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Power modeling of degraded PV systems: Case studies using a dynamically 
updated physical model (PV-Pro)
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Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
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A B S T R A C T

Power modeling, widely applied for health monitoring and power prediction, is crucial for the efficiency and 
reliability of Photovoltaic (PV) systems. The most common approach for power modeling uses a physical 
equivalent circuit model, with the core challenge being the estimation of model parameters. Traditional 
parameter estimation either relies on datasheet information, which does not reflect the system’s current health 
status, especially for degraded PV systems, or requires additional I-V characterization, which is generally un
available for large-scale PV systems. Thus, we build upon our previously developed tool, PV-Pro (originally 
proposed for degradation analysis), to enhance its application for power modeling of degraded PV systems. PV- 
Pro extracts model parameters from production data without requiring I-V characterization. This dynamic model, 
periodically updated, can closely capture the actual degradation status, enabling precise power modeling. PV-Pro 
is compared with popular power modeling techniques, including persistence, nominal physical, and various 
machine learning models. The results indicate that PV-Pro achieves outstanding power modeling performance, 
with an average nMAE of 1.4 % across four field-degraded PV systems, reducing error by 17.6 % compared to the 
best alternative technique. Furthermore, PV-Pro demonstrates robustness across different seasons and severities 
of degradation. The tool is available as a Python package at https://github.com/DuraMAT/pvpro.

Nomenclature

GHI Global horizontal irradiance (W/ 
m2)

ANN Artificial neural network

GPOA Global plane of Array irradiance 
(W/m2)

c-Si Crystalline silicon

I Current (A) DC Direct current
Io Saturation current (A) DST Daylight saving time
Iph Photocurrent (A) PV Photovoltaic
IDC DC current (A) I-V 

curve
Current-voltage 
characteristic

Isc Short-circuit current (A) KR Kernel Ridge
n Diode factor LR Linear regression
nMAE Normalized mean absolute error ML Machine learning
nBE Normalized bias error MLP Multilayer Perceptron
P Power (W) MPP Maximum power point
Rs Series resistance (Ω) NWP Numerical weather 

prediction
Rsh Shunt resistance (Ω) PV Photovoltaic
V Voltage (V) RF Random forest
VDC DC voltage (V) SDM Single diode model
Voc Open-circuit voltage (V) STC Standard test condition
​ ​ SVR Support vector regression

1. Introduction

Photovoltaic (PV) power modeling converts the measured or pre
dicted weather data into the expected output power of PV systems [1]. It 
has two major application scenarios: health monitoring [2] and power 
prediction [3,4], as illustrated in Fig. 1. Their main difference lies in the 
type of weather data used. The weather data generally include irradi
ance (like global horizontal irradiance or plane-of-array irradiance), 
temperature (ambient or module), wind speed, humidity [5]. When 
using measured weather data (real-time or historical), the expected 
output power of the system can be computed and compared with the 
actual measured power to assess the operational status of the PV system 
[6], which is essential for efficient and safe operation [7]. When using 
forecasted weather data, the future power of the system can be predicted 
[8], which enables effective energy management, aiding in grid inte
gration of solar energy and balancing electricity supply and demand [9]. 
Typically, the weather data can be forecasted from numerical weather 
prediction (NWP) [10], sky cameras [11], or satellite images [12]. Both 
application scenarios of power modeling play a significant role in 
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optimizing the efficiency and reliability of solar energy systems [1,13].
Common power modeling methods can be broadly categorized into 

physical models [14], machine learning models [15], or persistence 
models [16] (as presented in Fig. 1). Persistence models are widely used 
for power prediction, operating on the assumption that the power output 
at a given time closely resembles the power output at the same time on 
the previous day [17]. The performance of persistence models highly 
depends on the temporal correlation of current and past data, which 
limits their power modeling accuracy [3]. However, due to their 
simplicity, persistence models are frequently used as benchmark models 
for power modeling [18].

Machine learning (ML) models are popular techniques for power 
modeling, especially in the area of power prediction [19]. These models 
analyze historical data to identify patterns and correlations without 
needing detailed knowledge of PV systems [20]. Popular ML models 
applied in power prediction include Artificial neural network (ANN) 
[21,22], Long short-term memory (LSTM) [23,24], Support vector 
regression (SVR) [25,26], Random Forest (RF) [27,28], and Linear 
regression (LR) [29]. Several review works have systematically sum
marized these ML models for power prediction [18–20]. Despite their 
advantages, the major drawbacks of ML models include the requirement 
of large amount training data, complexity in hyperparameter-tuning, 
over-fitting problems, and lack of interpretability [32].

Physical equivalent circuit modeling is a common and the most basic 
method for power modeling [18,33]. The typical physical models are the 
single-, double-, or three-diode models, distinguished by the number of 
parameters used to characterize the model [34]. A review of these 
different physical models can be found in Refs. [14,35]. Note that, for 
physical models, the input weather data generally refers to the ground 
weather data, such as plane-of-array irradiance (Gpoa) and module 
temperature. Thus, under the power prediction scenario, the forecasted 
global weather data (such as GHI and ambient temperature) needs to be 
translated into these ground weather data [36] to perform 
physical-model-based power modeling [37].

The major challenge for physical-model-based power modeling lies 
in the accurate estimation of model parameters [38]. Relying on nom
inal datasheet information for parameter estimation presents a signifi
cant limitation [36], as it fails to accurately reflect the current health of 
PV systems, especially those affected by years of degradation [39]. Using 
field-measured current-voltage characteristics (I-V curves) enables the 
acquisition of high-precision physical parameters [34]. However, the 
characterization of field I-V curves necessitates additional measurement 
equipment and will interrupt the operation of the system. Thus, the I-V 
curves of the entire PV array are not readily available, especially for 
large-scale PV systems [34]. While it is feasible to characterize a single 

reference PV module installed near the array, the health status of this 
reference module may not represent that of the entire PV array [40]. 
These findings emphasize the complexity and limitations in the 
parameter estimation of physical models for power modeling, especially 
for degraded PV systems.

Seen in this light, this paper proposes a powering modeling method 
based on a dynamically updated physical model (PV-Pro), a tool we 
previously proposed to extract the single-diode model parameters from 
the basic production data of the PV system [41,42]. By leveraging the 
recent production data, PV-Pro can rebuild a physical model that reflects 
the current degradation status of the PV system. Along with the opera
tion of the system, this physical model will be dynamically updated. 
Using weather data as input, the model can then achieve a precise power 
modeling for the PV system.

The contribution of this paper is then reflected in the following 
points: A dynamically-updated physical model for power modeling is 
proposed, which leverages the basic production data without requiring 
I-V characterization; This method is suitable for power modeling of 
degraded PV systems, with robust performance against variations in 
degradation levels and seasonal impacts; This method is fully- 
interpretable and free of hyperparameter tuning compared to machine 
learning models; This method is also applicable on newly-installed 
systems with a limited amount of production data; The proposed 
method is coded into an open-source Python-based tool.

The remainder of the paper is organized as: Section 2 outlines the 
comprehensive methodology, encompassing details on the power 
modeling techniques and error metrics. Section 3 presents the power 
modeling conversion performance using synthetic datasets, where 
different types and severity of degradation are addressed. Section 4
evaluates the performance of four field PV systems. The effects of sea
sons and over/under-estimation are specifically analyzed. Section 5
summarizes the pros and cons of the evaluated power modeling tech
niques. Finally, Section 6 concludes the paper.

2. Methodology

This section provides a comprehensive picture of the methodology of 
power modeling. Section 2.1 introduces the power modeling techniques, 
including the proposed dynamically-updated physical model, alongside 
other widely-used methods for comparison analysis (traditional physical 
model, smart persistence, and machine learning models). Section 2.2
describes the error metrics to quantify the power modeling performance.

2.1. Power modeling techniques

2.1.1. Dynamically-updated physical model (PV-Pro)
The dynamically-updated physical modeling method is based on the 

equivalent electrical circuit model of the PV system. This approach 
differs from traditional physical models in the dynamical or periodical 
update of the model parameters. Typically, updating the parameters of 
field PV modules would require sophisticated I-V characterization, 
which, as noted in the Introduction, is impractical for large-scale in-field 
PV systems. To address this, we adopt PV-Pro, a tool we previously 
proposed [41]. It can dynamically update model parameters using only 
basic production and environmental data, eliminating the need for 
additional measurements such as I-V curves [34]. In this work, by 
adjusting the input data and the workflow, PV-Pro can be applied for 
power modeling, as depicted in Fig. 2.

Specifically, the workflow of PV-Pro for power modeling is illus
trated in Fig. 3. The input includes the recent production data (DC 
voltage VDC and current IDC) and weather data (irradiance and module 
temperature) collected up to the day before power modeling (Day N −

1). The length of historical data (L) could vary from days to months, 
with a default setting of 7 days. Then, the raw input data is preprocessed 
to ensure the data quality and consistency with two major operations: 
daylight saving time (DST) correction and outlier removal. The DST 

Fig. 1. Two major application scenarios of power modeling: health monitoring 
and power prediction, which leverage real-time measured or forecasted 
weather data, respectively. Both applications play a significant role in 
enhancing the efficiency and reliability of solar energy systems.
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shifts are adjusted using the Solar-data-tools [43]. The outliers are 
identified by performing a linear regression of the DC current as a 
function of Gpoa and of the DC voltage by module temperature [41].

For the base physical model, we employ the widely-used DeSoto 
singe-diode model (SDM) [44], as which includes five primary param
eters, i.e., the photocurrent (Iph), saturation current (Io), series resistance 
(Rs), shunt resistance (Rsh), and the diode factor (n). These parameters 
under different irradiance (G) and cell temperature (Tc) are expressed 
from (2) to (5) based on the values at the reference condition (Iph ref , 
I0 ref , Rsh ref , Rs ref , nref ). Tc can be calculated from the module temper
ature (Tm) via Sandia Array Performance Model [45]. Note that the Rsh 
in the DeSoto model is proportional to the inverse irradiance. This may 
cause problems in the parameter extraction, for example, Rsh could 
become unbounded as irradiance decreases to 0. Thus, we add a constant 
(
Gsh extra

)
as shown in (1). 

I = Iph − I0

[

exp
(

V + IRs

nNSkBT/q

)

− 1
]

− (V + IRs)

(
1
Rsh

+ Gsh extra

)

(1) 

Iph =
G

Gref

[
Iph ref + αIsc

(
Tc − Tc ref

)]
(2) 

I0 = I0 ref

[
Tc

Tc ref

]3

exp
[
1
k

(
Eg ref

Tc ref
−

Eg

T

)]

(3) 

Eg = Eg ref
[
1 − dEgdT

(
Tc − Tc ref

)]
(4) 

Rsh = Rsh ref
Gref

G
(5) 

where,

• NS: Number of cells connected in series
• kB: Boltzmann constant
• q: Electron’s charge
• Eg,Eg ref : Material bandgap/at reference condition
• αIsc : temperature coefficient of Isc.
• dEgdT: temperature coefficient of bandgap energy

After an initial guess of the five model parameters based on the 
module datasheet, PV-Pro models the PV system and obtains the simu
lated VDC and IDC. The L2 loss [46] is then calculated between the 
measured and simulated VDC and IDC. Using this loss, L-BFGS-B solver 
[47] updates the model parameters iteratively until the joint loss is 
minimized or the maximum iterations are reached. This whole process is 
repeated periodically to obtain a physical model with updated param
eters. The update frequency depends on the user’s settings and can be as 
daily, weekly, monthly, etc. In this work, the frequency is set as daily. 
The obtained dynamic physical model parameters can closely model the 

Fig. 2. Comparison of past and current work using PV-Pro, where the major difference lies in the length of input data and the application. Past work requires long- 
term historical data (>2 years) to extract the evolution trend and degradation rates of SDM parameters. The work in this paper leverages the recent data of the PV 
system to rebuild a model reflecting the current health status of the PV system, which then enables precise power modeling.

Fig. 3. Flowchart illustrating power modeling using PV-Pro. Historical production and weather data are leveraged, where the length of data can vary from days to 
months. After pre-processing of data, PV-Pro fits the model parameters by minimizing the loss between measured and simulated VDC and IDC. Then, this model with 
updated parameters can output precise modeled power using the real-time/forecasted weather data as input.
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PV system’s actual health condition. In this way, using the measured or 
predicted weather data on Day N, the accuracy of the corresponding 
modeled power could be improved, especially for field-degraded PV 
systems.

2.1.2. Nominal physical model
For benchmarking purposes, the traditional and commonly used 

power modeling method, which relies on the physical model with 
nominal parameters, will also be addressed in this work. The base 
physical model is similarly set as DeSoto singe-diode model [44]. 
Typically, the nominal model parameters are sourced from the module 
manufacture datasheet. Given that the datasheet does not explicitly 
provide the model parameters, the ‘pvlib.ivtools.sdm.fit_desoto’ [45] 
function is used for this extraction. This approach is named the nominal 
physical model. This benchmarking allows a comparison between the 
dynamically updated model against a model with constant nominal 
parameters.

2.1.3. Persistence model
The persistence model is also a straightforward and commonly 

employed benchmark model for PV power modeling, especially in power 
prediction. It operates under a simple assumption that the power output 
at a given time closely resembles the power output at the same time on 
the previous day. The traditional persistence model [17] does not 
consider the factor of irradiance, which leads to its limited accuracy. In 
this work, we adopt a refined version known as the Smart Persistence 
model [16] (expressed in (4)), which improves accuracy by adjusting the 
power output using the ratio of current to historical irradiance. 

P(t) = P(t − h)
G(t)

G(t − h)
(6) 

where, G refers to the plane-of-array irradiance; h is the time gap be
tween current and past measurement, typically set to 24 h.

2.1.4. Machine learning models
Machine learning (ML) models are increasingly popular methods for 

power modeling, which directly map the weather data to output power 
without requiring detailed knowledge of the PV system. Drawing from 
literature research [30,31], this study employs five common machine 
learning models: Multilayer Perceptron (MLP) of Artificial neural 
network (ANN), Random Forest (RF), Support vector regression (SVR), 
Kernel Ridge (KR), and Linear regression (LR). Input features for the 
models include the plane-of-array irradiance (Gpoa), module tempera
ture (Tm), and hour of day (HoD) with the output as the power, as 
illustrated in Fig. 4. The data frequency depends on field measurements, 
which can vary from minute to sub-hour intervals.

The ML models are trained and validated using the data (length of L 
days) collected up to the day before power modeling (Day N − 1), where 
80 % for training and 20 % for validation. Similar to PV-Pro, the update 
frequency of ML models is set daily as well. The performance of machine 
learning models primarily hinges on the hyperparameters. Based on a 
comprehensive review of machine learning models for power modeling/ 
prediction [31], a list of the hyperparameters for fine-tuning is outlined 
in Table 1.

The grid search method is used to systematically explore diverse 
combinations of these hyperparameters. Note that, different from ma
chine learning applications in the literature, we also consider the length 
of historical data (used for training and validation) as a ‘hyper
parameter’, recognizing that each model has an optimal amount of data 
for training. We systematically vary the length of historical data from 3 
days to 3 months and calculate the power modeling error to determine 
the most suitable historical data length for each model. Further details 
can be found in Section An of Supplementary Information (SI).

2.2. Error metrics

To quantify the power modeling error, we adopt two common met
rics, i.e., normalized mean absolute error (nMAE) and normalized bias 
error (nBE) [31], as described from (7)-(8). Both metrics are normalized 
by the nominal capacity of the PV system. 

nMAE =

∑N
i=1

⃒
⃒Pmod,i − Pmeas,i

⃒
⃒

Pnominal
(7) 

nBE =
Pmod,i − Pmeas,i

Pnominal
(8) 

where, Pmeas and Pmod are the measured and modeled power, respec
tively. Pnominal refers to the nominal power of the PV system. nMAE re
flects the total imbalance between the estimated and the actual power. 
nBE indicates the over- or under-estimation of the modeled power.

3. Case studies: Power modeling using synthetic datasets

The power modeling performance of the proposed methods and 

Fig. 4. Flowchart of machine learning (ML) models for power modeling. His
torical data are used to train and validate the ML models, where the inputs 
include irradiance (Gpoa), module temperature (Tm), and hour of the day (HoD) 
with the DC power (PDC) as output. The ML models are updated daily. Then, 
using the real-time or forecasted Gpoa, Tm, and HoD data, the ML models output 
the power. Note that the ML models generally require a large amount of his
torical data for training, which may not be available for newly-installed 
PV systems.

Table 1 
Machine learning models and hyperparameters.

Model Category Hyperparameters

ANN 
(MLP)

Neural network • hidden layer sizes: (5), (10), (50), (5,5), 
(10,10), (5,5,5), (100)

• alpha: 1e-4, 1e-3, 1e-2, 1e-1
• activation function: ReLU

SVR Support vector 
model

• kernel: ‘rbf’
• epsilon: 0.5, 0.25, 0.2, 0.1
• C: 1e-3, 1e-2, 0.1, 0.5, 1

LR Linear model • normalize: True or false
• fit_intercept: True or false

KR Kernel ridge 
model

• kernel: ‘polynomial’, ‘rbf’, ‘linear’
• alpha: 1e-3, 1e-2, 1e-1

RF Ensemble method • k_estimators: 50, 100, 250, 300
• max_depth: none, 5, 8
• min_sample_leaf: 0.01, 1, 10, 100
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other candidate techniques is first evaluated via generated synthetic 
datasets. The benefits of using synthetic datasets lie in the ability to 
individually address and control different types and severity of degra
dation of PV systems. Section 3.1 presents the generation of the syn
thetic datasets. Section 3.2 evaluates the performance using an example 
dataset of a degraded PV system. Section 3.3 examines the impact of 
various types and severities of degradation on the power modeling 
performance.

3.1. Generation of synthetic datasets of degraded PV systems

To generate synthetic datasets, we simulate the output of an 11.8 kW 
PV system. The system contains 50 mono-c-Si modules (Sharp_
NU_U235F2), arranged in 5 strings with each string of 10 modules. The 
nominal parameters of the module, sourced from the datasheet, are 
listed in Table 2, where the single-diode model (SDM) parameters are 
estimated by using the ‘pvlib.ivtools.sdm.fit_desoto’ function [45]. The 
weather data are retrieved from the NSRDB database (version 3.0.1) 
[48] at 37◦ 53′ 24″N 122◦ 15′ 36″W. The module back sheet temperature 
(Tm) is estimated from the irradiance, ambient temperature, and wind 
speed using the temperature translation method [49]. The simulation of 
the PV system’s output is carried out using the ‘pvlib.pvsystem.single
diode’ function [45].

To approximate a field-degraded PV system, we introduce specific 
changes to the single-diode model (SDM) parameters, reflecting typical 
field degradation patterns reported in the literature. Three primary SDM 
parameters are modified based on their nominal values (consistently 
over time): Iph is decreased by 2 %, Rs is increased by 20 %, and Rsh is 
decreased by 20 %. Using these degraded SDM parameters and field 
weather data, a synthetic dataset of a degraded PV system is generated 
for analysis.

3.2. Power modeling performance

Using the generated synthetic dataset, we evaluate the proposed 
dynamically-updated physical model (PV-Pro) and other candidate 
power modeling techniques. For PV-Pro and the five machine learning 
models, the models are updated daily based on the previous days’ data. 
The daily power modeling performance is tracked over a one-year 
period and the results are displayed in Fig. 5 (a). To provide a more 
detailed view, examples of modeled and reference power on a clear and 
cloudy day are illustrated in Fig. 5(b) and (c), respectively. A summary 
of the annual power error is given in Fig. 5 (d).

It is shown in Fig. 5 (a) that PV-Pro consistently shows lower error 
rates throughout the year compared to other methods. This can also be 
seen from the summarized annual error in Fig. 5 (d). Compared to the 
best of the other candidate power modeling techniques, PV-Pro reduces 
the average error (nMAE) by 25.6 %, highlighting its effectiveness in 
improving the power modeling performance.

3.3. Impact of degradation levels

The synthetic dataset used in Section 3.2 addresses the degradation 
of three parameters at a certain severity at the same time (presented in 
Section 3.1). To independently evaluate the impact of each degradation 
type and severity on the performance, the degradation severity of Iph, Rs, 

and Rsh are individually varied: Iph is decreased by 0–5%, Rs is increased 
by 0–50 %, and Rsh is decreased by 0–50 %. Under each case, new 
synthetic datasets are generated, and all techniques are re-evaluated. 
The corresponding annual power modeling results are presented in 
Fig. 6.

Across all degradation scenarios, the nominal physical method shows 
a quasi-linear or exponential increase in error with the severity of 
degradation. In contrast, the data-driven methods, including PV-Pro and 
machine learning (ML) models, exhibit a stable performance overall, 
with minimal sensitivity to variations in degradation severity. Notably, 
PV-Pro consistently outperforms other power modeling techniques 
across all degradation scenarios. This suggests that PV-Pro’s dynamic 
updating mechanism is particularly effective at maintaining accuracy 
despite changes in system conditions.

4. Case studies: Power modeling using field datasets

To evaluate the power modeling performance on real degraded PV 
systems, the study incorporates several field tests. Section 4.1 presents a 
detailed case study of a 271 kW ground PV system, where the annual 
power modeling error, impact of seasons, and over-/under-estimation 
rate of power are carefully examined. Following the same analysis path, 
Section 4.2 extends the analysis to three additional PV systems to 
evaluate the consistency and reliability of the proposed method across 
PV systems with different settings and system scales. Note that, the goal 
of this section is to evaluate the performance of power modeling tech
niques. Thus to avoid introducing additional uncertainty caused by the 
forecasting of weather data, the weather data used for the techniques are 
based on the field measurement, i.e., plane-of-array irradiance (Gpoa) 
and module temperature, which provides a more accurate record of the 
real environmental condition of the PV modules.

4.1. Case study of a 271 kW field PV system

The NIST ground PV system (Fig. 7) is selected for study, which 
contains 1152 mono-c-Si 235 W PV modules (Sharp_NU_U235F2), 
yielding a rated DC output of 271 kW [50]. This system is located in 
Maryland, USA (39.132170, − 77.213990) with the climate zone of ‘DH’ 
based on Köppen-Geiger-Photovoltaic climate classification [51] and 
‘T5:H4’ according to the PV Climate Zone (PVCZ) method [52]. The 
operation and environmental data are continuously recorded since 
2015. The plane-of-array irradiance is measured by a reference cell and 
the module temperature by a probe attached to the back sheet of the PV 
module [50]. We selected the data in 2018 to study the annual power 
modeling error, which represents a period after a 3-year operation for 
the PV system.

4.1.1. Annual power modeling performance
The proposed dynamical physical model (PVPro) is applied for this 

field dataset, and its performance is compared with other candidate 
techniques, including persistence, nominal, and five machine learning 
models (presented in Section 2.1). The modeled power error spanning an 
entire year in 2018 is presented in Fig. 8 (a), where examples of modeled 
power on a clear and cloudy day are illustrated in Fig. 8(b) and (c), 
respectively. A summary of the annual power error is given in Fig. 8 (d).

From the year-long performance presented in Fig. 8 (a) and (d), we 
can notice the persistence model displays larger fluctuation and higher 
error. However, it may be also noted that the persistence model can 
achieve low error rates (<1 %), even outperforming PVPro on certain 
days, such as in Fig. 8 (b). This variability is because the persistence 
model’s performance is highly dependent on the similarity of power 
shape between the current and the previous day. If the two consecutive 
days have similar weather conditions, such as being both clear, the 
persistence model can provide a good estimation of the power. 
Conversely, if the weather conditions differ significantly, its perfor
mance will suffer considerably. That explains the large fluctuation of the 

Table 2 
Nominal module parameters (IV and SDM parameters) for simulated PV system.

IV parameters Value SDM parameters Value

Vmp ref 38.3 V Iph ref 6.0 A
Imp ref 5.65 A Io ref 1E-10 A
Voc ref 45.89 V nref 1.2
Isc ref 6.0 A Rs ref 0.35 Ω
Pmp ref 216 W Rsh ref 600 Ω
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error of the persistence model across an entire year. For the nominal 
physical model, the system’s mild degradation after just three years of 
operation results in acceptable modeling performance (1.68 %). 
Regarding the machine learning models, except for the ANN, the SVR, 
RF, and KR models exhibit similar performance (~1.6 %). Overall, 
PVPro outperforms all the candidate models by demonstrating a lower 
and more stable modeling error, with a year-averaged nMAE of 1.23 %, 
reducing the error by 21.2 % compared to the best-performing alter
native technique (KR), which highlights the effectiveness of PVPro on 
the field PV power modeling.

4.1.2. Over- and under-estimation analysis
For grid-connected PV systems, another crucial angle to evaluate the 

power modeling is the frequency of severe over- or under-estimation of 
the output power, which greatly risks the reliability issues of the power 
system. Notably, over-estimation of power output is particularly prob
lematic for system operators, as it can complicate the rapid deployment 
of backup power units and the implementation of load reduction mea
sures [17]. Thus, we examine these conditions by quantifying the error 
using the normalized bias error (nBE). The distribution of nBE of pre
dicted power in 2018 is depicted in Fig. 9, where the occurrence 

Fig. 5. (a) Error of modeled power (nMAE) using synthetic data set over a year. Example of modeled power on a clear day (b) and a cloudy day (c) (nMAE is 
presented for each technique in the legend). (d) The summarized annual error of modeled power (nMAE) using synthetic data (the values above each bar refer to the 
“mean ± std”.).

Fig. 6. Error of annual modeled power (nMAE) using synthetic datasets as a function of decreased Iph (a), increased Rs (b), and decreased Rsh (c). The error of the 
nominal physical method increases quasi-linearly with the increasing severity of degradation. The data-driven methods (PV-Pro and ML models) exhibit an overall 
stable performance across various degradation levels. PV-Pro consistently outperforms other power modeling techniques, underscoring its robustness in accurate 
power modeling even under varying degrees of system degradation.
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frequency (named as density in Fig. 9) for severe over-estimation (when 
nBE >10 % or nBE >20 %) is also listed.

It is shown in Fig. 9 that persistence and ANN models introduce a 
higher frequency of severe overestimation (ratio of nBE >10 % higher 
than 4 % and ratio of nBE >20 % higher than 1 %). Comparatively, 
PVPro achieves the lowest frequency of severe overestimation, under
scoring its robust capability to mitigate instances of significant over- 
estimation of the PV system’s power.

4.1.3. Effect of seasons
To evaluate the seasonal impact on the power modeling, we parti

tioned the year-long power modeling error (nMAE) in Fig. 8 and the 

overestimation ratio in Fig. 9 (nBE >10 %) into four seasons and 
calculated the average error, as detailed in Fig. 10. The season windows 
are defined as follows: Spring (March 1 to May 31), Summer (June 1 to 
August 31), Fall (September 1 to November 30), and Winter (December 
1 to February 28).

The power error of each method presents seasonal fluctuations in 
Fig. 8. Typically, the power error and overestimation ratio are lower 
during summer and higher during winter. This trend is especially 
evident in the power overestimation ratio (nBE >10 %), which drops to 
approximately 0.03 % during summer. This may be due to the higher 
and more stable irradiance in summer, which improves the accuracy of 
the measurements of environmental conditions and system modeling, 
and vice versa for winter. Notably, PV-Pro surpasses other techniques 
consistently across all seasons.

4.2. Application to multiple PV systems

In this section, we extend the power modeling evaluation to three 
additional field PV systems in the U.S. selected from the PVDAQ data 
lake [53]. These PV systems differ in capacity scales, operating years, 
and climate zones as mapped in Fig. 11, where System 2, 3, and 4 are the 
ones to be analyzed and System 1 refers to the NIST ground system 
analyzed in Section 4.1. The climate zone is determined by the PV 
Climate Zone (PVCZ) method [52], which distinguishes locations based 
on climate stressors more relevant to PV degradation.

Following the same power modeling path applied for the NIST 
ground system (System 1), the power modeling performance for Systems 
2 to 4 (over one year) is accordingly analyzed. Similarly, PVPro and the 
ML models are updated daily, where the procedures are detailed in 
Figs. 3 and 4, respectively. The power modeling error and the power 
overestimation ratio (nBE >10 %) are summarized with System 1’s 

Fig. 7. NIST-ground array with 1152 PV modules for power modeling test.

Fig. 8. (a) Error of modeled power (nMAE) using NIST ground dataset in 2018. Example of modeled power on a clear day (b) and a cloudy day (c) (nMAE is presented 
for each technique in the legend). (d) The summarized annual error of modeled power (nMAE) (the values above each bar refer to the “mean ± std”.) PVPro exhibits 
lower and more stable errors with a decrease of 21.2 % compared to the best of other techniques (i.e., KR).
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results in Fig. 12. The ‘mean ± std’ of the four values is marked to show 
the discrepancy of performance across different systems. Note that for 
System 4, the module information is unknown. Thus, the nominal 
physical model cannot be applied to System 4.

From the results of the four PV systems, it is shown that the model 
performance varies from site to site. For example, the nMAE of the 
nominal physical model is below 3 % for System 1 and 3 but increases to 
6.8 % in System 2. A similar trend can be observed also from nBE ratio in 
Fig. 12 (b). This discrepancy is due to the significant degradation of 
System 2 (after operation of 16 years), rendering the nominal parame
ters unfit for the actual system’s condition. The nBE ratio, which high
lights the frequency of severe power overestimation (nBE >10 %), shows 
a greater variation across the four systems compared to the nMAE 
metric. The smart persistence model, which relies on the similarity of 
weather conditions between two consecutive days, also exhibits a 
distinct performance across different systems.

In contrast, the data-driven models, such as machine learning and 
PV-Pro, exhibit an overall less pronounced difference between systems. 
This is attributed to their ability to adapt and learn from historical 
production data, allowing them to better capture the system’s evolving 
degradation status. Notably, PV-Pro exhibits robust performance with 
lower power errors (average nMAE = 1.4 %, nBE = 1.0 %), reducing the 
error by 17.6 % on nMAE and 34 % on nBE compared to the best- 
performing alternative model (i.e., KR). This highlights PV-Pro’s capa
bility for accurate power modeling across diverse degraded field PV 
systems.

5. Discussion

The nominal physical model method is a simple and basic approach 

to power modeling. However, as the PV system degrades over years of 
operation, the nominal parameters no longer reflect the current state of 
the system, leading to significant over-estimation of output power. This 
over-estimation is particularly problematic for grid-connected PV sys
tems, because it necessitates the rapid deployment of backup power 
units and the reduction of load.

The persistence model is commonly used as a benchmark for 
assessing power modeling performance. However, in the literature, 
many studies employ the naïve type of persistence model [54], which 
simply assumes the future power output will be the same as the past 
observation. Consequently, this naïve model generally leads to relatively 
poor performance (average nMAE = 15 % as shown in Fig. S2 of SI). It is 
noteworthy that this naïve persistence model could be seamlessly 
replaced by the smart persistence model (presented in Section 2.1.3) 
without extra effort. This smart persistence model, considering the 
impact of irradiance, significantly enhances the accuracy of power 
predictions (average nMAE = 2.5 %), as illustrated in Fig. S2 of SI. We 
encourage the use of this updated persistence model as the benchmark 
for future research.

Machine learning (ML) models remain popular research in PV power 
modeling, especially for power prediction, due to their ability to adap
tively learn from historical data without requiring detailed knowledge of 
the PV system. In this research, the selection of ML models and the fine- 
tuning of hyperparameters were guided by the successful experience 
reported in the literature [31]. However, across the application of four 
PV systems with distinct sizes, climate zones, and module technologies, 
the optimal machine learning model varied from site to site, as presented 
in Fig. 12. Therefore, we recommend that future researchers interested 
in machine learning for power modeling not rely solely on a single 
model recommended in the literature. Instead, we suggest exploring 
different candidates to identify the most suitable model for the specific 
PV system. Drawing from this research and literature studies, potential 

Fig. 9. Distribution of nBE of modeled power in 2018 using different tech
niques. PV-Pro has a lower frequency (<0.5 %) of significant power over
estimation (nBE >10 % or 20 %) compared to other techniques, effectively 
minimizing the adverse impacts on the power system.

Fig. 10. Errors of the estimated power (nMAE) and the power overestimation ratio (nBE >10 %) under the four seasons in 2018. Overall, the summer is associated 
with lower power errors, whereas the winter and spring tend to display higher errors. PV-Pro outperforms other techniques across all seasons from both metrics.

Fig. 11. Location of the PV systems in the U.S. for evaluation. System 1 is 
already analyzed in Section 4.1. System 2, 3, and 4 will be addressed. The 
metadata of the PV system is listed, including the capacity, module type, 
mounting type, climate zone, location, and duration of operation.
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models to evaluate may include kernel ridge (KR), support vector 
regression (SVR), and random forest (RF).

For the data-driven models, like machine learning and PVPro (fusion 
of statistical and physical models), the availability of data is crucial. In 
this research, each machine learning is applied with its optimal length of 
historical data for training, as discussed in Section 2.1.4. Some models, 
like ANN, may require up to 60 days of training data for optimal per
formance. Here, we test an extreme case by providing these models with 
short-length data (3 days) and present their performance in Fig. S3 in SI. 
Interestingly, the results indicate that PV-Pro can still achieve a low 
power modeling error (nMAE = 1.26 %) even with this limited training 
data. This highlights the suitability of PVPro for application in newly- 
installed PV systems.

The training time for machine learning and PVPro models, using 
their optimal length of training data, is within 2 s on the Apple MacBook 
Pro with an M1 16G chip. This rapid training time fully supports a 
frequent update (like daily) of model parameters for power prediction.

The power modeling using PVPro is fundamentally a hybridization of 
statistical (data-driven) and physical methods. The leverage of historical 
data serves to reconstruct the physical model of the PV system. The 
power modeling, achieved through equivalent-circuit modeling, ensures 
that the output power adheres to the physical rules of PV cells and is 
fully interpretable. As PVPro rebuilds the model by fitting the produc
tion data, the challenge mainly lies in the quality of the data and fitting 
process. For future work, the pre-processing step will be enhanced to 
improve the data quality, especially in the identification of the operation 
conditions (inverter on MPP or clipping), removal of outliers, and use of 
clear-sky data. The current fitting process requires setting lower and 
upper bounds for the SDM parameters, with the default settings being 
constant and covering a wide range. An algorithm will be developed to 
adjust these ranges based on measurements and previously extracted 
parameters to further improve the fitting process. In essence, the model 
rebuilt by PVPro, which mirrors the current degradation status of the PV 
system, not only enables precise real-time health monitoring for oper
ational and maintenance purposes but also holds promise for accurate 
and robust power prediction of degraded PV systems.

6. Conclusion

This paper presents a dynamically-updated physical model technique 
(PVPro) for power modeling for degraded PV systems. Using basic 
production and weather data PVPro dynamically reconstructs a precise 
physical model to reflect the current degradation status of the PV system 
without the need for additional characterization. PVPro is compared 
with the popular power modeling techniques in the literature. The re
sults reveal that PVPro achieves an outstanding power prediction per
formance with the average nMAE = 1.4 % across four field PV systems, 
surpassing the best of other techniques with a reduction of error of 17.6 
%. Additionally, PVPro demonstrates robustness across different seasons 

and degradation severity. Moreover, PVPro performs well with a limited 
amount of operational data (3 days), making it suitable for application in 
newly-installed PV systems. Future work will focus on the improvement 
of the pre-processing of data and the application of PVPro on more large- 
scale PV systems. This approach, developed as a Python-based open- 
source tool, holds promise for integration into real-time health moni
toring and physical-model-based power prediction of degraded PV 
systems.

Data and code availability

The field PV datasets are from the PVDAQ data lake and National 
Institute of Standards and Technology (NIST): https://data.openei.org/s 
ubmissions/4568, https://pvdata.nist.gov.

The proposed tool (PVPro) is coded as a Python-based package 
available at GitHub repository: https://github.com/DuraMAT/pvpro.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.renene.2024.121493.

Fig. 12. Error of modeled power (nMAE) and power overestimation ratio (nBE >10 %) of four PV systems. The ‘mean ± std’ of the four systems is marked above for 
each technique. PV-Pro consistently demonstrates robust performance and lower power error and overestimation ratio across different PV systems.
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