1,6-Addition of Tertiary Carbon Radicals Generated From Alcohols or Carboxylic Acids by Visible-Light Photoredox Catalysis

Samir Y. Abbas,†‡ Peng Zhao,‡ and Larry E. Overman*‡

Department of Chemistry, University of California, Irvine, California 92697-2025, United States

Supporting Information

ABSTRACT: The addition of tertiary carbon radicals generated by an Ir-catalyzed visible-light photocatalyst to electron-deficient 1,3-dienes proceeds in good yields to append a δ-substituted β,γ-unsaturated carbonyl fragment to a tertiary alcohol or carboxylic acid precursor and construct a new quaternary carbon center.

Classical Michael reactions and organometallic conjugate addition reactions are among the most important C−C bond-forming transformations. Related addition reactions that take place in a 1,6-fashion allow C−C bonds to be formed at the distal end of electron-deficient dienes. Active methylene compounds were nucleophiles in early examples. However, since the early 1970s organometallic nucleophiles, formed stoichiometrically or in a catalytic fashion, are employed most commonly in 1,6-additions. conspicuous absent are 1,6-additions of nucleophilic carbon radicals, undoubtedly reflecting competing oligomerization and polymerization brought about by further reactions of the persistent allylic radical intermediates with the diene. In recent studies in our laboratories, we found that the trans-decalin tertiary radical generated from oxalate precursor 1 in the presence of visible light and Ir(II) photocatalyst 3 reacted cleanly with 4-vinylfuran-2-one (2) to give 1,6-addition products 4 in high yield (eq 1). It was significant that product 4 was formed in good yield using equal amounts of the radical precursor and the 1,3-diene. To our knowledge there is only one previous example of the reaction of a tertiary carbon radical with a 1,3-diene, the Bu3SnH/AIBN-promoted reaction of adamantyl bromide with methyl sorbate, a reaction described as producing many products with the 1,4- and 1,6-addition products isolated in a combined yield of 41%.8,9

We anticipated that the generation of tertiary carbon radicals from carboxylate or oxalate salts using the Ir-catalyzed redox-neutral photoredox method first reported by MacMillan might avert the competing oligomerization problems typically encountered in radical additions to 1,3-dienes. This prospect follows from the expected photoredox catalytic cycle, which is depicted in Scheme 1 for the reaction of tert-butyl oxalate salt 5 with pentadienoic ester 6. In particular, if single-electron transfer from the reduced Ir(II) photocatalyst to the coupled allylic radical intermediate 7 was fast, further addition reactions of this intermediate might be prevented. Ultimate α-protonation

Received: December 27, 2017
Published: January 23, 2018

Scheme 1. Proposed Photoredox Reaction of Tertiary Oxalate Anions with Electron-Deficient 1,3-Dienes

© 2018 American Chemical Society

DOI: 10.1021/acs.orglett.7b04034
of dienolate intermediate 8^2 might then cleanly deliver the reductively coupled product 9. Our exploration of the scope and limitations of this approach to the 1,6-addition of tertiary carbon radicals to electron-deficient dienes is the subject of this report.

Our investigations began by examining the coupling reaction of the cesium oxalate salt of 1-methylcyclohexanol 10 with ethyl 2,4-pentadienoate (11) (Table 1). Using conditions optimized earlier for the reaction of tertiary cesium oxalates with electron-deficient alkenes, coupled product 12 was formed in moderate yield (Table 1, entries 1 and 2). The yield of 12 was improved somewhat by replacing DMF with THF and using 1.5 equiv of the diene (entries 3–5). Reaction concentration was found to be the most important variable, with the yield of 12 increasing to 74–82% in reactions carried out at 0.025–0.03 M (entries 6–9). Moreover, the yield of 12 was depressed only slightly when 1.1 equiv, rather than 1.5 equiv, of the diene was employed (entry 10). The use of pure DME or THF, instead of a 3:1 mixture of these solvents, resulted in lower yields (entries 11 and 12). Yields were similarly high using the lithium oxalate salt (entries 10 and 13).

The results of our exploration of the scope of the coupling of oxalate-derived tertiary carbon radicals with electron-deficient 1,3-dienes using a 1.0:1.1 ratio of the cesium (or lithium) oxalate salt to the 1,3-diene and a reaction concentration of 0.025 M in 3:1 DME/THF are shown in Schemes 2 and 3. Reactions of 10 to the 1,3-diene and a reaction concentration of 0.025 M in 3:1 DME/THF, 2 equiv of the cesium (or lithium) oxalate salt (entries 10 and 13).

Yield by 1H NMR analysis using an internal standard.

Table 1. Optimization Studies

<table>
<thead>
<tr>
<th>entry</th>
<th>M</th>
<th>10:11 (equiv)</th>
<th>solvent</th>
<th>concn (M)</th>
<th>yield a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cs</td>
<td>1:1</td>
<td>3:1 DME/DMF</td>
<td>0.05</td>
<td>40%</td>
</tr>
<tr>
<td>2</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/DMF</td>
<td>0.05</td>
<td>36%</td>
</tr>
<tr>
<td>3</td>
<td>Cs</td>
<td>1:1</td>
<td>3:1 DME/DMF</td>
<td>0.05</td>
<td>42%</td>
</tr>
<tr>
<td>4</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/DMF</td>
<td>0.05</td>
<td>51%</td>
</tr>
<tr>
<td>5</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/DMF</td>
<td>0.05</td>
<td>45%</td>
</tr>
<tr>
<td>6</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/DMF</td>
<td>0.10</td>
<td>30%</td>
</tr>
<tr>
<td>7</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.03</td>
<td>77%</td>
</tr>
<tr>
<td>8</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.025</td>
<td>74–82%</td>
</tr>
<tr>
<td>9</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.010</td>
<td>64%</td>
</tr>
<tr>
<td>10</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.025</td>
<td>41%</td>
</tr>
<tr>
<td>11</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.025</td>
<td>74%</td>
</tr>
<tr>
<td>12</td>
<td>Cs</td>
<td>1:1.5</td>
<td>3:1 DME/THF</td>
<td>0.025</td>
<td>57%</td>
</tr>
<tr>
<td>13</td>
<td>Li</td>
<td>1:1.1</td>
<td>THF</td>
<td>0.025</td>
<td>74%</td>
</tr>
</tbody>
</table>

Scheme 2. Scope of the Reaction of Tertiary Cesium (or Lithium) Oxalates with Unsubstituted 1,3-Diene Esters or Ketones 12

"Reaction conditions: 1 mol % [Ir(dF(CF$_3$)ppy)$_2$(dbppy)]PF$_6$, H$_2$O (10 equiv), 3:1 DME/THF (0.025 M), 2 × 34 W Blue LEDs, 60 °C, 18 h. Isolated yield of purified product. a Reaction was conducted on a 1 mmol scale. b The lithium oxalate salt was employed.

stereoisomer was formed predominantly. For products 26–29 containing a trisubstituted double bond, the E configuration was confirmed by the upfield shift of the vinylic methyl carbon in the 13C NMR spectra (∼20 ppm).

Successful 1,6-addition reactions to dienes containing terminal substituents were observed in two situations. Product 31 was formed in 71% yield from the reaction of the 1-methylcyclohexyl radical with methyl 2-carbomethoxy-2,4-hexadienoate. In contrast, methyl sorbate, which lacks the second activating ester substituent, gave none of the corresponding product 30 under identical conditions. Also useful was the related reaction with 3-vinylcyclopent-2-en-1-one, which gave 3-substituted cyclopent-2-en-1-one 32 in 64% yield. Corresponding reactions with 3-vinylcyclohex-2-en-1-one were less efficient providing products 33 and 34 in low yield. Differing from related reactions of dienyl methyl ketones, the major or exclusive product isolated in additions to 3-vinylcycloalkenones was the conjugated cycloalkenone 13.

We briefly examined under identical conditions visible-light promoted photoredox reactions in which the carbon radical was generated from a carboxylic acid precursor (Scheme 4). In reactions of tertiary radical intermediates, the yield of coupled products 12, 15, and 17 was essentially identical to that observed with the corresponding tertiary oxalate precursors, whereas products 16 and 32 were formed in ∼10% lower yields from the carboxylic acid precursors. With carboxylic acid precursors, 1,6-additions of secondary carbon radicals with ethyl 2,4-pentadienoate (11) proceeded to deliver products 35–37 in 52–67% yields. 14
This study demonstrates that using Ir-catalyzed photocatalysis, the addition of tertiary-carbon radicals to electron-deficient dienes is a useful reaction for constructing new quaternary carbon centers by appending a δ-substituted β,γ-unsaturated carbonyl fragment to a tertiary alcohol or tertiary-carbinyl carboxylic acid precursor. This reaction will be of particular utility in cases where one of these precursors is more readily available than the corresponding halide precursor of a tertiary organometallic intermediate.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b04034.

Experimental procedures, characterization data of new compounds, and copies of 1H and 13C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: leoverma@uci.edu.

ORCID

Samir Y. Abbas: 0000-0001-7584-5030

Peng Zhao: 0000-0003-4581-406X

Larry E. Overman: 0000-0001-9462-0195

Present Address

†Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt.

Author Contributions

‡S.Y.A. and P.Z. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by the NSF (CHE-1265964 and CHE-1661612). S.Y.A.’s research at UC Irvine was supported by USAID. NMR and mass spectra were obtained at UC Irvine using instrumentation acquired with the assistance of NSF and NIH Shared Instrumentation grants.

REFERENCES

(7) The initially produced coupled product contained variable small amounts of the β,γ-unsaturated butenolide regioisomers.6

(9) A few higher yielding 1,6-additions of primary and secondary carbon radicals have been reported: (a) Mao, S.; Fang, X.; Ba, L.; Wu, F. *J. Fluorine Chem.* 2007, 128, 5–11. (b) Gong, H.; Andrews, R. S.;
(12) Heating product 12 with 1.5 equiv of DBU in refluxing THF for 36 h established an ~1:1 equilibrium mixture of 12 and its (E)-α,β-unsaturated isomer, the latter showing a diagnostic signal in the 1H NMR spectra for the β-vinylic hydrogen at 7.05 ppm.
(13) In some experiments, substantial amounts of the nonconjugated product were seen in radical additions to 3-vinylcyclohex-2-en-1-one.
(14) The generation of secondary radicals from oxalate precursors and their reaction with dienes was not explored, because competitive trapping of secondary-alkoxycarbonyl radical intermediates was expected to be problematic.