
UC Irvine
ICS Technical Reports

Title
Extracting usability information from user interface events

Permalink
https://escholarship.org/uc/item/4f7093kr

Authors
Hilbert, David
Redmiles, David

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f7093kr
https://escholarship.org
http://www.cdlib.org/

z
699
C3
no.99-40 ICS

TECHNICAL REPORT

Extracting Usability Information from User

Interface Events

David Ililbert, David Redmiles

dhilbert@ics.uci.edu, redmiles@ics.uci.edu

Technical Report UCI-ICS-99-40
Department of Information and Computer Science

University.of Califomia, Irvine
Irvine, Califomia 92697-3425

July 1999

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Information and Computer Science
University of California, Irvine

C3

Extracting Usability Information from User interface Events m.
DAVID M. HILBERT AND DAVID F. REDMILES

Department of Informationand ComputerScience, UniversityofCalifornia, Irvine, CA
<(dhilbert, redmiles}@ics.uci.edu>

Modem window-based user interface systems generate user interface events as natural products of
their normal operation. Because such events can be automatically captured and because they indicate
user behavior with respect to an application's user interface, they have long been regarded as a
potentially fmitful source of information regarding application usage and usability. However, because
user interface events are typically voluminous and rich in detail, automated support is generally
required to extract information at a level of abstraction that is useful to investigators interested in
an^yzing application usage orevaluating usability.

This survey examines computer-aided techniques used by HCI practitioners and researchers to extract
usability-related information from user interface events. A framework is presented to help HCI
practitioners and researchers categorize and compare the approaches that have been, or might
fruitfully be, applied to this problem. Because many of the techniques in the research literature have
not been evaluated in practice, this survey provides a conceptual evaluation to help identify some of
the relative merits and drawbacks of the various classes of approaches. Ideas for future research in this
area are also presented.

This survey addresses the following questions: How might user interface events be used in evaluating
usability? How are user interface events related to other forms of usability data? What are the key
challenges faced by investigators wishing to exploit this data? What approaches have been brought to
bear on this problem and how do they compare to one another? What are some of the important open
research questions in this area?

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology

General Terms: Human factors. Measurement, Experimentation

Additional Key Words and Phrases: Usability testing. User interface event monitoring. Sequential
data analysis. Human-computer interaction

1. INTRODUCTION automatically captured and because they indicate

User interface events (UI events) are generated behavior with respect to an application's
as natural products of the normal operation of interface, they have long been regarded as a
window-based user interface systems such as potentially fniitful source of information
those provided by the Macintosh Operating regarding application usage and usability.
System [Lewis and Stone 1999], Microsoft However, because user interface events are
Windows [Petzold 1998], the XWindow System tyP'cally extremely voluminous and rich in
[Nye and O'Reilly 1992], and the Java Abstract automated support is generally required to
Window Toolkit [Zukowski and Loukides 1997]. extract information at a level ofabstraction that
Such events indicate user behavior with respect useful to investigators interested in analyzing
to the components that make up an application's application usage or evaluating usability.
user interface (e.g., mouse movements with While a number ofpotentially related techniques
respect to application windows, keyboard have been applied to the problem of analyzing
presses with respect to application input fields, sequential data in other domains, this paper
mouse clicks with respect toapplication buttons, primarily focuses on techniques that have been
menus, and lists). Because such events can be applied within the domain of HCI. Providing an

July 30, 1999

Notice: This Wlateriai

may be protected
by Copyright Law
(TitieUU.S.C.)

Extracting Usability Informationfrom UserInterfaceEvents

CONTENTS

1. INTRODUCTION

1.1 Goals and Method

1.2 Comparison Framework

1.3 Organization of the Survey
2. BACKGROUND

2.1 Definitions

2.2 Typesof UsabilityEvaluation
2.3 Typies of Usability Data

3. THE NATURE OF U1 EVENTS

3.1 Spectrum of HCl Events

3.2 Grammatical Issues in Analysis
3.3 Contextual Issues in Analysis
3.4 Composition of Events

4. COMPARISON OF APPROACHES

4.1 Synchronization and Searching
4.2 Transformation

4.3 Counts and Summary Statistics
4.4 Sequence Detection

4.5 SequenceComparison
4.6 Sequence Characterization

4.7 Visualization

4.8 IntegratedSupport
5. DISCUSSION

5.1 Summary of the State of the Art

5.2 SomeAnticipated Challenges
5.3 Related Work and Future Directions

6. CONCLUSIONS

in-depth treatment of all potentially related
techniques would necessarily limit the amount of
attention paid to characterizing the approaches
that have in fact been brought to beat- on the
specific problems associated with analyzing HCI
events. However, this survey attempts to
characterize UIevents and analysis techniques in
such a way as to make comparison between
techniques used in HCI and those used in other
domains straightforward.

1.1 Goals and Method

The fundamental goal of this survey is to
construct a framework to help HCI practitioners
and researchers categorize, compare, and
evaluate the relative strengths and limitations of
approaches that have been, ormight fruitfully be,
applied to this problem. Because exhaustive
coverage of all existing andpotential approaches

is impossible, we attempt to identify key
characteristics of existingapproaches that divide
them into more or less natural categories. This
allows classes of systems, not just instances, to
be compared. The hope is that an illuminating
comparison can be conducted at the class level
and that classification of new instances into
existingclasseswill prove to be unproblematic.

In preparing this survey, we searched the
literature in both academic and professional
computing forums for papers describing
computer-aided techniques for extracting
usability-related information from user interface
events. We selected and analyzed an initial set of
papers to identify key characteristics that
distinguish the approaches applied by various
investigators.

We then constructed a two-dimensional matrix
with instances of existing approaches listed
along one axis and characteristics listed along
the other. This led to an initial classification of
approaches based on clusters of related
attributes. We then iteratively refined the
comparison attributes and classification scheme
based on further exploration of the literature.
The resulting matrix indicates areas in which
further research is needed and suggests
synergistic combinations of currently isolated
capabilities.

Ideally, an empirical evaluation of these
approaches in practice would help elucidate
more precisely the specific types of usability
questions for which each approach is best suited.
However, because many of the approaches have
never been realized beyond the research
prototype stage, little empirical work has been
performed to evaluate theirrelative strengths and
limitations. This survey attempts to provide a
conceptual evaluation by distinguishing classes
of approaches and illuminating their underlying
nature. As a result, this survey should be
regarded as a guideto understanding the research
literature and not as a guide to selecting an
already implemented approach for use in
practice.

1.2 Comparison Framework

This subsection introduces the high level
categories that have emerged as a result of the
survey. We present the firamework in more detail
in Section 4.

July 30, 1999

3 • D. H. Hubert and D. F. Redmiles

Techniques for synchronization and search
ing. These techniques allow user interface
events to be synchronized and cross-indexed
with other sources of data such as video

recordings and coded observation logs. This
allows searches in one medium to locate sup
plementary information in others. In some
ways, this is the simplest (i.e. most mechani
cal) technique for exploiting user interface
events in usability evaluation. However, it is
quite powerful.

Techniques for transforming event streams.
Transformation involves selecting, abstract
ing, and receding event streams to facilitate
human and automated analysis (including
counts, summary statistics, pattern detection,
comparison, and characterization). Selection
involves separating events and sequences of
interest from the "noise". Abstraction

involves relating events to higher-level con
cepts of interest in analysis. Recoding
involves generating new event streams based
on the results of selection and abstraction so

that selected and abstracted events can be

subjected to the same types of manual and
automated analysis techniques normally per
formed on raw event streams.

Techniques for performing counts and sum
mary statistics. Once user interface events
have been captured, there are a number of
counts and summary statistics that might be
computed to summarize user behavior, for
example, feature use counts, error frequen
cies, use of the help system, and so forth.
Although most investigators rely on general-
purpose spreadsheets and statistical packages
to provide such functionality, some investiga
tors have proposed specific "built-in" func
tions for calculating and reporting this sort of
summary information.

Techniques for detecting sequences. These
techniques allow investigators to identify
occurrences of concrete or abstractly defined
"target" sequences within "source" sequences
of events that may indicate potential usability
issues. In some cases, target sequences are
abstractly defined and are supplied by the
developers of the technique. In other cases,
target sequences are more specific to particu
lar applications and are supplied by the users
of the technique. Sometimes the purpose is to
generate a list of matched source subse

July 30. 1999

quences for further perusal by the investiga
tor. Other times the purpose is to
automatically recognize particular sequences
that violate expectations about proper user
interface usage. Finally, in some cases, the
purpose is to perform transformation of the
source sequence by abstracting and recoding
instances of the target sequence into
"abstract" events.

Techniques for comparing sequences. These
techniques help investigators compare
"source" sequences against concrete or
abstractly defined "target" sequences indicat
ing the extent to which the sequences match
one another. Some techniques attempt to
detect divergence between an abstract model
representing the target sequence and a source
sequence. (Dthersattempt to detect divergence
between a concrete target sequence produced,
for ex^ple, by an expert user, and a source
sequence produced by some other user. Some
produce diagnostic measures of distance to
characterize the correspondence between tar
get and source sequences. Others attempt to
perform the best possible alignment of events
in the target and source sequences and present
the results to investigators in visual form.
Still others use points of deviation between
the target and input sequences to automati
cally indicate potential usability issues. In all
cases, the purpose is to compare actual
sequences of events against some model or
trace of "ideal" or expected sequences to
identify potential usability issues.

Techniques for characterizing sequences.
These techniques take "source" sequences as
input and attempt to construct an abstract
model to summarize, or characterize, interest
ing sequential features of those sequences.
Some techniques compute probability matri
ces in order to produce process models with
probabilities associated with transitions. Oth
ers constmct grammatical models or finite
state machines to characterize the grammati
cal structure of events in the source

sequences.

Visualization techniques. These techniques
present the results of transformations and
analyses in forms allowing humans to exploit
their innate visual analysis capabilities to
interpret results. These techniques can be par
ticularly useful in linking results of analysis

Extracting Usability Informationfrom User Interface Events

Synchronization and searching

Transformation

Selection

Abstraction

Recoding

Analysis

Counts and summary statistics

Sequence detection

Sequence comparison

Sequence characterization

Visualization

integrated support

back to features of the interface.

• Integrated evaluation support. Evaluation
environments that facilitate flexible composi
tion of various transformation, analysis, and
visualization capabilities provide integrated
support. Some environments also provide
built-in support for managing domain-spe
cific artifacts such as evaluations, subjects,
tasks, data, and results of analysis.

Figure 1 illustrates how the framework mightbe
arranged as a hierarchy. At the highest level, the
surveyed techniques are concerned with:
synchronization and searching, transformation,
analysis, visualization, or integrated support.
Transformation can be achieved through
selection, abstraction, and recoding. Analysis
can be performed using counts and summary
statistics, sequence detection, sequence
comparison, and sequence characterization.

1.3 Organization of the Survey
The next section establishes background and
presents definitions of important terms. The
subsequent section discusses the nature and
characteristics of UI events and provides
examples to illustrate some of the difficulties
involved in extracting usability-related
information from suchevents. Section 4 presents
a comparison of the approaches based on the
framework outlined above. For each class of
techniques, the following is provided: a brief
description, examples, related work where
appropriate, and strengths and limitations.
Section 5 summarizes the most important points
of the survey and outlines some directions for
future research. Section 6 presents conclusions.

Many of the authors are not explicit regarding
the event representations assumed by their
approaches. We assume that UI events are data
structures that include attributes indicating an
event type (e.g., MOUSE_PRESSED or
KEy_PRESSED), an event target (e.g., an ID
indicating a particular button or text field in the
user interface), a timestamp, and other attributes
including various aspects of the state of input
devices when the event was generated. However,
to raise the level of abstraction in our discussion,
we typically represent event streams as
sequences of letters where each letter
corresponds to a more detailed event structure as
described above. When beneficial, and possible.

Figure 1. Comparison framework.

we provide examples using this notation to
illustrate howparticular approaches operate.

2. BACKGROUND

This section serves three purposes. First, it
establishes working definitions of key terms
such as "usability," "usability evaluation," and
"usability data". Second, it situates observational
usability evaluation within the broader context of
HCI evaluation approaches, indicating some of
the relative strengths and limitations of each.
Finally, it isolates user interface events as one of
the many types of data commonly collected in
observational usability evaluation, indicating
some of its strengths and limitations relative to
other types. The definitions and frameworks
presented here are not new and can be found in
standard HCI texts [Preece et al. 1994; Nielsen
1993]. Those well acquainted with usability,
usability evaluation, and user interface event
data, may wish to skip directly to Section 3
where the specific nature of user interface events
and the reasons why analysis is complicated are
presented.

2.1 Definitions

"Usability" is often thought of as referring to a
single attribute of a system or device. However,
it ismore accurately characterized asreferring to
a large number of related attributes. Nielsen
provides the following definition [Nielsen 1993]:

July 30, 1999

5 • D. H. Hubert and D. F. Redmiles

Usability has multiple components and is
traditionally associated with these five
usability attributes:

Leamability: The system should be easy to
learn so that the user can rapidly start getting
some work done with the system.

Efficiency; The system should be efficient to
use, so that once the user has learned the
system, a high level of productivity is possible.

Memorability: The system should be easy to
remember, so that the casual user is able to
return to the system after some period of not
having used it, without having to learn
everything all over again.

Errors: The system should have a low error
rate, so that users make few errors during the
use of the system, and so that if they do make
errors they can easily recover from them.
Further, catastrophic errors must not occur.

Satisfaction: The system should be pleasant to
use, so that users are subjectively satisfied
when using it; they like it.

"Usability evaluation" can be defined as the act
of measuring (or identifying potential issues
affecting) usability attributes of a system or
device with respect to particular users,
performing particular tasks, in particular
contexts. The reason that users, tasks, and
contexts are part of the definition is that the
values of usability attributes can vary depending
on the background knowledge and experience of
users, the tasks for which the system is used, and
the context in which it is used.

"Usability data" is any information that is
useful in measuring (or identifying potential
issues affecting) the usability attributes of a
system under evaluation.

It should be noted that the definition of usability
cited above makes no mention of the particular
purposes for which the system is designed or
used. Thus, a system may be perfectly usable and
yet not serve the purposes for which it was
designed. Furthermore, a system may not serve
any useful purpose at all (save for providing
subjective satisfaction) and still be regarded as
perfectly usable. Herein lies the distinction
between usability and utility.

Usability and utility are regarded as
subcategories of the more general term
"usefulness" [Grudin 1992]. Utility is the

July 30, 1999

question oir whether the functionality ofa system
can, in principle, support the needs of users,
while usability is the question of how
satisfactorily users can make use of that
functionality. Thus, system usefulness depends
on both usability and utility.

While this distinction is theoretically clear,
usability evaluations often identify both usability
and utility issues, thus more properly addressing
usefulness. However, to avoid introducing new
terminology, this survey simply assumes that
usability evaluations and usability data can
address questions of utility as well as questions
of usability.

2.2 Types of Usability Evaluation

This section contrasts the different types of
approaches that have been brought to bear in
evaluating usability in HCI.

First, a distinction is commonly drawn between
formative and summative evaluation. Formative

evaluation primarily seeks to provide feedback
to designers to inform and evaluate design
decisions. Summative evaluation primarily
involves making judgements about "completed"
products, to measure improvement over previous
releases or to compare competing products. The
techniques discussed in this survey can be
applied in both sorts of cases.

Another important issue is the more specific
motivation for evaluating. There are a number of
practical motivations for evaluating. For
instance, one may wish to gain insight into the
behavior of a system and its users in actual usage
situations in order to improve usability
(formative) and to validate that usability has
been improved (summative). One may also wish
to gain toher insight into users' needs, desires,
thought processes, and experiences (also
formative and summative). One may wish to
compare design alternatives, for example, to
determine the most efficient interface layout or
the best design representation for some set of
domain concepts (formative). One may wish to
compute usability metrics so that usability goals
can be specified quantitatively and progress
measured, or so that competing products can be
compared (summative). Finally, one may wish to
check for conformance to interface style
guidelines and/or standards (summative). There
are also academic motivations, such as the desire

Extracting Usability Informationfrom UserInterfaceEvents

Reasons for

evaluating
Predictive

evaluation

Observationa

evaluation

Participative
evaluation

Understand

ing user
behavior &

aerformance

X X

Understand

ing user
thoughts &
experience

* X

Comparing
design
alternatives

X X

Computing
usability
metrics

X X X

Certifying
conformance

w/ standards
X

Table 1: Types of evaluation and reasons for
evaluating.

to discover features of human cognition that
affect user performance and comprehension with
regard to human-computer interfaces (potentially
resulting in formative implications).

There are a number of HCI evaluation
approaches for achieving these goals that fall
into three basic categories; predictive,
observational, and participative.

Predictive evaluation usually involves making
predictions about usability attributes based on
psychological modeling techniques (e.g., the
GOMS model [John and Kieras 1996a &1996b]
or the Cognitive Walkthrough [Lewis et al.
1990]), or based on design reviews performed by
experts equipped with a knowledge of HCI
principles and guidelines and past experience in
design and evaluation (e.g.. Heuristic Evaluation
[Nielsen and Mack 1994]). A key strength of
predictive approaches is their ability to produce
results based on non-functioning design artifacts
without requiring the involvement of actual
users.

Observational evaluation involves measuring
usability attributes based on observations of
users actually interacting with prototypes or fully
functioning systems. Observational approaches
can range from formal laboratory experiments to
less formal field studies. A key strength of
observational techniques is that they tend to

uncover aspiects of actual user behavior and
performance that are difficult to capture using
other techniques.

Finally, participative evaluation involves
collecting information regarding usability
attributes directly from users based on their
subjective reports. Methods for collecting such
data range from questionnaires and interviews to
more ethnographically inspired approaches
involving joint observer/participant
interpretation of behavior in context. A key
benefit ofparticipative techniques is their ability
to capture aspects of users' needs, desires,
thought processes, and experiences that are
difficult to obtain otherwise.

In practice, actual evaluations often combine
techniques from multiple approaches. However,
the methods for posing questions and for
collecting, analyzing, and interpreting data vary
from onecategory to the next. Table 1provides a
high level summary of the relationship between
types of evaluation and typical reasons for
evaluating. An upper-case 'X' indicates a strong
relationship. A lower-case 'x' indicates a weaker
relationship. An empty cell indicates little or no
relationship.

The approaches surveyed here are primarily
geared toward supporting observational
evaluation, although some provide limited
support for capturingparticipativedata as well.

2.3 Types of Usability Data

Having situated observational usability
evaluation within the broader context of
predictive, observational, and participative
approaches, user interface events can be isolated
as just one of many possible sources of
observational data.

Sweeny and colleagues [Sweeny et al. 1993]
identify a number of indicators that might be
used to measure (or indicate potential issues
affecting) usability attributes:

• On-line behavior/performance: e.g., task
times, percentage of tasks completed, error
rates, duration and frequency of on-line help
usage, range of functions used.

• Off-line behavior (non-verbal): e.g., eye
movements, facial gestures, duration and fre
quency of off-line documentation usage, off
lineproblem solving activity.

July 30, 1999

D. H. Hubert and D. F Redmiles

Usability Indicators
UI Event

Recording

Audio/Video

Recording

Post-hoc

Comments

User

Interview

Survey/
Questionnaire/

Test scores

Psychophysical
recording

On-line behavior/performance X X

Off-line behavior (non-verbal) X

Cognition/understanding X X X X X

Attitude/opinion X X X

Stress X

Table 2: Data collection techniques and usability indicators.

• Cognition/understanding: e.g., verbal proto
cols, answers to comprehension questions,
sorting task scores.

• Attitude/opinion: e.g., post-hoc comments,
questionnaire and interview comments and
ratings.

• Stress/anxiety: e.g., galvanic skin response
(GSR), heart rate (ECG), event-related brain
potentials (ERPs), electroencephalograms
(EEG), ratings of anxiety.

Table 2 summarizes the relationship between
these indicators and various techniques for
collecting observational data. This table is by no
means comprehensive and is used only to
indicate the rather specialized yet
complementary nature of user interface event
data in observational evaluation. UI events

provide excellent data for quantitatively
characterizing on-line behavior, however, the
usefulness of UI events in providing data
regarding the remaining indicators has not been
demonstrated. However, some investigators have
used UI events to infer features of user

knowledge and understanding [Kay and Thomas
1995; Guzdialetal. 1993].

Many of the surveyed approaches focus on event
data exclusively. However, some also combine
other sources of data including video recordings,
coded observations, and subjective user reports.

3. THE NATURE OF UI EVENTS

This section discusses the nature and

characteristics of HCI events in general and UI
events specifically. We discuss the grammatical
nature of UI events including some implications
on analysis. We also discuss the importance of
contextual information in interpreting the
significance of events. Finally, we present a
compositional model of UI events to illustrate

July 30, 1999

how these issues manifest themselves in UI

event analysis. We use this discussion to ground
later discussion and to highlight some of the
strengths and limitations of the surveyed
approaches.

3.1 Spectrum of HCI Events

Before discussing the specific nature of UI
events, this section introduces the broader
spectrum of events of interest to researchers and
practitioners in HCI. Figure 2, adapted from
[Sanderson and Fisher 1994], indicates the
durations of different types of HCI events.

The horizontal axis is a log scale indicating
event durations in seconds. It ranges from
durations of less than one second to durations of

years. The durations of UI events fall in the
range of 10 milliseconds to approximately one
second. The range of possible durations for each
"type" of event is between one and two orders of
magnitude, and the ranges of different types of
events overlap one another.

If we assume that events occur serially, then the
possible frequencies of events are constrained by
the duration of those events. So, by analogy with
the continuous domain (e.g., analog signals),
each event type will have a characteristic
frequency band associated with it [Sanderson
and Fisher 1994]. Event types of shorter
duration, for example, UI events, can exhibit
much higher frequencies when in sequence, and
thus might be referred to as high-frequency band
event types. Likewise, event types of longer
duration, such as project events, exhibit much
lower frequencies when in sequence and thus
might be referred to as low-frequency band event
types. Evaluations that attempt to address the
details of interface design have tended to focus
on high-frequency band event types, whereas
research on computer supported cooperative

Extracting Usability Informationfrom UserInterface Events

Ul events

eye movements

gestures, motions

vocalizations

tums

topics

meeting events

operation events

project events
Event

duration

in seconds

(log scale)
.001 .01 1 • 10

1 sec

.100 IK . 10K llOOK 1M: IOM 1 lOOM
' 'ill

! 'Ill
1min 1tiour 1day I miantti 1year

Low Frequency Band Events
(Manyasynctironous interactions)

Higti Frequency Band Events
(Mostly synctironous interactions)

Figure 2.Aspectrum ofHCI events. Adapted from [Sanderson andFisher 1994].

work (CSCW) has tended to focus on mid- to
low-frequency band event types [Sanderson and
Fisher 1994].

Some important properties of HCI events that
emerge from this characterization include the
following:

1. Synchronous vj. Asynchronous Events:
Sequences composed of high-frequency
event types typically occur synchronously.
For example, sequences of UI events, ges
tures, or conversational tums can usually be
captured synchronously using a single
recording. However, sequences composed of
lower frequency event types, such as meeting
or project events, may occurasynchronously,
aided, for example, by electronic mail, col
laborative applications, memos, and letters.
This has important implications on the meth
odsused to sample, capture, and analyze data,
particularly at lower frequency bands [Sand
erson and Fisher 1994].

2. Composition ofEvents: Events within a given
frequency band are often composed of events
from higher frequency bands. These same
events typically combine to form events at
lower frequency bands. Sanderson and Fisher
offer this example; a conversational turn is
typically composed of vocalizations, ges
tures, and eye movements, and a sequence of
conversational tums may combine to form a

topic under discussion within a meeting
[Sanderson and Fisher 1994]. This composi
tional stmcture is also exhibited within fre
quency bands. For instance, user interactions
with software applications occur and may be
analyzed at multiple levels of abstraction,
where events at each level are composed of
events occurring at lower levels. (See [Hil-
bert et al. 1997] for an early treatment). This
is discussed further below.

3. Inferences Across Frequency Band Bound
aries: Low frequency band events do not
directly reveal their composition from higher
frequency events. As a result, recording only
low frequency events will typically result in
information loss. Likewise, high frequency
events do not, in themselves, reveal how they
combine to form events at lower frequency
bands. As a result, either low frequency band
events must be recorded in conjunction with
high frequency band events or there must be
some external model (e.g., a grammar) to
describe how high frequency events combine
to form lower frequency events. This too is
discussed further below.

3.2 Grammatical Issues In Analysis
UI events are often grammatical in structure.
Grammars have been used in numerous
disciplines to characterize the structure of
sequential data. The main feature of grammars

July 30, 1999

9 • D. H. Hubert and D. F. Redmiles

that make them useful in this context is their
ability to define equivalence classes of patterns
in terms of rewrite rules. For example, the
following grammar(expressedas a set of rewrite
rules) may be used to capture the ways in which
a user can trigger a print job in a given
application:

PRINT_COMMAND ->
"MOUSE_PRESSED PrintToolbarButton" or
(PRINT_DIALOG_ACTIVATED then
"MOUSE_PRESSED OkButton)

PRINT_DIALOG_ACTIVATED —>
"MOUSE_PRESSED PrintMenuItem" or
"KEY_PRESSED Ctrl-P"

Rule 1 simply states that the user can trigger a
print job by either pressing the print toolbar
button (which triggers the job immediately) or
by activating the print dialog and then pressing
the "OK" button. Rule 2 specifies that the print
dialog may be activated by either selecting the
print menu item in the "File" menu or by
entering a keyboard accelerator, "Ctrl-P".

Let us assume that the lexical elements used to

construct sentences in this language are:

A: indicating "print toolbar button pressed"
B: indicating "print menu item selected"
c: indicating "print accelerator key entered"
D: indicating "print dialog okayed"

Then the following "sentences" constructed from
these elements each indicate a series of four

consecutive print job activations:

AAAA

CDAAA

ABDBDA

BDCDACD

CDBDCDBD

All occurrences of 'A' indicate an immediate

print job activation while all occurrences of 'BD'
or 'CD' indicate a print job activated by using
the print dialog and then selecting "OK".

Notice that each of these sequences contains a
different number of lexical elements. Some of

them have no lexical elements in common (e.g.,
AAAA and CDBDCDBD). The lexical elements
occupying the first and last positions differ from
one sequence to the next. In short, there are a
number of salient differences between these

sequences at the lexical level. Techniques for
automatically detecting, comparing, and
characterizing sequences are typically sensitive

July 30, 1999

to such differences. Unless the data is

transformed based on the above grammar, the
fact that these sequences are semantically
equivalent (in the sense that each indicates a
series of four consecutive print job activations)
will most likely go unrecognized, and even
simple summary statistics such as "# of print
jobs per session" may be difficult to compute.

Techniques for extracting usability-related
information from UI events should take into

consideration the grammatical relationships
between lower level events and higher level
events of interest.

3.3 Contextual Issues in Analysis

Another set of problems arises in attempting to
interpret the significance of UI events based only
on the information carried within events

themselves. To illustrate the problem more
generally, consider the analogous problem of
interpreting the significance of utterances in
transcripts of natural language conversation.
Important contextual cues are often spread
across multiple utterances or may be missing
from the transcript altogether.

Let us assume we have a transcript of a
conversation that took place between individuals
A and B at a museum. The task is to identify A's
favorite paintings based on utterances in the
transcript.

Example 1: "The Persistence of Memory, by
Dali, is one of my favorites".

In this case, everything we need to know in order
to determine one of A's favorite paintings is
contained in a single utterance.

Example 2: "The Persistence of Memory, by
Dali".

In this case we need access to prior context. 'A'
is most likely responding to a question posed by
'B'. Information carried in the question is critical
in interpreting the response. For example, the
question could have been: "Which is your least
favorite painting?".

Example 3: "That is one of my favorites".

In this case, we need the ability to de-reference
an indexical. The information carried by the
indexical "that" may not be available in any of
the utterances in the transcript, but was clearly
available to the interlocutors at the time of the

Extracting Usability Informationfrom UserInterface Events 10

utterance. Such contextual information was
"there for the asking", so to speak, and could
have been noted had the transcriber been present
and chosen to do so at the time of the utterance.

Example 4: "That is another one."

In this case we would need access to both prior
context and the ability to de-reference an
indexical.

The following examples illustrate analogous
situations in the interpretation of user interface
events:

Example 1': "mouse_pressedPrintToolbarButton"

This eventcarries with it enough information to
indicate theaction theuserhas performed.

Example 2': "mouse_pressed OkButton"

This event does not on its own indicate what
action was performed. As in Example 2 above,
this event indicates a response to some prior
event, for example, a prior "mouse_pressed
PrintMenuItem" event.

Example 3': "window_opened ErrorDialog"

TTie information needed to interpret the
significance of this event may be available in
prior events, but a more direct way to interpret
its significance would be to query the dialog for
its error message. This is similar to de
referencing an indexical, if we think of the error
dialog as figuratively "pointing at" an error
message that does not actually appear in the
event stream.

Example 4': "window_opened ErrorDialog"

Assuming the error message is "Invalid
Command", then the information needed to
interpret the significance of this event is not only
found by de-referencing the indexical (the error
message "pointed at" by the dialog) but must be
supplemented by information available in prior
events. It may also be desirable to query
contextual information stored in user interface
components to determine the combination of
parameters (specified in a dialog, for example)
that led to this particular error.

The basic insight here is that sometimes an
utterance — or a UI event — does not carry
enough information on its own to allow its

significance to be properly interpreted.
Sometimes critical contextual information is
available elsewhere in the transcript, and
sometimes that information is not available in
the transcript, but was available, "for the
asking", at thetime of theutterance, orevent, but
not afterwards. Therefore, techniques for
extracting usability-related information from UI
events should take into consideration the fact
that context may be spread across multiple
events, and that in some cases, important
contextual information may need to be explicitly
captured during data collection if meaningful
interpretation is to be performed.

3.4 Composition of Events

Finally, user interactions may be analyzed at
multiple levels of abstraction. For instance, one
may be interested in analyzing low-level mouse
movement and timing information, or one may
be more interested in higher-level information
regarding the steps taken by users in completing
tasks, such as placing an order or composing a
business letter. Techniques for extracting
usability information from UI events should be
capable of addressing events at multiple levels of
abstraction.

Figure 3 illustrates a multi-level model of events
originally presented in [Hilbert et al. 1997]. At
the lowest level are physical events, for example,
fingers depressing keys or a hand moving a
pointing device such as a mouse. Input device
events, such as key and mouse interrupts, are
generated by hardware in response to physical
events. UI events associate input device events
with windows and other interface objects on the
screen. Events at this level include button
presses, list and menu selections, focus events in
input fields, and window movements and
resizing.

Abstract interaction events are not directly
generated by the user interface system, but may
be computed based on UI events and other
contextual information such as UI state. Abstract
interaction events are indicated by recurring,
idiomatic patterns of UI events and indicate
higher level concepts such as shifts in users'
editing attention orthe actofproviding values to
an application by manipulating application
components.

July 30, 1999

11 • D.H. Hubert and D. F. Redmiles

Goal/Problem-Related

(e.g., placing an order)

Domain/Task-Related

(e.g., providing address information)

Abstract Interaction Level

(e.g., providing vaiues in input fields)

Ul Events

(e.g., shifts in input focus, key events)

Input Device Events
(e.g., hardware-generated key or mouse interrupts)

Physical Events
(e.g., fingers pressing keys or hand moving mouse)

Figure 3. Levels ofabstraction in user interactions.

Consider the example of a user editing an input
field at the top of a form-based interface, then
pressing tab repeatedly to edit a field at the
bottom of the form. In terms of UI events, input
focus shifted several times between the first and
last fields. In terms of abstract interaction events,
the user's editing attention shifted directly from
the top field to the bottom field. Notice that
detecting the occurrence of abstract interaction
events such as "GOT_EDIT" and
"LOST_EDIT" requires the ability to keep track
of the last edited component and to notice
subsequent editing events in other components.

Another type of abstract interaction event might
be associated with the act of providing a new
value to an application by manipulating user
interface components. In the case of a text field,
this would mean that the field had received a
number of key events, was no longer receiving
key events, and now contains a new value. The
patterns of window system events that indicate
an abstract interaction event such as

"VALUE_PROVIDED" will differ from one type
of interface component to another, and from one
application to another, but will typically remain
fairly stable within a given application. Notice
that detecting the occurrence of an abstract
interaction event such as "VALUE_PROVIDED"
requires the ability to access user interface state
such as the component value before and after
editing events.

July 30, 1999

Domain/task-related and Goal/problem-related
events are at the highest levels. Unlike other
levels, these events indicate progress in the
user's tasks and goals. Inferring these events
based on lower level events can be
straightforward when the user interface provides
explicit support for structuring tasks or
indicating goals. For instance. Wizards in
Microsoft Word™ [Rubin 1999] lead users
through a sequence of steps in a predefined task.
The user's progress can be recognized in terms
of simpleUI eventssuch as buttonpresseson the
"Next" button. In other cases, inferring task and
goal related events might require more
complicated composite event detection. For
instance, the goal of placing an order includes
the task of providing address information. The
task-related event "ADDRESS_PROVIDED"
may be recognized in terms of
"VAIjUE_PROVIDED" abstract interaction
events occurring within each of the required
fields in the address section of the form. Finally,
in some cases, it may be impossible to infer
events at these levels based only on lower level
events.

Techniques for extracting usability-related
information from UI events should be sensitive
to the fact that user interactions can occur and be
analyzed at multiple levels of abstraction.

4. COMPARISON OF APPROACHES

This section introduces the approaches that have
been applied to the problem of extracting
usability-related information from UI events.
The following subsections discuss the features
that distinguish each class of approaches and
provide examples of some of the approaches in
each class. We mention related work where
appropriate and discuss the relative strengths and
limitations of each class. Figures 4 through 11
provide pictorial representations of the key
features underlying each class. Table 3 (located
at the end of this section) presents a
categorization and summary of the features
belongingto each of the surveyed techniques.

4.1 Synchronization and Searching

4.1.1 Purpose
User interface events provide detailed
information regarding user behavior that can be
captured, searched, counted, and analyzed using
automated tools. However, it is often difficult to

Extracting Usability Informationfrom User Interface Events 12

Description; Ul events are synchronized with video
and coded observations. Searches in one medium

are used to locate supplementary information in
others.

Examples: Playback; Microsoft,Apple, and Sun
Soft Labs; DRUM; MacSHAPA; i-Observe.

Figure 4. Synchronization and Searching

ft-. _

iBr&r.U! Eventb t Sslectea Eve^^ts

I®
n

M

aclas

Description; Selection is the process of separating
events of interest from the rest of the event stream.

Receding is the process of generating a new event
stream based on selected events.

Examples: Incident Monitoring; CHIME; Hawk;
MacSHAPA; User-Identified Cis; EDEM.

Description; Abstraction is the process of generat
ing new events based on existing, or patterns of
existing, events. Receding is the process of gener
ating a new event stream based on abstracted

events.

Examples; CHIME; Hawk; MacSHAPA; User-identi-

Figure 5. Transformation

; "
UlE/ents Counts ,,

^ •• ' fllP A ^

K v;*»36Eilfr'>Op«nsC^
'l" >. "i ,

12 Encs/HoLf*'"

--™—ZSSKOfwafrask.^'l
^ ' 9^ fdlPTinw r

Description; Counts and summary statistics are
numeric values calculated based on Ui events to

characterize user behavior.

Examples: MIKE UiMS; KRI/AG; MacSHAPA; Long
Term Monitoring; AUS.

Figure 6. Counts and Summary Statistics

July 30. 1999

13 D. H. Hilbert and D. F. Redmiles

Description; Sequence detection is the process of
Identifying occurrences of target sequences—in this
case concrefe/y defined—in source sequences.

Examples: None of the sun/eyed techniques use

concretely defined target sequences.

Figure 7. Sequence Detection

Description: Sequence comparison is the process

of comparing target sequences—in this case con
cretely defined—against source sequences and
producing measures of correspondence.

Examples: ADAM; UsAGE; MacSHAPA.

Figure 8. Sequence Comparison

Description: Sequence detection is the process of

identifying occurrences of target sequences—in this

case abstractly defined—in source sequences.

Examples: LSA; Fisher's Cycles; TOP/G; MRP;

MacSHAPA; Automatic Chunk Detection; Expecta

tion Agents; EDEM.

Description: Sequence comparison is the process

of comparing target sequences—in this case
abstractly defined—against source sequences and
producing measures of correspondence.

Examples: EMA.

Description: Sequence characterization is the pro

cess of analyzing source sequences and generating

abstract models to characterize the sequential

structure of those sequences.

Examples: Markov-based; Grammar-based.

Figure 9. Sequence Characterization

July 30. 1999

Extracting Usability Informationfrom User Interface Events 14

Description: Visuaiizations present the results of
transformations and analyses in graphical form.

Examples: MacSHAPA; UsAGE; l-Observe; AUS.

Figure 10. Visualization

infer higher level events of interest from user
interface events alone, and sometimes critical
contextual information is simply missing from
the event stream, making proper interpretation
challenging at best.

Synch and Search techniques seek to combine
the advantages of UI event data with the
advantages provided by more semantically rich
observational data, such as video recordings and
experimenters' observations.

By synchronizing UI events with other sources
of data such as video or coded observations,
searches in one medium can be used to locate
supplementary information in others. Therefore,
if an investigator wishes to review all segments
of a video in which a user uses the help system
or invokes a particular command, it is not
necessary to manually search the entire
recording. The investigator can: (a) search
through the log of UI events for particularevents
of interest and use the timestamps associated
with those events to automatically cue up the
video recording, or (b) search through a log of
observations (that were entered by the
investigator either during or after the time of the
recording) and use the timestampS associated
with those observations to cue up the video.
Similarly, segments of interest in the video can
be used to locate the detailed user interface
events associated with those episodes.

4.1.2 Examples
Playback is an early example of a system
employing synch and search capabilities [Neal
and Simmons 1983]. Playback captures UI

^uats SL'Statis'ics %

•

Description:integrated supportincludes support for
multipletransformation, analysis, and visualization
capabilities as wellas data management.

Examples: Hawk; DRUM; MacSHAPA.

Figure 11. Integrated Support

events automatically and synchronizes them with
coded observations and comments that are
entered by experimenters either during or after
the evaluation session. Instead of using video.
Playback allows recorded events to be played
back through the application interface to re-trace
the user's actions. The evaluator can step
through the playback based on events or coded
observations as if using an interactive debugger.
There area handful of simple built-in analyses to
automatically calculate counts and summary
statistics. This technique captures less
information than video-based techniques since
video can also be used to record off-line
behavior such as facial gestures, off-line
documentation use, and verbalizations. Also,
there can be problems associated with replaying
user sessions accurately in applications where
behavior is affected by events outside of user
interactions. For instance, the behavior of some
applications can vary depending on the state of
networks and persistent data stores.

DRUM, the "Diagnostic Recorder for Usability
Measurement", is an integrated evaluation
environment that supports video-based usability
evaluation [Macleod et al. 1993]. DRUM was
developed at the National Physical Laboratory as
part of the ESPRIT Metrics for Usability
Standards in Computing Project (MUSiC).
DRUM features a module for recording and
synchronizing events, observations, and video, a
module for defining and managing observation
coding schemes, a module for calculating pre
defined counts and summary statistics, and a
module for managing and manipulating

July 30, 1999

15 D. H. Hubert and D. F. Redmiles

evaluation-related information regarding
subjects, tasks, recording plans, logs, videos, and
results of analysis.

Usability specialists at Microsoft, Apple, and
SunSoft all report the use of tools that provide
synch and search capabilities [Weiler et al. 1993;
Hoiem and Sullivan 1994]. The tools used at
Microsoft include a tool for logging
observations, a tool for tracking UI events, and a
tool for synchronizing and reviewing data from
the multiple sources. The tools used at Apple and
SunSoft are essentially similar. All tools support
some level of event selection as part of the
capture process. Apple's selection appears to be
user-definable while Microsoft and SunSoft's

selection appear to be programmed into the
capture tools. Scripts and general-purpose
analysis programs, such as Microsoft Excel™
[Dodge and Stinson 1999], are used to perform
counts and summary statistics after capture. All
tools support video annotations to produce
"highlights" videos. Microsoft's tools provide an
API to allow applications to report application-
specific events or events not readily available in
the UI event stream.

I-Observe, the "Interface OBServation,
Evaluation, Recording, and Visualization
Environment", also provides synch and search
capabilities [Badre et al. 1995]. I-Observe is a
set of loosely integrated tools for collecting,
selecting, analyzing, and visualizing event data
that has been synchronized with video
recordings. Investigators can perform searches
by specifying predicates over the attributes
contained within a single event record.
Investigators can then locate patterns of events
by stringing together multiple search
specifications into regular expressions.
Investigators can then use intervals matched by
such regular expressions (identified by begin and
end events) to select data for visualization or to
display the corresponding segments of the video
recording.

4.1.3 Strengths
The strengths of these techniques lie in their
ability to integrate data sources with
complementary strengths and weaknesses and to
allow searches in one medium to locate related

information in the others. UI events provide
detailed performance information that can be
searched, counted, and analyzed using

July 30. 1999

automated techniques. However, UI events often
leave out higher level contextual information
that can more easily be captured using video
recordings and coded observations.

4.1.4 Limitations

Techniques relying on synchronizing UI events
with video and coded observations typically
require the use of video recording equipment and
the presence of observers. The use of video
equipment and the presence of observers can
make subjects self-conscious and affect
performance and may not be practical or
permitted in certain circumstances. Furthermore,
video-based evaluations tend to produce massive
amounts of data that can be expensive to
analyze. The ratio of the time spent in analysis
versus the duration of the sessions being
analyzed has been known to reach 10:1
[Sanderson and Fisher 1994; Nielsen 1993;
Sweeny 1993]. These matters are all serious
limiting factors on evaluation size, scope,
location, and duration.

Some researchers have begun investigating
techniques for performing collaborative remote
usability evaluations using video-conferencing
software and application sharing technologies.
Such techniques may help lift some of the
limitations on evaluation location. However,
more work must be done in the area of

automating data collection and analysis if current
restrictions on evaluation size, scope, and
duration are to be addressed.

4.2 Transformation

4.2.1 Purpose
These techniques combine selection, abstraction,
and recoding to transform event streams for
various piuposes, such as facilitating human
pattern detection, comparison, and
characterization, or to prepare data for input into
automatic techniques for performing these
functions.

Selection operates by subtracting information
from event streams, allowing events and
sequences of interest to emerge from the "noise".
Selection involves specifying constraints on
event attributes to indicate events of interest to

be separated from other events or to indicate
events to be separated from events of interest.
For instance, one may elect to disregard all
events associated with mouse movements in

Extracting UsabilityInformationfrom User Interface Events 16

order to focus analysis on higher level actions
such as button presses and menu selections. This
can be accomplished by "positively" selecting
button press and menu selection events or by
"negatively" selecting, or filtering, mouse
movement events. I

Abstraction operates by synthesizing new events
based on information in the evisnt stream,
supplemented (in some case) by, contextual
information outside of the event stream. For
instance, a pattern of events indicating that an
input field had been edited, that a neyv value had
been provided, and that the user's editing
attention had sinceshifted to anothercomponent
might indicate the abstract event
"value_provided", which is not signified by
any single event in the event stream.
Furthermore, the same abstract event might be
indicated by different events in different UI
components, for example, mouse events
typically indicate editing in non-textual
components while keyboard events typically
indicate editing in textual components. One may
also wish to synthesize events to relate the use of
particular UI components to higher level
concepts such as the use of menus, toolbars, or
dialogs to which those components belong.

Recoding involves producing new event streams
based on the results of selection and abstraction.
This allows the same manual or ,automated
analysis techniques normally applied to raw
event streams to be applied to selected and
abstracted events, potentially leading to different
results. Consider the example presented in
Section 3. If the sequences representing four
sequential print job activations were: embedded
within the context of a larger sequence, they
might not be identified as beiiig similar
subsequences, particularly by [automated
techniques such as those presented below.
However, after performing abstraction based on
the grammar in that example, each of these
sequences could be recoded as "aaaX", making
them much more likely to be identified as
common subsequences by automatic techniques.

4.2.2 Examples '
Chen presents an approach to user interface
event monitoring that selects events based on the
notion of "incidents" [Chen 1990]. Incidents are
defined as only those events that actually trigger
some response from the application and not just

the user interface system. This technique was
demonstrated by modifying the X Toolkit
Intrinsics [Nye and O'Reilly 1992] to report
events that trigger callback proceduresregistered
by applications. This allows events not handled
by the application to be selected "out"
automatically. Investigators may further
constrain event reporting by selecting specific
incidents of interestto report. Widgets in the user
interface toolkit were modified to provide a
query procedure to return limited contextual
information when an event associated with a
given widget triggers a callback.

Hartson and colleagues report an approach to
remote collaborative usability evaluation that
relies on users to select events [Hartson et al.
1996]. Users identify potential usability
problems that arise during the course of
interacting with an application and report
information regarding these "critical incidents"
by pressing a "report" button that is supplied in
the interface. The approach uses E-Mail toreport
digitized video of the events leading up to and
following criticalincidents alongwithcontextual
information provided by users. In this case,
selection is achieved by only reporting the n
events leading up to, and m events following,
user-identified critical incidents (where n and m
are parameters that can be set in advance by
investigators).'

CHIME, the "Computer-Human Interaction
Monitoring Engine", is similar, in some ways, to
Chen's approach [Badre and Santos 1991a].
CHIME allows investigators to select ahead of
time which events to report and which events to
filter. An important difference is that CHIME
also supports a limited notion of abstraction that
allows a level of indirection to be built on topof
the window system. The basic idea is that
abstract "interaction units" (lUs) are defined that
translate window system events into platform
independent events upon which further
monitoring infrastructure is built. The events to
be recorded are then specified in terms of these
platform independent lUs.^

I.This approach actually focuses on capturing video andnot
events. However, the ideas embodied by the approach can
equally well be applied to theproblem of selecting events of
interest surrounding user-identified critical incidents.

July 30, 1999

17 D. H. Hubert and D. F. Redmiles

Hawk is an environment for selecting,
abstracting, and receding events in log files
[Guzdial 1993]. Hawk's main functionality is
provided by a variant of the AWKprogramming
language [Aho et al. 1988], and an environment
for managing data files is provided by
HyperCard™ [Goodman 1998].Events appear in
the event log one per line, and AWK pattern-
action pairs are used to specify what is to be
matched in each line of input (the pattern) and
what is to be printed as output (the action). This
allows fairly flexible selection, abstraction, and
recoding to be performed.

MacSHAPA, which is discussed further below,
supports selection and recoding via a database
query and manipulation language that allows
investigators to select event records based on
attributes and define new streams based on the
results of queries [Sanderson et al. 1994].
Investigators can also perfoim abstraction by
manually entering new records representing
abstract events and visually aligning them with
existing events in a spreadsheet representation
(see Figure 13).

EDEM, an "Expectation-Driven Event
Monitoring" system, captures U1 events and
supports automated selection, abstraction, and
recoding [Hilbert and Redmiles 1998a].
Selection is achieved in two ways: investigators
specify ahead of time whichevents to report, and
users can also cause events to be selected via a
critical incident reporting mechanism akin to that
reported in [Hartson et al. 1996]. However, one
imponant difference is that EDEM also allows
investigators to define automated agents to help
in the detection of "critical incidents", thereby
lifting some of the burden from users who often
do not know when their actions are violating
expectations about proper usage [Smilowitz et
al. 1994]. Furthermore, investigators can use
EDEM to define abstract events in terms of
patterns of existing events. When EDEM detects
a pattern of events corresponding to a pre
defined abstract event, it generates an abstract
event and inserts it into the event stream.

2.The paper also alludes to the possibility of allowing higher
level lUs to be hierarchically defined in terms of lower level
lUs (using a context-free grammar and pre-conditions) topro
vide a richer notion of abstraction. However, this appears to
never have been implemented [Badre and Santos 1991a and
1991b]).

July 30, 1999

Investigators can configure EDEM to perform
further hierarchical event abstraction by simply
defining higher level abstract events in terms of
lower level abstract events. All of this is done in
context, so that contextual information can be
used in selection and abstraction. EDEM also
calculates a number of simple counts and
summary statistics.

4.2.3 Strengths
The main strength of these approaches lies in
their explicit support for selection, abstraction,
and recoding which are essential steps in
preparing UI events for most types of analysis
(as illustrated in Section 3). Chen and CHIME
address issues of selection prior to reporting.
Hartson and colleagues add to this a technique
for accessing contextual information via the user.
EDEM adds to these automatic detection of
critical incidents and abstraction that is
performed in context. All these techniques might
potentially be usedto collect UI events remotely.

Hawk and MacSHAPA, on the other hand, do
not address event collection but provide
powerful and flexible environments for
transforming and analyzing already captured UI
events.

4.2.4 Limitations

The techniques that select, abstract, and recode
events while collecting them run the risk of
throwing away data that might have been useful
in analysis. Techniques that rely exclusively on
users to select events are even more likely to
drop useful information. With the exception of
EDEM, the approaches that support flexible
abstraction and recoding do so only after events
have been captured, meaning contextual
information that can be critical in abstraction is
not available.

4.3 Counts and Summary Statistics

4.3.1 Purpose
As noted above, one of the key benefits of UI
events is how readily details regarding on-line
behavior can be captured and manipulated using
automated techniques. Mostinvestigators rely on
general-purpose analysis programs such as
spreadsheets and statistical packages to compute
counts and summary statistics based on collected
data (e.g., feature use counts or error
frequencies). However, some investigators have
proposed systems with specific built-in facilities

Extracting Usability Informationfrom User Interface Events IS

for performing and reporting such calculations.
This section provides examples of some of the
systems boasting specialized facilities for
calculating usability-related metrics.

4.3.2 Examples
The MIKE user interface management system
(UIMS) is an early example of a system offering
built-in facilities for calculating and reporting
metrics [Olsen and Halversen 1988]. Because
MIKE controls all aspects of input and output
activity, and because it has an abstract
description that links user interface components
to the application commands they trigger, MIKE
is in a uniquely good position to monitor UI
events and associate them with responsible
interface components and application
commands. Example metrics include;

• Performance time: How much time is spent
completing tasks such as specifying argu
ments for commands?

• Mouse travel: Is the sum of the distances

between mouse clicks unnecessarily high?

• Command frequency: Which commands are
used most frequently or not at all?

• Command pair frequency: Which commands
are used together frequently? Can they be
combined or placed closer to one another?

• Cancel and undo: Which dialogs are fre
quently canceled? Which commands are fre
quently undone?

• Physical device swapping: Is the user switch
ing back and forth between keyboard and
mouse unnecessarily? Which features are
associated with high physical swapping
counts?

MIKE logs all Ul events and associates them
with the interface components triggering them
and the application commands triggered by
them. Event logs are written to files that are later
read by a metric collection and report generation
program. This program uses the abstract
description of the interface to interpret the log
and to generate human readable reports
summarizing the metrics.

MacSHAPA also includes numerous built-in
features to support computation and reporting of
simple counts and summary statistics, including,
for instance, the frequencies and durations of any
selection of events specified by the user

[Sanderson et al. 1994]. MacSHAPA's other
more powerful analysis features are described in
following sections.

Automatic Usability Software (AOS) is reported
to provide a number of automatically computed
metrics such as help system use, use of cancel
and undo, mouse travel, and mouse clicks per
window [Chang and Dillon 1997],

Finally, ErgoLight Operation Recording Suite
(EORS) and Usability Validation Suite (EUVS)
[ErgoLight Usability Software 1998] provide a
number of built-in counts and summary statistics
to characterize user interactions captured by the
tools, either locally in the usability lab, or
remotely over the Internet.

4.3.3 Related

A number of commercial tools such as Aqueduct
AppScope™ [Aqueduct Software 1998] and Full
Circle Talkback™ [Full Circle Software 1998]
have recently become available for capturing
data about application crashes over the Internet.
These tools capture metrics about the operating
system and application at the time crashes occur,
and Talkback allows users to provide feedback
regarding the actions leading up to crashes.
These tools also provide APIs that application
developers can use to report events of interest,
such as application feature usage. These tools
then send captured data via E-mail to
developers' computers where it is stored in a
database and plotted using standard database
plotting facilities.

4.3.4 Strengths
With the number of possible metrics, counts, and
summary statistics that might be computed and
that might be useful in usability evaluation, it is
nice that some systems provide built-in facilities
to perform and report such calculations
automatically.

4.3.5 Limitations

With the exception of MacSHAPA, the systems
described above do not provide facilities to allow
evaluators to modify built-in counts, statistics,
and reports, or to add new ones of their own.
Also, the computation of useful metrics is
greatly simplified when the system computing
the metrics has a model linking user interface
components to application commands, as in the
case of MIKE, or when the application code is
manually instrumented to report the events to be

July 30, 1999

19 • D.H. Hubert and D. F. Redmiles

analyzed, as in the case of AppScope and
Talkback. AUS does not address application-
specific features and thus is limited in its ability
to relate metrics results to application features.

4.4 Sequence Detection

4.4.1 Purpose
These techniques detect occurrences of concrete
or abstractly defined "target" sequences within

"source" sequences.* In some cases target
sequences are abstractly defined and are supplied
by the developers of the technique (e.g., Fisher's
cycles, lag sequential andysis, multiple
repeating pattern analysis, and automatic chunk
detection). In other cases, target sequences are
more specific to a particular application and are
supplied by the investigators using the technique
(e.g., TOP/G, Expectation Agents, and EDEM).
Sometimes the purpose is to generate a list of
matched source subsequences for perusal by the
investigator (e.g.. Fisher's cycles, maximal
repeating pattern analysis, and automatic chunk
detection). Other times the purpose is to
recognize sequences of U1 events that violate
particular expectations about proper U1 usage
(e.g., TOP/G, Expectation Agents, and EDEM).
Finally, in some cases the purpose may be to
perform abstraction and recoding of the source
sequence based on matches of the target
sequence (e.g., EDEM).

4.4.2 Examples
TOP/G, the "Task-Oriented Parser/Generator",
parses sequences of commands from a
command-line simulation and attempts to infer
the higher level tasks that are being performed
[Hoppe 1988]. Users of the technique model
expected tasks in a notation based on Payne and
Green's task-action grammars [Payne and Green
1986] and store this information as rewrite or
production rules in a Prolog database.
Investigators can define composite tasks
hierarchically in terms of elementary tasks,
which they must further decompose into
"triggering rules" that map keystroke level
events into elementary tasks. Investigators may
also define rules to recognize "suboptimal" user

I.The following sentences include names of approaches in pa
rentheses to indicate how the examples explained in the next
subsection fall into finer subcategories of the broader "se
quence detection" category.

July 30. 1999

behaviors that might be abbreviated by simpler
compositions of commands. A later version
attempted to use information about the side
effects of commands in the environment to
recognize when a longer sequence of commands
might be replaced by a shorter sequence. In both
cases, TOP/G's generator functionality could be
used to generate the shorter, or more "optimal",
command sequence.

Researchers involved in exploratory sequential
data analysis (ESDA) have applied a number of
techniques for detecting abstractly defined
patterns in sequential data. For an in-depth
treatment see [Sanderson and Fisher 1994].
These techniques can be subdivided into two
basic categories:

Techniques sensitive to sequentially separated
patterns of events, for example:

• Fisher's cycles

• Lag sequential analysis (LSA)

Techniques sensitive to strict transitions between
events, for example:

• Maximal Repeating Pattern Analysis (MRP)

• Log linear analysis

• Time-series analysis

Fisher's cycles allow investigators to specify
beginning and ending events of interest that are
then used to automatically identify all
occurrences of subsequences beginning and
ending with those events (excluding those with
further internal occurrences of those events)
[Fisher 1991]. For example, assume an
investigator is faced with a source sequence of
events encoded using the letters of the alphabet,
such as: ABACDACDBADBCACCCD. Suppose
further that the investigator wishes to find out
what happened between all occurrences of 'a' (as
a starting point) and 'D' (as an ending point).
Fisher's cycles produces the following analysis:

Source sequence: abacdacdbadbcacccd
Begin event: A
End event: D

Output:
ABACDACDBADBCACCCD

ABACDACDBADBCACCCD

ABACDACDBADBCACCCD

Extracting Usability Informationfrom UserInterfaceEvents 20

ABACDACDBADBCACCCD

Cycle # Frequency Cycle

1 2 ACD

2 1 AD

3 1 ACCCD

An example of a technique that is more sensitive
to strict transitions is the Maximal Repeating
Pattern (MRP) analysis technique [Siochi and
Hix 1991]. MRP operates under the assumption
that repetition of user actions can be an
important indicator of potential usability
problems. MRP identifies all patterns occurring
repeatedly in the input sequence and produces a
listing of those patterns sorted by length first
followed by frequency of occurrence in the
source sequence. MRP applied to the sequence
above wouldproducethe following analysis:

Source Sequence:ABACDACDBADBCACCCD
Output:

Pattern # Frequency Pattern

1 2 ACD

2 3 AC

3 3 CD

4 2 BA

5 2 DB

The investigator could then note that there were
clearly no occurrences of B in any A->D cycle.
Furthermore, the investigator might use a
grammatical technique to recode repetitions of
the same event into a single event, thereby
revealing that the last cycle (acccd) is
essentially equivalent to the first two (ACD). This
is one way of discovering similar subsequences
in "noisy" data.

Lag sequential analysis (LSA) is another popular
technique that identifies the frequency with
which two events occur at various "removes"
from one another [Sackett 1978; Allison and
Liker 1982; Faraone and Dorfman 1987;
Sanderson and Fisher 1994]. LSA takes one
event as a 'key' and another event as a 'target'
and reports how often the target event occurs at
various intervals before and after the key event.
If 'A' were the key and 'D' the target in the
previous example, LSA would produce the
following analysis;

Source sequence: abacdacdbadbcacccd
Key event: a
Target event: D
Lag(s): -4 through +4
Output:

MRP is similar in spirit to Fisher's cycles and
LSA, however, the investigator does not specify
particular events of interest. Notice that the
ACCCD subsequence identified in the previous
examples is not identified by MRP since it only
occurs once in the source sequence.

Markov-based techniques can be used to
compute the transition probabilities from one or
more events to the next event. Statistical tests
can be applied to determine whether the
probabilities of these transitions is greater than
would be expected by chance [Sanderson and
Fisher 1994]. Other related techniques include
log linear analysis [Gottman and Roy 1990] and
formal time-series analysis [Box and Jenkins
1976]. All of these techniques attempt to find
strict sequential patterns in the data that occur
more frequently than would be expected by
chance.

Santos and colleagues have proposed an
algorithm for detecting users' "mental chunks"
based on pauses andflurries of activity in human
computer interaction logs [Santos et al. 1994].
The algorithm is based on an extension of Fitts'
law [Fitts 1964] that predicts the expected time
between events generated by a user who is
actively executing plans, as opposed to engaging
in problem solving and planning activity. For

Lag -4 -3 -2 -1 1 2 3 4

Occurrences 0 1 1 1 1 2 0 1

The count of 2 at Lag = +2 corresponds to the
ACD cycles identified by Fischer's cycles above.
Assuming the same
performed above to
occurrences of the same

event, this count would

purpose of LSA is to
between events (that might be causally related to
one another) that might otherwise have been
missed by techniques more sensitive to the strict
transitions between events.

recoding operation
collapse multiple

event into a single
increase to 3. The

identify correlations

July 30, 1999

21 • D. H. Hubert and D. F. Redmiles

each event transition in the log, if the pause in
interaction cannot be justified by the predictive
model, then the lag is assumed to signify a
transition from "plan execution phase" to "plan
acquisition phase" [Santos et al. 1994], The
approach uses the results of the algorithm to
segment the source sequence into plan execution
chunks and chunks most probably associated
with problem solving and planning activity. The
assumption is that expert users tend to have
longer, more regular execution chunks than
novice users, so user expertise might be inferred
on the basis of the results of this chunking
algorithm.

Finally, work done by Redmiles and colleagues
on "Expectation Agents" (EAs) [Girgensohn et
al. 1994] and "Expectation-Driven Event
Monitoring" (EDEM) [Hilbert and Redmiles
1998b] rely on sequence detection techniques to
trigger various actions in response to pre-
specified patterns of events. These approaches
employ an event pattern language to allow
investigators to specify composite events to be
detected. When a pattern of interest is detected,
contextual information may also be queried
before action is taken. Possible actions include
notifying the user and/or investigator that a
particular pattern was detected, collecting user
feedback, and reporting UI state and events
leading up to detected patterns. Investigators
may also configure EDEM to abstract and recode
event streams to indicate the occurrence of

abstract events associated with pre-specified
event patterns.

4.4.3 Related

EBBA is a debugging system that attempts to
match the behavior of a distributed program
against partial models of expected behavior
[Bates 1995]. EBBA is similar to EDEM,
particularly in its ability to abstract and recode
the event stream based on hierarchically defined

abstract events.'

Amadeus [Selby et al. 1991] and YEAST
[Krishnamurthy and Rosenblum 1995] are event-
action systems used to detect and take actions
based on patterns of events in software
processes. These systems are also similar in
spirit to Expectation Agents and EDEM.
Techniques that have been used to specify
behavior of concurrent systems, such as the Task
Sequencing Language (TSL) as described in

July 30, 1999

[Rosenblum 1991] are also related. The event
specification notations used in these approaches
might be applicable to the problem of specifying
and detecting patterns of UI events.

4.4.4 Strengths
The strength of these approaches lies in their
ability to help investigators detect patterns of
interest in events and not just perform analysis
on isolated events. The techniques associated
with ESDA help investigators detect patterns
that may not have been anticipated. Languages
for detecting patterns of interest in UI events
based on extended regular expressions
[Sanderson and Fisher 1994] or on more
grammatically inspired techniques [Hilbert and
Redmiles 1998b] can be used to locate patterns
of interest and to transform event streams by
receding patterns of events into abstract events.

4.4.5 Limitations

The ESDA techniques described above tend to
produce large amounts of output that can be
difficult to interpret and that frequently do not
lead to identification of usability problems
[Cuomo 1994], The non-ESDA techniques
require investigators to know how to specify the
patterns for which they are searching and to
define them (sometimes painstakingly) before
analysis can be performed.

4.5 Sequence Comparison

4.5.1 Purpose
These techniques compare "source" sequences
against concrete or abstractly defined "target"
sequences indicating partial matches between

the two." Some techniques attempt to detect
divergence between an abstract model of the
target sequence and the source sequence (e.g.,

1.EBBA issometimes characterized asa sequetice comparison
system since the information carried in a partially matched
model can be used to help the investigator better understand
where the program's behavior has gone wrong (or where a
model is inaccurate). However, EBBA doesnot directly indi
cate that partial matches have occurredor provideany diag
nostic measures of correspondence. Rather, the user must
notice thata full match has failed, and thenmanually inspect
the state of the pattern matching mechanism to see which
events were matched and which were not.

2.The following sentences include names ofapproaches inpa
rentheses to indicatehow the examplesexplainedin the next
subsection, fall into finer subcategories of the broader "se
quence comparison" category.

Extracting Usability Informationfrom User Interface Events 22

EMA and USINE). Others attempt to detect
divergence between a concrete target sequence
produced, for example, by an expert user and a
source sequence produced by some other user
(e.g., ADAM and UsAGE). Some produce
diagnostic measures of distance to characterize
the correspondence between target and source
sequences (e.g., ADAM). Others attempt to
perform the best possible alignment of events in
target and source sequences and present the
results visually (e.g., UsAGE and MacSHAPA).
Still others use points of deviation between the
target and input sequences to automatically
indicate potential "critical incidents" (e.g., EMA
and USINE). In all cases, the purpose is to
compare actual usage against some model or
trace of "ideal" or expected usage to identify
potential usability problems.'

4.5.2 Examples
ADAM, an "Advanced Distributed Associative
Memory", compares fixed length source
sequences against a set of target sequences that
were used to "train" the memory [Finlay and
Harrison 1990]. Investigators train ADAM by
helping it associate example target sequences
with "classes" of event patterns. After training,
when a source sequence is input, the associative
memory identifies the class that most closely
matches the source sequence and outputs two
diagnostic measures: a "confidence" measure
that is 100% only when the source sequence is
identical to one of the trained target sequences,
and a "distance" measure, indicating how far the
source pattern is from the next "closest" class.
Investigators then use these measures to
determine whether a source sequence is different
enough from the trained sequences to be judged
as a possible "critical incident". Incidentally,
ADAM might also be trained on examples of
"expected" critical incidents so that these might
be detected directly.

I.TOP/G. Expectation Agents, and EDEM (discussed above)
are also intended to detect deviations between actual and ex

pected usage to identify potential usability problems. Howev
er. these approaches are better characterized as detecting
completematcheshietween sourcesequencesand ("negatively
defined") target patterns that indicate unexpected, or subopti-
mal behavior,as opposedto partiallymatching, or comparing,
source sequences against ("positively defined") target patterns
indicating expected behavior.

MacSHAPA [Sanderson and Fisher 1994]
provides techniques for aligning two sequences
of events as optimally as possible based on
maximal common subsequences [Hirschberg
1975], The results are presented visually as cells
in adjacent spreadsheet columns with aligned
events appearing in the same row and missing
cells indicating events in one sequence that could
not be aligned with events in the other (see
Figure 17).

UsAGE applies a related technique in which a
source sequence of UI events (related to
performance of a specific task) is aligned as
optimally as possible with a target sequence
produced by an "expert" performing the same
task [Ueling and Wolf 1995]. UsAGE presents
its alignment results in visual form.

EMA, an "automatic analysis mechanism for the
ergonomic evaluation of user interfaces",
requires investigators to provide a grammar-
based model describing all the expected paths
through a particular user interface [Balbo 1996].
An evaluation program then compares a log of
events generated by use of the interface against
the model, indicating in the log and the model
where the user has taken "illegal" paths. EMA
also detects and reports the occurrence of other
simple patterns, for example, the use of cancel or
repeated actions. The evaluator can then use this
information to identify problems in the interface
(or problems in the model).

USINE is a similar technique [Lecerof and
Patemo 1998], in which investigators use a
hierarchical task notation to specify how lower-
level actions combine to form higher-level tasks,
and to specify sequencing constraints on actions
and tasks. The tool then compares logs of user
actions against the task model. All actions not
specified in the task model, or actions and tasks
performed "out of order" according to the
sequencing constraints specified in the task
model, are flagged as potential errors. The tool
then computes a number of built-in counts and
summary statistics including number of tasks
completed, errors, and other basic metrics (e.g.,
window resizing and scrollbar usage) and
generates simple graphs.

ErgoLight Usability Validation Suite (EUVS)
also compares user interactions against
hierarchical representations of user tasks
[ErgoLight Usability Software 1998]. EUVS is

July 30, 1999

23 • D. H. Hubert and D. F. Redmiles

similar in spirit to EMA and USINE with the
added benefit that it provides a number of built-
in counts and summary statistics regarding
general user interface use in addition to
automatically-detected divergences between user
actions and the task model.

4.5.3 Related

Process validation techniques are related in that
they compare actual traces of events generated
by a software process against an abstract model
of the intended process [Cook and Wolf 1997].
These techniques compute a diagnostic measure
of distance to indicate the correspondence
between the trace and the closest acceptable
trace produced by the model. Techniques for
performing error correcting parsing are also
related. See [Cook and Wolf 1997] for further
discussion and pointers to relevant literature.

4.5.4 Strengths
The strengths of these approaches lie their ability
to compare actual traces of events against
expected traces, or models of expected traces, in
order to identify potential usability problems.
This is particularly appealing when expected
traces can be specified "by demonstration" as in
the case of ADAM and UsAGE.

4.5.5 Limitations

Unfortunately, all of these techniques have
significant limitations.

A key limitation of any approach that compares
source sequences against concrete target
sequences is the underlying assumption that: (a)
source and target sequences can be easily
segmented for piecemeal comparison, as in the
case of ADAM, or (b) that whoie interaction
sequences produced by different users will
actually exhibit reasonable correspondence, as in
the case of UsAGE.

Furthermore, the output of all these techniques,
(except in the case of perfect matches) requires
expert human interpretation to determine
whether the sequences are interestingly similar
or different. In contrast to techniques that
completely match patterns that directly indicate
violations of expected patterns (e.g., as in the
case of EDEM), these techniques produce output
to the effect, "the source sequence is similar to a
target sequence with a correspondence measure
of 61%", leaving it up to investigators to decide

July 30, 1999

on a case to case basis what exactly the
correspondence measure means.

A key limitation of any technique comparing
sequences against abstract models (e.g., EMA,
USINE, ErgoLight EUVS, and the process
validation techniques described by Cook and
Wolf) is that in order to reliably categorize a
source sequence as being a poor match, the
model used to perform the comparison must be
relatively complete in its ability to describe all
possible, or rather, expected paths. This is all but
impossible in most non-trivial interfaces.
Furthermore, the model must somehow deal with
"noise" so that low-level events, such as mouse
movements, won't mask otherwise significant
correspondence between source sequences and
the abstract model. Because these techniques
typically have no built-in facilities for
performing transformations on input traces, this
implies that either the event stream has already
been transformed, perhaps by manually
instrumenting the application (as with EMA), or
complexity must be introduced into the model to
avoid sensitivity to "noise". In contrast,
techniques such as EDEM and EBBA use
selection and abstraction to pick out patterns of
interest from the noise. The models need not be
complete in any sense and may ignore events
that are not of interest.

4.6 Sequence Characterization

4.6.1 Purpose
These techniques take "source" sequences as
input and attempt to construct an abstract model
to summarize, or characterize, interesting
sequential features of those sequences. Some
techniques produce a process model with
probabilities associated with transitions [Guzdial
1993]. Others construct models that characterize
the grammatical structure of events in the input
sequences [Olson et al. 1993].

4.6.2 Examples
Guzdial describes a technique, based on Markov
Chain analysis, that produces process models
with probabilities assigned to transitions to
characterize user behavior with interactive

applications [Guzdial 1993]. First, the
investigator identifies abstract stages, or states,
of application use. In Guzdial's example, a
simple design environment was the object of
study. The design environment provided
functions supporting the following stages in a

Extracting UsabilityInformationfrom User Interface Events 24

simple design process: "initial review",
"decomposition", "composition", "debugging",
and "final review". The investigator then creates
a mapping between each of the operations in the
interface and one of the abstract stages. For
instance, Guzdial mapped all debugging related
commands (which incidentally all appeared in a
single "debugging" menu) to the "debugging"
stage. The investigator then uses the Hawk tool
to abstract and record the event stream to replace
low level events with the abstract stages
associated with them (presumably dropping
events not associated with stages). The
investigator then uses Hawk to compute the
observed probability of entering any stage from
the stage immediately before it to yield a
transition matrix. The investigator can then use
the matrix to create a process diagram with
probabilities associated with transitions. In
Guzdial's example, one subject was observed to
have transitioned from "debugging" to
"composition" more often (52% of all transitions
out of "debugging") than to "decomposition"
(10%) (See Figure 18). Guzdial thencomputed a
steady state vector to reflect the probability of
any event chosen at random belonging to each
particular stage. He could then compare this to
an expected probability vector (computed by
simply calculating the percentage of commands
associated with each stage) to indicate user
"preference" for classes of commands.

Olson and colleagues describe an approach,
based on statistical and grammatical techniques,
for characterizing the sequential structure of
verbal interactions between participants in
design meetings [Olson et al. 1993], They begin
by mapping meeting verbalizations into event
categories that are then used to manually encode
the transcript into an event sequence
representation. The investigator then applies
statistical techniques, including log linear
modeling and lag sequential analysis, to identify
potential dependencies between events in the
sequence. The investigator then uses the results
of these pattern detection techniques to suggest
rules that might be included in a definite clause
grammar to summarize, or characterize, some of
the sequential structure of the meeting
interactions. The investigator then uses the
resulting grammar rules to rewrite some of the
patterns embedded in the sequence (i.e.,
abstraction and recoding), and the new sequence

is subjected to the same statistical techniques
leading to further iterative refinement of the
grammar. The result is a set of grammar rules
that provide insight into the sequential structure
of the meeting interactions.

4.6.3 Related

Process discovery techniques are related in that
they attempt to automatically generate a process
model, in the form of a finite state machine, that
accounts for a trace of events produced by a
particular software process [Cook and Wolf
1996]. It is not clear how well these techniques
would perform with data as noisy as UI events.
A morepromising approach mightbe to perform
selection, abstraction, and recoding of the event
stream prior to submitting it for analysis.

4.6.4 Strengths
The strength of these techniques lies in their
ability to help investigators discover sequential
structure within event sequences and to
characterize that structureabstractly.

4.6.5 Limitations

The technique described by Olson and
colleagues requires extensive human
involvement and can be very time-consuming
[Olson et al. 1994]. On the other hand, the
automated techniques suggested by Cook and
Wolf appear to be sensitive to noise and are less
likely to produce models that make sense to
investigators [Olson et al. 1994].

In our opinion, Markov-based models, while
relying on overly simplilying assumptions, are
more likely than grammar-based techniques to
tell investigators something about user
interactions that they don't already know.
Investigators often have an idea of the
grammatical structure of interactions that may
arise from the use of (at least portions of) a
particular interface. Grammars are thus useful in
transforming low level UI events into higher
level events of interest, or to detect when actual
usage patterns violate expected patterns.
However, the value of generating a grammatical
or FSM-based model to summarize use is more
limited. More often than not, a grammar- or
FSM-based model generated on the basis of
multiple traces will be vacuous in that it will
describe all observed patterns of usage of an
interface without indicating which are most
common. While this may be useful in defining
paths for UI regression testing, investigators

July 30, 1999

25 D. H. Hubert and D. F Redmiles

Tiineline: WtordProcessor.db

1 Edit Menu Use

Q FontMenuUse

00:01:00 000200 00:03in 00:0400 000900
1 1 1 1 1

"'11 II 1 r•• • • •! •Ml

1 M1 n 1 1 1 rrj ,
' i 1II y 111

Figure 12. Use of "Edit" menu operations is
indicated in black. Use of "Font" menu operations
is indicated in grey. Used to display results of
transformations or sequence detection.

GotFocus(rtorT»)

S)

K«><Nan>e »)

Kt)<N2rr>« v)

K«Y<Narn« i)

K«)<Name f)

L^stFoousCNafne)

3otFocus(Sir»«l)

QotFocu$(Quantty)

Kai<QusntJty.'n

OrderFomulb

Aba InCoMtian Events TsaMldcted. Events

GotEttn(N«TM)

U)stEdt(Nanw)

GotEdi<S»*«t)
VA>u*Prov«d*d(16m«,"Bavk HarTMProwMCQMi O

GotEdtt Quartiiy)

V.ahJtProvid«i(aP.'3074(0

Aid rtssS*amSwt«d()

ZP Previd«dC 30 7 40^

Add r«»S4amCotnfiielcdO

Figure 13. Correspondence between events at
different levels of abstraction is indicated by
horizontal alignment. Single "Key" events in large
cells correspond to "LostEdit", "GotEdit", and
"ValueProvided" abstract interaction events in
smaller, horizontally aligned cells.

interested in locating usability problems will
more likely be interested in identifying and
determining the frequency of specific observed
patterns than in seeing a grammar to summarize
them all.

4.7 Visualization

4.7.1 Purpose

These techniques present the results of
transformation and analysis in forms allowing
humans to exploit their innate visual analysis
capabilities to interpret results. Some of these
techniques are helpful in linking results of
analysis back to features of the interface.

July 30. 1999

4.7.2 Examples
Investigators have proposed a number of
techniques to visualize data based on UI events.
For a survey of such techniques see [Guzdial et
al. 1994]. Below are few examples of techniques
that have been used in support of the analysis
approaches described above.

Transformation:

The results of performing selection or
abstraction on an event stream can sometimes be

visualized using a timeline in which bands of
colors indicate different selections of events in

the event stream. For example, one might use red
to highlight the use of "Edit" menu operations
and blue to highlight the use of "Font" menu
operations in the evaluation of a word processor
(Figure 12).

MacSHAPA [Sanderson and Fisher 1994]
visualizes events as occupying cells in a
spreadsheet. Event streams are listed vertically
(in adjacent columns) and correspondence of
events in one stream with events in adjacent
streams is indicated by horizontal alignment
(across rows). A large cell in one column may
correspond to a number of smaller cells in
another column to indicate abstraction

relationships (Figure 13).

Counts and summary statistics:

There are a number of visualizations that can be

used to represent the results of counts and
summary statistics, including static 2D and 3D
graphs, static 2D effects superimposed on a
coordinate space representing the interface, and
static and dynamic 2D and 3D effects
superimposed on top of an actual visual
representation of the interface.

The following are examples of static 2D and 3D
graphs:

• Graph of keystrokes per window [Chang and
Dillon 1997].

• Graph of mouse clicks per window [Chang
and Dillon 1997].

• Graph of relative command frequencies [Kay
and Thomas 1995] (Figure 14).

• Graph of relative command frequencies as
they vary over time [Kay and Thomas 1995]
(Figure 15).

Extracting Usability Informationfrom UserIntetface Events 26

'• ' • -

''"ryj-v.,; .••"
V'\',z-rv<h-' ' '• '
g -,. _-. .-. • •

h-> - -'
— L.:; '

10 30 30 40
'"''""0'' CommanORank • -

I .

Figure 14. Relative command frequencies ordered
by "rank".

c

1^ !S

Figure15.Relative commandfrequencies over time

The following are examples of static 2D effects
superimposed on an abstract coordinate space
representing the interface;

• Location of mouse clicks [Guzdial et al.
1994; Chang and Dillon 1997].

• Mouse travel patterns between clicks [Buxton
et al. 1983;Chang and Dillon 1997].

The following are examples of static and
dynamic 2D and 3D effects superimposed on top
of a graphical representation of the interface:

• Static highlighting to indicate location and
density ofmouse clicks [Guzdial et al. 1994].

• Dynamic highlighting ofmouse click activity
as it varies over time [Guzdial et al. 1994].

• 3D representation of mouse click location
and density [Guzdial et al. 1994] (Figure 16).

Figure 16. A 3D representation of mouse click
density superimposed over a graphical
representation of the interface.

Sequence detection:

The same technique illustrated in Figure 12 can
be used to visualize the results of selecting
subsequences of UI events based on sequence
detection techniques.

EDEM provides a dynamic visualization of the
occurrence of UI events by highlighting nodes in
a hierarchical representation of the user interface
being monitored. A similar visualization is
provided to indicate the occurrence of abstract
events, defined in terms of abstract patterns of
events, by highlighting entries in a listof agents
responsible for detecting those patterns. These
visualizations help investigators inspect the
dynamic behavior of events, thereby supporting
the process of event pattern specification
[Hilbert and Redmiles 1998a].

Sequence comparison:

As described above, MacSHAPA provides
facilities for aligning two sequences of events as
optimally as possible and presenting the results
visually as cells in adjacent spreadsheet columns
[Sanderson and Fisher 1994]. Aligned events
appear in the same row and missing cells
indicate events in onesequence that could notbe
aligned with events in the other (Figure 17).

UsAGE provides a similar visualization for
comparing sequences based on drawing a

July 30, 1999

27 D. H. Hubert and D. F. Redmiles

MeainMlb

/Wnpffr /VnpIV

Resohra Issue Resotve Issue

Idertify ProUem idenDfy Pioaefn

(iflipify

Digress

Idertify

Resort

Idertify

Anpify

Anpffy

Idertify

Idertify

Idertify

Anpify

Anpity

Aignment: Meenna.cSi

Anpify

Resolve Issue

Idertify Problem

Anpify

Anpify

Resolve Issue

Idertify Issue

Anpify

Anpify

Resolve Issue

Idenbfy Problem

Anpify

Idertify Issue

Anpify

Idertify I

Anplfy

Idertify Issue

Figure 17. Results of an automatic alignment of
two separate event streams. Horizontal alignment
indicates correspondence. Black spaces indicate
where alignment was not possible.

connected graph of nodes [Ueling and Wolf
1995]. The "expert" series of actions is displayed
linearly as a sequence of nodes across the top of
the graph. The "novice" series of actions are
indicated by drawing directed arcs connecting
the nodes to represent the order in which the
novice performed the actions. Out of sequence
actions are indicated by arcs that skip expert
nodes in the forward direction or that point
backwards in the graph. Unmatched actions
taken by the novice appear as nodes (with a
different color) placed below the last matched
expert node.

Sequence characterization:

Guzdial uses a connected graph visualization to
illustrate the results of his Markov-based

analysis [Guzdial 1993]. The result is a process
model with nodes representing process steps and
arcs indicating the observed probabilities of
transitions between process steps (Figure 18).

4.7.3 Strengths
The strengths of these techniques lie in their
ability to present the results of analysis in forms
allowing humans to exploit their innate visual
analysis capabilities to interpret results.

July 30, 1999

0.63

Decomposition

0.25

Initial Review Composition

Rnal Review Debugging

0.89

Figure 18. A process model characterizing user
behavior with nodes representing process steps
and arcs indicating observed probabilities of
transitions between process steps.

Particularly useful are the techniques that link
results of analysis back to features of the
interface, such as the techniques superimposing
graphical representations of behavior over actual
representations of the interface.

4.7.4 Limitations

With the exception of simple graphs (which can
typically be generated using standard graphing
capabilities provided by spreadsheets and
statistical analysis packages), most of the
visualizations above must be produced by hand.
Techniques for accurately superimposing
graphical effects over visual representations of
the interface can be particularly problematic.

4.8 Integrated Support

4.8.1 Purpose
Environments that facilitate flexible composition
of various transformation, analysis, and
visualization capabilities provide integrated
support. Some environments also provide built-
in support for managing domain-specific
artifacts such as evaluations, subjects, tasks, data
and results of analysis.

4.8.2 Examples
MacSHAPA is perhaps the most comprehensive
environment designed to support all manner of
exploratory sequential data analysis (ESDA)
[Sanderson et al. 1994]. Features include: data
import and export; video and coded observation
synch and search capabilities; facilities for
performing selection, abstraction, and recoding;
a number of built-in counts and summary

Extracting Usability Informationfrom User Interface Events 28

statistics; features supporting sequence
detection, comparison, and characterization; a
general-purpose database query and
manipulation language; and a number of built-in
visualizations and reports.

DRUM provides integrated features for
synchronizing events, observations, and video;
for defining and managing observation coding
schemes; for calculating pre-defined counts and
summary statistics; and for managing and
manipulating evaluation-related artifacts
regarding subjects, tasks, recording plans, logs,
videos, and results of analysis [Macleod et al.
1993],

Hawk provides flexible support for creating,
debugging, and executing scripts to
automatically select, absmact, and recode event
logs [Guzdial 1993]. Management facilities are
also provided to organize and store event logs
and analysis scripts.

Finally, ErgoLight Operation Recording Suite
(EORS) and Usability Validation Suite (EUVS)
[ErgoLight Usability Software 1998] offer a
number of facilities for managing usability
evaluations, both local and remote, as well as
facilities for mergingdata from multiple users.

4.8.3 Strengths
The task of extracting usability-related
information from UI events typically requires the
management of numerous files and media types
as well as the creation and composition of
various analysis techniques. Environments
supporting the integration of such activities can

significantly reduce the burden of data
management and integration.

4.8.4 Limitations

Most of the environments above
important limitations.

While MacSHAPA is perhaps the most
comprehensive integrated environment for
analyzing sequential data, it is not specifically
designed for analysis of UI events. As a result, it
lacks support for event capture and focuses
primarily on analysis techniques that, when
applied to UI events, require extensive human
involvement and interpretation. MacSHAPA
provides many of the basic building blocks
required for an "ideal" environment for
capturing and analyzing UI events, however,
selection, abstraction, and recoding cannot be
easily automated. Furthermore, because the
powerful features of MacSHAPA cannot be used
during event collection, contextual information
that might be useful in selection and abstraction
is not available.

While providing features for managing and
analyzing UI events, coded observations, video
data, and evaluation artifacts, DRUM does not
provide features for selecting, abstracting, and
recoding data.

Finally, while Hawk addresses the problem of
providing automated support for selection,
abstraction, and recoding, like MacSHAPA, it
does not address UI event capture, and as a
result, contextual information cannot be used in
selection and abstraction.

possess

Column Label Key to Column Values

Event Capmre (Yes) —events captured automatically, (Instr) =application must be hand-instnimented; (Sim) =events captured by
command line simulation.

Synch/Search (Obs) =events synchronized with coded observations: (Vid) s= events synchronized with video.
Use of Context (UI) =; the UI can bequeried for contextual information; (App) = the application can bequeried. (User) = the user

provides contextual info.

Seleci/Recode through
Sequence Delect

(Built-in) =built-in selection/abstraction/counts &stats/detection; (User) =user selects/abstracts events; (Model) =
abstract model used toselect/abstract/deieci; (Script) =scripts used; (Program) =programs used; (Database) =data
base query & manipulationlanguageused.

SequenceCompare (Concrete) =source sequence compared against concrete target sequence; (Model) =source sequence compared
against abstract model.

Sequence Character (Manual) =abstract model constructed manually using statistical/grammatical techniques; (Auto) =abstract model
generated automatically.

Visualize (Built-in) = built-in visualizations; (Graphs) = use ofstandard graphing facilities; (Database) =use ofdatabase
graphing facilities.

Data Manage (Built-in) = built-in management ofdomain-specific artifacts.

Figure 19. A key to interpreting the values listed in columns of Table 3.

July 30, 1999

r i

î
0

/j

i
s
O"

•a

Table 3: A classification of computer-aided techniques for extracting usability-related information from user interface events

Tool/rcchnique Reference

Synch/
Search

Event

Capture
Use of

Context

Select/

Recode

Abstract/

Rccodc

Count.s &

Stats

Sequence
Detect

Sequence
Compare

Sequence
Character Visualize

Data

Manage Ul Platform

u
I'liiylirtck (Neal «S: Simmons 198.11 Yes Obs.:; Built-in Unknown

Si Apple l.Jib [Wciler Yes •Obs.+Vfdv Built-in MacOS

_o SunSoft Lab IWciler 199.1] Yes <qbS,H-yid. Built-in X Windows

00
•o

a
>>
00

Microsoft Lab (lloiem & Sullivan 1991] Y'es Obs+Vid Built-in MS Windows

I-Observe (Badre el al. I99.'>] Yes Vid . Model Built-in X Windows

rN

Tj-"
C e

Incident Monitoring [Chen 19901 Yes UI / SuUt-lA M ' X Windows

User Identified Cls [Hanson ei al. 1996] Ye.s Uaer \ User Uwr; Unknown
•a

£
CHIME (Badre & Santos 1991) Yes \ . Model Model X Windows

CO EDEM [Hilben & Redmiles 1997] Yes UI+U$cf Mixlel-f-User Biiill-m Mode! Built-in Java AWT

UIMS (Duxton el al. 198,1) Yes - Built-in Built-in UIMS

iS MIKE [Olscn & Halverscn 1988) Yes Butlt-tn UIMS

00 KRI/AG [Lowgren & Nordqvisl 1992] Yes lluiit in UIMS

o Long-rerm Monitoring [Kay & Thomas 1995] Instr. Pmgraraa Graphs API

y
CO

a
o

AUS [Chang & Dillon 1997] Yes Built-in MS Windows
U Aqueduct AppScope [Aqueduct Software 1998] Instr. Database Database API

Full Circle Talkback [Full Circle Software 1998] Instr. Datab'^se Database API

LSA [Sackell 1978] Built in

I'isher's C'ycles [Fisher 1988]

lOP/O [Hoppc 1988] Sim. Sim. Simulation

MRP ISiochi & Hix 1991) Bulli-ln

Tj-

8 -
Expectation Agents (Girgcnsohn el al. 1994] Yes Ul+User User User OS/2

s 5 8 IiDEM [Hilben & Redmiles 1997] Yes Ul+User Model-fUser Model-t-User Built-in Java AWT
•a USINE |Lcccrof& Palcmo 1998] Yes Built-in Model Built-in X Windows
CO TSL (Rosenblum 1991] Ma<jel N/A

Amadeus [SelbyetaJ. 1991] Model N/A
YEAST [Krishnamunhy & Rosenblum 1995] Model Model N/A
EBBA [Bates 1995] App Model Model N/A
GEM [Mansouri-Samani & Sloman 1997] App Model Model Model N/A

<n

ADAM -Concrete Unknown
Usage (Ueling& Wolf] 995] Yes Built-in UIMS

o
•a

EMA (Balbo 1996] Instr. API

00
c8 u USINE (Lecerof & Palemo 1998] Yes Built-in Model Built-in X Windows

Process Validation [Cook & Wolf 1997] Model N/A

Tf 8 § [Guzdial 1993} Model JiliyttitJii;:
o

d'i
<33 u

Grammer-based [Olson et al. 1994] Model - hiznue) -.

t/)

Process Discovery (Cook& Wolf 1995) Auto N/A

c
o

r

Hawk [Gtizdial 1993] Scrip. uSCflp.- iisisaia liisiisa: Built-in
DRUM [Macleod& Rengger 1993] Yes Obs.+Vid. BuUt-in^i- siiafe iiSSfe iiPii fj..BulIt;{n ' MacOS

u

<35
u a
a 00

MacSMAPA [Sanderson et al. 1994] Obs.+Vid. iJBiSstiito: Biiil|.|n BulU-io-lOB ^Concrel^ VMflnujI.'j;
Ergolight EORS/EUVS [Ergolight Usability Software 1998] Yes MllStiiflt Built-in ' ;.,,M<>iel..., BuUt-ln>,. MS Windows

Extracting Usability Informationfrom User Interface Events 30

5. DISCUSSION

5.1 Summary of the State of the Art

Synchand search techniques are amongthe most
mature technologies for exploiting UI event data
in usability evaluations. Tools supporting these
techniques are becoming increasingly common
in usability labs. However, these techniques can
be costly in terms of equipment, human
observers, and data storage and analysis
requirements. Furthermore, synch and search
techniques generally exploit UI events as no
more than convenient indices into video
recordings. In somecases, events may be used as
the basis for computing simple counts and
summary statistics using spreadsheets or
statistical packages. However, such analyses
typically require investigators to perform
selection and abstraction by hand.

The other, arguably more sophisticated, analysis
techniques such as sequence detection,
comparison, and characterization continue to
remain denizens of the research lab for the most
part. Those that are most compelling tend to
require the most human intervention,
interpretation, and effort (e.g., exploratory
sequential data analysis techniques and the
Markov- and Grammar-based sequence
characterization techniques). Those that are most
automated tend to be least compelling and most
unrealistic in their assumptions (e.g., ADAM,
UsAGE, and EMA). One of the main problems
limiting the success of automated approaches
may be their lack of focus on transformation,
which appears to be a necessary prerequisite for
meaningful analysis (for reasons articulated in
Section 3 and discussed further below).

Nevertheless, few investigators have attempted
to address the problem of transformation
realistically. Of the twenty-five plus approaches
surveyed here, only a handful provide
mechanisms that allow investigators to perform
transformations at all (Microsoft, SunSoft,
Apple, Chen, CHIME, EDEM, Hawk, and
MacSHAPA). Of those, fewer still allow models
to be constructed and reused in an automated
fashion (CHIME, EDEM, and Hawk). Of those,
fewer still allow transformation to be performed
in context so that important contextual
information can be used in selection and
abstraction (EDEM).

5.2 Some Anticipated Challenges

There is very little data published regarding the
relative utility of the surveyed approaches in
supporting usability evaluations. As a result, we
have focused on the technical capabilities of the
surveyed approaches in order to classify,
compare, and evaluate them. To take this
analytical evaluation a step further: our
understanding of the nature of UI events (based
on extensive Java, Windows, and X Windows
programming experience) leads us to conclude
that more work will likely be needed in the area
of transforming the "raw" datagenerated by such
event-based systems in preparation for other
types of analysis in order to increase the
likelihood of useful results. This is because most
other types of analysis (including simple counts
and summary statistics as well as sequence
analysis techniques) are sensitive to lexical-level
differences in event streams that can be removed
via transformation, as illustrated in Section 3.2.

There are a number of ways that investigators
have successfully side-stepped the
transformation problem. For instance, building
data collection directly into a user interface
management system or requiring applications to
report events themselves can help ameliorate
some of the issues. However, both of these
approaches have important limitations.

User interface management systems (UIMSs)
typically model the relationships between
application features and UI events explicitly, so
reasonable data collection and analysis
mechanisms can be built directly in, as in the
case of the MIKE UIMS [Olsen and Halversen
1988], KRI/AG [Lowgren and Nordqvist 1992],
and Usage [Ueling and Wolf 1995]. Because
UIMSs have dynamic access to most aspects of
the user interface, contextual information useful
in interpreting the significance of events is also
available. However, many developers do not use
UIMSs, thus, a more general technique thatdoes
not presuppose the use of a UIMS is needed.

Techniques that allow applications to report
events directly via an event-reporting API
provide a useful service, particularly in cases
where events of interest cannot be inferred from
UI events. This allows important application-
specific events to be reported by applications
themselves and provides a more general solution
than a UIMS-based approach. However, this

July 30, 1999

31 • D. H. Hubert and D. F Redmiles

places an increased burden on application
developers to capture and transform events of
interest, for example, as in [Kay and Thomas
1995; Balbo 1996]. This can be costly,
particularly if there is no centralized command
dispatch loop, or similar mechanism, that can be
tapped as a source of application events. This
also complicates software evolution since data
collection code is typically intermingled with
application code. Furthermore, there is much
usability-related information not typically
processed by applications that can be easily
captured by tapping into the UI event stream, for
instance, shifts in input focus, mouse
movements, and the specific user interface
actions used to invoke application features. As a
result, an event-reporting API is just part of a
more comprehensive solution.

Thus, we conclude that more work is needed in
the area of transformation and data collection to

ensure that useful information can be captured in
the first place, before automated analysis
techniques, such as those surveyed above, can be
expected to yield meaningful results (where
"meaningful" means the results can be related,
without undue hardship, to aspects of the user
interface and application being studied as well as
users' actions at higher levels of abstraction than
simple key presses and mouse clicks). A
reasonable approach would assume no more than
a typical event-based user interface system, such
as provided by the Macintosh Operating System,
Microsoft Windows, X Window System, or Java
Abstract Window Toolkit, and developers would
not be required to adopt a particular UIMS nor
call an API to report every potentially interesting
event.

5.3 Related Work and Future Directions

There are a number of related techniques that
have been explored, both in academia and
industry, that have the potential of providing
useful insights into how to more effectively
exploit Ul events as a source of usability
information.

A number of researchers and practitioners have
addressed related issues in capturing and
evaluating event data in the realm of software
testing and debugging;

• Work in distributed event monitoring, e.g.,
GEM [Mansouri-Samani and Sloman 1991],

July 30. 1999

and model-based testing and debugging, e.g.,
EBBA [Bates 1995] and TSL [Rosenblum
1991], have addressed a number of problems
in the specification and detection of compos
ite events and the use of context in interpret
ing the significance of events. The event
specification notations, infrastructure, and
experience that have come out of this work
might provide useful insights that can be
applied to the problem of capturing and ana
lyzing UI event data.

• Automated user interface testing techniques,
e.g., WinRunner™ [Mercury Interactive
1998] and JavaStar™ [Sun Microsystems
1998], are faced with the problem of robustly
identifying user interface components in the
face of user interface change, and evaluating
events against specifications of expected UI
behavior in test scripts. The same problem is
faced in maintaining the relationships
between UI components and higher-level
specifications of application features and
abstractevents of interest in usability evalua
tions based on UI events.

• Monitoring of application programmatic
interfaces (APIs), e.g., Hewlett Packard's
Application Response-time Measurement
API [Hewlett Packard 1998], addresses the
problem of monitoring API usage to help
software developers evaluate the fit between
the design of an API and how it is actually
used. Insights gained in this area may gener
alize to the problem of monitoring UI usage
to evaluate the fit between the design of a UI
and how it is actually used.

• Internet-based application monitoring sys
tems, e.g., AppScope™ [Aqueduct Software
1998] and Talkback™ [Full Circle Software
1998], have begun to address issues of col
lecting application failure data on a poten
tially large and ongoing basis over the
Internet. The techniques developed to make
this practical for application failure monitor
ing could be applicable in the domain of
large-scale, ongoing collection of user inter
action data over the Internet.

A number of researchers have addressed
problems in the area of mapping between lower
level events and higher level events of interest:

• Work in the area of eventhistories, e.g., [Kos-
bie and Myers 1994], and undo mechanisms

Extracting Usability Informationfrom User Interface Events 32

has addressed issues involved in grouping
lower level UI events into more meaningful
units from the point of view of users' tasks.
Insights gained from this work, and the actual
event representations used to support undo
mechanisms, might be exploited to capture
events at higher levels of abstraction than are
typically available at the window system
level.

• Work in the area of user modeling [User
Modeling 1998] is faced with the problem of
inferring users' tasks and goals based on user
background, interaction history, and current
context in order to enhance human-computer
interaction. The techniques developed in this
area, which range from rule-based to statisti
cally-oriented machine-learning techniques,
might eventually be harnessed to mfer higher
level events from lower level events in sup
port of usability evaluations based on UI
events.

• Work in the area of programming by demon
stration [Cypher 1994] and plan recognition
and assisted completion [Cypher 1991] also
addresses problems involved in inferring user
intent based on lower level interactions. This
work has shown that such inference is feasi
ble in at least some structured and limited

domains, and programming by demonstration
appears to be a desirable method for specify
ing expected or unexpected patterns of events
for sequence detection and comparison pur
poses.

• Layered protocol models of interaction, e.g.,
[Nielsen 1986; Taylor 1988a & 1988b], allow
human-computer interactions to be modeled
at multiple levels of abstraction. Such tech
niques might be useful in specifying how
higher level events are to be inferred based on
lower level events. Command language
grammars (CLGs) [Moran 1981] and task-
action grammars (TAGs) [Payne and Green
1986] are other potentially useful modeling
techniques for specifying relationships
between human-computer interactions and
users' tasks and goals.

Work in the area of automated discovery and val
idation of patterns in large corpora of event data
might also provide valuable insights;
• Data mining techniques for discovering asso

ciation rules, sequential patterns, and time-

series similarities in large data sets [Agrawal
et al. 1996] may be applicable in uncovering
patterns relevant to investigators interested in
evaluating usage and usability based on UI
events.

• The process discovery techniques investi-
pted by [Cook and Wolf 1996] provide
insights into problems involved in automati
cally generating models to characterize the
sequential structure of event traces

• The process validation techniques investi-
pted by [Cook and Wolf 1997] provide
insights into problems involved in comparing
traces of events against models of expected
behavior.

Finally, there are numerous domains in which
event monitoring has been used as a means of
identifying and, in some cases, diagnosing and
repairing breakdowns in the operation of
complex systems. For example:

• Network and enterprise management tools for
automating network and application adminis
tration, e.g., TIBCO Hawk™ [TIBCO 1998].

• Product condition monitoring, e.g., high-end
photocopiers or medical devices that report
data back to equipment manufacturers to
allow performance, failures, and maintenance
issues to be tracked remotely [Lee 1996].

6. CONCLUSIONS

We have surveyed a number of computer-aided
techniques for extracting usability-related
information from UI events. Our classification
scheme includes the following categories: synch
and search techniques; transformation
techniques; techniques for performing simple
counts and summary statistics; techniques for
performing sequence detection, comparison, and
characterization; visualization techniques; and
finally, techniques that provide integrated
evaluation support.

Very few of the surveyed approaches support
transformation, which we argue is a critical
subprocess in the overall process of extracting
meaningful usability-related information from
UI events.

Our current research involves exploring
techniques and infrastructure for performing
transformation and analysis automatically and in
context in order to greatly reduce the amount of

July 30, 1999

33 D. H. Hilbert and D. F. Redmiles

data that must ultimately be reported. It is an
open question whether such an approach might
be scaled up to large-scale and ongoing use over
the Internet. If so, we believe that automated
techniques, such as those surveyed here, will be
useful in capturing indicators of the "big picture"
regarding application use in the field. However,
we believe that such techniques may be less
suited to identifying subtle, nuanced usability
issues. Fortunately, these strengths and
weaknesses nicely complement the strengths and
weaknesses inherent in current usability testing
practice, in which subtle usability issues are
identified through careful human observation,
but in which there is little sense of the "big
picture" of how applications are used on a large
scale.

July 30, 1999

A usability professional from a large software
development organization recently reported to us
that the usability team is often approached by
design and development team members with
questions such as "how often do users do X?" or
"how often does Y happen?". This is obviously
useful information for developers wishing to
assess the impact of suspected problems or to
focus development effort for the next version.
However, it is not information that can be
reliably collected in the usability lab. We believe
that automated usage data collection techniques
will eventually complement traditional usability
evaluation practice, not only by supporting
developers as described above, but also in
helping assess the impact of, and focusing the
efforts of, usability evaluations.

Extracting Usability Information from User Intetface Events 34

REFERENCES

The following table provides an index into the references based on the categories established by the
comparison framework.

Category Approaches

Synchronization and Searching Playback [Neal & Simmons 1983], Apple [Weiler 1993], SunSoft [Weiler
1993], Microsoft [Hoiem & Sullivan 1994], I-Observe [Badre et al. 1995]

Transformation Incident Monitoring [Chen 1990], User-IdentifiedCIs [Hartson et al.
1996], CHIME [Badre & Santos 1991], EDEM [Hilbert & Redmiles 1997]

Counts and Summary Statistics UIMS [Buxton et al. 1983], MIKE[Olsen & Halversen 1988], KRI/AG
[Lowgren & Nordqvist 1992], Long-Term Monitoring [Kay &Thomas
1995], AUS [Chang &Dillon 1997], EORS &EUVS [ErgoLight Usability
Software 1998]. Related: AppScope [Aqueduct Software 1998], Talkback
[Full Circle Software 1998]

Sequence Detection LSA [Sackett 1978], Fisher's Cycles [Fisher 1988], TOP/G [Hoppe 1988],
MRP [Siochi & Hix1991], Expectation Agents [Girgensohn et al. 1994],
EDEM [Hilbert & Redmiles 1997], USINE [Lecerof & Patemo 1998].
Related: TSL [Rosenblum 1991], Amadeus [Selby et al. 1991], YEAST
[Krishnamurthy & Rosenblum 1995], EBBA [Bates 1995], GEM [Man-
souri-Samani & Sloman 1997]

Sequence Comparison ADAM [Fmlay & Harrison 1990], UsAGE [Ueling &Wolf 1995], EMA
[Balbo 1996], USINE [Lecerof c& Patemo 1998], EUVS [ErgoLight
Usability Software 1998]. Related: Process Validation [Cook &Wolf 1997]

Sequence Characterization Markov-based [Guzdial 1993], Grammar-based [Olson et al. 1994].
Related: ProcessDiscovery [Cook& Wolf 1995]

Integrated Support

1

MacSHAPA[Sanderson et al. 1994], DRUM [Macleod &Rengger 1993],
Hawk [Guzdial 1993], EORS &EUVS [ErgoLight Usability Software
1998].

Abbott, A. A Primer on sequence methods.
Organization Science, Vol.4, 1990.

AGRAWAL, R., Arning, a., BOLUNGER, T.,
Mehta, M., Shafer, J., Srikant, R. The
Quest data mining system. In Proceedings of
the 2nd International Conference on Knowl
edge Discover}' in Databases and Data Min
ing. 1996.

AHO. a.v., KERNIGHAN, B.W., AND \^tlN-

BERGER, RJ. The AWK programming lan
guage. Addison-Wesley, Reading, MA.
1988.

Allison, P.D. and Liker, J.K. Analyzing
sequential categorical data on dyadic interac
tion: A comment on Gottman. Psychological
Bulletin, 2, 1987.

Aqueduct Software. AppScope Web Pages.
URL: http://www.aqueduct.com/. 1998.

Badre, A.N., Guzdial, M., Hudson, S.E., and
Santos, PJ. A user interface evaluation
environment using synchronized video, visu
alizations, and event trace data. Journal of
Software Quality, Vol. 4, 1995.

Badre, A.N. and Santos, PJ. CHIME; A
knowledge-based computer-human interac
tion monitoring engine. Tech Report GIT-
GVU-91-06. 1991a.

Badre, A.N. and Santos, PJ. A knowledge-
based system for capturing human-computer
interaction events: CHIME. Tech Report
GIT-GVU-91-21. 1991b.

Baecker, R.M, Grudin, J., Buxton, W.A.S.,
AND Greenberg, S. (Eds.). Readings in
Human-Computer Interaction: Toward the
Year 2000. Morgan Kaufmann, San Mateo,
CA, 1995.

Balbo, S. EMA: Automatic analysis mechanism

July 30,1999

35 • D. H. Hilbert and D. F Redmiles

for the ergonomic evaluation of user inter
faces. CSIRO Technical report. 1996.

Bates, P.C. Debugging heterogeneous distrib
uted systems using event-based models of
behavior. ACM Transactions on Computer
Systems, Vol. 13, No. 1, 1995.

Bellotti, V. A framework for assessing applica
bility of HCI techniques. In Proceedings of
INTERACT'90. 1990.

Buxton, W., Lamb, M., Sheman, D., and

Smith, K. Towards a comprehensive user
interface management system. In Proceed
ings ofSIGGRAPH'83. 1983.

Chang, E. and Dillon, T.S. Automated usabil

ity testing. In Proceedings ofINTERACT'97.

Chen, J. Providing intrinsic support for user
interface monitoring. In Proceedings of
INTERACT'90. 1990.

Cook, J.E. and Wolf, A.L. Toward metrics for

process validation. In Proceedings of
ICSP'94. 1994.

Cook, J.E., and Wolf, A.L. Automating pro
cess discovery through event-data analysis.
In Proceedings ofICSE'95. 1995.

Cook, J.E. and Wolf, A.L. Software process
validation; quantitatively measuring the cor
respondence of a process to a model. Tech
Report CU-CS-840-97, Department of Com
puter Science, University of Colorado at
Boulder. 1997.

Cook, R., Kay, J., Ryan, G., and Thomas,

R.C. A toolkit for appraising tne long-term
usability of a text editor. Software Quality
Journal, Vol. 4, No. 2, 1995.

Cuomo, D.L. Understanding the applicability of
sequential data analysis techniques for anal
ysing usability data. Nielsen, J. (Ed.).
Usabilit)- Laboratories Special Issue of
Behaviour and Information Technology,
Vol.13, No.l &2, 1994.

Cypher, A. (Ed.). Watch what I do: program
ming by demonstration. MIT Press, Cam
bridge MA, 1993.

Cypher, A. Eager: programming repetitive tasks
by example. In Proceedings of CHI'91.

July 30, 1999

1991.

Dodge, M. and Stinson, C. Running Microsoft
Excel 2000. Microsoft Press. 1999

Doubleday, a., Ryan, M., Springett, M., and
SUTCLIFFE, A. A comparison of usability
techniques for evaluating design. In Pro
ceedings ofDIS'97. 1997.

Elgin, B. Subjective usability feedback from the
field over a network. In Proceedings of
CHI'95. 1995.

ErgoLight Usability Software. Operation
Recording Suite (EORS) and Usability Vali
dation Suite (EUVS) Web pages. URL: http:/
/www.ergolighLco.il/. 1998.

Faraone, S.V. and Dorfman, D.D. Lag
sequential analysis: Robust statistical meth
ods. Psychological Bulletin, 101, 1987.

Feather, M.S., Narayanaswamy, K., Cohen,
D., AND Fickas, S. Automatic monitoring of
software requirements. Research Demonstra
tion in Proceedings ofICSE'97. 1997.

Fickas, S. and Feather, M.S. Requirements
monitoring in dynamic environments. IEEE
International Symposium on Requirements
Engineering. 1995.

Finlay, j. and Harrison, M. Pattern recogni
tion and interaction models. In Proceedings
ofINTERACT'90. 1990.

Fisher, C. Advancing the study of programming
with computer-aided protocol analysis. In
Olson, G., Soloway, E., and Sheppard, S.
(Eds.). Empirical Studies of Programmers,
1987 Workshop. Ablex, Norwood, NJ, 1987.

Fisher, C. and Sanderson, P. Exploratory
sequential data analysis: exploring continu
ous observational data. Interactions, Vol.3,
No. 2, ACM Press, Mar. 1996.

Fisher, C. Protocol Analyst's Workbench:
Design and evaluation of computer-aided
protocol analysis. Unpublished PhD thesis,
Carnegie Mellon University, Department of
Psychology, Pittsburgh, PA, 1991.

FiTTS, P.M. Perceptual motor skill learning. In
Melton, A.W. (Ed.). Categories of human
learning. Academic Press, New York, NY,

Extracting Usability Information from User Interface Events 36

1964. S.J.

Full Ciro-E Software. Talkback Web pages.
URL; http://www.fullsoft.com/. 1998.

GIRGENSOHN, a., REDMILES, D.F., AND SHIP-
MAN, F.M. ni. Agent-Based Support for
Communication between Developers and
Users in Software Design. In Proceedings of
the Knowledge-Based Software Engineering
Conference '94. Monterey, CA, USA, 1994.

Goodman, D. Complete HyperCard 2.2 Hand
book. ToExcel. 1998.

Gottman, J.M. and Roy, A.K. Sequential anal
ysis: A guide for behavioral researchers.
Cambridge University Press, Cambridge,
England, 1990.

Grudin, J. Utility and usability: Research issues
and development contexts". Interacting with
computers. Vol. 4, No. 2, 1992.

Guzdial, M. Deriving software usage patterns
from log files. Tech Report GIT-GVU-93-41.
1993.

Guzdial, M., Santos, P., Badre, A., Hudson,
S., AND Gray, M. Analyzing and visualizing
log files: A computational science of usabil
ity. Presented at HCI Consortium Workshop,
1994.

Guzdial, M, Walton, C., Konemann, M., and
SOLOWAY, E. Characterizing process change
using log file data. Tech Report GIT-GVU-
93-44. 1993.

Hartson, H.R., Castillo, J.C., Kelso, J., and
Neale. W.C. Remote evaluation: the net
work as an extension of the usability labora
tory. In Proceedings of CHr96. 1996.

Helander, M. (Ed.). Handbook of human-com
puter interaction. Elsevier Science Publish

ers B.V. (North Holland), 1998.

Hewlett Packard. Application Response Mea
surement API. URL: http://www.hp.com/
openview/rpm/arm/. 1998.

Hilbert, D.M. and Redmiles, D.F. An
approach to large-scale collection of applica
tion usage data over the Internet. In Proceed
ings ofICSE'98. 1998a.

Hilbert, D.M. and Redmiles, D.F. Agents for

collecting application usage data over the
Internet. In Proceedings of Autonomous
Agents'98. 1998b.

Hilbert, D.M., Robbins, J.E., and Redmiles,
D.F., Supporting Ongoing User Involvement
in Development via Expectation-Driven
Event Monitoring. Tech Report UCI-ICS-97-
19, Department of Information and Com
puter Science, University of California, Irv
ine. 1997.

Hirschberg, D.S. a linear space algorithm for
computing maximal common subsequences.
Communications of the ACM, Vol. 18, 1975.

Hoiem, D.E. and Sullivan, K.D. Designing
and using integrated data collection and
analysis tools: challenges and consider
ations. Nielsen, J. (Ed.). Usability Laborato
ries Special Issue of Behaviour and
Information Technology, Vol.13, No.l & 2,
1994.

Hoppe, H.U. Task-oriented parsing: A diagnostic
method to be used by adaptive systems. In
Proceedings ofCHI'88. 1988.

John, B.E. and Kieras, D.E. TheGOMS family
of user interface analysis techniques: com
parison and contrast. ACM Transactions on
Computer-Human Interaction, Vol. 3, No. 4,
1996.

John, B.E. and Kieras, D.E. Using GOMS for
user interface design and evaluation: which
technique? ACM Transactions on Computer-
Human Interaction, Vol. 3, No. 4, 1996.

Kay, j. and Thomas, R.C. Studying long-term
system use. Communications of the ACM,
Vol. 38, No. 7, 1995.

Kosbie, D.S. AND Myers, B.A. Extending pro
gramming by demonstration with hierarchi
cal event histories. In Proceedings of East-
West Human Computer Interaction'94. 1994.

Krishnamurthy, B and Rosenblum, D.S.
Yeast: A General Purpose Event-Action Sys
tem. IEEE Transactions on Software Engi
neering, Vol. 21, No. 10, 1995.

Lecerof, a. and Paterno, F. Automatic sup
port for usability evaluation. IEEE Transac
tions on Software Engineering, Vol. 24, No.

July 30, 1999

37 • D. H. Hilbert and D. F. Redmiles

10, 1998.

Lee, B. Remote diagnostics and product lifecycle
monitoring for high-end appliances: a new
Internet-based approach utilizing intelligent
software agents. In Proceedings of the Appli
ance Manufacturer Conference. 1996.

Lewis, R. and Stone, M. (Ed). Mac OS in a
Nutshell. O'Reilly and Associates. 1999.

Lowgren, J. and Nordqvist, T. Knowledge-
based evaluation as design support for
graphical user interfaces. In Proceedings of
CHI'92. 1992.

MACLEOD, M., AND Rengger, R. The Develop
ment of DRUM; A Software Tool for Video-

assisted Usability Evaluation. In Proceed
ings ofHCI'93. 1993.

Mansouri-Samani, M. and Sloman, M. GEM:

A generalised event monitoring language for
distributed systems. lEE/BCS/IOP Distrib
uted Systems Engineering Journal, Vol 4, No
2, 1997.

Mercury Interactive. WinRunner and XRun-

ner Web Pages. URL: http://www.merc-
int.com/. 1998.

Moran, T. p. The command language grammar:
a representation for the user interface of
interactive computer systems. International
Journal ofMan-Machine Studies, 15, 1981.

Neal, A.S. and Simons, R.M. Playback: A
method for evaluating the usability of soft
ware and its documentation. In Proceedings
ofCHI'SJ. 1983.

Nielsen, J. A virtual protocol model for com
puter-human interaction. International Jour
nal ofMan-Machine Studies, 24, 1986.

Nielsen, J. Usability engineering. Academic
Press/AP Professional, Cambridge, MA,
1993.

Nye, a. and O'Reilly, T. X Toolkit Intrinsics

Programming Manual for XII, Release 5.
O'Reilly and Associates. 1992.

Olsen, D.R. and Halversen, B.W. Interface

usage measurements in a user interface man

agement system. In Proceedings of UIST'88.
1988.

July 30, 1999

Olson, G.M., Herbsleb, J.D., and Rueter,
H.H. Characterizing the sequential structure
of interactive behaviors through statistical
and grammatical techniques. Human-Com
puter Interaction Special Issue on ESDA,
Vol.9, 1994.

Payne, S.G. and Green, T.R.G. Task-action

grammars: A model of the mental represen
tation of task languages. Human-Computer
Interaction, Vol. 2, 1986.

Pentland, B.T. a grammatical model of organi
zational routines. Administrative Science

Quarterly. 1994.

Pentland, B.T. Grammatical models of organi
zational processes. Organization Science.
1994.

Petzold, C. Programming Windows. Microsoft
Press. 1998.

Preece, j., Rogers, Y., Sharp, H., Benyon, D.,

Holland, S., and Carey, T. Human-com
puter interaction. Addison-Wesley, Woking-
ham, UK, 1994.

Rosenblum, D.S. Specifying concurrent sys
tems with TSL. IEEE Software, Vol. 8, No.
3, 1991.

Rubin, C. Running Microsoft Word 2000.
Microsoft Press. 1999.

Sackett. G.P. Observing behavior (Vol. 2). Uni
versity Park Press, Baltimore, MD, 1978.

Sanderson, P.M. and Fisher, C. Exploratory
sequential data analysis: foundations.
Human-Computer Interaction Special Issue
on ESDA, Vol. 9, 1994.

Sanderson, P.M., Scott, J.J.P, Johnston, T,
MAINZER, j., WATANABE, L.M., AND JAMES,
J.M. MacSHAPA and the enterprise of
Exploratory Sequential Data Analysis
(ESDA). International Journal of Human-
Computer Studies, Vol. 41, 1994.

Santos, P.J. and Badre, A.N. Automatic chunk

detection in human-computer interaction. In
Proceedings of Workshop on Advanced
Visual Interfaces AVI '94. Also available as
Tech Report GIT-GVU-94-4. 1994.

SCHIELE, F. AND HOPPE, H.U. Inferring task

Extracting Usability Information from User Interface Events 38

structures from interaction protocols. In Pro
ceedings ofINTERACT'90. 1990.

Selby, R.W., Porter, A.A., Schmidt, D.C.,
AND Bernev, J. Metric-driven analysis and
feedback systems for enabling empirically
guided software development. In Proceed
ings ofICSE'9I. 1991.

SIOCHI, A.C. AND Ehrich, R.W. Computer anal
ysis of user interfaces based on repetition in
transcripts of user sessions. ACM Transac
tions on Information Systems. 1991.

SIOCHI, A.C. AND Hix, D. A study of computer-
supported user interface evaluation using
maximal repeating pattern analysis. In Pro
ceedings of CHr91. 1991.

Smilowitz, E.D., Darnell, M.J., and Benson,
A.E. Areweoverlooking some usability test
ing methods? A comparison of lab, beta, and
forum tests. Nielsen, J. (Ed.). Usability Lab
oratories Special Issue of Behaviour and
Information Technology, Vol.13, No.l & 2,
1994.

Sun Microsystems. SunTest JavaStar Web
Pages. URL; http.V/www.sun.com/suntest/.
1998.

Sweeny, M., Maguire, M., and Shackel, B.
Evaluating human-computer interaction: A
framework. International Journal of Man-
Machine Studies, Vol.38, 1993.

Taylor, M.M. Layered protocols for computer-
human dialogue I: Mnciples. International

Journal ofMan-Machine Studies, 28, 1988a.
Taylor, M.M. Layered protocols for computer-

human dialogue II: Some practical issues.
International Journal ofMan-Machine Stud
ies, 28, 1988b.

Taylor, R.N. and Coutaz, J. Workshop on
Software Engineering and Human-Computer
Interaction: Joint Research Issues. In Pro
ceedings ofICSE'94. 1994.

TIBCO. HAWK Enterprise Monitor Web Pages.
URL: http.7/www.tibco.com/. 1998.

Uehling, D.L. and Wolf, K. User Action
Graphing Effort (UsAGE). InProceedings of
CHr95. 1995.

User Modeling Inc. (UM Inc.). Home Page.
URL: http://um.org/. 1998.

Weiler, p. Software for the usability lab: a sam
pling of current tools. In Proceedings of
INTERCHr93. 1993.

Whitefield, a., Wilson, P., and Dowell, J. A
framework for human factors evaluation.
Behaviour and Information Technology, Vol.
10, No. 1, 1991.

Wolf, A.L. and Rosenblum, D.S. A Study in
Software Process Data Capture and Analy
sis. In Proceedings of the Second Interna
tional Conference on Software Process,
1993.

ZUKOWSKI, J. AND LOUKIDES, M. (Ed).Java Awt
Reference. O'Reilly and Associates. 1997.

July 30, 1999

