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Abstract

Background: Understanding complicated networks of interactions and chemical components is essential to solving
contemporary problems in modern biology, especially in domains such as cancer and systems research. In these
domains, biological pathway data is used to represent chains of interactions that occur within a given biological
process. Visual representations can help researchers understand, interact with, and reason about these complex
pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their
complexity and heterogeneity.

Results: Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological
pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in
biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing
visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by
our taxonomy.

Conclusions: Our taxonomy is designed to support the development and design of future biological pathway
visualization applications. We conclude by suggesting future research directions based on our taxonomy and
motivated by the comments received by our domain experts.

Keywords: Biological pathways, Pathway visualization, Task taxonomy

Background
Understanding complicated networks of biomolecular
entities and interactions is essential to solving contempo-
rary problems in modern biology, especially in computa-
tional domains such as systems biology [1]. Networks of
biomolecular interactions are represented as graph mod-
els referred to as pathways. Pathways are curated subsets
of a theoretical graph of all known biomolecular entities
and events that occur on the cellular level, and a given
pathway usually represents a particular biological process,
such as mitosis, that is relevant within a given research
context.
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Pathways are modeled as labeled graphs of entities, rela-
tionships, and meta-data. An entity is a component of a
pathway such as a gene, a gene product (such as a pro-
tein), a complex of proteins, a small biomolecule, or even
another pathway. Edges between vertices in this graph
can be directed or undirected, can involve multiple enti-
ties in one relationship, and can represent a wide range
of biological relationships. Meta-data can include exter-
nal information such as experimental data, as well as
the provenance of the information related to a particu-
lar entity or relationship. Provenance is typically a list of
records, such as publications, that reflects the collective
history of research related to a given entity or relation-
ship. Provenance is essential to the field of bioinformatics,
as the “ground truth” related to any given entity is not
immutable, and can be derived from a potentially large
and evolving history of research.
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Researchers who work with pathway data are con-
fronted with a number of challenges. Pathway files may
contain hundreds or thousands of entities that are con-
nected by a wide variety of relationship types. For
instance, the BioPax [2] specification contains a “Trans-
port” class, which is one of four types of “Conversion,”
which in turn is one of five different types of “Interac-
tion,” which, finally, is one of four types of “Entity.” The
BioPax schema is itself a reflection of the complexity of
information that can exist within bio-chemical pathway
datasets.
Participants in a pathway — genes, proteins, and other

molecules within a cell — can act as inputs or outputs to
multiple interactions, and the set of relationships between
biochemical interactions inherently includes feedback
loops and other complex relationships. Importantly, reac-
tions and other interactions can have a “cascading” effect,
where one interaction will inhibit or promote the effect
of another. Molecular activation pathways also have an
inherently dynamic quality, which can limit the utility
of static (i.e., non-interactive) graph representations [3].
Understanding these complex and dynamic relationships
while also enabling researchers to see higher order pat-
terns is a significant challenge to modern bioinformatics
research [4].
Pathway diagrams are used in two contexts: for the pre-

sentation of results, and as an active (and interactive)
part of the process of data analysis. In the presentational
sense, pathway diagrams can contextualize a set of bio-
logical processes within a cell, and in these contexts will
often show the location of cellular membranes and other
large cellular structures to help to provide a frame of ref-
erence for the viewer. Ideally, a pathway diagram — when
used in a presentational context — allows a viewer to
efficiently understand a complex set of biological relation-
ships. While pathway diagrams may be useful for present-
ing and contextualizing a set of results in a research or
educational context, they are also an important part of in
situ analyses.
For example, metabolic activation networks are of criti-

cal importance to cancer researchers, who hope to under-
stand — and potentially disrupt — malignant cycles of
uncontrolled cellular growth, replication, and mediated
cell death [5]. Effective cancer drug development involves
determining how proteins and complexes that are affected
by a drug in turn affect important cellular pathways. In
this domain, the “downstream” consequences of a par-
ticular drug effect are especially important [6]. Stem-cell
researchers can also use pathways as an active part of
their research, where the goal is generally to precipi-
tate a desired cellular differentiation into specific cell
types [7]. In these contexts, understanding the com-
plex relationships that are encoded in pathway data is
paramount.

In the last two decades, as the availability of large stores
of data to researchers has increased, analyses that involve
hundreds or thousands of genes and gene products have
become common. When analyzing such large and com-
plex data, visual representations can be essential, and in
many cases static, non-interactive, representations will fail
to adequately convey the dynamic nature of a pathway.
The complexity and amount of information that needs to
be incorporated in a given diagram can also make static
representations cluttered and difficult to interpret. Thus,
modern applications in these domains employ a wide vari-
ety of interactive visualization techniques to allow a user
to effectively explore and analyze pathway data.
Developing and designing effective visual analytics

applications requires a detailed understanding of the
visual analysis tasks that will be performed by a user,
and the “user” in this case is a biological researcher in
the midst of some analysis relevant to their domain. User
tasks can thus be designed and understood best through
an in-depth understanding of the nature of information
needed by the researcher in the course of their analy-
ses. Some of these tasks may not be known a priori and
may be exploratory in nature, where an ideal visualiza-
tion of pathway data could reveal important new insights
to a researcher. A comprehensive understanding of tasks
performed by domain researchers in a typical analysis is
essential to the design and implementation of an effective
visual analytics application [8].
In this work, we present a description and analysis of

tasks related to the analysis of biological pathway data.
Tasks were derived from interviews with several domain
experts in biology. After an introduction to the struc-
ture and content of pathway data, we describe the task
taxonomy that was constructed from these interviews.
We also review visual representations of pathway data
in the context of our taxonomy, along with a brief dis-
cussion of existing tools which implement those visual
representations. Finally, avenues of future research are
considered, along with a brief summary of lessons learned
from domain experts.

Biological pathway visualization
Pathway models are an important concept in biological
research [5–7]. Visualization techniques and applications
are essential tools for researchers who work with com-
plex data, and biological pathways are an active area of
visualization research.
A number of surveys exist that describe the large num-

ber of existing tools for biological network visualization
[9–11]. In this paper we highlight some of the more
prominent existing tools and techniques that provide sup-
port for the tasks described in our taxonomy. However,
this paper is not intended to be a complete survey of bio-
logical visualization techniques and applications. Here we
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look at tools that exemplify typical visualization strategies,
including: ChiBe [12], Entourage [13], Reactome Pathway
Browser [14], VisAnt [15],MetaViz [16], and VitaPad [17].
Node-link diagrams are the nearly-universal choice of

visual representation used in existing applications (excep-
tions to this rule include BioFabric [18]). Cytoscape [19]
is a popular graph visualization application which was
originally designed for biological data, and offers many
sophisticated plug-ins that have been developed by the
research community, includingCerebral [20] and RenoDoI
[21]. However, node-link representations are one of sev-
eral ways to visualize graph data, and there are alternative
visualization techniques which can be applied to pathway
data [22, 23]. For instance, research has shown that matrix
visualization techniques outperform node-link diagrams
for higher level group based tasks [24, 25]. While matrix
techniques are not as effective for certain tasks (such as
path-tracing), linked views and hybrid techniques exist,
such as NodeTrix [26], which combine node-link and
matrix representations.

Pathway data formats
Pathway data can be stored in a variety of file formats
which capture the underlying structure of pathway data.
In particular, BioPAX [2], KEGG [27] and SBML [28] are
the most popular file standards for storing the complex
graph data structures inherent in pathway data.
All three of these popular formats are XML-based and

represent data as an ontology. BioPAX, in particular, was
designed to be a general format for biological pathway
data across a variety of domain contexts [2]. Systems Biol-
ogy Graph Notation (SBGN) [29] is a visual standard often
used to visualize BioPAX and SBML file formats. Fea-
tures particular to SBGN include the definition ofmultiple
edge and node types, as well as allowing edges to con-
nect to more than two nodes, resulting in a hypergraph.
Other formats are used for the visualization of biologi-
cal pathways that are not specific to the field of biology.
For instance, the SIF Simple Interaction Format is used
by Cytoscape [19] to represent undirected interactions
between participants.

Task taxonomies
The field of visualization has produced a number of task
taxonomies, which are written in an effort to understand
how the various tasks performed by an analyst and user
are related to (and enabled by) different visualization tools
and techniques, and, conversely, how visualization tools
might inform analytic tasks. These taxonomies help to
clarify the utility of existing techniques while also pro-
viding a low-level template for the design and evaluation
of new techniques. Wehrend and Lewis [30] provide one
of the earliest visualization task taxonomies, with the
goal of “accelerating progress in scientific visualization” by

allowing researchers to easily find the right visualization
technique for a given problem. Shneiderman [31] defines
a “task by data type taxonomy” for information visual-
ization in order to “to sort out the prototypes and guide
researchers to new opportunities.” Brehmer and Munzner
[8] extend these abstractions by linking high-level and
low-level tasks into a multi-level typology, which greatly
extends the usefulness of a visualization taxonomy, allow-
ing it to be applied to a wide variety of visualization
domains.
These seminal taxonomies were, like many later tax-

onomies, independent of a specific visualization appli-
cation domain, and their purpose was to provide a
low level description and categorization of the analy-
sis tasks enabled by any visualization of data. These
early taxonomies were written as very general classifi-
cations of low level analytic tasks related to any data
visualization. In more recent publications, and as visu-
alization research has progressed, task taxonomies have
increasingly focused on more constrained subsets of tasks
related to particular types of data structures and analytic
domains.
More recent taxonomies tend to focus on more nar-

row categories and domains relevant to visualization.
For instance, Valiati et al. [32] provide a taxonomy
focused specifically on multidimensional visualizations.
They build on earlier work by Wehrend and Lewis [30],
but focus on tasks uniquely related to multidimensional
visualizations (such as parallel coordinates). Like previous
authors, their goal is to guide the choices of visualiza-
tion and interaction techniques, and also to help support
usability testing. Lee et al. [33] define a taxonomy of graph
visualization tasks that are frequently encountered when
analyzing graph data. The stated goal of this work was
to improve the evaluation of graph visualization systems
by creating a set of common benchmark tasks (which
could be used in conjunction with benchmark data sets).
Their taxonomy covers tasks for the analysis of graphs
in general, and was inspired by example tasks from sev-
eral different domains that make regular use of graph
data. The authors build on Amar and Stasko’s [34] list of
visual analytic tasks by composing existing low-level tasks
into higher-level task compositions, while also proposing
additional tasks that are not captured by low-level tasks
presented in existing taxonomies.
Several recent taxonomies focus on aspects of graph

visualization that extend the work of Lee et al. [33]. For
instance, Ahn et al. [35] provide a task taxonomy for the
analysis of networks that evolve over time, also known as
dynamic graphs. The complex nature of dynamic graph
data yields a similarly complex set of analysis tasks, and
many of these tasks were not covered by the general
graph taxonomy of Lee et al. — thus, new tasks needed
to be specified. Pretorius et al. [36] focus on multivariate
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graph visualization (where graph elements contain multi-
ple attributes). Their work builds on the work of both Lee
et al. and of Valiati et al. [32], as multivariate networks can
be considered a multidimensional dataset. The authors of
enRoute [37] include a brief discussion of requirements
related to their application. Their requirements are some-
what similar to a subset of our tasks, but were created
in order to address the technical challenges involved in
building enRoute, which is specifically used for the analy-
sis of experimental data.
Aside from explicit task taxonomies, several contempo-

rary surveys and state-of-the-art reports are worth men-
tioning. Hadlak et al. [38] provide a survey of faceted
graph visualization techniques, categorizing visualiza-
tions based on how the data is faceted, e.g. by attribute,
time, or space, and Vehlow et al. [39] survey a variety of
techniques for representing groups in graph structures.
While these recently-published task taxonomies have

focused on particular data structures (or datasets with
particular characteristics), to our knowledge the present
work is the first taxonomy of tasks written in the context
of the domain of biological pathway analysis.
The nearest existing work is that of Saraiya et al. [4],

which builds off of previous work by Saraiya et al. [40], and
which involves feedback from domain experts, who eval-
uate existing pathway evaluation systems. While Saraiya
et al.’s [4] objectives are similar to ours, their work differs
in several important ways. They approach the taxonomy
from the systems perspective, where existing pathway
analysis applications are evaluated by domain experts.
Here, we focus first on the needs of the domain experts
in the context of their real-world research, independently
of any specific application or existing visualization system.
Finally, the tools evaluated by Saraiya et al. [4] are now
over a decade old, and the landscape of visualization tools
and techniques has evolved considerably, which justifies a
renewed evaluation of pathway analysis tasks.
In this work we focus more on the tasks themselves and

look not only at existing biological visualization applica-
tions, but at general visualizations and techniques which
may be useful in supporting the tasks. Biological pathway
visualization is a complex application domain that poses
many specific analytic challenges that are not encoun-
tered in pre-existing task taxonomies. The data structures
underlying biological pathways are dynamic multivariate
hyper-graphs, and are more complex than any of those
described in previously-published taxonomies. The tasks
to be completed by biologists are also highly complex,
involvingmany different entity and relationship types, and
are not fully covered by the existing taxonomies.

Methods
Interviews were conducted with seven domain experts in
biology, each of whom works with pathway data in some

form. A summary of the interviews is described in Table 1.
The domain experts are engaged in a wide variety of
research within the general domain of biology and bioin-
formatics research, but all of which have some relationship
to pathway data. Those interviewed included one tenured
professor, three assistant professors, one researcher at
a cancer research institution, one postdoctoral research
associate, and one masters student in bioinformatics. This
variety allowed for a rich examination of tasks related to
biological datasets.
The interviews were free-form discussions aimed at

understanding the research process of each domain
expert, the tasks performed by the researcher in the
course of a typical analysis, and, importantly, the structure
and content of the data used in their published research.
They were intentionally open-ended, and were designed
to capture a variety of tasks that are seen as important
to domain experts. Researchers were prompted for any
existing tools used for analysis, as well as for the types of
behaviors that they think they would find useful in a path-
way analysis framework. Each researcher also presented
their views on the utility of pathway data and of pathway
diagrams in general.

Table 1 Researchers interviewed

Title: Distinguished Professor

Domain: Biochemistry and Molecular Genetics

Studies: Mechanisms of cell survival, cell cycle control, metabolism, and
genesis of cancer

Title: Assistant Professor

Domain: Biochemistry and Molecular Genetics

Studies: Proteomics, epigenetic maintenance of adult heart function

Title: Assistant Professor

Domain: Computational and Systems Biology

Studies: Cancer cell death

Title: Assistant Professor

Domain: Bioinformatics and Systems Biology

Studies: Evolution, genetic network topology, population genomics

Title: Postdoctoral Research Associate

Domain: Biochemistry and Molecular Genetics

Studies: High-throughput gene expression analysis

Title: Researcher

Domain: Molecular Oncology

Studies: Cancer research

Title: Master’s Student

Domain: Bioinformatics
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We have developed a taxonomy of domain-specific
visualization tasks based on these interviews. For each
task category, we describe examples of how each task is
addressed by current biological visualization applications
and techniques.

Results
Biological pathways are represented as weighted, directed,
labeled graphs which can include hyper-edges and com-
pound nodes. While existing task taxonomies describe
tasks related to the visual analysis of graphs in gen-
eral [35, 36], the analysis of pathways in the context
of biology reveals several important graph-analytic tasks
that other works have not described in detail. This tax-
onomy refines and extends the existing set of tasks
associated with the visual analysis of network data in
general.
Our taxonomy divides tasks into three broad categories:

Attribute, Relation, and Modification tasks. The attribute
category includes the identification of attributes (A1),
comparison of attributes (A2), and the identification of
provenance and uncertainty (A3 and A4). The relation-
ship category includes the identification of relationship
attributes (R1), directed relationships (R2), and grouped
relationships (R3), as well as the identification of causal-
ity, cascading effects, and feedback loops (R4 and R5).
Themodification category includes tasks related to updat-
ing and curating data, including collaborative annotation
(M1) and curation (M2). A summary of the taxonomy can
be seen in Table 2.

Attribute tasks
The low-level identification of nodes, edges, and their
attributes is an essential component of the visual analysis
of any graph representation. In the context of biology, the
attributes of a node or edge can themselves be complex
objects. Here, we highlight three forms of attribute data
that are particularly relevant to biological contexts: mul-
tivariate data from experimental results, provenance data,
and measures of uncertainty. We also discuss the need for
the integration of external data sources.

(A1) Identifymultivariate attributes
Description The entities within a biological pathway can
contain many attributes that reflect the state of that entity
in a given context, such as an experimental condition. In
interviews, researchers stressed the importance of being
able to visualize potentially complex experimental data
while viewing a pathway. For example, each entity in a
pathway can be associated with gene expression levels
across several different experimental conditions, and each
of these conditions can include an additional temporal
dimension [20], meaning that each node (in this exam-
ple) would be associated with at least three additional

Table 2 A summary of the biological pathway visualization task
taxonomy

Category Example task

Attribute tasks

(A1) Multivariate Find all up-regulated genes in a biological
pathway. Integrate results of a laboratory
experiment into existing protein-protein
interaction networks.

(A2) Comparison Compare a biological pathway to a pathway with
the same functionality in a reference species.

(A3) Provenance Determine which studies provides the evidence
for a link between two genes.

(A4) Uncertainty Understand which pathway components have
the strongest empirical evidence relationships.

Relationship tasks

(R1) Attributes Find all translocations of entities in a given
biological pathway.

(R2) Direction Find the products or output of a biochemical
reaction.

(R3) Grouping Expand a module entity to include all
child-entities in the visualization.

(R4) Causality Find all genes downstream of the currently
selected entity, which may be affected by a
change in regulation.

(R5) Feedback Identify potential feedback loops in gene
regulation.

Modification tasks

(M1) Annotate Update out-of date-information in a pathway
data set, or create a personalized pathway
relevant to a specialized research topic.

(M2) Curate Identify errors and update historical data.

dimensions (experimental condition, expression level, and
time).
This multivariate data can also apply to relationships

between entities, such as when one gene is up-regulated
or down-regulated by another gene under different
experimental conditions. Indeed, the identification (and
comparison) of attributes is closely coupled with the iden-
tification (and comparison) of overall topological struc-
ture [37].
An additional concern with biological attribute data is

the biological context of an entity (e.g., a tissue, organ,
or species), especially when datasets can contain simi-
lar entity types that were measured across a variety of
different contexts.

Existing approaches and techniques Most applications
provide access to the attributes through simple inter-
actions (e.g., mouseover and click). In many cases the
attribute information is simply read from an input file,
however more recent tools such as SBGNViz [41] and
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ChiBE [12] query online databases to provide a range of
important attribute information.
Multivariate network visualization is a highly active

field of visualization, in which the life sciences in gen-
eral are a frequent application domain, and many more
recent biological network visualizations include attribute
information. ChiBE [12] provides the ability to load bio-
logical entity regulation data mappings from an external
source and apply them to a pathway visualization. The
SIF data format, which is defined as part of the Cytoscape
application [19], supports these additional data mappings
by design. The RenoDoI application [21], a plug-in for
Cytoscape for visualizing knowledge networks of biolog-
ical data, uses “degree of interest” functions to highlight
nodes based on attribute values. Such functionality could
easily be extended to biological pathway visualizations.
The general purpose visualization system, Candid [42]
also uses attribute information as part of a hypergraph
query system which allows users to perform complex
queries on entities of different types. Node and edge
attributes are also used for graph querying and filtering as
can be seen in facet-based visualizations, an approach that
allows for graphs to be filtered by subsets of attributes.
The Cerebral application [20] uses attribute information
as an aid to layout, where the graph layout space is divided
into layers and nodes are positioned in the layers based on
sub-cellular localization metadata.
Van den Elzen and van Wijk’s [43] system for multivari-

ate graph visualization provides much interactive func-
tionality to aid with the analysis of multivariate data in a
graph structure. It aggregates data and provides summary
visualization such as histograms and scatter plots that are
integrated into graphs visualizing aggregations of a larger
network data set. The authors also use widgets that show
a visual hint of the underlying data. These widgets, often
referred to as “scented widgets” [44], aid interaction with
the graph by attributes, and emphasize the importance of
the multivariate data in the application.

(A2) Compare attributes
Description Related to the issue of multivariate
attributes is the need to compare related pathways or
sets of entities, or to compare a given pathway across a
number of states. For instance, one of the researchers we
interviewed described their use of microarray measure-
ments, which are often used to measure gene expression
levels for a control group and an experimental group over
several time steps. The goal of this research is to discover
significant empirical differences between groups and
across time, and the visual comparison of these groups is
an essential part of an analysis.
In addition, analysts often want to reason about the

same entity (e.g., the same protein, gene, or drug) across
multiple pathways. In other words, the role or behavior of

a biological entity in multiple different contexts is often
important.
Visualizations of comparative differences can also be

closely coupled with common bioinformatic algorithms.
For example, the algorithmic task of discovering subsets
of a pathway dataset that are differentially regulated in
a given biological context is an important computational
problem, and is inherently a comparison task.
The topic of contextualization includes a very important

component of modern biology, which is the incorporation
of multiple external datasets. Biological pathway data is
inherently large, complex, and subject to ongoing contri-
butions from contemporary research. Thus, for biological
pathway visualization in particular, integration of attribute
data from external data sources is essential.

Existing approaches and techniques In their 2011 sur-
vey, Gleicher et al. [45] describe three primary types
classifications of comparative visualization. These are jux-
taposition, superposition, and explicit encoding of differ-
ences, and these classifications can also be combined. A
juxtaposition refers to visualizations that are displayed
side-by-side in order to facilitate comparison. This is func-
tionality is available by default in Cytoscape [19] (and
hence all of the associated plug-ins) via simply arrang-
ing the windows which display the networks. Cerebral
[20] uses a juxtaposition approach to display changes in
attributes associated with the graph.
Superposition is a technique that involves the display

of multiple datasets as part of the same visualization.
Within Cytoscape there are several ways to map graph-
ical attributes to data, to allow for data from different
data sets to be visualized differently. The RenoDoI plugin
[21] uses superposition as a comparison technique, allow-
ing multiple networks to be visualized in a single image.
Bounding isocontours are used to distinguish graphs dif-
ferences, and to clearly indicate where the graphs overlap.
Graph layout is an important aspect of both juxtaposition
and superposition based comparative visualizations. Jux-
taposition involves comparing two or more graphs using
similar layouts in order to aid comparison. For superposi-
tion, the matter is not so simple, as the addition of a new
graphmay destroy the existing layout. The RenoDoI appli-
cation initially lays out the largest data set, then adds the
additional data sets, adjusting the previous layout without
resetting it. Nodes which are included in both data sets
only appear once.
Explicit encoding of difference means that differences

between the two datasets are explicitly highlighted, and
this approach is often provided in addition to the previ-
ous two. For example, an edge which appears in one data
set but not the other may be highlighted by color. One
specific case where implicit encoding is not mixed with
other approaches is seen when a graph is dynamic and
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the changes are between time slices. This can be seen
in Rugfiange and McGuffins’s DiffAni application [46] for
visualizing dynamic graphs.

(A3, A4) Identify provenance and uncertainty
Description Especially important to researchers in the
field of bioinformatics is the concept of data provenance,
which refers to the history of original sources tied to a
particular entity. The provenance can refer to the type of
source, such as a peer reviewed publication, experimen-
tal results, or a textual analysis. Much of the data in the
field of bioinformatics is gathered and integrated from a
wide range of publications, data stores, and other prod-
ucts of research. Information related to a single entity can
be based on potentially dozens of different publications
that have been produced across a wide range of time. For
example, each relationship within a BioPAX file is usu-
ally associated with a publication that provides evidence
for its existence. The task of visually identifying prove-
nance is complicated in two ways. First, each piece of
research related to a given biological entity may corrob-
orate, extend, or contradict earlier publications. Second,
the biological context under which a particular entity is
studied often varies. The individual studies related to a
given gene or gene product might have incorporated cells
taken from a variety of tissues, organs, and species. Thus,
the provenance information related to a given biological
entity can be seen as a temporal network of provenance
data, with each publication being tied to earlier works in a
variety of ways.
Related to the task of identifying data provenance is

the task of being able to understand degrees of uncer-
tainty with regards to the underlying data related to
entities and their relationships. Biology is different from
many other application domains of visualization, as the
data is often ambiguous or not certain [47]. The uncer-
tainty can be related to the values of specific attributes
or to the existence of a relationship. In their state-of-
the-art report on the visualization of group structures in
graphs, Vehlow et al. [39] discuss uncertainty as one of
several ongoing research challenges. The importance of
understanding uncertainty was emphasized by several of
the researchers we interviewed. Uncertainty may relate
directly to the provenance history discussed above — bio-
logical entities that are related to more recent research
may have a limited set of one or two publications which
corroborate their functionality, while other genes and
gene products may have a rich history of robust empir-
ical evidence from dozens or hundreds of publications.
An even more fine-grained approach to uncertainty visu-
alization could incorporate the uncertainty or error tied
to individual empirical findings and experimental results.
The empirical support behind any individual entity or
relationship within a pathway can vary widely, and the

question of how these varying levels of confidence can be
incorporated into a pathway visualization has been rarely
addressed.

Existing approaches and techniques While SBGNViz
[41] and ChiBE [12] and other applications allow connec-
tivity to external sources, such as UniProt or PubMed,
there are few biological visualization tools that visualize
provenance information directly.
Most online biology databases do provide this informa-

tion but do not integrate it into the data visualization itself.
For example, Reactome [14] displays a list of publications
which are related to the selected item as a simple list in a
separate window adjacent to the visualization.
STRING [48], a protein interaction database, provides

provenance information and incorporates it into its asso-
ciated visualization. The provenance is described with
respect to its source (e.g., experimental results or a
curated database) and is encoded by color within the
database’s visualization component. BranchingSets [49]
uses multi-colored links and nodes to indicate the prove-
nance of specific proteins and biochemical relationships
between proteins, making it easier for a user to see which
contexts are relevant for particular elements. TimeArcs
[50] is a visualization technique that highlights PubMed
articles related to particular subnetworks of proteins
within a specified time range. At a glance, a user can
see whether or not a particular protein or set of proteins
is described within the literature of biological pathways.
Moreover, he or she can see if the relationships between
each of these proteins is confirmed or contradicted by
successive publications, indicating, for example, further
details about known pathways, or that in different con-
texts (e.g., tissues, organs, or species) pathways exhibit
different functionality.
Some databases also provide quality scores with their

results. This quality score can be seen as a form of uncer-
tainty as it relates to the amount of information available
concerning a relationship or entity. The higher the score,
the more evidence there is for an interaction.
Visualizing uncertainty and ambiguity is still a challenge

in visualization in general. There are many different types
of uncertainty [51]. In biological visualization uncertainty
may be caused bymeasurement errors, missing data, algo-
rithms providing multiple solutions (only one of which is
used in the resulting data set) and ambiguous mapping
between elements in different domains [47].
One characteristic of uncertainty within an analysis is

that it can build over time. As a researcher filters and
adds external data to a biological pathway visualization
the amount of uncertainty present in the visualization as
a whole will change. An approach similar to the uncer-
tainty flows of Wu et al. [52] could be used to help
researchers comprehend the impact of their decisions
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on overall uncertainty levels when creating a biological
pathway visualization.
Visualizing uncertainty within a graph visualization is

an ongoing challenge in the domain of visualization, with
few practical examples available. Wang et al. [53] use a
variant of a heat map visualization to show where visual
ambiguity occurs in a graph visualization. While their
approach visualizes potential ambiguity in visual inter-
pretation rather than within the underlying data set, a
similar approach could be taken to visualize uncertainty
in biological networks.

Relationship tasks
Within bioinformatics, understanding relationships
within a biological pathway graph is one the most essen-
tial tasks that a systems biologist will perform. All of the
researchers we interviewed stressed the importance of
understanding how pathway entities within a biological
network are connected. Here, we discuss some of the
complex types of relationships found within biological
datasets. We emphasize that the challenge of visual-
ization is not only that these different categories of
relationship exist, but that they exist as combinations and
compositions of each other.

(R1) Identify relationship attributes
Description One of the most obvious challenges for bio-
logical network visualization is the fact that the types
of relationship between entities are numerous, and even
hierarchical. For instance, an interaction between two
entities could take many forms, including: the binding of
proteins and molecules into complexes, the translocation
of an entity from one cellular location to another, a change
in gene expression activity, or the modification of exist-
ing compounds, to name a few. Each of these events can
be further specified. For example, a modification can take
many forms, such as ubiquitination or phosphorylation,
and the site at which these modifications occur can also
be specified. Changes in gene expression are directional—
one compound can either increase or decrease the activ-
ity of another. A translocation event will typically specify
from and to locations. Thus, not only are there many dif-
ferent types of relationship (and generally more than can
be effectively encoded using color alone), but each rela-
tionship type has its own set of potential specifications,
some of which can be quite detailed.

Existing approaches and techniques The visual encod-
ing of these complex and multivariate relationships is one
of the more prominent challenges in the design of visual
analytic platforms for biological pathway analysis.
Pretorius and van Wijk’s [54] system for visual inspec-

tion of multivariate graphs places the relationship type
(referred to as edge labels) at the core of their system.

They do not use traditional graph layout techniques, and
their resulting visualization resembles the parallel coor-
dinates style of multivariate data visualization. The edges
are grouped by label in the center of the display, nodes are
duplicated on either side, with the attributes reflected by
an icicle plot. This approach can handle a large number of
edge types, and cases where a node is involved in multiple
relationships of different types.
Ghani et al. [55] developed a techniques called Paral-

lel Node-Link Bands (PNLBs) for exploring graphs with
multiple edge types. In their examples, edge types are
inferred based on their endpoint node types. Nodes are
listed in vertical columns with the edges connecting only
between neighboring columns. This technique is similar
to Pretorious and van Wijk’s approach except that there
are multiple columns of nodes and there is only ever
one type of edge between two columns. It is an effec-
tive visualization, but is generally limited to smaller data
sets and those in which the relationship types are mul-
tiple bimodal relationships (as there are no edges drawn
between non-adjacent columns).

(R2) Identify directed relationships
Description While some analyses and datasets involve
undirected relationships between genes or gene prod-
ucts, the majority of studies of metabolic networks and
other inter-cellular processes rely on directed relation-
ships. Several researchers that we interviewed stressed
the importance of understanding directed relationships
between entities. Depending on the type of relationship
in question, edges may be bi-directional, which is distinct
from an undirected edge. A visual coding that indicates
direction must also be able to account for cases in which
there are two directional edges between the same two
nodes.

Existing approaches and techniques Many visualiza-
tion applications use the more traditional approach of
arrowheads to indicate edge directions, however work
by Holten and van Wijk [56] shows that tapered edges
perform more effectively in conveying edge direction.
The graphs used in Holten and van Wijk’s are simple
directed graphs. Biological pathways are usually modeled
as hyper-graphs, with many different types of edges and
hyperedges. Visual encodings such as SBGN and KEGG
contain many different visual representations for edges,
so applying the tapered edge visualization style to com-
plex biological pathways is not trivial and would require
an empirical evaluation. However, the results of Holten
and van Wijk’s work suggest that investigating such an
approach may be worthwhile.

(R3) Identify grouping / hierarchical relationships
Description Pathway data is inherently hierarchical, and
there are many ways in which nodes can be grouped
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into collections of elements that are related in an explicit
biochemical sense (e.g., complex proteins) or in a more
implicit informational sense (e.g., the biochemical reac-
tions related to a higher-order biological process). Group-
ing relationships describe relationships of containment,
and these relationships can be abstract or based on real
biochemical interactions within a cell. For example, a
pathway (itself an abstraction) can be nested within other
pathways. These nested pathways generally encapsulate
some commonly-understood hierarchy of biological pro-
cesses that take place within a cell, such as cellular repli-
cation. Other representations include the more general
notion of a module of connected components, such as
gene products. Grouping relationships can also represent
physical interactions between biochemical participants. A
common of example of this is in biomolecular complexes,
which are themselves composed of other complexes or
biomolecules.
It is important to note that hierarchy and “structure”

often co-exist with other types of relationships. In most
cases, pathway data includes relationships of hierarchy
(i.e., when one vertex is contained within another) in par-
allel with other, non-hierarchical relationships, such as
the relationship between one gene product that activates
or inhibits another. Also, note that while non-hierarchical
relationships can take a variety of forms, the only form
of hierarchical relationship is one of containment, from
parent to child, and is undirected.
Grouping relationships also include the concept of com-

pound nodes. A vertex that contains other entities can
be represented as a compound node, which is equivalent
to a parent vertex or in some contexts a “module.” It is
important to note that a one-to-one relationship between
an entity and a parent is not the same as a one-to-many
relationship between an entity and all of that parent’s
children. For instance, the BioPax format allows for the
abstractNextStep relationship, which defines, as the name
suggests, an arbitrary notion of the next step of some
biological process. A biochemical reaction could be con-
nected, via a single NextStep relationship, to an entire
pathway, which could potentially contain thousands of
nodes. This relationship is clearly not the same as a bio-
chemical reaction being connected to every entity within
a pathway. This example also demonstrates the distinction
between a compound relationship and a hierarchical rela-
tionship (which are two types of grouping relationships).
A connection from a node to a compound node does not
imply a relationship of ownership or containment.

Existing approaches and techniques There are a vari-
ety of visualization techniques for the display of “grouped”
nodes and hierarchical data. Numerous tree based graph
layouts position nodes to emphasize the hierarchical
nature of data, however these are often not suitable for

biological pathway layout as the constrains on position
in a layout affect the readability of the lowest level of
information. The RenoDoI [21] application allows formul-
tiple data sources to be included in a single diagram. This
containment relationship may include data from different
pathways. In this system, the node for each data source
forms a set, which may or may not overlap with other sets.
This is visualized by drawing a bounded contour around
the nodes in the set, where different border colors indicate
different sets. This type of encoding of set membership is
the Bubble Sets [57] approach, which was shown to be the
most effective way of displaying group information on a
node-link diagram by Jianu et al. [58].
The BranchingSets technique [49, 59] facilitates the

exploration of hierarchical information in biological path-
ways, which is presented directly within the nodes in
network. At a glance, a user can see an overview of the
nested structure of a protein complex, and user interac-
tion brings up a more elaborate tree view that provides
further details about a selected complex, highlighting the
hierarchical patterns within a set of pathways.

(R4, R5) Identify causality and cascading effects
Description A category of tasks inherent to a variety of
work in bioinformatics is the identification of causal rela-
tionships that exist between biomolecular entities, and
causal networks are of particular importance to the analy-
sis of large-scale gene expression data.
When discussing directed paths between entities, one

entity is said to be upstream or downstream of another.
For example, one gene product can increase the activity
of other gene products that are downstream of it. Under-
standing these upstream and downstream relationships is
particularly important to domains such as cancer drug
research, where a drug may affect a small subset of genes
or gene products, which in turn will affect various down-
stream processes. In most cases, a directed relationship
is meant to represent a biochemical reaction, where one
entity is consumed as a reactant and another is produced
as a product. Thus, an upstream entity may be connected
to a downstream entity through a chain of several directed
links, and a researcher may be interested in understand-
ing the path of reactions (or other relationships) that
connects two entities. However, most cellular processes
are inherently complex, and involve many competing sets
of directed interactions. Any given gene is often medi-
ated by many different reactants, some of which increase
activity, and others which decrease activity. For instance,
a causal network helps to reveal the likely regulators of
a set of genes that are observed to be up-regulated or
down-regulated in a particular setting [60, 61].
Thus, determining the set of entities that are “respon-

sible” for the increase or decrease in the expression of
a particular gene is a challenging task that involves a
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complex array of directed relationships between many
upstream entities. We characterize this problem as one of
identifying cascading effects, where many upstream enti-
ties have directed relationships with many mediating enti-
ties, which in turn affect the output of many downstream
entities.
In tandem with the problem of identifying cascad-

ing effects is the problem of reasoning about feedback
[23]. Feedback loops are common within metabolic acti-
vation networks, and they play a key role in processes
related to uncontrolled cellular growth in cancerous
cells [5].
Causality and cascading effects depend on the both

the structure of the graph, which determines the global
propagation of change, and the attributes associated with
individual graph entities, e.g., a change in a particular
gene expression level from being up-regulated to down-
regulated. In this case, the structure of the graph does
not change, only entity attributes (which Ahn et al. [35]
refer to as the domain properties). Archambault et al., in
their definition of temporal multivariate networks [62],
describe these changes in attributes as the behavior of the
graph. They also note that high attribute dimensionality is
still an open problem for temporal multivariate networks.
Causality can be closely coupled with network topology,
and the these two concerns will often need to be analyzed
jointly, as discussed by the authors of enRoute [37].

Existing approaches and techniques Showing the full
range of behaviors (attribute value changes) in a tradi-
tional biological pathway network visualization can be
difficult as there are relatively few visual encodings which
can indicate attribute values (e.g., color, shape, texture,
etc.). The approach of Pretorius and van Wijk [54] allows
for a large number of attributes to be displayed, but
differs hugely from traditional biological pathway visual-
ization approaches in that it shows little overall structure.
However this approach, or one influenced by it, might
be beneficial if used in conjunction with another view
of the pathway which clearly shows the structure which
propagates the changes.
With respect to cascading changes of attributes,

Archambault and Purchase [63] have performed a empiri-
cal evaluation of several different techniques. They found
that the use of small multiples seems to be the best
approach to convey the dynamic attribute changes that
cascade through a network. The small multiples approach
is a form of comparative juxtaposition where multiple
views of the network at different time points are dis-
played in a matrix. This approach has been used by the
Cerebral application for showing cascades of data [20].
Archambault and Purchase’s work also shows that layout
has an impact on the visualization of attribute cascades.
Participants in the experiment performed better when a

hierarchical layout was used, however it should be noted
that the hierarchical layout was consistent with the direc-
tion of the cascade. Additionally, the authors of enRoute
[37] briefly discuss a case study in which their tool can
be used for the visualization of causality in the context of
experimental results.

Data modification
While most of the tasks in this taxonomy are directly
related to visual analysis, the size and complexity of bio-
logical datasets makes data curation an essential part of
modern research platforms.

(M1, M2) Annotate and curate
Description Several of the researchers we interviewed
mentioned certain tasks related to the curation, mainte-
nance, and understanding of pathway data. For instance,
one researcher mentioned the importance of being able
to debug potentially flawed data. Two others expressed a
need to create “personalized” pathways that only include
a user-determined subset of entities and relationships.
Ideally, visualization tools will seamlessly integrate these
curation and maintenance needs.
An important aspect of data modification is the notion

of collaboration — where several researchers are allowed,
synchronously or asynchronously, to modify and update
a dataset. The concept of collaboration is increasingly
important as more analytics platforms move to the web,
and the topic of effective user-centered design for scien-
tific collaboration will become increasingly relevant in the
future.
The topic of contextualization includes a very important

component of modern biology, which is the incorporation
of multiple external datasets. Biological pathway data is
inherently large, complex, and subject to ongoing contri-
butions from contemporary research. Thus, for biological
pathway visualization in particular, integration of attribute
data from external data sources is essential.

Existing Approaches and Techniques Most desktop
pathway visualization applications allow for data files to be
edited and exported in standardized formats, e.g., CellDe-
signer [64] allows files to be modified and curated and
exported in the SBML standard. Saving a personalized ver-
sion of a pathway is basic functionality, but curating a large
data set may take the input of many experts. Collabora-
tive online visualizations such as Polychrome [65] allow a
synchronized viewing of a web-based visualization across
multiple users (and across multiple devices). Collabora-
tive web-based visualizations also offer an opportunity
for researchers to share their personally curated pathways
and data sets for generally dissemination or for support
in debugging possibly flawed pathways. The ability to dis-
seminate biological pathway visualizations easily amongst
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multiple curators would allow for a more thorough valida-
tion of proposed pathways.
The approach of using web tools to disseminates knowl-

edge is already very evident in many modern online bio-
logical data resources. Reactome [14] and STRING [48] are
two online resources which feature highly interactive web
based visualization interfaces. The fact that the data in the
Reactome database is curated and peer reviewed is con-
sidered an important feature of the system. Most online
publicly available pathway databases do allow users to pro-
vide feedback on potential errors, updated research, or
areas for improvement.

Discussion
In the process of creating a domain-specific task taxon-
omy that is based on interviews with domain experts, we
have revealed several tasks that are important to domain
researchers but which merit further attention and more
focused scrutiny from the visualization community.While
tools exist which support these tasks, existing approaches
tend to be ad hoc and may lack features that would be
revealed by more user-centered design methodologies.
However, we do not mean to suggest that future research
should be constrained to these tasks alone, but that they
should be given more focused attention in the field of
pathway visualization research. Below we outline some
directions for future research.

Visualizing causality and cascading effects Previous
taxonomies only touch on the notion of network-level
causality and cascading effects in passing. Lee et al. [33]
describe a set of attribute-based tasks in their taxonomy,
but they do not consider causal or cascading relationships,
only tasks related to static attribute values. Ahn et al. [35]
in their task taxonomy for network evolution analysis do
describe the notion of attribute stability as part of the
shape of changes in their taxonomy, and describe tasks
that iterate and enable each other, but there is no classi-
fication of causality or cascades at the attribute level. In
their overview of dynamic network visualization, Moody
et al. [66] do mention cascades, but only in the con-
text of the formation of relationships, not the changing
of attributes. Attribute cascades and feedback loops are a
very important aspect of biological pathway visualization,
and merit further attention. The problem of visualizing
dynamism and causality in networks in an open problem
in information visualization, and is of particular impor-
tance to researchers in bioinformatics. A careful study of
techniques for visualizing causality in the context of com-
plex biological datasets would be a valuable contribution
to the visualization literature.

Visualizing uncertainty and provenance Many visual-
ization tools generally do not attempt to visualize the

uncertainty behind a connection in a pathway, which was
particularly important to many of the domain experts we
interviewed. Uncertainty may exist as a result of experi-
mental measures (i.e., statistical uncertainty) or as a result
of varying provenance. In bioinformatics, provenance is
an important and complex layer of metadata that accom-
panies any dataset. Furthermore, data provenance was
mentioned as a particularly important concern by most of
the domain researchers we interviewed, but there are rela-
tively few examples of visual analytics tools which explore
provenance visualization in a direct and robust way. Visu-
alizing provenance and uncertainty is a challenging task,
as even the definition of uncertainty may be difficult to
operationalize, and each datum in a given pathway could
be associated with a potentially large and complex hier-
archy of research. However, data formats such as BioPAX
do have robust support for citations, allowing published
references to be connected to entities and relationships
within a pathway. A tool that could effectively encode data
related to uncertainty and provenance into a visualization
would be very valuable to systems researchers who work
with the results of hundreds or thousands of publications
and experimental datasets.

Limitations and continued research
As mentioned earlier, our interviews with domain experts
were intentionally open-ended and a structured interview
process (such as grounded theory) was not used. This for-
mat was used in order to encourage a diverse assortment
of feedback from researchers who engage in a wide vari-
ety of research within biology and bioinformatics. As a
result of this free-form structure, our tasks identified in
this taxonomy are by no means meant to be an exhaustive
list of all possible visualization tasks — it is certainly pos-
sible for this taxonomy to be refined and extended, and
additional contributions and suggestions are welcome. In
addition, a second round of explicitly structured inter-
views will be a valuable next step in the continued refine-
ment of this taxonomy. Our interviews have created a
valuable base of user feedback that has guided the identifi-
cation of tasks that are of particular importance to domain
experts.

Conclusions
While a wide variety of pathway visualization tools exist,
there is still plenty of room for innovative platform
development. Many tools tend to greatly overlap each
other with respect to the analytical tasks available, and
attempts to directly address the most challenging aspects
of pathway data analysis are few and far between. Hav-
ing a detailed understanding of the tasks performed by
researchers who work with pathway data is essential to
the development of effective visual analytics platforms for
pathway analysis.
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While relevant network visualization taxonomies exist,
they largely describe tasks related to network data visu-
alization in any context. While our goal in creating this
taxonomy was to identify visualization tasks relevant to
researchers who work with biological pathway data, our
taxonomy also acts as a template for domain-specific task
taxonomies in the more general context of information
visualization research. Existing visualization contexts are
often deliberately generalized, and are meant to address
challenges and provide guidelines for the visualization of
certain categories of data, rather than certain categories
of research. While such generalization is obviously use-
ful, we have shown that the opposite approach can be
useful as well. By focusing on specific research domains,
visualization researchers can capture the needs of domain
researchers, allowing them to build more user-centric task
taxonomies. These domain-specific taxonomies have the
potential to reveal real-world tasks that may not have been
adequately captured by more generalized taxonomies.
Here, we have built a task taxonomy by starting with low

level research tasks identified by domain experts as impor-
tant to their research. As the field of biological pathway
visualization continues to grow, we hope to emphasize
the needs of real-world domain experts, and to guide
researchers towards avenues of research that could lead to
valuable contributions. Through interviews with domain
experts, we have identified tasks important to researchers
who work with biological pathway data, and this taxon-
omy acts as a reference point for the large and growing
field of biological pathway visualization. The continued
refinement and understanding of tasks related to path-
way data in bioinformatics research will create an impor-
tant foundation for the ongoing development of pathway
visualization.
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