may

maintain dispersal over long distances despite shorter larval

durations, because dispersal can be achieved as a series of smaller

steps. Oceanographic currents can either aid or prevent dispersal

of larvae. Physical properties of water masses affect larval survival,

and dispersal may be limited by temperature, salinity or nutrient

content [14]. Dispersal can also be limited by the absence of
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suitable substrate or chemical cues for settlement [15,16,17]

because successful recruitment is dependent not only on reaching a

destination, but also the ability to settle and become established.

Comparative studies across species with different reproductive

strategies and life histories can help to clarify which characteristics

contribute to successful long-distance dispersal, and whether

dispersal is limited by intrinsic characteristics of a single species

or extrinsic barriers affecting multiple species.

Corals support biodiversity in the oceans by providing the

substrate and architecture for a host of other marine species.

Understanding the processes that limit or promote dispersal in

coral species can provide insight into how and why populations

persist and evolve. Although connectivity and dispersal have been

explored for a number of co-distributed Pacific corals [18,19],

basin-scale connectivity among Atlantic corals has only been

explored among populations of one scleractinian species [20] and

one species of octocoral [21]. However, it is unclear whether the

patterns observed in these two species can be generalized to all

corals, or whether they are specific to the dispersal ability of these

two organisms. Comparative studies across multiple coral species

over similar spatial scales can help elucidate this problem.

Corals exhibit a variety of reproductive strategies, making them

an interesting group for evaluating the role of reproductive traits in

determining dispersal potential. Corals reproduce sexually either

by internal fertilization and brooding of larvae or by external

fertilization of broadcast gametes followed by development in the

water column [22]. Various traits aid long-distance dispersal, such

as larval longevity, delayed time to competency, and reproductive

output. Prolonged longevity allows larvae to be transported greater

distances, and the available nutritional resources will affect the

larva’s ability to remain alive. Large eggs, such as those observed

for many broadcasting species [23,24], or larvae harboring

zooxanthellae, such as for many brooded species [25], may have

improved chances of survival. Coral larval longevity can reach

upwards of two to three months for some species [26,27], but

many larvae will settle upon encountering suitable substrate much

sooner. Brooded larvae are more advanced in their development

when released and are competent for settling in 24–48 hours

[28,29,30]. In contrast, larvae produced from broadcast gametes

usually require 5–7 days before being capable of settling [31,32],

although shorter times to settlement competency (54–66 hours)

have also been observed in some Pacific species [33]. As time to

settlement competency increases, so does the probability of long-

distance transport of larvae.

The reproductive output of a coral species may increase its

ability for long distance dispersal, simply because the chances of

successful dispersal events increase as a greater number of

propagules are generated. The number of larvae produced by a

colony varies according to colony size, the number of eggs

produced per polyp, number of reproductive cycles per year, and

fertilization success [32]. The number of reproductive cycles per

year may be an important difference between brooding versus

broadcasting species, since the former are able to produce larvae

over several months of the year to year-round, while the latter

typically have only one to three spawning events annually

[22,23,24]. Finally, sexuality and sex ratio can also play a role in

fertilization success. Equal sex ratios, self-compatibility and

hermaphrodism may improve chances of fertilization by maxi-

mizing the possibility of successful matings. These adaptations can

be advantageous in locations were colonies are sparse or where

environmental conditions may hinder outcrossing, such as may be

expected in peripheral populations.

Species richness and regional endemism vary widely across the

Atlantic. Among the 81 species of reef-building corals found in the

Atlantic, 68 species are found in the Caribbean, 23 in Brazil and 18

in the Eastern Atlantic (Table S1). There are 12 species endemic to

either Brazil or the Eastern Atlantic (five in Brazil, five in West

Africa, and two species found in both regions) whereas 49 species

are endemic to the Caribbean. Twenty species have wide

distributions that span two or more biogeographic regions of the

Atlantic, but only nine are found across all three regions: Madracis

asperula, M. decactis, M. pharensis, Montastraea cavernosa, Porites astreoides,

Siderastrea radians, S. siderea, S. stellata and the invasive Tubastraea

coccinea. In addition, Favia fragum (Caribbean and West Africa) and F.

gravida (Brazil and West Africa) were previously considered

synonymous [34] and amphi-Atlantic, but recent work indicates

these closely related species can be distinguished on the basis of

morphology [9] and genetics [35]. It is important to note that

species lists and shared occurrences are a work in progress. The

shared occurrence of some species across biogeographic regions,

such as for Meandrina braziliensis, Siderastrea stellata, or Scolymia cubensis,

is debated among taxonomists and biogeographers (for example,

[36]). Future work that uses morphological and molecular data from

specimens collected in both regions are required to confirm

occurrences and refine estimates of endemism for each region.

Here we provide new genetic data from six coral species

together with previously published data from a seventh species;

these species have broad geographic distributions across the

Atlantic and span a range of reproductive strategies (Fig. 1). The

aim of this study was to obtain estimates of basin-wide dispersal

and connectivity for a number of Atlantic corals having a variety

of biological traits and spanning a wide taxonomic range.

Materials and Methods

DNA extraction, amplification and sequencing
Coral tissue samples were collected from colonies of six coral

species: F. fragum, F. gravida, S. siderea, S. radians, S. stellata, and P.

astreoides. Sampling took place in Panama in 2005, on the island of

São Tomé in West Africa in 2006 and in three populations

separated by .500 km in Brazil (Abrolhos, João Pessoa and

Fortaleza) in 2002 and 2007. Genomic DNA was preserved and

extracted following a protocol described previously [35]. Due to

the unusually low levels of genetic variation found in the

mitochondrial DNA of corals [37,38], only nuclear loci were

used. The intron and exon of b-tubulin and the intron of the Pax-C

gene, which have previously been shown to contain sufficient

intraspecific variation in corals for population studies [20,39], were

amplified for all species studied, with the exception of P. astreoides,

for which only b-tubulin could be amplified. For P. astreoides, the

mitochondrial control region (thought to be one of the most

variable regions of the coral mitochondrial genome) was amplified

and sequenced for 32 individuals from Panamá and Brazil, but

because all individuals contained identical nucleotide sequences at

this locus, this marker was not used for further analysis.

Amplification of the two nuclear loci was performed by

polymerase chain reaction using published primer sequences for

b-tubulin [40] and for Pax-C [39]. The thermal cycler profile had

an initial denaturation step at 94uC for 2 min, followed by 38

cycles of 94uC/45 sec, 50–58uC/45 sec for b-tubulin or 50–54uC/

45 sec for Pax-C, 72uC/90 sec, with a final extension step at 72uC
for 5 min. An additional forward primer was designed for the

amplification and sequencing of Pax-C for F. fragum (PaxFsh1: 59-

GGA GGA GCT TGC GAA TAA GA -39). Multiple bands were

amplified in P. astreoides and the Siderastrea species in b-tubulin, and

for S. siderea in Pax-C. Bands at ,750 bp and ,600 bp were

extracted and purified for products of b-tubulin and Pax-C

respectively, using the Qiaquick Gel Extraction kit (Qiagen).

Dispersal and Connectivity in Atlantic Corals
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The remaining PCR products were purified either by gel

extraction or by elution through a silica-membrane column using

the appropriate Qiaquick purification system (Qiagen).

Sequencing of all loci was performed directly on purified PCR

products for both forward and reverse directions on an ABI 3130xl

genetic analyzer with the BigDye Terminator v3.1 chemistry

(Applied Biosystems). Sequence chromatographs were viewed and

edited using the Sequencher v4.5 software (Gene Codes Corp).

Heterozygous alleles were identified by double peaks observed in

sequences from both directions. Indels were observed in the

introns of b-tubulin for S. radians (site 549) and S. siderea (site 549),

and in sequences of Pax-C for S. radians (site 134), F. fragum (site

205) and F. gravida (site 205). Because only a small number of

individuals were heterozygous for indels within any species and

indel positions were straightforward to identify, indel sites were

kept and considered in the analysis.

Analysis of sequence data
Haplotypes for heterozygous individuals were reconstructed

using PHASE v 2.1.1 [41,42]. The algorithm was run three times

for 100 iterations with ten thinning interval steps and 100 burn in

steps. The best pairs of haplotypes for each individual resulting

from the run with the highest average value for the goodness of fit

were used for each nuclear locus.

Haplotype frequencies, molecular diversity indices, tests of

neutrality, analysis of molecular variance (AMOVA) and estimates

of population differentiation were calculated using Arlequin v.3.11

[43]. Analysis of molecular variance (AMOVA) was used to estimate

levels of genetic differentiation among populations of each coral

species. One AMOVA was used to estimate differentiation among

all populations sampled in the Caribbean, Brazil and West Africa

(WST ALL). In this AMOVA, populations of F. fragum (n = 1) and F.

gravida (n = 3) were pooled to assess levels of genetic differentiation

between these two closely related species. A second AMOVA tested

for differentiation among populations within Brazil, the only region

for which multiple populations were sampled (WST BR). Estimates of

pairwise wst used distances between haplotypes. Parsimony

haplotype networks were constructed with TCS [44]. Recombina-

tion in the two nuclear loci was inferred as reticulations in the

haplotype network and tested by the four-gamete test in DnaSP

[45]. For clarity, loops were omitted from the haplotype networks

and only internal branches are shown. Due to the evidence of

recombination, analyses using a coalescent framework (which

assume no recombination) were not attempted.

Results

A total of 238 individuals across all species were sequenced for

b-tubulin and 191 for Pax-C. Haplotype counts for each species can

be found in Table S2 and the genotype for each individual is listed

in Table S3. Sequences have been deposited in Genbank (see

Table S4 for accession numbers).

Interestingly, individuals identified in the field as S. stellata in

Brazil contained alleles that were either (1) identical or had 1–2

mutations difference to alleles of S. siderea from Caribbean or West

Africa, or (2) had a combination of haplotypes identified in S.

siderea and S. radians at one or both loci. The presence of S. siderea in

Brazil has been debated [8,9,46], but these results confirm its

presence in Brazil, though morphologic differences may exist

between regions. Furthermore, the finding that some individuals

contain a combination of S. siderea and S. radians haplotypes

indicates that S. stellata could be the result of hybridization between

these two species. Although most individuals with hybrid

Figure 1. Reproductive traits of studied species: Favia fragum, Favia gravida, Porites astreoides, Siderastrea radians, Siderastrea stellata,
Siderastrea siderea and Montastraea cavernosa. Summarized from [23,24,25,32,67,68,69,70]. Images taken by F.N.
doi:10.1371/journal.pone.0022298.g001
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genotypes were found in Brazil (n = 20), one hybrid was found in

Panamá and four were found in São Tomé. Further investigation

is required to confirm the hybrid status of S. stellata. For the

purposes of this study, data collected from hybrid individuals were

kept in the analysis, but only populations of S. radians and S. siderea

were considered. Therefore, haplotypes obtained from S. stellata

were included as part of either a S. radians or S. siderea population,

depending on similarity/identity with haplotypes from those

species.

The number of alleles, unique haplotypes and segregating sites

per population are shown in Table 1, as are standard molecular

diversity indices and tests of neutrality for each species and each

locus. Gene diversity (h), which estimates the probability that two

randomly sampled haplotypes in a population are different, ranged

from 0–0.863 in Pax-C and 0.235–0.986 in b-tubulin, indicating that

while some populations are dominated by a common haplotype,

others have a large diversity of haplotypes. Nucleotide diversity (p)

ranged from 0.0009–0.0090 in Pax-C and 0.0003–0.0158 in b-

tubulin, and the average number of differences between haplotypes

of a population (k) ranged from 0.324–3.293 in Pax-C and 0.235–

10.505 in b-tubulin. The mean and standard deviation for each

molecular diversity index in each population is shown in Table 1.

Populations of S. siderea in São Tomé (West Africa) had lower

average gene diversity than populations in the Caribbean and

Brazil. Reduced gene diversity was also observed for F. gravida in

West Africa in the Pax-C locus; however, this trend was not observed

in the b-tubulin locus. S. radians and P. astreoides showed overlap in

mean values of gene diversity at both loci across Caribbean,

Brazilian and West African populations (Table 1). Mean values of

nucleotide diversity (p) and average number of differences (k)

overlap among populations for nearly all species in both loci

(Table 1), with the exception of populations of S. radians in Panamá,

which have greater values of p and k in the b-tubulin locus.

Tajima’s D and Fu’s Fs suggest that the loci used are evolving

according to neutral expectations for most populations. Two

populations (S. radians in João Pessoa and S. siderea in São Tomé)

had significantly negative values of Tajima’s D (Table 1),

suggesting deviations from neutral expectations. Negative values

of Fu’s Fs were observed for three populations of S. siderea for the

b-tubulin locus, but only the population of São Tomé also had a

significant negative value of Tajima’s D (Table 1). Fu’s Fs is

sensitive to changes in demography, and large negative values in S.

siderea are indicative of population expansion. Aside from the

exceptions mentioned above, it appears that both loci are evolving

according to neutral expectations for the remaining populations.

Significant differentiation among populations was observed for

nearly all of the studied species at both loci (WST ALL = 0.142–0.754,

p,0.05), except for P. astreoides (WST ALL = 0.026, p.0.05). The

strongest levels of differentiation were observed among the pooled

populations of F. fragum and F. gravida (Tables 2 and 3), as would be

expected for an inter-species comparison. Furthermore, there was

significant intra-regional differentiation between populations of the

brooders F. gravida and S. radians of Brazil (WST BR = 0.148–0.582,

p,0.05), but not among populations of the broadcasters S. siderea or

M. cavernosa within Brazil (WST BR = 20.026–0.018, p.0.05)

(Table 2). Significant population differentiation was observed

among nearly all pairwise comparisons (Table 3), with only a few

exceptions: (1) populations of S. siderea within Brazil were not

differentiated at both loci, (2) no significant differentiation was

observed between populations of P. astreoides in Brazil and the

Caribbean and (3) populations of Abrolhos and Fortaleza (both in

Brazil) and São Tomé in S. radians were not significantly different at

Pax-C, most likely because similar allele frequencies were observed

for two common haplotypes (SRP1 and SRP2). Haplotype

frequency pie charts were plotted for each locus and each species

on a map to illustrate differences across populations (Fig. 2). Since

individuals morphologically identified as F. fragum were observed

only in Panamá, haplotype frequencies for this population were

plotted in the same figure panel as F. gravida (absent in the

Caribbean) so that a comparison of haplotype frequencies could be

made between these two species (Fig. 2).

Statistical parsimony haplotype networks for each species and

locus are shown in Fig. 3. Networks for F. fragum and F. gravida

were plotted together to show levels of divergence among

haplotypes of the two species. Haplotype networks were typically

composed of a small number of haplotypes (H,15), although the

network for b-tubulin in S. siderea had 60 haplotypes. No loops were

observed in the haplotype networks of F. fragum and F gravida for

both loci, or in the network of P. astreoides for b-tubulin. One loop

was observed in the networks of S. radians at each locus. For S.

siderea, no loops were observed in Pax-C; however, numerous loops

were observed in b-tubulin, suggesting that in this locus, several

recombination events have occurred. The four gamete test

indicates that only a few recombination events have occurred at

each locus for most species (Rm = 0–4), except for b-tubulin of S.

siderea, where a minimum of 12 recombination events are inferred.

Recombination has also been observed in b-tubulin1 and b-tubulin2

of M. cavernosa [20]. Every haplotype network had 1–5 haplotypes

that were shared between two or more regions. Differences

between haplotypes from different regions were typically small, on

the order of one to a few mutations. There were a relatively high

proportion of private alleles (those restricted to a single population)

for each locus and species, ranging from 44–87% of the observed

haplotypes for a population. The proportion of alleles that were

observed only once was low at each locus for most species (0–

27%), except for b-tubulin in S.siderea, where 72% of haplotypes

were observed only once.

Discussion

Genetic differentiation across regions of the Atlantic
The data collected for six coral species plus an existing dataset

for Montastraea cavernosa [20] suggest that significant differentiation

is present between the Caribbean, Brazil and West Africa for most

sampled coral species. Concordance in the pattern of regional

isolation occurs at the scale of genes and species. Both nuclear

markers show consistent patterns in differentiation, and regional

differentiation across multiple species indicates that barriers to

gene flow between biogeographic regions in the Atlantic are

effective for most corals.

The most likely biogeographic barrier separating Caribbean

and Brazilian coral populations are the deltas and low salinity

waters of the Amazon, Orinoco and numerous rivers along the

coast of northern South America. The Amazon is the largest

among them, and accounts for 16% of the annual freshwater

discharge into the world’s oceans [47]. Its plume extends 200–

500 km in width [48] and is recognizable 24–32 m below the

surface [49]. The Amazon and Orinoco Rivers attained their

current drainage configuration around the Late Miocene [50],

indicating that low salinity and high sedimentation may have been

a feature of this coastal region for ,10 Ma. Approximately

2,300 km of coastline rich in soft sediment bottoms and low

salinity coastal waters between Caribbean and Brazilian reefs may

pose substantial barriers to dispersal, because the substrate near

river deltas is inadequate for coral settlement and coral larvae are

very sensitive to the changes in salinity [51] that these large river

plumes create.

Dispersal and Connectivity in Atlantic Corals

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22298



Levels of genetic differentiation between between Caribbean F.

fragum and South Atlantic F. gravida were the most pronounced

among all of the studied species (Table 2A and 3). This finding,

combined with the observation that the species do not co-occur

[9], supports the hypothesis that F. fragum and F. gravida are distinct

[35]. Only a small number of mutations separate F. fragum and F.

gravida (Fig. 3), but this may be due to the recent divergence of the

two species coupled with the slow rates of mutation observed in

corals [38].

The only species for which no significant differentiation was

observed between Caribbean and Brazilian populations was P.

astreoides. For b-tubulin (the only marker amplified for this species,

see Methods), P. astreoides has one common haplotype that is

observed both in Brazil and Panamá at similar frequencies, with all

Table 1. Molecular diversity indices and tests of neutrality for Pax-C and b-tubulin.

Na H s h p k Tajima’s D Fu’s Fs

Pax-C

F. fragum 454 bp

CA1 - Panama 32 3 2 0.619 6 0.044 0.0016 6 0.0014 0.724 6 0.555 1.535 0.886

F. gravida 454 bp

BR1 - Abrolhos 26 2 1 0.492 6 0.051 0.0011 6 0.0011 0.492 6 0.436 1.437 1.523

BR2 - João Pessoa 46 2 1 0.394 6 0.063 0.0009 6 0.0009 0.394 6 0.375 1.006 1.407

WA1 - São Tome 40 1 0 0 0 0 0 0

S. radians 367 bp

CA1 - Panama 21 5 5 0.491 6 0.127 0.0033 6 0.0024 1.210 6 0.803 20.213 20.565

BR1 - Abrolhos 14 2 4 0.528 6 0.064 0.0058 6 0.0038 2.110 6 1.250 2.232 4.844

BR2 - João Pessoa 27 5 8 0.735 6 0.059 0.0090 6 0.0053 3.293 6 1.748 1.610 2.968

BR3 - Fortaleza 20 3 5 0.653 6 0.065 0.0058 6 0.0037 2.105 6 1.225 1.511 3.402

WA1 - São Tome 44 5 8 0.571 6 0.052 0.0061 6 0.0038 2.229 6 1.253 0.896 2.316

S. siderea 366 bp

CA1 - Panama 27 8 13 0.863 6 0.035 0.0090 6 0.0053 3.288 6 1.745 20.085 0.156

BR2 - João Pessoa 29 3 4 0.493 6 0.093 0.0028 6 0.0022 1.034 6 0.710 0.041 1.676

BR3 - Fortaleza 20 5 9 0.600 6 0.101 0.0042 6 0.0029 1.542 6 0.963 21.348 20.007

WA1 - São Tome 36 2 3 0.108 6 0.068 0.0009 6 0.0010 0.324 6 0.335 21.237 0.939

b-tubulin

F. fragum 939 bp

CA1 - Panama 36 4 5 0.533 6 0.088 0.0014 6 0.0010 1.321 6 0.842 0.248 1.340

F. gravida 939 bp

BR1 - Abrolhos 38 2 1 0.235 6 0.081 0.0003 6 0.0003 0.235 6 0.278 20.020 0.455

BR2 - João Pessoa 52 3 3 0.604 6 0.034 0.0013 6 0.0009 1.190 6 0.775 1.623 2.695

WA1 - São Tome 40 3 2 0.650 6 0.038 0.0008 6 0.0007 0.788 6 0.585 1.278 1.260

S. radians 665 bp

CA1 - Panama 20 8 22 0.837 6 0.051 0.0158 6 0.0084 10.505 6 4.999 2.631 3.722

BR1 - Abrolhos 6 4 6 0.867 6 0.129 0.0048 6 0.0033 3.200 6 1.918 1.246 0.352

BR2 - João Pessoa 14 4 6 0.495 6 0.151 0.0017 6 0.0013 1.099 6 0.765 21.499 20.214

BR3 - Fortaleza 14 3 2 0.703 6 0.062 0.0013 6 0.0011 0.879 6 0.654 1.080 0.586

WA1 - São Tome 40 5 6 0.677 6 0.042 0.0021 6 0.0014 1.363 6 0.860 20.090 0.531

S. siderea 665 bp

CA1 - Panama 38 32 34 0.986 6 0.011 0.0119 6 0.0063 7.933 6 3.771 20.130 221.883

BR1 - Abrolhos 10 7 15 0.933 6 0.062 0.0087 6 0.0051 5.778 6 3.020 0.413 20.394

BR2 - João Pessoa 38 19 21 0.926 6 0.028 0.0079 6 0.0043 5.266 6 2.602 0.180 25.479

BR3 - Fortaleza 24 8 16 0.844 6 0.044 0.0062 6 0.0036 4.152 6 2.140 20.110 0.657

WA1 - São Tome 40 5 5 0.236 6 0.088 0.0005 6 0.0006 0.342 6 0.346 21.804 23.315

P. astreoides 596 bp

CA1 - Panama 24 4 10 0.728 6 0.045 0.0078 6 0.0044 4.649 6 2.361 2.455 5.884

BR2 - João Pessoa 42 4 12 0.628 6 0.041 0.0085 6 0.0047 5.087 6 2.518 2.515 8.829

Na is the number of sampled alleles, H is the number of unique haplotypes observed, s is the number of segregating sites, h is the gene diversity, p is the average
nucleotide diversity and k is the average number of nucleotide differences. Biogeographic regions are denoted as CA for Caribbean, BR for Brazil and WA for West Africa.
Statistically significant values (a= 0.05) are highlighted in bold.
doi:10.1371/journal.pone.0022298.t001
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other haplotypes being unique to each respective population (see

Fig. 3). This common haplotype may be an ancestral haplotype

that has been maintained over time in the two populations without

continued gene flow. Sequences of b-tubulin for P. astreoides have

lower variation compared to the other species, perhaps insufficient

to detect differences among populations. Additional support from

faster-evolving markers such as microsatellites is required to

determine whether continued gene flow is maintained between the

Caribbean and Brazil in this species. Alternatively, P. astreoides, a

brooder, may be able to raft or be more tolerant to freshwater and

high sedimentation.

Significant regional differentiation was also observed with

respect to West Africa (Table 3), suggesting that long distances

of open ocean may be impassable for coral larvae. The

easternmost point of Brazil and the island of São Tomé are

separated by 4,800 km. Some mid-Atlantic islands could serve as

stepping-stones for dispersal, decreasing dispersal distances by

about one half. However, it appears that even these distances are

too great to maintain gene flow or that the populations on these

islands (such as the St. Peter and Paul rocks) are too small or

ephemeral to be significant in trans-Atlantic dispersal. Interest-

ingly, the population of M. cavernosa on the island of Bermuda is

Table 2. Analysis of molecular variance (AMOVA).

A. AMOVA for all populations (WST ALL)

BROODERS

Species Favia fragum+Favia gravia Siderastrea radians Porites astreoides

Locus b-tubulin Pax-C b-tubulin Pax-C b-tubulin

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Among populations 0.925 67.2 0.576 75.44 0.962 36.77 0.187 14.21 0.067 2.61

Within populations 0.452 32.8 0.187 24.56 1.654 63.23 1.129 85.79 2.465 97.39

Fixation Index Wst 0.672 0.754 0.368 0.142 0.026

BROADCASTERS

Species Siderastrea siderea Montastraea cavernosa

Locus b-tubulin Pax-C b-tubulin 1 b-tubulin 2

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Among populations 1.090 32.74 0.210 22.59 0.492 14.22 0.682 28.71

Within populations 2.239 67.26 0.718 77.41 2.969 85.78 1.692 71.29

Fixation Index Wst 0.327 0.226 0.142 0.287

B. AMOVA for populations in Brazil (WST BR)

BROODERS

Species Favia gravia Siderastrea radians

Locus b-tubulin Pax-C b-tubulin Pax-C

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Among populations 0.362 47.85 0.056 20.8 0.936 58.17 0.228 14.84

Within populations 0.394 52.15 0.215 79.2 0.673 41.83 1.307 85.16

Fixation Index Wst 0.479 0.208 0.582 0.148

BROADCASTERS

Species Siderastrea siderea Montastraea cavernosa

Locus b-tubulin Pax-C b-tubulin 1 b-tubulin 2

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Variance
components

% of
variation

Among populations 0.045 1.79 20.015 22.55 20.015 20.86 20.012 21.29

Within populations 2.481 98.21 0.620 102.55 1.696 100.86 0.920 101.29

Fixation Index Wst 0.018 20.026 20.009 20.013

AMOVA was used to estimate levels of genetic differentiation among (A) all populations across all biogeographic regions (WST ALL) and (B) among populations within
Brazil (WST BR), the only region for which multiple populations were sampled. Note that in (A) F. fragum and F. gravida have been analyzed together to estimate
differentiation across these closely related species. Statistically significant values (a= 0.05) are highlighted in bold.
doi:10.1371/journal.pone.0022298.t002
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able to maintain connectivity with Caribbean populations despite

being separated by at least 1,000 km [20]. Presumably the fast-

moving currents of the Gulf Stream are able to maintain the influx

of larvae to Bermuda. The combined effects of distance and

physical oceanography are likely important isolating factors for

West African coral populations.

Concordance in patterns of regional connectivity in the Atlantic

is not observed in most other species of marine organisms. Four

species of sea urchins sharing similar life histories and pelagic

larval durations show markedly different patterns of differentiation

across the Atlantic. The Amazon appears to be a significant

barrier to gene flow for most species [52,53,54], but not all [55].

Multiple diagnostic mutations separate eastern and western

Atlantic populations of some urchin species [53,54], while others

maintain continued exchange across the South Atlantic [52,55].

The discordant patterns observed among sea urchins with similar

traits in reproduction and dispersal indicate that barriers to gene

flow in the Atlantic may be permeable depending on aspects other

than reproduction and pelagic larval duration.

Among reef fish, similar discordance has been observed across

species. Some species achieve high gene flow throughout the

Atlantic (Myripristis jacobus [56]), or throughout their range

(Halichoeres garnoti [57]). Others are highly differentiated [58,59],

while some display intermediate levels of gene flow between these

two extremes. Interestingly, broad adult habitat preferences

among surgeonfish of the genus Acanthurus correlates well with

dispersal ability across the Amazon, suggesting that among reef

fish, both ecology and reproduction play important roles in

dispersal potential [13].

In sum, the similarities in patterns of connectivity observed

among various coral species indicate that barriers such as the

Amazon or stretches of open ocean are likely impassible for most

Figure 3. Parsimony haplotype network for (A) F. fragum and F. gravida, (B) S. radians, (C) P. astreoides and (D) S. siderea. Haplotypes
observed in the Caribbean, Brazil and West Africa are shown as white, grey and black circles, respectively. The size of each circle reflects the frequency
that a haplotype is observed. Notches symbolize intermediate haplotypes not observed.
doi:10.1371/journal.pone.0022298.g003

Figure 2. Haplotype frequency pie charts for coral populations across the Atlantic for (A) broadcasters and (B) brooders. The three
most commonly occurring haplotypes shared between regions for each species and locus have been coded with the same color (see legend). Private
alleles for each geographic region have been binned into one category for clarity. *For M. cavernosa, ‘‘Shared Haplotype 3’’ is a sum of the
frequencies of all haplotypes shared in two of the three regions.
doi:10.1371/journal.pone.0022298.g002
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coral larvae, leading to concordance of patterns. These barriers

may be more permeable, however, for other organisms whose

ecology and life history permit dispersal at greater distances than

corals, resulting in more variable patterns of connectivity observed

in other amphi-Atlantic marine organisms.

Genetic differentiation within regions
Although patterns in inter-regional differentiation are concor-

dant among most coral species, different estimates of gene flow are

observed within regions across coral species, and the extent of gene

flow is correlated with reproductive traits. In this study, multiple

populations within a region were sampled only in Brazil. For each

species, two or three populations each separated by .500 km

across a total of 2,000 km along the coast of Brazil were sampled

for all species except F. fragum (present only in the Caribbean) and

P. astreoides, for which specimens were only taken in João Pessoa

(see Fig. 2). Strong differentiation observed at both loci between

populations of the brooder F. gravida in Abrolhos and João Pessoa

(Table 3) indicates that little exchange is occurring between

populations of this species along the coast of Brazil. Intermediate

levels of differentiation were observed for the brooder S. radians,

where AMOVA indicates that differentiation is significant between

populations within regions for both loci (Table 2), but not all

pairwise population comparisons showed significant differentiation

(Table 3). In contrast, gene flow appears to be maintained between

three populations spanning 2,000 km of Brazilian coast of the two

broadcasting corals studied, S. siderea and M. cavernosa (Table 2).

The two broadcasting species that are able to maintain gene

flow along the coast of Brazil are both gonochoric with one

reproductive cycle per year, while the two brooding species with

fragmented populations are hermaphroditic and spawn multiple

times per year (Fig. 1). Egg sizes for broadcasting M. cavernosa and

S. siderea are larger than for the brooder F. gravida, but only

marginally larger than brooding S. radians. However, the dispersing

propagules for brooders, the planula larvae, are larger than

broadcast eggs and bear zooxanthellae (Fig. 1). The findings of this

study indicate that neither the frequency of spawning nor the size

of the dispersing propagules (and associated energy reserves)

appear to provide an advantage for long distance dispersal.

Brooded larvae may allocate much of their energy reserves

towards settlement and growth rather than dispersal. Because

broadcast gametes must spend time in the water column before

being competent for settlement, their chances of being entrained in

currents that take them away from their natal reef are greater,

resulting in greater dispersal distances.

The species with the greatest population differentiation, F.

gravida, is a hermaphroditic brooder, possibly capable of self-

fertilization like its sibling species F. fragum [60]. Self-fertilization

may ensure reproductive success when population densities are

low and sperm limitation reduces chances of fertilization, but with

the disadvantage that populations may become inbred and

dominated by clonemates. Self-fertilization will also result in

apparent reduced gene flow, so at least part of the high

differentiation among populations of F. gravida could reflect

inbreeding.

Some Caribbean coral species are able to maintain gene flow

throughout the Caribbean and Bermuda, such as M. cavernosa [20]

and M. faveolata [61], but dispersal within the Caribbean is more

restricted for other species. Among the seven Caribbean corals

studied to date, gene flow is restricted to ,500 km for most species

[62]. Acropora palmata [63] and A. cervicornis [62] are able to disperse

widely, but their populations are subdivided between the eastern

and western Caribbean. Gene flow appears to be restricted to even

shorter distances for species such as Agaricia agaricites [64] and some

members of the M. annularis species complex [61,65]. All of the

aforementioned Caribbean corals are broadcasters with the

exception of A. agaricites. In agreement with findings for Brazilian

brooders, A. agaricites in the Caribbean has a more fragmented

population than broadcasting species, although studies on

additional Caribbean brooders are required to confirm the

generality of this trend.

Among Caribbean broadcasters, there are no clear explanations

for differences in dispersal ability. Dispersal ability in A. palmata

and A. cervicornis appears to be more restricted than for M. cavernosa

and M. faveolata, even though Caribbean Acropora eggs are at least

1.4 times greater in size [23]. Egg size may not be a good predictor

of dispersal ability, as nutritional reserves may be allocated for

settlement rather than survival in the water column. Most striking

is the difference in dispersal ability among closely related species

with similar reproductive traits, such as short-ranging M. annularis

and Caribbean-wide M. faveolata [61].

In the Indo-Pacific, trends in dispersal ability show even less

association with reproductive mode. A survey of nine co-

distributed species along 1200 km of the Great Barrier Reef

showed no correlation between connectivity and reproductive

mode [18]. Likewise, reproductive mode was not a good predictor

of dispersal ability among several coral populations along the GBR

and the peripheral populations on Lord Howe Island [19].

Paradoxically, species with highly different larval longevity

estimates and life history characteristics have been observed to

have similar levels of fine to meso-scale population subdivision

[66].

Determining which life history traits impart greater success in

long-distance dispersal is not straightforward. In Atlantic corals,

reproductive mode appears to provide an advantage for long-

distance dispersal, but this trend is not observed for corals in the

Indo-Pacific. These results indicate that single aspects of coral life

history, such as reproductive mode, propagule size or larval

longevity, cannot alone predict dispersal ability, and that complex

interactions of multiple factors likely play a role in determining

connectivity. In other organisms, aspects of reproduction and life

history, when taken alone, have at times also not been good

predictors of dispersal ability and connectivity. In reef fish of the

Atlantic, for example, pelagic larval duration is not a good

predictor of population connectivity [56].

While dispersal ability is an important factor for maintaining

connectivity, environmental factors also play an important role, as

migrants must also be able to adapt to the environment at a distant

reef in order to become established and contribute to gene flow.

Interactions with other organisms, such as competition for space,

can also affect successful recruitment. In sum, patterns in

connectivity are difficult to predict based on reproductive traits

alone and are likely influenced by multiple biotic and abiotic

factors.

Patterns of genetic diversity
Mean values of molecular diversity indices overlap among

regions for most coral species, although for some comparisons,

diversity appears to be lower in the peripheral populations, such as

gene diversity in S. siderea of West Africa for both loci and F. gravida

in West Africa for Pax-C (Table 1). On average, however, there

does not appear to be a strong trend in decreasing genetic diversity

towards the edges of the species range for most species.

This finding is at odds with patterns observed in populations of

the coral M. cavernosa, where genetic diversity was found to be

lower in Brazil and West Africa compared to the Caribbean [20].

Similarly, reduced allozyme allelic diversity and heterozygosity

was also found for several coral species on the isolated Lord Howe

Dispersal and Connectivity in Atlantic Corals
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Island relative to populations on the Great Barrier Reef [19] as

would be predicted by small population size and founder effects.

Peripheral populations that are isolated from the center of species

range or center of diversity may have smaller effective population

size (Ne) and can suffer loss of diversity via genetic drift. In

addition, peripheral populations colonized by a small group of

founders may only contain a subset of the full diversity of alleles

observed in the main population. However, loss of genetic

diversity in Brazil and West Africa does not appear to be a

consistent trend among the coral species studied here, or if

differences in genetic diversity exist among regions, they have not

been captured with the markers used here.

Overall, levels of polymorphism and the number of haplotypes

for the brooding species F. fragum, F. gravida, P. astreoides and S.

radians were much lower than for the broadcasters S. siderea and M.

cavernosa. For example, .40 haplotypes were observed for M.

cavernosa and S. radians, while the number of haplotypes observed

for the four brooding species ranged from 6–12. High levels of

polymorphism in M. cavernosa may have made the patterns of

reduced variation in the peripheral populations more pronounced

and readily detected. In S. siderea, decreasing trends in gene

diversity (h) are observed, but there is overlap in the mean values of

other diversity indices among the three biogeographic regions

(Table 1).

Regional differences in genetic diversity may have gone

undetected, but another reasonable alternative is that loss of

variation has occurred in peripheral populations of M. cavernosa,

but not in other species. Although regional isolation is observed for

nearly all species, the mechanisms that lead to reduced variation

may be less effective in some species relative to others. Loss of

variation resulting from genetic drift is more pronounced in

populations with small effective size (Ne). Differences in Ne between

the species may result in different rates in the loss of genetic

diversity. Founder effects may also be less pronounced if

peripheral populations have received multiple founding events.

Some of the brooding species studied have multiple mating cycles

per year and reproductive strategies that may allow them to

establish larger populations over shorter time periods, thereby

increasing Ne and buffering the loss of genetic diversity. Another

possible scenario is that historically some of the other species were

able to maintain gene flow up until more recently, while gene flow

for M. cavernosa ended a longer time in the past – subjecting the

species to a longer period of time for drift to act upon.

Conclusions
Patterns of connectivity across broad regions of the Atlantic are

congruent across multiple species of corals, suggesting that barriers

to dispersal such as the Amazon freshwater plume and the long

distances that separate the east and west South Atlantic are

effective for most coral species. At shorter, regional scales, it

appears that some aspects of reproduction such as mode of larval

development can influence gene flow, although this pattern cannot

be generalized to all scenarios. Broadcasters have greater dispersal

ability in the Atlantic, but several exceptions exist in the Indo-

Pacific, suggesting that complex interactions between biotic and

abiotic factors can limit connectivity rather than single traits of a

species. Loss of genetic diversity in peripheral populations of corals

is also not a general trend observed among all amphi-Atlantic

corals, likely due to differences in population size and timing of

isolation across species. Regional isolation may mean that the

persistence of peripheral populations relies primarily on local to

regional recruitment since migration from other regions must

occur rarely. These populations may be more vulnerable to

disturbance on ecological time scales as a result of their isolation.

On the other hand, isolated peripheral populations with small

effective population size may become the sites for local adaptation

and allopatric speciation. In both scenarios, these regions require

special attention for conservation as a result of their potential

vulnerability to environmental change, but also their importance

in generating diversity.

Supporting Information

Table S1 Coral species list for the Atlantic. Species occurrence

in each biogeographic region is indicated by an X. Total species

count for each region is found at the bottom of each column.

(PDF)

Table S2 Haplotype count for each species, locus and

population.

(PDF)

Table S3 Two-locus genotypes for sampled individuals.

(PDF)

Table S4 Genbank accession number for all sequenced

haplotypes.

(PDF)

Acknowledgments
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