
UCLA
UCLA Previously Published Works

Title
A machine learning framework for solving high-dimensional mean field game and mean
field control problems

Permalink
https://escholarship.org/uc/item/4f67w5nm

Journal
Proceedings of the National Academy of Sciences of the United States of America,
117(17)

ISSN
0027-8424

Authors
Ruthotto, Lars
Osher, Stanley J
Li, Wuchen
et al.

Publication Date
2020-04-28

DOI
10.1073/pnas.1922204117

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f67w5nm
https://escholarship.org/uc/item/4f67w5nm#author
https://escholarship.org
http://www.cdlib.org/

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A machine learning framework for solving
high-dimensional mean field game
and mean field control problems
Lars Ruthottoa,b,1 , Stanley J. Osherc,1, Wuchen Lic , Levon Nurbekyanc , and Samy Wu Fungc

aDepartment of Mathematics, Emory University, Atlanta, GA 30322; bDepartment of Computer Science, Emory University, Atlanta, GA 30322; and
cDepartment of Mathematics, University of California, Los Angeles, CA 90095

Contributed by Stanley J. Osher, March 2, 2020 (sent for review December 18, 2019; reviewed by Weinan E and George Em Karniadakis)

Mean field games (MFG) and mean field control (MFC) are crit-
ical classes of multiagent models for the efficient analysis of
massive populations of interacting agents. Their areas of appli-
cation span topics in economics, finance, game theory, industrial
engineering, crowd motion, and more. In this paper, we provide
a flexible machine learning framework for the numerical solu-
tion of potential MFG and MFC models. State-of-the-art numerical
methods for solving such problems utilize spatial discretization
that leads to a curse of dimensionality. We approximately solve
high-dimensional problems by combining Lagrangian and Eule-
rian viewpoints and leveraging recent advances from machine
learning. More precisely, we work with a Lagrangian formu-
lation of the problem and enforce the underlying Hamilton–
Jacobi–Bellman (HJB) equation that is derived from the Eulerian
formulation. Finally, a tailored neural network parameterization
of the MFG/MFC solution helps us avoid any spatial discretiza-
tion. Our numerical results include the approximate solution
of 100-dimensional instances of optimal transport and crowd
motion problems on a standard work station and a valida-
tion using a Eulerian solver in two dimensions. These results
open the door to much-anticipated applications of MFG and
MFC models that are beyond reach with existing numerical
methods.

mean field games | mean field control | machine learning |
optimal transport | Hamilton–Jacobi–Bellman equations

Mean field games (MFG) (1–5) and mean field control
(MFC) (6) allow one to simulate and analyze interac-

tions within large populations of agents. Hence, these models
have found widespread use in economics (7–10), finance (11–14),
crowd motion (15–18), industrial engineering (19–21), and, more
recently, data science (22) and material dynamics (23).

The theoretical properties of MFG and MFC problems have
been continuously developed over the last few decades (see,
e.g., refs. 24–29). A key observation is that both problems
involve a Hamilton–Jacobi–Bellman (HJB) equation that is cou-
pled with a continuity equation. From the solution of this sys-
tem of partial differential equations (PDEs), each agent can
infer the cost of their optimal action, which is why it is com-
monly called value function. In addition, the agent can obtain
their optimal action from the gradient of the value function,
which alleviates the need for individual optimization (see refs.
30 and 31 for details). We note that, due to similar conven-
tions in physics, the value function is sometimes also called a
potential.

Our framework applies to a common subclass of MFGs,
namely, potential MFGs, and MFCs. These problems can be
formulated as infinite-dimensional optimal control problems in
density space. Interestingly, their optimality conditions coincide
with the HJB and continuity equation.

Despite many theoretical advances, the development of
numerical methods for solving MFGs, particularly in high-
dimensional sample spaces, lags and has not kept pace with

growing data and problem sizes. A crucial disadvantage of most
existing approaches for solving MFGs or their underlying HJB
equations is their reliance on meshes (see refs. 32–42 and ref-
erences therein). Mesh-based methods are prone to the curse
of dimensionality, that is, their computational complexity grows
exponentially with spatial dimension (43).

In this paper, we tackle the curse of dimensionality in two
steps. First, extending the approach in ref. 44, we solve the conti-
nuity equation and compute all other terms involved in the MFG
using Lagrangian coordinates. In practice, this requires the com-
putation of characteristic curves and the Jacobian determinant of
the induced transformation; both terms can be inferred from the
value function. In our examples, the former follows the gradient,
and the logarithm of the latter can be approximated by integrat-
ing the Laplacian of the value function. Our scheme also allows
us to control and enforce the HJB equation along the character-
istics. These computations can be performed independently and
in parallel for all agents.

Second, we parameterize the value function in space and time
using a neural network that is specifically designed for an accu-
rate and efficient Lagrangian scheme. With this design, we can
also directly penalize the violation of the HJB equation. Thereby,

Significance

Mean field games (MFG) and mean field control (MFC) play
central roles in a variety of scientific disciplines such as
physics, economics, and data science. While the mathematical
theory of MFGs has matured considerably, the development
of numerical methods has not kept pace with growing prob-
lem sizes and massive datasets. Since MFGs, in general, do not
admit closed-form solutions, effective numerical algorithms
are critical. Most existing numerical methods use meshes and
thus are prone to the curse of dimensionality. Our framework
is mesh-free, since it combines Lagrangian PDE solvers and
neural networks. By penalizing violations of the underlying
Hamilton–Jacobi–Bellman equation, we increase accuracy and
computational efficiency. Transforming MFGs into machine
learning problems promises exciting opportunities to advance
application and theory.

Author contributions: L.R., S.J.O., W.L., L.N., and S.W.F. designed research; L.R., L.N., and
S.W.F. performed research; and L.R., S.J.O., W.L., L.N., and S.W.F. wrote the paper.y

Reviewers: W.E., Princeton University; and G.E.K., Brown University.y

The authors declare no competing interest.y

Data deposition: Prototype implementation written in Julia is available as open-source
software under a permissible license. Readers can access all codes, scripts, and produced
results at http://github.com/EmoryMLIP/MFGnet.jl.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: sjo@math.ucla.edu or lruthotto@
emory.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1922204117/-/DCSupplemental.y

First published April 9, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1922204117 PNAS | April 28, 2020 | vol. 117 | no. 17 | 9183–9193

http://orcid.org/0000-0003-0803-3299
http://orcid.org/0000-0002-2218-5734
http://orcid.org/0000-0002-6227-0941
http://orcid.org/0000-0002-2926-4582
http://github.com/EmoryMLIP/MFGnet.jl
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:sjo@math.ucla.edu
mailto:lruthotto@emory.edu
mailto:lruthotto@emory.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1922204117&domain=pdf

we develop a generic framework that transforms a wide range of
MFGs into machine learning (ML) problems.

In our numerical experiments, we solve high-dimensional
instances of the dynamical optimal transport (OT) problem (45,
46), a prototypical instance of a potential MFG, and an MFG
inspired by crowd motion. In OT, one seeks to find the path con-
necting two given densities that minimizes a kinetic energy that
models transport costs. As for other MFGs, there are many rel-
evant high-dimensional instances related to dynamical OT, for
example, in ML (47). We validate our scheme using comparisons
to a Eulerian method on two-dimensional (2D) instances. Most
crucially, we show the accuracy and scalability of our method
using OT and MFG instances in up to 100 space dimensions. We
also show that penalizing the HJB violations allows us to solve
the problem more accurately with less computational effort.
Our results for the crowd motion problem also show that our
framework is capable of solving potential MFGs and MFCs with
nonlinear characteristics.

To enable further theoretical and computational advances
as well as applications to real-world problems, we provide our
prototype implementation written in Julia (48) as open-source
software under a permissible license.

Related Work
Our work lies at the interface of ML, PDEs, and optimal control.
Recently, this area has received a lot of attention, rendering a
comprehensive review to be beyond the scope of this paper. The
idea of solving high-dimensional PDEs and control problems
with neural networks has been pioneered by other works (49–
51) and has been further investigated by ref. 52. In this section,
we put our contributions into context by reviewing recent works
that combine concepts from ML, OT, MFGs, and Lagrangian
methods for MFG.

OT and ML. Despite tremendous theoretical insight gained into
the problem of optimally transporting one density to match
another one, its numerical solution remains challenging, par-
ticularly when the densities live in spaces of four dimensions
or more. In small-dimensional cases, there are many state-of-
the-art approaches that effectively compute the global solution
(see, e.g., refs. 40, 42, 53, and 54 and the survey in ref. 55).
Due to their reliance on Euclidean coordinates, those techniques
require spatial discretization, which makes them prone to the
curse of dimensionality. An exception is the approach in ref. 56
that uses a generative model for computing the transport plan.
This work uses a neural network model for the density and a
Lagrangian PDE solver.

An ML task that bears many similarities to OT is variational
inference with normalizing flows (47). Roughly speaking, the
goal is to transform given samples from a typically unknown dis-
tribution such that they are approximately normally distributed.
To this end, one trains a neural network-based flow model;
hence, the name normalizing flow. The trained flow can be used
as a generator to produce new samples from the unknown distri-
bution by reversing the flow, starting with samples drawn from a
normal distribution. While the original formulation of the learn-
ing problem in normalizing flows does not incorporate transport
costs, refs. 57–59 successfully apply concepts from OT to analyze
and improve the learning of flows. The approach in ref. 59 is for-
mulated as a point cloud matching problem and estimates the
underlying densities using Gaussian mixture models. The works
(57, 58) propose neural network models for the value function
instead of the velocity of the flow, which leads to more-physically
plausible models. This parameterization has also been used to
enforce parts of the HJB equation via quadratic penalties (58).
We generalize these ideas from OT to a broader class of MFGs
that naturally incorporate transport costs. We also add a penalty
for the final time condition of the HJB to the training problem.

MFGs and ML. ML and MFGs have become increasingly inter-
twined in recent years. On the one hand, MFG theory has been
used to provide valuable insight into the training problems in
deep learning (22). On the other hand, refs. 60–62 use ML
to solve MFGs in up to four spatial dimensions. The meth-
ods in refs. 61 and 62 are limited to MFGs whose formulations
do not involve the population density, as this computation is
challenging. For the time-independent second-order problems
in ref. 62, one can express the density explicitly in terms of
the value function. Furthermore, in numerical examples for the
time-dependent case in ref. 61, the congestion terms depend
on the average positions of the population. In this situation,
the congestion term can be computed using sample averages.
Our framework does not have the above limitations and, in
particular, is applicable to MFGs where there is no analytical
formula for the density or special structure that can be used
to compute the congestion term, for example, MFGs with non-
linear congestion terms. We achieve this using the Lagrangian
formulation that includes an estimate of the density along the
agents’ trajectories. This generality is a critical contribution of
our work.

Additionally, our neural network architecture for the con-
trol respects the structure induced by optimality conditions. We
believe that this property is critical for obtaining accurate algo-
rithms that scale and yield correct geometry for the agents’
trajectories. As a result, we use our method to approximately
solve MFGs in 100 dimensions on a standard workstation.

Lagrangian Methods in MFG. To the best of our knowledge, the
first Lagrangian method for solving MFG problems appeared in
ref. 44. Lagrangian techniques are natural from an optimal con-
trol perspective and unavoidable for high-dimensional problems.
However, a crucial computational challenge in applying these
techniques in MFG stems from the density estimation, which is
critical, for example, to compute the congestion cost incurred by
an individual agent. In ref. 44, the authors overcome this diffi-
culty for nonlocal interactions by passing to Fourier coordinates
in the congestion term and thus avoiding the density estima-
tion. Our neural network parameterization aims to reduce the
computational effort and memory footprint of the methods in
ref. 44 and provides a tractable way to estimate the population
density.

Lagrangian methods for mass-transport problems in image
processing were proposed in ref. 63. While the computation
of the characteristics is mesh-free, the final density is com-
puted using a particle-in-cell method that does not scale to
high-dimensional problems.

Mathematical Modeling
This section provides a concise mathematical formulation of
MFG and MFC models and key references; for more details,
see the monographs (3, 6). MFGs model large populations of
rational agents that play a noncooperative differential game.
At optimality, this leads to a Nash equilibrium where no sin-
gle agent can do better by unilaterally changing their strategy.
By contrast, in MFC, there is a central planner that aims at a
distributed strategy for agents to minimize the average cost or
maximize the average payoff across the population. Starting with
a microscopic description of MFGs, we derive their macroscopic
equations, introduce the important class of potential MFGs, and
briefly outline MFCs.

MFGs. Assume that a continuum population of small rational
agents plays a noncooperative differential game on a time hori-
zon [0,T]. Suppose that an agent is positioned at x ∈Rd at
time t ∈ [0,T]. For fixed t , we denote agents’ population density
by ρ(·, t)∈P(Rd), where P(Rd) is the space of all probability
densities. The agent’s cost function is given by

9184 | www.pnas.org/cgi/doi/10.1073/pnas.1922204117 Ruthotto et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Jx ,t(v , ρ) =

∫ T

t

L (z (s), v(s))+F (z (s), ρ(z (s), s))ds

+G (z (T), ρ(z (T),T)),

[1]

where v : [0,T]→Rd is the strategy (control) of this agent, and
their position changes according to

∂tz (t) = v (t), 0≤ t ≤T , z (0) = x . [2]

In Eq. 1, L :Rd ×Rd→R is a running cost incurred by an agent
based solely on their actions, F :Rd ×P(Rd)→R is a running
cost incurred by an agent based on their interaction with rest
of the population, and G :Rd ×P(Rd)→R is a terminal cost
incurred by an agent based on their final position and the final
distribution of the whole population. The terms F and G are
called mean field terms because they encode the interaction of a
single agent with the rest of the population.

The agents forecast a distribution of the population,
{ρ(·, t)}Tt=0, and aim at minimizing their cost. Therefore, at a
Nash equilibrium, we have that, for every x ∈Rd ,

Jx ,0(v , ρ)≤ Jx ,0(v̂ , ρ), ∀v̂ : [0,T]→Rd , [3]

where v is the equilibrium strategy of an agent at position x .
Here, we assume that agents are small, and their unilateral
actions do not alter the density ρ.

From Eq. 3, we have that individual agents solve an optimal
control problem that has a value function

Φ(x , t) = inf
v

Jx ,t(v , ρ), s.t. Eq. 2. [4]

See Fig. 1 for an illustration of an optimal control problem. From
the optimal control theory (for details, see ref. 31, sections I.5,
I.6, and II.15 or ref. 30, section 10.3), we have that Φ solves the
HJB equation

−∂tΦ(x , t) +H (x ,∇Φ(x , t))=F (x , ρ(x , t)),

Φ(x ,T)=G(x , ρ(x ,T)),
[5]

where the Hamiltonian, H :Rd ×Rd→R, is defined as

H (x , p) = sup
v
−p>v −L(x , v). [6]

Furthermore, the Pontryagin Maximum Principle yields that the
optimal strategy for an agent at position x ∈Rd and time t ∈
(0,T] is given by the formula

v(x , t) =−∇pH (x ,∇Φ(x , t)). [7]

Assuming that all agents act optimally according to Eq. 7, the
population density, ρ̂, satisfies the continuity equation

∂t ρ̂(x , t)−∇ · (ρ̂(x , t)∇pH (x ,∇Φ(x , t)))=0,

ρ̂(x , 0)=ρ0(x),
[8]

where ρ0 ∈P(Rd) is the given population density at time t =
0. Therefore, an MFG equilibrium is a state when the antici-
pated distribution coincides with the actual distribution of the
population when everyone acts optimally; that is, ρ̂= ρ.

The above discussion suggests an alternative to optimizing the
strategy v individually for each agent. One can obtain the optimal
strategy for all agents simultaneously by solving the coupled PDE
system given by the HJB Eq. 5 and continuity Eq. 8 and then
using Eq. 7. Our work follows this macroscopic approach and
aims at reducing the immense computational challenges caused
by the high dimension of these PDEs.

Fig. 1. Illustration of a one-dimensional crowd motion problem. Initially,
the crowd of agents is distributed according to ρ0 (thick blue line) and aims
at reaching the target distribution ρ1 (red solid line) while avoiding the
dark regions in the center of the space–time domain. The blue lines marked
with arrows depict the agents’ trajectories, that is, the characteristics. The
dashed blue line depicts the push forward of the initial densities at the
final time.

Potential MFGs. Assume that there exist functionals F , G :
P(Rd)→R such that

F (x , ρ) =
δF(ρ)

δρ
(x), G(x , ρ) =

δG(ρ)

δρ
(x),

where δ/δρ is the variational derivative; that is, for a function
w ∈L2(Rd) and probability measure ρ(x)dx ∈P(Rd), we have
that

lim
h→0

F(ρ+ hw)−F(ρ)

h
=

∫
Rd

F (x , ρ)w(x)dx ,

and similarly for G.
In the seminal paper (3), Lasry and Lions observed that, in

this case, the MFG system Eqs. 5 and 8 coincides with first-order
optimality conditions of the infinite-dimensional constrained
optimization problem

inf
ρ,v

JMFG(v , ρ)

s.t. ∂tρ(x , t) +∇· (ρ(x , t)v(x , t)) = 0, t ∈ (0,T]

ρ(x , 0) = ρ0(x), x ∈Rd

[9]

whose objective functional reads

JMFG(v , ρ)=

∫ T

0

∫
Rd

L (x , v(x , t))ρ(x , t)dxdt

+

∫ T

0

F(ρ(·, t))dt +G(ρ(·,T)).

[10]

This important class of MFGs is called potential MFGs. Here,
the optimal strategies for all agents can be found simultaneously
by solving the variational problem Eq. 9. This is reminiscent
of potential games, whose Nash equilibria are critical points
of a single function that is called a potential. Remarkably, the
Lagrange multiplier associated with the constraint in Eq. 9
satisfies the HJB Eq. 5.

Ruthotto et al. PNAS | April 28, 2020 | vol. 117 | no. 17 | 9185

We use Eq. 7 to reparameterize the control in Eq. 9 and solve
the infinite-dimensional optimal control problem

inf
ρ,Φ
JMFG(−∇pH (x ,∇Φ), ρ) + CHJB(Φ, ρ) s.t. Eq. 8, [11]

where we also added a penalty term for the HJB equation that
reads

CHJB(Φ, ρ)=α1

∫ T

0

∫
Rd

C1(Φ, ρ, x , t)ρ(x , t)dxdt

+α2

∫
Rd

C2(Φ, ρ, x)ρ(x ,T)dx .

[12]

The terms penalize violations of the HJB equation in (0,T) and
at the final time and read, respectively,

C1(Φ, ρ, x , t)

= |∂tΦ(x , t)−H (x ,∇Φ(x , t)) +F (x , ρ(x , t))| [13]

C2(Φ, ρ, x) = |Φ(x ,T)−G(x , ρ(x ,T))|. [14]

Adding these terms does not affect the minimizer; however, we
show, in a numerical experiment, that it improves the conver-
gence of the discretized problem. Since we penalize the violation
of the optimality conditions of the original optimization problem,
our penalty bears some similarity with Augmented Lagrangian
methods. The square of the first term has also been used in ref.
58. Our use of the absolute value in both terms is similar to exact
penalty methods (see, e.g., ref. 64, chapter 15). Compared to
the equivalent problem Eq. 9, this formulation enforces Eq. 7
by construction, which can reduce the computational cost of a
numerical solution (see ref. 40).

MFC. Mathematically, MFC models are similar to potential
MFGs. The key difference in MFC is that a central planner
devises an optimal strategy, v :Rd × [0,T]→Rd . All agents in
the population follow this strategy in Eq. 2, resulting in individual
cost given by Eq. 1. The goal of the central player is to minimize
the overall costs obtained by replacing the running cost, F , and
final cost, G, in Eq. 11 by∫

Rd

F (x , ρ(x))ρ(x)dx and
∫
Rd

G(x , ρ(x))ρ(x)dx , [15]

respectively. This choice changes the right-hand sides in the HJB
Eq. 5 to

F (x , ρ) +

∫
Rd

δF

δρ
(ρ)(x)ρdx

and G(x , ρ) +

∫
Rd

δG

δρ
(ρ)(x)ρdx .

These terms are the variational derivatives of the running and
final congestion costs in Eq. 15, respectively. Similar to poten-
tial MFGs, finding the optimal strategy v is equivalent to
determining the value function Φ by solving Eq. 11.

Lagrangian Method
We follow a discretize-then-optimize approach, to obtain a finite-
dimensional instance of the optimal control problem Eq. 11. The
key idea of our framework is to overcome the curse of dimension-
ality by using a Lagrangian method to discretize and eliminate
the continuity Eq. 8 and all other terms of the objective. We note
that the trajectories of the individual agents in Eq. 2 are the char-
acteristic curves of the continuity equation. Hence, Lagrangian
coordinates are connected to the microscopic model and are a

natural way to describe MFGs. Using Lagrangian coordinates,
we obtain a stable and mesh-free discretization that parallelizes
trivially.

To keep the discussion concrete and our notation brief, from
now on, we consider the L2 transport costs

L(x , v) =
λL

2
‖v‖2, [16]

where λL > 0 is a fixed parameter. Using Eq. 6, it is easy to verify
that the Hamiltonian is

H (x , p) =
1

2λL
‖p‖2. [17]

We emphasize that our framework can be adapted to handle
other choices of transport costs.

We solve the continuity Eq. 8 using the method of charac-
teristics and Jacobi’s identity (ref. 65, chapter 10). Thereby, we
eliminate the density ρ by using the constraint in Eq. 11 and
obtain an unconstrained problem whose optimization variable is
Φ. Given Φ, we obtain the characteristics by solving the ordinary
differential equation (ODE)

∂tz (x , t) =−∇pH (z (x , t),∇Φ(z (x , t), t))

=− 1

λL
∇Φ(z (x , t), t)

[18]

with z (x , 0) = x . The first step is derived by inserting Eq. 7 into
Eq. 2, and the second step is specific to the H in Eq. 17. For
clarity, we explicitly denote the dependence of the characteristic
on the starting point x in the following. Along the curve z (x , ·),
the solution of the continuity equation satisfies for all t ∈ [0,T],

ρ(z (x , t), t) det(∇z (x , t)) = ρ0(x). [19]

In some cases, for example, OT, the characteristic curves do not
intersect, which implies that the mapping x 7→ z (x , t) is a diffeo-
morphism and the Jacobian determinant is strictly positive (ref.
66, lemma 7.2.1).

Solving the continuity equation using Eq. 19 requires an effi-
cient way of computing the Jacobian determinant along the
characteristics. Direct methods require, in general, O(d3) float-
ing point operations (FLOPS), which is intractable when d is
large. Alternatively, we follow refs. 57 and 58 and use the Jacobi
identity, which characterizes the evolution of the logarithm of the
Jacobian determinant along the characteristics, that is,

∂t l(x , t) =−∇ · (∇pH (z (x , t),∇Φ(z (x , t), t)))

=− 1

λL
∆Φ(z (x , t), t),

[20]

with l(x , 0) = 0. Here, the second step uses Eq. 17, ∆ is the
Laplace operator, and we denote l(x , t) = log (det (∇z (x , t))).
This way, we avoid computing the determinant at the cost of
numerical integration along the characteristics followed by expo-
nentiation (see also ref. 65). When the determinant is required,
we recommend using an accurate numerical integration tech-
nique to avoid large errors arising from the exponentiation.
However, we shall see below that many problems can be solved
using the log-determinant.

An obvious, yet important, observation is that Lagrangian ver-
sions of some terms of the optimal control problems do not
involve the Jacobian determinant. For example, using Eq. 19
and applying the change of variable formula to the first term in
Eq. 10 gives

9186 | www.pnas.org/cgi/doi/10.1073/pnas.1922204117 Ruthotto et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

∫
Rd

L (x , v(x , t))ρ(x , t)dx [21]

=

∫
Rd

L (z (x , t), v(z (x , t), t)))ρ0(x)dx . [22]

Similarly, the Lagrangian versions of the penalty Eq. 12 do not
involve the Jacobian determinant.

Using this expression, we can obtain the accumulated trans-
port costs associated with x as cL(x ,T)ρ0(x), where cL is
given by

∂tcL(x , t) =L(x ,−∇pH (x ,∇Φ(x , t)))

=
1

2λL
‖∇Φ(x , t)‖2.

[23]

Here, cL(x , 0) = 0, and, as before, the second step uses Eq. 17.
We also accumulate the running costs associated with a fixed

x along the characteristics by integrating

∂tcF(x , t) = F̂ (z (x , t), ρ(z (x , t), t), t),

where cF(x , ρ0(x), 0) = 0, and F̂ denotes the integrand obtained
by applying a change of variables to the functional. As this
computation is application-dependent, we postpone it until
Numerical Experiments.

We note that the trajectories associated with an optimal value
function Φ must satisfy the HJB Eq. 5. One way to ensure this
by construction is to integrate the Hamiltonian system as also
proposed in ref. 57. Since this complicates the use of the Jacobi
identity, we instead penalize violations of the HJB along the
characteristics using

∂tc1(x , t) =C1(Φ, ρ, z (x , t), t), c1(x , 0) = 0, [24]

where the right-hand side is given in Eq. 13. In summary, we
compute the trajectories, log-determinant, transportation costs,
running costs, and HJB violations by solving the initial value
problem

∂t

z (x , t)
l(x , t)
cL(x , t)
cF(x , t)
c1(x , t)

=

− 1

λL
∇Φ(z (x , t), t)

− 1
λL

∆Φ(z (x , t), t)
1

2λL
‖∇Φ(z (x , t), t)‖2

F̂ (z (x , t), t)
C1(z (x , t), t)

. [25]

As discussed above, z (x , 0) = x is the origin of the characteristic,
and all other terms are initialized with zero. We use the first two
components of the ODE to solve the continuity equation and
use the last three terms to accumulate the running costs along
the characteristics.

Optimization Problem. We now approximate the integrals in Eq.
11 using a quadrature rule. Together with the Lagrangian
method Eq. 25, this leads to an unconstrained optimization prob-
lem in the value function Φ, which we will model with a neural
network in ML Framework for MFGs.

Our approach is modular with respect to the choice of
the quadrature; however, as we are mostly interested in
high-dimensional cases, we use Monte Carlo integration, that is,

min
Φ

Eρ0

(
cL(x ,T) + cF(x ,T) + Ĝ(z (x ,T))

+α1c1(x ,T) +α2C2(Φ, ρ, z (x ,T))
)

,
, [26]

where the characteristics are computed using Eq. 25, and the
change of variable used to compute Ĝ is discussed in Numeri-
cal Experiments. The above problem consists of minimizing the

expected loss function, which is given by the sum of the running
costs, terminal costs, and HJB penalty.

Let x1, . . . , xn ∈Rd be random samples from the probabil-
ity distribution with density µ∈P(Rd); common choices for
µ are uniform distribution or µ= ρ0. Then, summarizing the
computations from this section, we obtain the optimization
problem

min
Φ

n∑
k=1

vk
(
cL(xk ,T) + cF(xk ,T) + Ĝ(z (xk ,T))

+α1c1(xk ,T) +α2C2(Φ, ρ, z (xk ,T))
)

,

[27]

where the quadrature weight for the measure I (g) =∫
Rd gρ0(x)dx associated with the k th sample point xk is

vk =
ρ0(xk)

µ(xk)n
. [28]

It is worth reiterating that we transformed the original opti-
mal control problem Eq. 11 in Φ and ρ to an unconstrained
optimization problem in Φ. For a given Φ, we eliminate the con-
straints by solving Eq. 25 independently for each point xk . In our
experiments, we use a fourth-order Runge–Kutta scheme with
equidistant time steps. Since the terms of the cost functions can
be computed individually, our scheme is trivially parallel.

Optimization algorithms for solving Eq. 27 can roughly be
divided into two classes: stochastic approximation (67) and sam-
ple average approximation (SAA) (68); see also the recent survey
(69). The further class contains, for example, variants of the
stochastic gradient scheme. These methods aim at iteratively
solving Eq. 26 using a sequence of steps, each of which uses
gradient information computed using a relatively small num-
ber of sample points. A crucial parameter in these methods is
the sequence of step sizes (also known as learning rate) that is
typically decaying. When chosen suitably, the steps reduce the
expected value in Eq. 26; however, it is not guaranteed that there
exists a step size that reduces the approximation obtained for the
current sample points. This prohibits the use of line search or
trust region strategies and complicates the application of second-
order methods. By contrast, the idea in SAA methods is to use
a larger number of points such that Eq. 27 is a suitable approx-
imation of Eq. 26. Then, the problem can be treated as a deter-
ministic optimization problem and solved, for example, using line
search or Trust Region methods. We have experimented with
both types of schemes and found an SAA approach based on
quasi-Newton schemes with occasional resampling most effec-
tive for solving MFG and MFC problems to high accuracy; see
SI Appendix for an experimental comparison.

ML Framework for MFGs
To obtain a finite-dimensional version of Eq. 27, we parame-
terize the value function using a neural network. This enables
us to penalize violations of the HJB Eq. 5 during training and
thereby ensure that the trained neural network accurately cap-
tures the optimality conditions. Using a neural network in the
Lagrangian method gives us a mesh-free scheme. In the follow-
ing, we give a detailed description of our neural network models
and the computation of the characteristics.

Neural Network Models for the Value Function. We now intro-
duce our neural network parameterization of the value function.
While this is not the only possible parameterization, using neural
networks to solve high-dimensional PDE problems has become
increasingly common (see, e.g., refs. 49–52). The novelty of our
approach is the design of the neural network architecture such

Ruthotto et al. PNAS | April 28, 2020 | vol. 117 | no. 17 | 9187

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental

that the characteristics in Eq. 25 can be approximated accurately
and efficiently.

Our network models map the input vector s = (x , t)∈Rd+1 to
the value function Φ(s). In the following, we denote our model
as Φ(s, θ), where θ is a vector of network parameters (also called
weights) to be defined below.

The neural network processes the input features using a num-
ber of layers, each of which combines basic operations such as
affine transformations and element-wise nonlinearities. While
the size of the input and output features is determined by our
application, there is flexibility in choosing the size of the hidden
layers, which is also called their widths. Altogether, the number,
widths, and specific design of the layers are referred to as the
network’s architecture.

Our base architecture is defined as follows:

Φ(s, θ) =w>N (s, θN)+
1

2
s>
(
A+A>

)
s + c>s + b,

θ= (w , θN , vec(A), c, b),
[29]

where, for brevity, θ collects the trainable weights w ∈Rm , θN ∈
Rp ,A∈R(d+1)×(d+1), and c ∈Rd+1, b ∈R. The function N can
be any neural network with (d + 1) input features, m output fea-
tures, and parameters θN ∈Rp . The last two terms allow us to
express quadratic value functions easily. Our approach is mod-
ular with respect to the network architecture. However, the
design of the neural network’s architecture is known to affect
its expressibility and the ease of training (see, e.g., ref. 70). It is
important to note that the use of the neural network renders Eq.
27, in general, nonconvex.

In this work, our network architecture is a residual network
(ResNet) (71). For a network with M layers and a given input
feature s ∈Rd+1, we obtain N (s, θN) = uM as the final step of
the forward propagation

u0 =σ(K0s + b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM),

[30]

where σ :R→R is an element-wise activation function, h > 0 is
a fixed step size, and the network’s weights are K0 ∈Rm×(d+1),
K1, . . . ,KM ∈Rm×m , and b0, . . . , bM ∈Rm . In our experiments,
we use the activation function

σ(x) = log(exp(x) + exp(−x)), [31]

which can be seen as a smoothed out absolute value. For nota-
tional convenience, we vectorize and concatenate all weights in
the vector θN ∈Rp . In theory, the larger the number of layers and
the larger their width, the more expressive the resulting network.
In practice, the full expressiveness may not be realized when the
learning problem becomes too difficult and numerical schemes
find only suboptimal weights. In our numerical experiments, we
found a relatively shallow network with as little as M = 1 layers
and widths of 16 to be very effective; however, this architecture
may not be optimal for other learning problems. The main dif-
ference between the forward propagation through a ResNet and
a more traditional multilayer perceptron is the addition of the
previous feature vector in the computation of u1, . . . , uM .

ResNets have been tremendously successful in a wide range
of ML tasks and have been found to be trainable even for large
depths (i.e., M � 0). By interpreting Eq. 30 as a forward Euler
discretization of an initial value problem, the continuous limit
of a ResNet is amenable to mathematical analysis (72, 73). This
observation has received a lot of attention recently and been

used, for example, to derive maximum principle (74), propose
stable ResNet variants (73), and accelerate the training using
multilevel (75) and parallel-in-time schemes (76).

Characteristics Computations. To compute the characteristic and
other quantities in Eq. 25, we need to compute the gradient and
Laplacian of Φ with respect to the input features. Perhaps the
simplest option is to use automatic differentiation (AD), which
has become a ubiquitous and mature technology in most ML
packages. We note that this convenience comes at the cost of d
separate evaluations of directional derivatives when computing
the Laplacian. While trace estimation techniques can lower the
number of evaluations, this introduces inaccuracies in the PDE
solver. Also, we show below that computing the Laplacian exactly
is feasible for our network.

We now provide a detailed derivation of our gradient and
Laplacian computation. The gradient of our model in Eq. 29 with
respect to the input feature s is given by

∇sΦ(s, θ) =∇sN (s, θN)w + (A+A>)s + c. [32]

Due to the ordering in s = (x , t), the first d component of this
gradient corresponds to the spatial derivatives of the value func-
tion, and the final one is the time derivative. We compute the
gradient of the neural network Eq. 30 in the direction w using
back-propagation (also called reverse mode differentiation),

zM =w + hK>M diag (σ′(KMuM−1 + bM))w ,

...
...

z1 = z2 + hK>1 diag (σ′(K1u0 + b1))z2,

z0 =K>0 diag (σ′(K0s + b0))z1,

[33]

which gives∇sN (s, θN)w = z0. Here, diag (v)∈Rm×m is a diag-
onal matrix with diagonal elements given by v ∈Rm , and σ′(·) is
computed element-wise.

Next, we compute the Laplacian of the value function model
with respect to x . We first note that

∆Φ(s, θ) = tr
(
E>(∇2

s (N (s, θN)w) + (A+A>))E
)

,

where the columns of E ∈R(d+1)×d are given by the first d stan-
dard basis vectors in Rd+1. Computing the terms involving A is
trivial, and we now discuss how to compute the Laplacian of the
neural network in one forward pass through the layers. We first
note that the trace of the first layer in Eq. 30 is

t0 = tr
(
E>∇s(K

>
0 diag (σ′(K0s + b0))z1)E

)
= tr

(
E>K>0 diag (σ′′(K0s + b0)� z1)K0E

)
= (σ′′(K0s + b0)� z1)>((K0E)� (K0E))1,

[34]

where � denotes a Hadamard product (i.e., an element-wise
product of equally sized vectors or matrices), 1∈Rd is a vec-
tor of all ones, and, in the last, we used that the middle term
is a diagonal matrix. The above computation shows that the
Laplacian of the first layer can be computed using O(m · d)
FLOPS by first squaring the elements in the first d columns of
K0, then summing those columns, and, finally, one inner prod-
uct. The computational costs are essentially equal to performing
one single matrix–vector product with the Hessian using AD but
produces the exact Laplacian.

9188 | www.pnas.org/cgi/doi/10.1073/pnas.1922204117 Ruthotto et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

To compute the Laplacian of the entire ResNet, we continue
with the remaining rows in Eq. 33 in reverse order to obtain

∆(N (s, θN)w) = t0 + h

M∑
i=1

ti , [35]

where ti is computed as

ti = tr
(
J>i−1∇s(K

>
i diag (σ′(Kiui−1(s) + bi))zi+1)Ji−1

)
= tr

(
J>i−1K

>
i diag (σ′′(Kiui−1 + bi)� zi+1)KiJi−1

)
= (σ′′(Kiui−1 + bi)� zi+1)>((KiJi−1)� (KiJi−1))1.

Here, Ji−1 =∇su
>
i−1 ∈Rm×d is a Jacobian matrix, which can be

updated and overwritten in the forward pass at a computational
cost of O(m2 · d) FLOPS.

To summarize the above derivations, we note that each
time step of the numerical approximation of the character-
istics involves one forward propagation (Eq. 30), one back-
propagation (Eq. 33), and the trace computations (Eq. 35). The
overall computational costs scale as O(m2 · d ·M), that is, lin-
early with respect to the input dimension and number of layers,
but quadratically with the width of the network. This motivates
the use of deep and not wide architectures.

Numerical Experiments
We apply our method to two prototype MFG instances. Here,
we give a concise overview of the problems and results and
refer to SI Appendix for a more detailed description of the prob-
lem instances and results. We perform our experiments using a
prototype of our algorithm that we implemented in the Julia pro-
gramming language (48) as an extension of the ML framework
Flux (77). Readers can access all codes, scripts, and produced
results at http://github.com/EmoryMLIP/MFGnet.jl.

Example 1: Dynamical OT. Given two densities ρ0, ρ1 ∈P(Rd), the
OT problem consists of finding the transformation y :Rd→Rd

with the smallest transport costs such that the push forward of ρ0

equals ρ1. The problem was introduced by Monge (45), revolu-
tionized by the contributions by Kantorovich (78) and Benamou
and Brenier (45). Other notable theoretical advances include
refs. 46 and 79–81.

Among the many versions of OT, we consider the fluid dynam-
ics formulation (45), which can be seen as a potential MFG.
This formulation is equivalent to a convex optimization problem,
which can be solved accurately and efficiently if d ≤ 3 (see, e.g.,
ref. 54). The curse of dimensionality limits applications of these
methods when d > 3. Approximately solving high-dimensional
OT problems is of key interest to ML and Bayesian statistics (see
some related works in ref. 58).

We model the fluid dynamic version of OT in ref. 45 as a
potential MFG by using

F(ρ) = 0, G(ρ) =λKLGKL(ρ),

where λKL > 0 is a penalty parameter, and the second term is
the Kullback–Leibler divergence, which penalizes violations of
the final time constraint ρ(·,T) = ρ1(·) and reads

GKL(ρ) =

∫
Rd

ρ(x ,T) log
ρ(x ,T)

ρ1(x)
dx

=

∫
Rd

log
ρ(z (x ,T),T)

ρ1(z (x ,T))
ρ0(x)dx

=

∫
Rd

(log ρ0(x)− l(x ,T)− log ρ1(z (x ,T)))ρ0(x)dx .

[36]

Here, the log-determinant, l , is given in Eq. 20. The variational
derivative of this loss function, which is used in the computation
of the penalty term in Eq. 14, is

GKL(x , ρ) = 1 + log(ρ(x))− log ρ1(x).

Note that the optimal control problem Eq. 11 is symmetric with
respect to the roles of ρ0 and ρ1 if and only if λKL =∞, because
we relaxed the final time constraint.

We generate a synthetic test problem that enables us to
increase the dimension of the problem with only minimal effect
on its solution. For a given dimension d , we choose the density
of the Gaussian white noise distribution as the target

ρ1(x) = ρG (x , 0, 0.3 · I).

Here, ρG(·, m,Σ) is the probability density function of a d -
variate Gaussian with mean m∈Rd and covariance matrix Σ∈
Rd×d . The initial density is the Gaussian mixture

ρ0(x) =
1

8

8∑
j=1

ρG (x , mj , 0.3 · I),

where the means of the individual terms are equally spaced on
the intersection of the sphere with radius four and the coordinate
plane in the first two space dimensions, that is,

mj = 4 · cos

(
2π

8
j

)
e1 + 4 · sin

(
2π

8
j

)
e2, j = 1, . . . , 8.

Here, e1 and e2 are the first two standard basis vectors. The 2D
instances of these densities are visualized in Fig. 2.

We perform four experiments to show the scalability to high-
dimensional instances, explore the benefits of the penalty func-
tion CHJB, compare two optimization strategies, and validate our
scheme by comparing it to a Eulerian method in d = 2, respec-
tively. The network architecture is almost exactly the same in all
cases; see SI Appendix for details.

Fig. 2. Visualization of a 2D OT experiment. (Left) The given initial density
ρ0 (Top) and its push forward at time t = 1 (Bottom). The red lines repre-
sent the characteristics starting from randomly sampled points according
to ρ0. (Right) The given target density, ρ1 (Bottom) and its pullback (Top).
The black line corresponds to the characteristics computed backward in time
from the endpoints of the red characteristics. The similarity of the images
in each row and the fact that the characteristics are almost straight lines
show the success of training. Also, since the red and black characteristics are
nearly identical, the transformation is invertible. The same color axis is used
for all plots.

Ruthotto et al. PNAS | April 28, 2020 | vol. 117 | no. 17 | 9189

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental

We show, in Fig. 2, that our network provides a meaningful
solution for the 2D instance. The performance can be seen by
the close match of the given ρ0 and the pullback of ρ1, which
is optimized as it enters the terminal costs, and the similarity of
the push forward of ρ0 and ρ1, which is computed after training.
Also, the characteristics are approximately straight. To improve
the visualization, we compute the characteristics using 4 times as
many time integration steps as used in training. A close inspec-
tion of the push-forward density also shows that the network
learns to partition the target density into eight approximately
equally sized slices, as predicted by the theory (SI Appendix,
Fig. S4).

Our method obtains quantitatively similar results in higher-
dimensional instances (d = 10, 50, 100), as can be seen in the
summary of the objective function values provided in the top
half of Table 1 and the convergence plots in SI Appendix, Fig. S5.
The values are computed using the validation sets. The table also
shows that, despite a moderate growth of the number of training
samples, the actual runtime per iteration of our prototype imple-
mentation per iteration grows slower than expected from our
complexity analysis. We use more samples in higher dimensions
to avoid overfitting. Due to the design of the problem, similar
transport costs and terminal costs are to be expected. There is
a slight increase of the terminal costs for the 50-dimensional
instances, but we note that, at least for projections onto the first
two coordinate dimensions, the image quality is similar for all
cases (SI Appendix, Fig. S4).

In our second experiment, we show that, without the use of the
HJB penalty, CHJB, the optimization can fail to match the densi-
ties and result in curved characteristics, which are not meaningful
in OT (SI Appendix, Fig. S6). Increasing the number of time steps
to discretize the characteristics, Eq. 25, improves the results;
however, the results are still inferior to the ones obtained with
the penalty, and the computational cost of training is 4 times
higher. Hence, in this example, using the penalty function, we
obtain a more accurate solution at reduced computational costs.

Our third OT experiment compares two optimization strate-
gies: the SAA approach with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method used throughout our experiments and
an SA approach with the Adam method that is common in ML.
We note that, for the 2D instance of our problem, Adam con-
verges considerably slower and is less effective in reducing the
HJB penalty at a comparable computational cost; however, both
methods lead to similar final results.

In our fourth experiment, we compare our proposed method
to a provably convergent Eulerian solver for the 2D instance.
We compare the optimal controls obtained using both methods
using an explicit finite volume solver for the continuity equation,
which was not used during the optimization. This step is essen-

Table 1. Overview of numerical results for instances of the OT
and crowd motion problem in growing space dimensions

Example

Example 1: OT
2 2,304 9.99e+00 — 7.01e-01 1.17e+00 2.038
10 6,400 1.01e+01 — 8.08e-01 1.21e+00 8.256
50 16,384 1.01e+01 — 6.98e-01 2.94e+00 81.764
100 36,864 1.01e+01 — 8.08e-01 1.21e+00 301.043
Example 2: Crowd Motion
2 2,304 1.65e+01 2.29e+00 7.81e-01 2.27e-01 4.122
10 6,400 1.65e+01 2.22e+00 7.51e-01 3.94e-01 17.205
50 9,216 1.65e+01 1.91e+00 7.20e-01 1.21e+00 134.938
100 12,544 1.65e+01 1.49e+00 1.00e+00 2.78e+00 241.727

All values were approximated using the validation points; d, space dimen-
sion; n, number of training samples; L, transport costs; F , running costs; G,
terminal costs; CHJB, HJB penalty.

tial to obtain a fair comparison. SI Appendix, Figs. S10 and S12
and Table S2 show that, for this example, our method is compet-
itive and, as demonstrated above, scales to dimensions that are
beyond reach with Eulerian schemes.

Example 2: Crowd Motion. We consider the motion of a crowd
of agents distributed according to an initial density ρ0 to the
desired state ρ1. In contrast to the OT problem, the agents trade
off reaching ρ1 with additional terms that encode their spatially
varying preference and their desire to avoid crowded regions.

To force the agents to move to the target distribution, we use
the same terminal cost as in the previous example. To express
the agents’ preference to avoid congestion and model costs asso-
ciated with traveling through the center of the domain, we use
the mean field potential energy

F(ρ(·, t)) =λEFE(ρ(·, t)) +λPFP(ρ(·, t)), [37]

which is a weighted sum of an entropy and preference term
defined, respectively, as

FE(ρ(·, t)) =

∫
Rd

ρ(x , t) log ρ(x , t)dx ,

FP(ρ(·, t)) =

∫
Rd

Q(x)ρ(x , t)dx .

The entropy terms penalizes the accumulation of agents; that is,
the more spread out the agents are, the smaller this term. In the
third term, Q :Rd→R, models the spatial preferences of agents;
that is, the smaller Q(x), the more desired is the position x .
Carrying out similar steps to compute these terms in Lagrangian
coordinates yields

FE(ρ(·, t)) =

∫
Rd

(log ρ0(x)− l(x , t))ρ0(x)dx , [38]

FP(ρ(·, t)) =

∫
Rd

Q(z (x , t))ρ0(x)dx . [39]

In our experiment, we control the relative influence of both
terms by choosing λE = 0.01,λP = 1, respectively, in Eq. 37.
To penalize the L2 transport costs, we use the Lagrangian and
Hamiltonian given in Eqs. 16 and 17.

Finally, we take the variational derivative to obtain the HJB
Eq. 5. We note that the mean field coupling is

δF(ρ)

δρ
=F (x , ρ) =λFFE(x , ρ) +λPFP(x , ρ),

with the terms

FE(x , ρ) = log ρ(x) + 1,

FP(x , ρ) =Q(x).

A detailed description of the experimental setup is provided in
SI Appendix. The initial and target densities are shifted Gaussians

ρ0 = ρG(x , 3 · e2, 0.3 · I), ρ1(x) = ρG(x ,−3 · e2, 0.3 · I).

Note that, for λE =λP = 0, the problem becomes a trivial OT
problem, and the optimal trajectories would be straight and
parallel through the center of the domain. To obtain a more
interesting dynamic, we introduce the preference function

Q(x) = 50 · ρG (x , 0, diag (1, 0.5)).

Since Q attains its maximum at the origin, agents have an incen-
tive to avoid this region, which leads to curved characteristics. As
terminal costs, we use the Kullback–Leibler divergence Eq. 36.

9190 | www.pnas.org/cgi/doi/10.1073/pnas.1922204117 Ruthotto et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Fig. 3. Illustration of the 2D crowd motion problem. The initial density (Top
Left) and target density (Bottom Left) are Gaussians centered at the top or
bottom, respectively, of the domain. The white circles depict a contour line
for the density and are added in the remaining subplots to help visual assess-
ment. The agents’ goal is to move near the target while avoiding congestion
and the obstacle in the center of the domain (Top Right). There are higher
costs associated with traveling through regions where the preference func-
tion is large (represented by yellow regions). The red lines in Top Right show
the learned trajectories. It can be seen that the characteristics are curved to
avoid the center of the domain. We also show that the push-forward of the
initial density is similar to the target density (Bottom Right).

For the higher-dimensional instances, we evaluate the prefer-
ence function using the first two components of x . Thereby, the
preference function becomes invariant to the remaining entries,
and the solutions become comparable across dimensions.

As in the OT example, we obtain similar but not identical
objective function values for the problem instances obtained by
choosing d ∈{2, 10, 50, 100}; see the bottom half of Table 1.
Again, we increased the number of training samples with dimen-
sion, and we observe that the runtime of our prototype code
scales better than predicted. Fig. 3 shows the optimized tra-
jectories for the d = 2 instance; see SI Appendix, Fig. S9 for
similar visualizations for the remaining instances. As expected,
the agents avoid the crowded regions and prefer to spread out
horizontally to avoid congestion. We chose the starting points
of the characteristics to be symmetric about the x2 axis. As
expected, this renders the learned trajectories approximately
symmetric as well. We note that the characteristics are visu-
ally similar across dimensions and that our results are compa-
rable to those obtained with a provably convergent Eulerian
solver for the 2D instance (SI Appendix, Figs. S11 and S13
and Table S2).

Discussion and Outlook
By combining Lagrangian PDE solvers with neural networks,
we develop a framework for the numerical solution of poten-
tial MFGs and MFC problems. Our method is geared toward
high-dimensional problem instances that are beyond reach with
existing solution methods. Since our method is mesh-free and

well suited for parallel computation, we believe it provides a
promising direction toward much-anticipated large-scale appli-
cations of MFGs. Even though our scheme is competitive with
Eulerian schemes based on convex optimization for the 2D
examples, its main advantage is the scalability to higher dimen-
sions. We exemplify the effectiveness of our method using an
OT and a crowd motion problem in 100 dimensions. Using
the latter example, we also demonstrate that our scheme can
learn complex dynamics even with a relatively simple neural
network model.

The fact that our framework transforms MFGs into types of
ML problems brings exciting opportunities to advance MFG
application and theory. While we can already leverage the
many advances made in ML over the last decades, the learning
problem in MFGs has some unique traits that require further
attention.

Open mathematical issues include the development of practi-
cal convergence results for neural networks in optimal control.
In fact, it is not always clear that a larger network will per-
form better in practice. Our numerical experiment for the OT
problem makes us optimistic that our framework may be able
to solve HJB equations in high dimensions to practically rele-
vant accuracy. Similarly, the impact of regularization parameters
on the optimization deserves further attention. However, more
analysis is needed to obtain firm theoretical results for this
property.

A critical computational issue is a more thorough parallel
implementation, which may provide the speed-up needed to
solve more-realistic MFG problems. Also, advances in numeri-
cal optimization for deep learning problems may help solve the
learning problems more efficiently.

Open questions on the ML side include the setup of the learn-
ing problem. There are little to no theoretical guidelines that
help design network architectures that generalize well. Although
there is a rich body of examples for data science applications,
our learning problem has different requirements. For example,
not only does the neural network need to be evaluated, but the
Lagrangian scheme also requires its gradient and Laplacian. A
careful choice of the architecture may be necessary to ensure
the required differentiability of the network. Also, more experi-
ments are needed to establish deeper intuition into the interplay
between the network architecture and other hyperparameters,
for example, the choice of the penalty parameter or the time
discretization of the characteristics.

An obvious open question from an application perspective is
the use of our framework to solve more-realistic problems. To
promote progress in this area, we provide our code under a
permissible open source license.

ACKNOWLEDGMENTS. We thank Derek Onken for fruitful discussions and
his help with the Julia implementation; and Wonjun Lee and Siting Liu
for their assistance with the implementation of the Eulerian solver for
the 2D problem instances and their suggestions that helped improve the
manuscript. L.R. is supported by NSF Grant DMS-1751636. This research was
performed while L.R. was visiting the Institute for Pure and Applied Math-
ematics, Los Angeles, CA, which is supported by NSF Grant DMS-1440415.
S.J.O., W.L., L.N., and S.W.F. receive support from Air Force Office of Science
Research Grants MURI-FA9550-18-1-0502 and FA9550-18-1-0167, and Office
of Naval Research Grant N00014-18-1-2527.

1. J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad.
Sci. Paris 343, 619–625 (2006).

2. J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R.
Math. Acad. Sci. Paris 343, 679–684 (2006).

3. J.-M. Lasry, P.-L. Lions, Mean field games. Jpn. J. Math. 2, 229–260 (2007).
4. M. Huang, R. P. Malhamé, P. E. Caines, Large population stochastic dynamic games:

Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Commun. Inf. Syst. 6, 221–251 (2006).

5. M. Huang, P. E. Caines, R. P. Malhamé, Large-population cost-coupled LQG prob-
lems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash
equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007).

6. A. Bensoussan, J. Frehse, P. Yam, Mean Field Games and Mean Field Type Control
Theory (Springer, New York, 2013).

7. O. Guéant, J.-M. Lasry, P.-L. Lions, “Mean field games and applications” in Paris-
Princeton Lectures on Mathematical Finance 2010, R. Carmona et al., Eds. (Lecture
Notes in Mathematics, Springer, Berlin, 2011), vol. 2003, pp. 205–266.

8. Y. Achdou, F. J. Buera, J.-M. Lasry, P.-L. Lions, B. Moll, Partial differential
equation models in macroeconomics. Philos. Trans. R. Soc. A 372, 20130397
(2014).

9. D. A. Gomes, L. Nurbekyan, E. A. Pimentel, Economic Models and Mean-Field Games
Theory (Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil,
2015).

Ruthotto et al. PNAS | April 28, 2020 | vol. 117 | no. 17 | 9191

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922204117/-/DCSupplemental

10. Y. Achdou, J. Han, J.-M. Lasry, P.-L. Lions, B. Moll, Income and wealth distribution in
macroeconomics: A continuous-time approach (Working pap. 23732, National Bureau
of Economic Research, 2017), 10.3386/w23732.

11. A. Lachapelle, J.-M. Lasry, C.-A. Lehalle, P.-L. Lions, Efficiency of the price formation
process in presence of high frequency participants: A mean field game analysis. Math.
Financ. Econ. 10, 223–262 (2016).

12. P. Cardaliaguet, C.-A. Lehalle, Mean field game of controls and an application to trade
crowding. Math. Financ. Econ. 12, 335–363 (2018).

13. P. Casgrain, S. Jaimungal, Algorithmic trading in competitive markets with mean field
games. SIAM News 52, 1–2 (2019).

14. D. Firoozi, P. E. Caines, “An optimal execution problem in finance targeting the mar-
ket trading speed: An MFG formulation” in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC) (Institute of Electrical and Electronics Engineers, 2017),
pp. 7–14.

15. A. Lachapelle, M.-T. Wolfram, On a mean field game approach modeling conges-
tion and aversion in pedestrian crowds. Transp. Res. Part B Methodol. 45, 1572–1589
(2011).

16. M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram, Mean field games with
nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser. B 19,
1311–1333 (2014).

17. A. Aurell, B. Djehiche, Mean-field type modeling of nonlocal crowd aversion in
pedestrian crowd dynamics. SIAM J. Contr. Optim. 56, 434–455 (2018).

18. Y. Achdou, J.-M. Lasry, “Mean field games for modeling crowd motion” in Contribu-
tions to Partial Differential Equations and Applications, B. Chetverushkin et al., Eds.
(Computational Methods in Applied Sciences, Springer, Cham, Switzerland, 2019), vol.
47, pp. 17–42.

19. A. C. Kizilkale, R. Salhab, R. P. Malhamé, An integral control formulation of mean
field game based large scale coordination of loads in smart grids. Automatica 100,
312–322 (2019).

20. A. De Paola, V. Trovato, D. Angeli, G. Strbac, A mean field game approach
for distributed control of thermostatic loads acting in simultaneous energy-
frequency response markets. IEEE Transactions Smart Grid 10, 5987–5999
(2019).

21. D. A. Gomes, J. Saúde, A mean-field game approach to price formation in electricity
markets. arXiv:1807.07088 (19 November 2018).

22. W. E, J. Han, Q. Li, A mean-field optimal control formulation of deep learning,
arXiv:1807.01083 (3 July 2018).

23. P. M. Welch, K. Ø. Rasmussen, C. F. Welch, Describing nonequilibrium soft matter with
mean field game theory. J. Chem. Phys. 150, 174905 (2019).

24. P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The Master Equation and the Con-
vergence Problem in Mean Field Games (Annals of Mathematics, Princeton University
Press, Princeton, NJ, 2019), vol. 201.

25. W. Gangbo, A. Święch, Existence of a solution to an equation arising from the theory
of mean field games. J. Differ. Equ. 259, 6573–6643 (2015).

26. D. A. Gomes, E. A. Pimentel, V. Voskanyan, Regularity Theory for Mean-Field
Game Systems Regularity Theory for Mean-Field Game Systems (Springer, Cham,
Switzerland, 2016).

27. A. Cesaroni, M. Cirant, “Introduction to variational methods for viscous ergodic
mean-field games with local coupling” in Contemporary Research in Elliptic PDEs and
Related Topics, S. Dipierro, Ed. (INdAM Series, Springer, Cham, Switzerland, 2019),
vol. 33, pp. 221–246.

28. R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications.
I (Probability Theory and Stochastic Modelling, Springer, Cham, Switzerland, 2018),
vol. 83.

29. R. Carmona, F. Delarue, Probabilistic Theory of Mean Field Games with Applications.
II (Probability Theory and Stochastic Modelling, Springer, Cham, Switzerland, 2018),
vol. 84.

30. L. C. Evans, Partial Differential Equations (Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, ed. 2, 2010), vol. 19.

31. W. H. Fleming, H. M. Soner, Controlled Markov Processes and Viscosity Solutions
(Stochastic Modelling and Applied Probability, Springer, New York, NY, ed. 2, 2006),
vol. 25.

32. Y. Achdou, “Finite difference methods for mean field games” in Hamilton-Jacobi
Equations: Approximations, Numerical Analysis and Applications, P. Loreti, N. Tchou,
Eds. (Lecture Notes in Mathematics, Springer, Heidelberg, Germany, 2013), vol. 74,
pp. 1–47.

33. E. Carlini, F. J. Silva, A semi-Lagrangian scheme for a degenerate second order mean
field game system. Discrete Contin. Dyn. Syst. 35, 4269–4292 (2015).

34. Y. Achdou, M. Laurière, Mean field type control with congestion (II): An augmented
Lagrangian method. Appl. Math. Optim. 74, 535–578 (2016).

35. N. Almulla, R. Ferreira, D. Gomes, Two numerical approaches to stationary mean-field
games. Dyn. Games Appl. 7, 657–682 (2017).

36. J.-D. Benamou, G. Carlier, F. Santambrogio, “Variational mean field games” in Active
Particles, N. Bellomo, P. Degond, E. Tadmor, Eds. (Advances in Theory, Models, and
Applications, Modeling and Simulation in Science, Engineering and Technology,
Birkhäuser/Springer, Cham, Switzerland, 2017), vol. 1, pp. 141–171.

37. J.-D. Benamou, G. Carlier, S. Di Marino, L. Nenna, An entropy minimization approach
to second-order variational mean-field games. Math. Model Methods Appl. Sci. 29,
1553–1583 (2019).

38. D. Evangelista, R. Ferreira, D. A. Gomes, L. Nurbekyan, V. Voskanyan, First-
order, stationary mean-field games with congestion. Nonlinear Anal. 173, 37–74
(2018).

39. M. Jacobs, F. Léger, A fast approach to optimal transport: The back-and-forth method.
arXiv:1905.12154 (29 May 2019).

40. Y. T. Chow, W. Li, S. Osher, W. Yin, Algorithm for Hamilton–Jacobi equations
in density space via a generalized Hopf formula. J. Sci. Comput. 80, 1195–1239
(2019).

41. L. Briceño Arias et al., “On the implementation of a primal-dual algorithm for sec-
ond order time-dependent mean field games with local couplings” in CEMRACS
2017—Numerical Methods for Stochastic Models: Control, Uncertainty Quantifica-
tion, Mean-Field, B. Bouchard, J.-F. Chassagneux, F. Delarue, E. Gobet, J. Lelong, Eds.
(ESAIM Proceedings and Surveys, EDP Science, Les Ulis, France, 2019), vol. 65, pp.
330–348.

42. M. Jacobs, F. Léger, W. Li, S. Osher, Solving large-scale optimization problems with
a convergence rate independent of grid size. SIAM J. Numer. Anal. 57, 1100–1123
(2019).

43. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, NJ, 1957).
44. L. Nurbekyan, J. Saúde, Fourier approximation methods for first-order nonlocal mean-

field games. Port. Math. 75, 367–396 (2018).
45. J. D. Benamou, Y. Brenier, A computational fluid mechanics solution to

the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393
(2000).

46. C. Villani, Optimal Transport: Old and New (Springer Science, 2008), Vol. 338.
47. D. Jimenez Rezende, S. Mohamed, “Variational inference with normalizing flows”

in ICML’15: Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning, F. Bach, D. Blei, Eds. (JMLR.org, 2015),
Vol. 37.

48. J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical
computing. SIAM Rev. 59, 65–98 (2017).

49. W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic
differential equations. Commun. Math. Stat. 5, 349–380 (2017).

50. J. Han, W. E, Deep learning approximation for stochastic control problems.
arXiv:1611.07422 (2 November 2016).

51. J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using
deep learning. Proc. Natl. Acad. Sci. U.S.A. 115, 8505–8510 (2018).

52. J. Sirignano, K. Spiliopoulos, Dgm: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys. 375, 1339–1364 (2018).

53. W. Li, E. K. Ryu, S. Osher, W. Yin, W. Gangbo, A parallel method for earth mover’s
distance. J. Sci. Comput. 75, 182–197 (2017).

54. E. Haber, R. Horesh, A multilevel method for the solution of time dependent optimal
transport. Numer. Math. Theory Methods Appl. 8, 97–111 (2015).

55. P. Gabriel, M. Cuturi, Computational optimal transport. Found. Trends Mach. Learn.
11, 355–602 (2019).

56. W. Li, S. Osher, Constrained dynamical optimal transport and its Lagrangian
formulation. arXiv:1807.00937 (11 September 2018).

57. L. Zhang, W. E, L. Wang, Monge-ampère flow for generative modeling. arXiv.org (26
September 2018).

58. L. Yang, G. E. Karniadakis, Potential flow generator with L2 optimal transport reg-
ularity for generative models optimal transport regularity for generative models.
arXiv.org (29 August 2019).

59. J. Lin, K. Lensink, E. Haber, Fluid flow mass transport for generative networks.
ariXiv:1910.01694 (7 October 2019).

60. J. Yang, X. Ye, R. Trivedi, H. Xu, H. Zha, Learning deep mean field games for modeling
large population behavior. arXiv:1711.03156 (22 April 2018).

61. R. Carmona, M. Laurière, Convergence analysis of machine learning algorithms for
the numerical solution of mean field control and games: II – The finite horizon case.
arXiv:1908.01613 (5 August 2019).

62. R. Carmona, M. Laurière, Convergence analysis of machine learning algorithms for
the numerical solution of mean field control and games: I – The ergodic case Con-
vergence analysis of machine learning algorithms for the numerical solution of
mean field control and games: I – The ergodic case. arXiv:1907.05980 (13 July
2019).

63. A. Mang, L. Ruthotto, A Lagrangian gauss-Newton-Krylov solver for mass- and
intensity-preserving diffeomorphic image registration. SIAM J. Sci. Comput. 39,
B860–B885 (2017).

64. J. Nocedal, S. Wright, Numerical Optimization (Springer Series in Operations Research
and Financial Engineering, Springer Science & Business Media, New York, NY, 2006).

65. R. Bellman, Introduction to Matrix Analysis (Society for Industrial and Applied
Mathematics, Philadelphia, PA, ed. 2, 1997).

66. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of
Probability Measures (Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel,
Switzerland, ed. 2, 2008).

67. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–
407 (1951).

68. A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic approxi-
mation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609
(2009).

69. L. Bottou, F. E. Curtis, J. Nocedal, Optimization methods for large-scale machine
learning. SIAM Rev. 60, 223–311 (2018).

70. H. Li, Z. Xu, G. Taylor, T. Goldstein, “Visualizing the loss landscape of neural nets”
in Thirty-second Annual Conference on Neural Information Processing Systems 2018,
S. Bengio et al., Eds. https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-
of-neural-nets.pdf. Accessed 3 April 2020.

71. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition” Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
“Deep residual learning for image recognition, G. Hua, H. Jégou, Eds. (Institute of
Electrical and Electronics Engineers, 2016), pp. 770–778.

9192 | www.pnas.org/cgi/doi/10.1073/pnas.1922204117 Ruthotto et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1922204117

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

72. W. E, A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5,
1–11 (2017).

73. E. Haber, L. Ruthotto, Stable architectures for deep neural networks. Inverse Probl.
34, 1–22 (2017).

74. Q. Li, L. Chen, C. Tai, W. E. Maximum principle based algorithms for deep learning.
arXiv:1710.09513 (2 June 2018).

75. B. Chang, L. Meng, E. Haber, F. Tung, D. Begert, “Multi-level residual networks from
dynamical systems view” in International Conference on Learning Representations.
https://openreview.net/pdf?id=SyJS-OgR-. Accessed 3 April 2020.

76. S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr, N. R. Gauger, Layer-parallel training
of deep residual neural networks. SIAM J. Math. Data Sci. 2, 1–23 (2019).

77. M. Innes, Flux: Elegant machine learning with Julia. J. Open Source Software 3, 602
(2018).

78. L. V. Kantorovich, On a problem of Monge. J. Math. Sci. 133, 1383–1383 (2006).
79. L. C. Evans, “Partial differential equations and Monge-Kantorovich mass transfer” in

Current Developments in Mathematics, D. Jerison et al., Eds. (International Press of
Boston, 1997), pp. 65–126.

80. L. Ambrosio, “Lecture notes on optimal transport problems” in Mathematical
Aspects of Evolving Interfaces, P. Colli, Ed. (Springer, Berlin, Germany, 2003), pp.
1–52.

81. C. Villani, Topics in Optimal Transportation (American Mathematical Society,
2003).

Ruthotto et al. PNAS | April 28, 2020 | vol. 117 | no. 17 | 9193

https://openreview.net/pdf?id=SyJS-OgR-

