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Abstract

Statistical models of learning and using semantic representations

by

Joshua Thomas Abbott

Doctor of Philosophy in Psychology

University of California, Berkeley

Thomas L. Griffiths, Chair

How does cognition organize sparse and ambiguous input from the environment into useful rep-
resentations and concepts for understanding the world? The work in this dissertation explores how
people learn and reason with abstract knowledge, focusing on the kinds of processes and repre-
sentations used in semantic memory. In particular, I present three case studies, each investigating
different assumptions for the semantic representations and algorithms used to model cognition.
The first chapter introduces this work situated in the framework of probabilistic models of cogni-
tion and outlines the goals of each case study. The second chapter focuses on the distinction be-
tween process and representation in semantic memory search. The simulations and analyses in this
chapter show that behavioral results on a semantic fluency task previously explained as a strategic
search process can also be produced by a non-strategic search process, depending on the structure
of representation used for semantic memory. The third chapter investigates semantic representa-
tions as a means to explore universals and variation in cognition across cultures. In this chapter, I
present a simple computational model operating over an irregularly shaped perceptual color space
which accounts both for universal tendencies and for variation in focal colors, or best examples of
color terms, across the world’s languages. The fourth chapter explores the challenges of develop-
ing models that can learn to appropriately apply new labels to concepts from only a few example
observations, like people. Building upon a successful Bayesian word learning model, I propose
adapting large-scale knowledge representations, typically used in machine learning and computer
vision, to automatically construct hypothesis spaces for generalization models that account for
these challenges. Finally, in the fifth chapter, I discuss the theoretical and practical implications
for this body of work as a whole, and suggest a variety of future directions. Taken together, this
research suggests general principles of computation over structured knowledge representations il-
luminates how people make sense of the world around them, and may lead to developing machines
that think more like people do.
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Chapter 1

Introduction

1.1 General introduction
How does the mind make sense of the world? We receive noisy and ambiguous information from
the environment, yet we develop abstract knowledge that generalizes over concepts and categories
of “things” like animals and color. The ways in which people learn language and classify objects
into groups of similar kinds require forms of complex reasoning and decision-making that seem
to go far beyond the limited data available. These are problems of induction, where the evidence
constrains, but does not determine, the solution to a problem. Understanding how cognition solves
these problems has challenged cognitive scientists and philosophers of the mind since Plato.

Traditional approaches to address these questions assume that if the mind makes inferences
beyond the available data, then to make up the difference either we have strong domain-specific
learning constraints over structured, innate knowledge (Carey, 2000; Spelke & Newport, 1998), or
we have strong domain-general associative learning mechanisms over simple, emergent structures
of connectionist weights (McClelland et al., 2010; Rogers & McClelland, 2004). A recent proposal
offers a compromise between the traditional positions with an alternative top-down explanation of
rational analysis (Anderson, 1990; Marr, 1982): capturing human intelligence requires combin-
ing probabilistic inference over flexibly structured knowledge representations (Griffiths, Chater,
Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

Framed in the context of this proposal, the present dissertation investigates how inference and
representation interact to both guide and constrain how people reason with abstract knowledge.
In particular, I present three case studies, each with different assumptions for the semantic repre-
sentations and algorithms used to model cognition. This chapter provides a brief introduction of
using probabilistic models of cognition as a method to study how people solve challenging induc-
tive problems, and outlines the goals and different kinds of semantic representations the present
dissertation will explore for each the the three case studies consisdered.
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Probabilistic models of cognition
Viewing the mind as an information processing system that follows principles of computation has
been a foundational assumption in cognitive science since the field began (Miller, 1956; Newell,
Shaw, & Simon, 1958; Turing, 1950). Associating thought as a computational process provides
a formal framework to analyze behavioral phenemona (Pylyshyn, 1984), and various formalisms
have been proposed ranging from describing thought through innate rules and grammars (Chom-
sky, 1957; Grice, Cole, & Morgan, 1975) to general-purpose learning algorithms which update
weighted connections in brain-like networks (McClelland et al., 2010; Rogers & McClelland,
2004). Probabilistic models of cognition have been used to explain the complex inferences that
people make in their everyday lives (Griffiths & Tenenbaum, 2006), leveraging formalisms and
data representations from recent advances in statistics, computer science, and artificial intelligence
(Griffiths et al., 2010). These models address the types of solutions an ideal, or “rational” agent
would extract from the available information in its environment (Oaksford & Chater, 1998). In
contrast to traditional models in cognitive psychology that address how the mind leads to particu-
lar behaviors, rational models answer questions as to why people behave the way they do in light of
limited evidence (Anderson, 1990; Marr, 1982). They provide a framework to evaluate the kinds
of representations that people may use for solving problems of induction, and demonstrate how
statistical evidence from the environment can be combined with prior knowledge (Tenenbaum et
al., 2011).

Probabilistic models of cognition assume the mind represents its degree of belief in any particu-
lar explanatory hypothesis as a probability distribution, which gets updated as more data becomes
available (Griffiths, Kemp, & Tenenbaum, 2008). Beliefs are updated by applying Bayes’ rule,
which shows that the posterior probability of a hypothesis, h, given observed data of some phe-
nomena, d, is proportional to the probability of observing d if h were the correct hypothesis (known
as the likelihood) multiplied by the prior probability of that hypothesis:

p(h|d) = p(d|h)p(h)
∑h′∈H p(d|h′)p(h′)

(1.1)

where the prior p(h) is the a priori degree of belief that a particular hypothesis h is true before
observing any data. It encodes the inductive biases of a learner and can act as a constraint when
observing unlikely events.

One of the earliest successes under this framework addresses the question of how people can
come to learn so much from so little. In particular, the Bayesian model of generalization (Shepard,
1987; Tenenbaum & Griffiths, 2001a; Tenenbaum, Griffiths, & Kemp, 2006) has been success-
ful in modelling human performance in learning from few examples, across numerous domains,
e.g., word learning (F. Xu & Tenenbaum, 2007b), concept learning (Tenenbaum, 1999, 2000),
sequential rules (Austerweil & Griffiths, 2011), and rule-based categorical concepts (Goodman,
Tenenbaum, Feldman, & Griffiths, 2008). It has been used to reconcile traditionally opposing
views of how people reason with all-or-none rule-based generalizations or more gradient, similar-
ity based generalizations (Tenenbaum, 2000). In addition, the Bayesian model of generalization
has helped reveal previously unknown learning biases. For example, by manipulating assumptions
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of the likelihood function, F. Xu and Tenenbaum (2007a) showed that children are sensitive to this
sampling procedure, whether it was random or intentional.

Probabilistic models of cognition also address how assumptions of process and representa-
tion interact, and how they can support the variety of rich inferences that people make. Kemp
and Tenenbaum (2009) showed how different structured representations are needed to account for
inferences made across different domains, using a hierarchical Bayesian model over a set of graph-
grammar primitives. For example, the voting patterns of U.S. Supreme Court judges can best be
explained with a 1-dimensional “left” vs. “right” representation, while reasoning about biolog-
ical concepts and learning new words from examples can best be explained with tree-structured
representations (Kemp & Tenenbaum, 2008, 2009).

1.2 Goals of the present dissertation
The present dissertation works within the framework of probabilistic models of cognition to inves-
tigate how people reason with abstract knowledge. In particular, this research focuses on the kinds
of knowledge representations that could support the inferences people make. Three case studies
are presented which explore a range of inductive tasks and questions. In Chapter 2, I address the
benefits in using probabilistic models of cognition to explore possible knowledge representations
people use in searching semantic memory, and the constraints imposed from these representational
commitments. In Chapter 3, representational constraints from perceptual color space combined
with general principles of categorization are shown to account for both similarities and variation
in color naming across the world’s languages. The work in Chapter 4 explores how a Bayesian
model of generalization, previously used to address how people can learn the extension of words
from only a few examples of a concept, can be extended to address similar challenges in machine
learning. This additionally provides a framework for comprehensive evaluation of the Bayesian
word learning model. In sum, the research presented in these case studies suggests probabilistic
inference over structured representations illuminates how the mind could solve the challenges of
induction, resulting in a better understanding of the formal principles characterizing human cogni-
tion, and machine learning models that behave more like people do. I briefly introduce each of the
chapters below.

Chapter 2 investigates different strategies that people might use to search their memories for
members of a particular category. Human memory has a vast capacity, storing all the semantic
knowledge, facts, and experiences that people accrue over a lifetime. Given this huge repository
of data, retrieving any one piece of information from memory is a challenging computational
problem. In fact, it is the same problem faced by libraries (Anderson, 1990) and internet search
engines (Griffiths, Steyvers, & Firl, 2007; Page, Brin, Motwani, & Winograd, 1999) that need to
efficiently organize information to facilitate retrieval of those items most likely to be relevant to
a query. In Chapter 2, I investigate proposals for the algorithms and representations used when
people search their memory.

One of the main tasks that has been used to explore memory search is the semantic fluency
task, in which people retrieve as many items belonging to a particular category (e.g., animals) as
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they can in a limited time period. Both early and recent studies (Bousfield & Sedgewick, 1944;
Romney, Brewer, & Batchelder, 1993; Thurstone, 1938; Troyer, Moscovitch, & Winocur, 1997)
have consistently found that clusters appear in the sequences of words that people produce, with
bursts of semantically related words produced together and noticeable pauses between these bursts.
A recent article by Hills, Jones, and Todd (2012) argued that this pattern reflects a process similar to
optimal strategies for foraging for food in patchy spatial environments, with an individual making a
strategic decision to switch away from a cluster of related information as it becomes depleted. The
work in this chapter demonstrates that similar behavioral phenomena also emerge from a simpler
process (a random walk) on a richer structured representation (a semantic network derived from
human word-association data). Semantic networks are a graph-based representation which provide
a way to capture some of the graded and associative aspects of cognition, and are commonly
used to explore questions about the structure of semantic memory (Baronchelli, Ferrer-i-Cancho,
Pastor-Satorras, Chater, & Christiansen, 2013; Collins & Loftus, 1975; Griffiths, Steyvers, & Firl,
2007; Steyvers, Shiffrin, & Nelson, 2004). I show that results resembling optimal foraging are
produced by random walks when related items are close together in the semantic network. The
findings Chapter 2 are reminiscent of arguments from the debate on mental imagery (Kosslyn
& Pomerantz, 1977; Pylyshyn, 1973) as Anderson (1978) pointed out: claims with respect to
representation cannot be evaluated on behavioral evidence alone without assuming a particular
algorithm or process on that representation (due to mimicry).

Recent work has proposed using semantic networks to expose universals and variation in con-
ceptual structure across a diverse set of the world’s cultures and languages (Borin, Comrie, &
Saxena, 2013; Youn et al., 2016). In Chapter 3, I explore a different approach to exploring seman-
tic representations as universals of cognition, based on a geometric perceptual space rather than an
associative network structure. I focus on a particular semantic domain under debate: color cog-
nition. Do patterns of color naming across languages reveal universals of cognition, or culturally
varying linguistic convention?

Focal colors, or best examples of color terms, have traditionally been viewed either as the
underlying source of cross-language color naming universals, or as derived from category bound-
aries that vary widely across languages. Current findings present a mixed and empirically complex
picture which partially supports and partially challenges each of these views. There are clear uni-
versal tendencies of color naming and focal colors across languages (Berlin & Kay, 1969; Kay
& Regier, 2003; Lindsey & A. Brown, 2006, 2009), but at the same time there is also substantial
cross-language variation (Davidoff, Davies, & Roberson, 1999; Kay & Regier, 2007; Regier, Kay,
& Khetarpal, 2009; Roberson, Davidoff, Davies, & Shapiro, 2005).

The work in this chapter advances a position which synthesizes aspects of these two tradition-
ally opposed positions, and accounts for existing data. In this view, color naming may be accounted
for in terms of the overall shape of perceptual color space (Jameson & D’Andrade, 1997), which
is irregularly shaped such that the most saturated yellow is more saturated than the most saturated
blue. It is this irregular shape that constrains what a good color naming system is, which has been
confirmed computationally as measured using general principles of categorization (Regier, Kay,
& Khetarpal, 2007), and from pressures for informative communication (Regier, Kemp, & Kay,
2015). What this proposal leaves unexplained is the role of focal colors — which lie at the heart
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of the debate.
In Chapter 3 I argue that focal colors are well-predicted from category extensions by a statis-

tical model of how representative a sample is of a distribution, independently shown to account
for patterns of human inference (Tenenbaum & Griffiths, 2001b). This model accounts both for
universal tendencies and for variation in focal colors across languages. The results of this chapter
suggest that categorization in the contested semantic domain of color may be governed by princi-
ples that apply more broadly in cognition, and that these principles clarify the interplay of universal
and language-specific forces in color naming.

Problems of induction have been studied in both cognitive science and machine learning, but
these fields approach them with different goals and different methods (Griffiths, 2015). In partic-
ular, cognitive scientists aim to build high quality models of human cognition, focusing on how
people solve and fail at these problems. Furthermore, working within a laboratory setting provides
precision at the cost of ecological validity, thus cognition experiments are typically small scale and
use toy or artificial stimuli. On the other hand, researchers in machine learning aim to develop
well-engineered solutions to these problems – they are not necessarily concerned with how people
solve them. However, given the exponential growth in computing power, evaluating these solutions
typically involves large-scale experiments with massive online databases as sources of stimuli. The
work in Chapter 4 aims to bridge these two approaches, using resources from machine learning to
extend and evaluate a Bayesian model of word learning.

Language learning is a classic problem solved better by the human mind than any computer. A
four-year old child knows the meanings of thousands of words and can learn new words accurately
from just a handful of labelled examples (Carey, 1978; Waxman & Markow, 1995). Given the
infinite number of possible referents a word might have, this is a difficult problem of induction
(Quine, 1975). Developing machine learning algorithms that approximate human performance on
even one simple aspect of this problem – learning the meaning of a novel noun – is thus a signif-
icant challenge. Bayesian word learning models (F. Xu & Tenenbaum, 2007b) are a step towards
answering this inductive challenge, using Bayesian inference over a tree-structured representation
to identify the intended referent of a novel noun (e.g., does the word refer to Dalmatians, dogs, or
all mammals?) in a similar manner to human word learning. However, to construct the hypothesis
space of their Bayesian model, F. Xu and Tenenbaum (2007b) elicited approximately 400 simi-
larity judgments from their participants. Clearly this is not practical to extend into every domain
where people learn words.

The work in this chapter attempts to address this concern. I propose an automated method of
constructing a hypothesis space and prior for the Bayesian word learning model using WordNet, a
large online database that encodes the semantic relationships between words as a network (Miller,
1995). As a source of naturalistic stimuli, I explore another common online database, ImageNet,
which provides at least 500 quality images per word in WordNet (Deng et al., 2009). This approach
is first validated by replicating a previous word learning study (F. Xu & Tenenbaum, 2007b), and
an additional experiment featuring three additional taxonomic domains (clothing, containers, and
seats). In both experiments, I show that the same automatically constructed hypothesis space ex-
plains the complex pattern of generalization behavior, producing accurate predictions across each
of the six different domains. Using the ImageNet Large Scale Vision Challenge dataset (Rus-
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sakovsky et al., 2015), a third experiment was conducted spanning 4,000 concepts automatically
generated from the structure of WordNet. This bridges the work with recent developments in Com-
puter Vision and Machine Learning, providing new challenges and opportunities for developing
machines that think more like people do.
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Chapter 2

Process and representation in semantic
memory search

2.1 Introduction
How do people search their memory for information related to a given cue? One classic method for
exploring this question, the semantic fluency task, asks people to retrieve as many members of a
category as possible in a limited amount of time (Bousfield & Sedgewick, 1944; Thurstone, 1938).
This simple task has been used to explore the representations and processes that support semantic
memory, and has even been used in clinical settings to study memory deficits in patients with
different forms of dementia (Lezak, 1995; Tröster, Salmon, McCullough, & Butters, 1989; Troyer,
Moscovitch, Winocur, Leach, & Freedman, 1998). Previous work has found that retrieval from
semantic memory in fluency tasks tends to be produced in bursts of semantically related words
with large pauses between bursts (Bousfield & Sedgewick, 1944; Romney et al., 1993; Troyer
et al., 1997). For example, Troyer et al. (1997) asked participants to “name as many animals as
you can” and observed that the retrieved animals tended to group into clusters (“pets”, “African
animals”, etc.). The pauses between pairs of retrieved words in the same cluster (e.g., “dog-cat”)
were very small when compared to the large pauses between pairs of retrieved words that do not
belong to any of the same clusters (e.g., “cat-giraffe”). This pattern of patchy responses led Troyer
et al. (1997) to posit that search through semantic memory is comprised of two processes, one
process that jumps between clusters related to the given cue and another process that retrieves
words within the current cluster.

Inspired by this pattern of bursts in retrieval from semantic memory, recent work by Hills et al.
(2012) compared search through semantic memory to how animals forage for food. When animals
search for food, they must consider the costs and benefits of further depleting their current food
source as opposed to searching for a new patch of food. A large literature in biology called optimal
foraging theory has compared animal foraging to ideal strategies (Stephens & Krebs, 1986). In
particular, the marginal value theorem shows that an animal’s expected rate of food retrieval is
optimal if they stop exploiting the current patch of food when the instantaneous rate (the marginal
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value) of food being acquired from the current patch is lower than their overall expected rate of
food retrieval (Charnov, 1976).

Human search through semantic memory could be considered analogous to how animals search
for food, with semantically-related clusters playing the role of patches. If this were the case, then
the pattern of pauses between pairs of retrieved words could be consistent with optimal foraging
theory: responses should switch clusters when the marginal value of finding another item within
the current cluster is less than the overall rate of return across memory. Hills et al. (2012) found
that human memory search was consistent with this prediction of optimal foraging theory. Based
on these results and a comparison of the performance of several different computational mod-
els, they proposed that human memory search involves two distinct processes, a “clustering” and
a “switching” process, with the strategy for switching being consistent with the marginal value
theorem.1

In this chapter, we find that behavioral phenomena consistent with a two-stage search process
can also be produced by a random walk on a semantic network derived from human word asso-
ciation data. This potentially provides an alternative account of human performance on semantic
fluency tasks, and is consistent with previous work linking random walks on semantic networks
with memory search (Griffiths, Steyvers, & Firl, 2007; Rhodes & Turvey, 2007; Thompson, Kello,
& Montez, 2013). We show that predictions consistent with the results of Hills et al. (2012) are
produced by random walks on semantic networks in which items that belong to the same cluster
are close together in the network.

By providing an alternative account of the behavioral data that does not explicitly encode as-
pects of optimal foraging, our analyses suggest that further experiments will be required to deter-
mine whether the processes underlying human memory search involve optimal foraging. Further-
more, these results provide a concrete illustration of a theoretical problem for cognitive psychology
that was identified by Anderson (1978) in the context of the mental imagery debate: different al-
gorithms operating over different representations can produce the same predictions. In this case,
a one-stage search process (a random walk) operating on one representation (a semantic network)
can resemble a two-stage search process (optimal foraging) operating on another representation (a
semantic space). The mimicry may not be complete – it might be possible to construct experiments
that differentiate these two accounts – but both models produce key behavioral phenomena from
the semantic memory literature.

The remainder of the chapter is organized as follows. First, we provide relevant background
information on the retrieval phenomena predicted by an optimal foraging account of semantic
fluency. We then discuss random walks as an alternative framework for modeling memory search,
beginning with a model considered by Hills et al. (2012). This random walk provided a poor fit
to human data and does not produce behavior consistent with optimal foraging. We then show
that a random walk operating on a different representation – a semantic network based on free
association data – does produce behavior consistent with optimal foraging. An analysis of the
two representations on which these random walks are based suggests that the critical difference is

1We note that Hills et al. (2012) are not the first to suggest that a switching process is involved in memory search
– similar ideas appear in previous work (Dougherty, Harbison, & Davelaar, 2014; Raaijmakers & Shiffrin, 1981).



CHAPTER 2. PROCESS AND REPRESENTATION IN SEMANTIC MEMORY SEARCH 9

that the semantic network better captures the clustering of animals, and a minimal model confirms
that a random walk based purely on such a cluster structure produces the key phenomena. We
conclude by discussing the implications of our work for understanding the role of representations
and algorithms in human foraging behavior and outlining possible directions for future research.

2.2 Optimal foraging as an account of semantic fluency
Optimal foraging theory covers a wide range of situations that a hungry animal might encounter
(Stephens & Krebs, 1986), but the most basic scenario involves deciding how to navigate a “patchy”
environment for resources. In this environment, food is contained in a set of discrete patches,
which are depleted as the animal consumes the food. Staying in a patch thus provides diminishing
returns, and the animal has to decide when to leave the patch and seek food elsewhere. The solu-
tion is provided by the marginal value theorem (Charnov, 1976), which indicates that the animal
should leave the patch when the rate of return for staying drops below the average rate of return in
the environment. Hills et al. (2012) suggested that retrieval from semantic memory is analogous
to animals foraging for food, where a patch corresponds to a cluster of semantically-related items
and acquiring food corresponds to retrieving an item from this cluster.

To investigate whether optimal foraging theory might account for human search through se-
mantic memory, Hills et al. (2012) had people perform a semantic fluency task, where people were
asked to “Name as many animals as you can in 3 minutes”. They then analyzed the search paths
taken through memory, as indicated by the time between the animal names people produced, called
the inter-item response time (IRT). These names were assigned to the predetermined animal cate-
gories identified by Troyer et al. (1997), which were used to analyze patterns in people’s responses:
if an item shares a category with the item immediately before it, it is considered part of the same
cluster, otherwise, that item defines a transition between clusters. For example, given the sequence
“dog-cat-giraffe”, “dog” and “cat” are considered elements of the same cluster, while “giraffe” is
considered the point of transition to a new cluster.

As a first measure of correspondence with optimal foraging theory, the ratio between IRTs
and the long-term average IRTs for each participant were examined at different retrieval positions
relative to a cluster switch. Figure 2.1a displays the results of this analysis. The first word in
a cluster (indicated by an order of entry of “1”) takes longer to produce than the overall long-
term average IRT (indicated by the dotted line), and the second word in a cluster (indicated
by “2”) takes much less time to produce (reported results of a within-participant paired t-test,
t(140) = 13.14, p < 0.001 and t(140) = 11.92, p < 0.001, for first and second words respectively).
Furthermore, the IRTs for words preceding a cluster switch (indicated by “-1”) did not differ signif-
icantly from most participants’ own long-term average IRTs (reported results using a one-sample
t-test, 132 of 141 participants were not significantly different, and the nine that were significantly
different all had pre-switch IRT averages less than their long-term averages). These results are
in line with the marginal value theorem, which predicts that IRTs should increase monotonically
towards the long-term average IRT prior to a cluster switch, going above this average only when
switching to a new cluster.
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As a further test of the marginal value theorem’s predictions, the absolute difference between
the pre-switch IRT and long-term average IRT was plotted against the number of words a partici-
pant produced (see Figure 2.1b). Participants with a larger absolute difference (indicating they ei-
ther left clusters too soon or too late) produced fewer words, as predicted by the marginal value the-
orem (reported results using a linear regression model found a significant negative relationship be-
tween participants’ deviation from the marginal value theorem policy for patch departures and the
total number of words the participants produced, with a slope of -5.35, t(139) =−5.77, p< 0.001).

2.3 Initial comparison of optimal foraging and random walks
Inspired by the marginal value theorem, Hills et al. (2012) suggested a two-part process model
to account for the results of their experiment: when the IRT following a word exceeds the long-
term average IRT, search switches from local to global cues. They compared this model to several
simpler alternatives, including one in which memory search is simply construed as a random walk
over a set of items (called the “one cue – static” model in their paper). Random walks have a long
history as models of memory (Anderson, 1972), and recent work has shown that random walks on
semantic networks can produce a distribution of IRTs in fluency tasks (Rhodes & Turvey, 2007;
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Figure 2.1: Experimental results of a semantic fluency experiment (free recall from the category of
animals) reproduced from Hills et al. (2012). (a) The mean ratio between the inter-item response
time (IRT) for an item and the participant’s long-term average IRT over the entire task, relative
to the order of entry for the item (where “1” refers to the relative IRT between the first word
in a cluster and the last word in the preceding cluster). The dotted line indicates where item IRTs
would be the same as the participant’s average IRT for the entire task. (b) The relationship between
a participant’s deviation from the marginal value theorem policy for cluster departures (horizontal-
axis) and the total number of words a participant produced.
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Thompson et al., 2013) and a pattern of responses in free association tasks (Griffiths, Steyvers, &
Firl, 2007) similar to those produced by people.

The random walk considered by Hills et al. (2012) operated over a set of 771 animals, being
possible responses in the semantic fluency task. The model assumed that each response people
produced was sampled from a distribution based on the previous response, with the probability of
each animal given by

P(Xi|X j) ∝ S(Xi,X j)
β (2.1)

where S(Xi,X j) is the similarity between the previous animal response X j and the current animal
response Xi, given by the BEAGLE model of semantic representation (Jones & Mewhort, 2007).
In this model, each word is represented by a vector in a semantic space, and the similarity be-
tween words is based on the cosine similarity of their vectors. β is a free parameter of the model
controlling the saliency (attention weight) assigned to a given cue.

Hills et al. (2012) compared this model with a two-part model that switched between exploring
a cluster using a similar random walk and making a larger leap between clusters (called the “com-
bined cue – dynamic” model in their paper). In this two-part model, the global switching process
was carried out using a generic model of memory retrieval based on the ACT-R and SAM archi-
tectures (Anderson, 1990; Raaijmakers & Shiffrin, 1981). This makes it possible to calculate the
probability of each participant’s sequence of responses under both models, and Hills et al. (2012)
found that the two-part model gave a better fit to the human data than the random walk model.

Another way to evaluate the performance of the random walk model is to examine whether
it can produce the key phenomena of human behavior that are suggestive of optimal foraging:
the correspondence between the average IRT and the time at which people switch clusters, and
the relationship between deviation from the marginal value theorem and overall performance (as
shown in Figure 2.1). To examine this, we simulated random walks generating responses via
Equation 2.1 and subjected these responses to the same analyses that Hills et al. (2012) used on
their data. We used their reported mean β = 4.34 in the simulations below.

To connect the output of a simulation (the sequence of items visited by the random walk model)
to the experimental results (i.e., IRTs), we need to define a method for mapping the sequence of
items to IRTs. In our analyses, we consider only the time between first visits to animals, which we
denote as τ(k) for the kth unique animal item seen (out of the K unique animal items visited on the
random walk). For example the output of a simulated random walk might be:

X0 = “dog”,X1 = “cat”,X2 = “dog”,X3 = “mouse”.

Here, K = 3 with k = 1 referring to “dog”, k = 2 referring to “cat”, and k = 3 referring to “mouse”.
Our τ(k) function would return τ(1) = 1, τ(2) = 2, and τ(3) = 4 for this example since we only
consider the first time “dog” is visited (at timestep n= 1). Thus, we define the IRT between animals
k and k−1 in a sequence of nodes visited along a random walk as

IRT (k) = τ(k)− τ(k−1). (2.2)
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where τ(k) is the first hitting time of animal Xτ(k). For the above example, the IRT between
“mouse” (k = 3) and “cat” (k = 2) is

IRT (3) = τ(3)− τ(2) = 4−2 = 2.

With this mapping defined, we can perform the same set of analyses in Hills et al. (2012) on IRTs
between animal words for our random walker simulations.Although Hills et al. (2012) consider
only animals in their search space, we present this method to operate over multi-domain spaces
more generally.

A total of 141 simulated random walks were run for 45 iterations, which was selected so that
the average number of animals produced by a simulated random walk was approximately equal
to the average number of animals typed by a participant in Hills et al. (2012). Figure 2.2 shows
the results. Consistent with its poor fit to people’s responses, the random walk model did not
produce behavior that resembles optimal foraging. While there was a negative linear relationship
between the deviation from the marginal value theorem and overall performance (slope of -31.21,
t(138) = −4.00, p < 0.001)2, there are few differences between the IRTs and long-term average
IRTs, regardless of retrieval position. This latter difference is particularly important when analyz-
ing whether transitions between clusters occur at the point predicted by optimal foraging.

2.4 Exploring a different semantic representation
In arguing that people engage in a two-stage process based on optimal foraging theory, Hills et al.
(2012) are making a commitment to a particular algorithm for memory search. In particular, they
show that this algorithm accounts for human behavior better than a random walk. However, in
making this comparison they also need to commit to a representation of semantic memory – in
this case the spatial representation provided by BEAGLE (Jones & Mewhort, 2007). But, as An-
derson (1978) pointed out, claims with respect to representation cannot be evaluated on behavioral
evidence alone without assuming a particular algorithm or process on that representation (due to
mimicry): with a different representation, a random walk might produce a closer match to human
behavior.

While Hills et al. (2012) focused on spatial representations, other researchers in the memory
literature have used random walks to capture aspects of human memory search (Griffiths, Steyvers,
& Firl, 2007; Rhodes & Turvey, 2007; Thompson et al., 2013) by assuming a different kind of rep-
resentation: a semantic network (Collins & Loftus, 1975). In a semantic network, nodes and edges
in a graph encode words and pairwise associations, respectively. Technically, any random walk on
a discrete set of objects can be interpreted as a random walk on a graph. From this perspective, the
random walk considered by Hills et al. (2012) could be viewed as a random walk on a semantic
network. However, the probabilities of moving between nodes on this graph were derived from
the spatial representation used in BEAGLE, which places constraints on what kinds of conditional

2We removed outliers from all such analyses, which were defined as foragers whose deviation from the marginal
value theorem or the number of words produced were more than three standard deviations from their respective means.
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Figure 2.2: Results from 141 simulations of the random walk model from Hills et al. (2012),
submitted to the same analyses as their human data. (a) The mean ratio between the inter-item
response time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative
to the order of entry for the item (where “1” refers to the relative IRT between the first word in
a cluster and the last word in the preceding cluster). The dotted line indicates where item IRTs
would be the same as the participant’s average IRT for the entire task. (b) The relationship between
a participant’s deviation from the marginal value theorem policy for cluster departures (horizontal-
axis) and the total number of words a participant produced.

probabilities (and graph structures) are possible. For a discussion of these constraints, please see
(Griffiths, Steyvers, & Tenenbaum, 2007; Tversky, 1977). In particular, low-dimensional spatial
representations constrain the number of items to which an item can be the nearest neighbor (Tver-
sky & Hutchinson, 1986) – a property that might be relevant to the behavior of a random walk.
Previous work has explored how semantic networks can be used to explore questions about the
structure of semantic memory (Griffiths, Steyvers, & Firl, 2007; Griffiths, Steyvers, & Tenen-
baum, 2007; Romney et al., 1993; Steyvers et al., 2004; Steyvers & Tenenbaum, 2005). Following
this work, we approximate the structure of semantic memory with a semantic network constructed
from people’s behavior in a word association task, where people are given a cue and list words
associated with the cue (Nelson, McEvoy, & Schreiber, 2004). For example, if a participant were
told the cue “bed,” they might respond with “pillow,” “blanket,” and “sheet.” The result is a seman-
tic network with 5018 nodes, representing the associations between words from “a” to “zucchini.”
There are 178 animals in the semantic network that were also one of the 373 animals produced
by at least one of the 141 participants in Hills et al.’s (2012) experiment. Of these 178 animals,
13 were not the associate of any other word and so, we removed them from this and subsequent
analyses (leaving 165 animals for analysis). Our random walk models operate over all 5018 nodes
in the semantic network, however our τ(k) function operates over just these 165 animals.

A random walk on a semantic network searches memory in the following manner. Initially,
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it starts at the node whose label corresponds to the cue. It moves to a new node by following an
edge, selected at random, from the current node to the new node. A random walk on a semantic
network could retrieve items in a patchy manner, appearing to make deliberate switches between
clusters, if the clusters correspond to densely linked sets of nodes with few links between them.
Thus, if the clusters that appear in people’s responses are reflected in the structure of the semantic
network, this non-strategic search process might be sufficient to capture the phenomena reported
by Hills et al. (2012).

Other than the network, there are two other steps to defining a random walk: (1) defining
what node the random walk starts at (or a probability distribution over nodes), and (2) defining the
probability distribution for transitioning from one node to the next node (a transition probability
matrix). We assume that the random walk starts at the node that represents the cue C given to the
participant. So, to capture the results of Hills et al. (2012), we assume that C is “animal”, and
X0 = l−1(C), where l(·) is a function whose input is a node and output is its corresponding label,
and l−1(·) is the inverse function, whose input is the label and its output is the node with that label.
We explore four possible transition probability matrices defined by the orthogonal combination of
two factors: whether the probability of transitioning out of a node is uniform or weighted over its
edges and whether there is a non-zero probability of jumping back to the node corresponding to
the cue.

The first factor is whether the probability of transitioning out of a node is uniform over its
outgoing edges from the current node (as discussed in the previous example) or weighted, allowing
the model to represent the degree of association between two items. In the case of the weighted
model, the probability of transitioning from the current node to a new node is proportional to the
frequency that the label of the new node was said by a participant given the current node as a cue
in the word-association database (Nelson et al., 2004). Formally, the associations between a set of
n items can be represented as a n×n matrix L, where Li j = 1 when item j is associated with item
i and is zero otherwise. A random walk over these n items is defined by a matrix M of transition
probabilities, where Mi j denotes the conditional probability of jumping to item i given the random
walk is currently at item j. In the uniform model, this is

Mi j =
Li j

∑
n
k=1 Lk j

. (2.3)

The denominator is called the out-degree of node j or the number of items that are associates of
item j and so it is the number of possible items that the random walk could move to from node j.
For the weighted model, Li j is proportional to the number of times that i was an associate of j. The
weighted model can capture that some associations (e.g., “dog” and “cat”) are stronger than others
(e.g., “dog” and “house”).

The second factor is either non-jumping, where there is no effect of the cue besides for initializ-
ing the random walk or jumping, where at each time step, the model “jumps” back to the cue with
probability ρ, but otherwise (with probability 1−ρ) the model transitions in the same manner as
described above. We note this is a qualitatively different operation than the proposal of “jumping”
between different search cues made by Hills et al. (2012). Rather than reflecting a strategic deci-
sion to switch between clusters, the jumps are executed at random and simply “prime” the search
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process by returning to the initial state. In simulations not presented in the paper, we also examined
the consequences of jumping to random nodes – a process which is more similar to the move from
local to global cues in the model proposed by Hills et al. (2012), and has precedent in other work
on random walks and semantic memory (Goñi et al., 2011, 2010). However, this jumping process
produces qualitatively similar results to those described in the main text.

In sum, we will explore four different random walk models, which are formed by combining
two factors: whether the edges are uniform or weighted and whether the random walk randomly
jumps back to the cue (jumping) or not (non-jumping). Formally, they are all defined by the fol-
lowing equation

P(Xn+1|C = “animal”,Xn = xn) = ρP(Xn+1|Xn = l−1(“animal”))+(1−ρ)P(Xn+1|Xn = xn) (2.4)

where P(Xn+1|Xn) is defined by Equation 2.3 with L defined according to whether the model is
uniform or weighted, and ρ = 0 when the model is non-jumping or 0 < ρ ≤ 1 when the model is
jumping.

A direct quantitative comparison between these models and the models considered by Hills
et al. (2012) is difficult, as there are different numbers of animals in the free association data and
in the BEAGLE representation. This makes comparison hard because the probabilities assigned
to participant responses by each model is determined in part by the number of possible responses
(roughly speaking, the more animals in the model, the less probability assigned to each animal by
the model). Instead, we perform qualitative comparisons of these models in the same manner as
we did for the random walk earlier in the article.

A total of 141 simulated random walks were run for each of the four models. Each simulation
was run for 2000 iterations, which was selected so that the average number of animals produced
by a simulated random walk was approximately equal to the average number of animals typed by
a participant in Hills et al. (2012). On average, each participant responded with 36.8 animals, and
an average of 33.5, 42.5, 23.8, and 30.9 animals were produced by the uniform-non jumping, uni-
form jumping, weighted non-jumping, and weighted jumping random walk models, respectively.
We expected the jumping models to produce more animals than the non-jumping models because
“jumps” got the model away from nodes already visited by the random walk. Additionally, we ex-
pected slightly fewer animals to be produced by the random walk models than participants because
of the small number of animals included in the semantic network (most people have probably en-
countered more than 165 animals). For the jumping models, we selected the probability of jumping
on a given trial, ρ, to be 0.05. Other values for ρ produced similar results (assuming the value was
small).

Figure 2.3 shows the results of analyzing the simulations of the four random walk models for
optimal foraging-like behavior in the same manner as Hills et al. (2012) performed for participants
in their experiment. In the left column of Figure 2.3 is the average ratio of the IRT of an item
relative to its distance to the closest cluster switch (“order of entry”), and, the overall average IRT
for each random walk model. Like people, the first item in a cluster (indicated by “1”) has a sig-
nificantly longer IRT than the overall average IRT (t(140) > 17, p < 0.001 for all four models),
and the second item in a cluster (indicated by “2”) has a significantly shorter IRT than the overall
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average IRT (t(140) < −15, p < 0.001 for all four models). The introduction of jumps primarily
reduces the difference for IRTs before (at “-2”) and after a cluster switch (at “2” and “3”), while
increasing the amount of time it takes to find the first item in a cluster. This can be explained by the
model randomly jumping back to the cue anywhere along the search path, making it difficult to find
a new animal, yet once one is found, there are more unseen animals left to find nearby. In addition,
the IRTs for words preceding a cluster switch (indicated by “-1”) were not signficantly different
from most walkers’ long-term average IRTs. The IRT for words preceding cluster switches (indi-
cated by “-1”) of 140, 138, 139, and 138 out of 141 walkers were not significantly different for the
uniform non-jumping, uniform jumping, weighted non-jumping, and weighted jumping models
respectively, and all of the walkers that were significantly different had pre-switch IRT averages
less than their long-term averages for each of the four models. This pattern of results is consistent
with the results of participants in Hills et al. (2012)’s experiment, the marginal value theorem, and
optimal foraging. Each time the IRT increases dramatically (at “1”) and then decreases dramati-
cally (at “2”), one might be tempted to suggest that the model “found” another “patch” of relevant
items in the semantic network. However, there are no search strategies being used by the model.
It is simply walking randomly over the semantic network and emitting the labels of nodes that
it visits. Thus, a simple process over a structured representation is sufficient to capture optimal
foraging-like behavior.

The right column of Figure 2.3 examines the marginal value theorem’s cluster-switching policy,
where the absolute difference between the pre-switch IRT and long-term average IRT was plotted
against the number of words a random walker produced along with a regression line through this
data (as in Figure 1b). Across all four models, walkers with a larger absolute difference (indicating
they either left clusters too soon or too late) produced fewer words (a linear regression model found
a significant negative relationship between axes for each of the four models: slope = -0.19, t(137)=
2.51, p< 0.05, slope = -0.21, t(137) = 1.98, p< 0.05, slope = -0.10, t(135) = 3.25, p< 0.05, slope
= -0.09, t(137) = 2.15, p < 0.05 for the uniform non-jumping, uniform jumping, weighted non-
jumping, and weighted jumping models respectively). Intriguingly, each of the models produces
the basic phenomena taken as evidence for the use of the marginal value theorem in memory
search. These results show that behavior consistent with following the marginal value theorem can
be produced by surprisingly simple search algorithms, at least when measured along these metrics.
In the following sections, we turn to examining how the structure of semantic memory affects the
behavior of these random walks.

2.5 The importance of clustering
Our results so far show that a random walk on a semantic network derived from free associations
produces phenomena suggestive of optimal foraging, while a random walk on a spatial represen-
tation generated by BEAGLE (Jones & Mewhort, 2007) does not. This raises a natural question:
Why? What is the critical difference between these two representations?

To address this question, we examined whether the similarity between items in these two rep-
resentations reflects the clusters used by Troyer et al. (1997). According to the semantic network,
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Figure 2.3: Results after 141 simulations for the four random walk models: (a) the uniform tran-
sition model with no jumps, (b) the weighted transition model with no jumps, (c) the uniform
transition model with a jump probability of 0.05, and (d) the weighted transition model with a
jump probability of 0.05. The left column displays the mean ratio between the inter-item response
time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the first word in a cluster
and the last word in the preceding cluster). The dotted line indicates where item IRTs would be
the same as the walker’s average IRT for the entire task. The right column displays the relation-
ship between a walker’s deviation from the marginal value theorem policy for cluster departures
(horizontal-axis) and the total number of words a walker produced.
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the similarity between the animals corresponding to nodes i and j was encoded as si j = exp{−di j},
where di j is the shortest path distance between the nodes i and j in the semantic network. To de-
rive similarities from the clusters, we used an additive clustering model (Shepard & Arabie, 1979),
where the (nonexclusive) clusters from Troyer et al. (1997) were interpreted as features. To do so,
we formed a 165×165 similarity matrix S. According to additive clustering, the similarity matrix
is defined as

S = FWF′ (2.5)

where F is the matrix of clusters interpreted as features ( fac = 1 when animal a is in cluster c), and
W is a diagonal weight matrix, whose elements are non-negative and represent the psychological
weights of the clusters. We used the 22 animal clusters defined by Troyer et al. (1997) to define
F. We inferred W by maximizing the posterior distribution of reconstructing S based on graph
distances using additive clustering, assuming a Gaussian prior on W and Gaussian reconstruction
error as outlined in Navarro and Griffiths (2008).

The top row of Figure 2.4 shows the graph-based similarity matrix and the similarity matrix
reconstructed using additive clustering. Visual inspection of the block structure in both similarity
matrices confirms that they are very similar and provides evidence that the semantic network im-
plicitly encodes the clusters. The distance between the nodes corresponding to animals in the same
cluster is smaller than the distance between animals in different clusters and the retrieval process
depends (implicitly or explicitly) on this distance. This may be why a random walk on a semantic
network can produce behavior that resembles optimal foraging.3

By comparison, the representation used in the random walk evaluated by Hills et al. (2012) does
not show the same pattern of clustering. We used the same additive-clustering technique on the
similarity data from BEAGLE, examining how well the similarity data could be predicted from the
cluster membership of different animals. The bottom row of Figure 2.4 shows the results: there is
only a weak signature of the animal clusters in these data. Consequently, the poor performance of
this model could be a result of the underlying representation not encoding a clear cluster structure.

These results suggest that the critical difference between these two representations may be
the extent to which they capture the cluster structure of animals. Because items that are in the
same cluster are close in the semantic network, a random walk will tend to stay within clusters
and occasionally switch between clusters, creating the illusion of a two-stage search process. To
evaluate this idea, and to demonstrate that the performance of our model does not depend on any
of the specifics of the free association data from which our semantic network was formed, we
conducted a further simulation using a minimal random walk model. In this model, we assume
that the probability of a transition from item j to item i is given by

Li j =


0 i = j

(1− p)/C j i and j are in the same cluster
p/(n−C j−1) i and j are not in the same cluster

(2.6)

3We also examined various structural modifications of the network we operate upon in Appendix A, exploring how
degree distributions, edge direction, and connectivity structure in the semantic network effect the observed optimal
foraging phenomena.
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Semantic network similarity matrix Additive clustering reconstructed matrix

BEAGLE space similarity matrix Additive clustering reconstructed matrix

Figure 2.4: (Top row) A visualization of the similarity between pairs of animals in the semantic
network (left panel) and an additive clustering model (right panel), where darker colors represent
stronger similarities. (Bottom row) A visualization of the BEAGLE animal similarity space (left
panel) and an additive clustering model (right panel). The rows and columns of the each matrix
were reordered to display animals in the clusters with largest weight first.
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where C j is the number of items that belong to the same cluster as item j (excluding item j) and n
is the total number of items. This model only makes use of the cluster structure, assigning a high
probability to transitions within a cluster when p is small, but uses no other information about the
items to determine the transition probabilities.

The random walk was run over the subset of 165 animals from the semantic network used in
our previous simulation, and p was determined by calculating the average probability of making
a transition outside a cluster in the uniform non-jumping random walk based on the word asso-
ciation network. We ran 141 simulations for a total of 45 steps each, and submitted them to the
same analyses as Hills et al. (2012). The results are shown in Figure 2.5. The left column shows
the key phenomena associated with optimal foraging, with the first word in a patch taking signifi-
cantly longer to produce on average (t(140) = 9.49, p < 0.001), and the second word taking much
less time to produce than the long-term mean (t(140) =−11.11, p < 0.001). The right column of
Figure 2.5 examines consistency with the cluster-leaving policy indicated by the marginal value
theorem, where again we find that walkers with a larger absolute difference (indicating they ei-
ther left clusters too soon or too late) produced fewer words (a linear regression model found a
significant negative relationship between axes: slope = −4.88, t(132) = 4.09, p < 0.001).

The fact that this minimal model produces behavior similar to optimal foraging suggests that
random walks can mimic a two-stage search process, provided they are on a representation that
captures the underlying cluster structure. This suggests the success of the random walk model
using the semantic network based on free associations in producing behavior that resembles opti-
mal foraging, and the failure of the random walk using the BEAGLE representation considered by
Hills et al. (2012) may be considered a consequence in the extent to which they capture this cluster
structure.

2.6 Discussion
In this chapter, we examined two potential explanations for why people show optimal foraging-like
behavior when they retrieve items from semantic memory. Both explanations produced behavior
consistent with the predictions of optimal foraging, but they propose that very different represen-
tations and processes are responsible for this behavior. Hills et al. (2012) suggested that semantic
memory is based on spatial representations and search is a dynamic process, retrieving items from
one cluster at a time and switching between clusters when the retrieval rate falls below a thresh-
old. We proposed an alternative explanation, where semantic memory is represented by a network
and search is simply a random walk on the network. In support of this proposal, we showed that
predictions consistent with the results of Hills et al. (2012) are produced by a random walk model
on a network where semantically-related items are close together in the network.

Representations and algorithms
Taken together, our simulations show that the behavior in semantic fluency tasks that Hills et
al. (2012) viewed as evidence for optimal foraging is also predicted by a random walk on a semantic
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Figure 2.5: Results for the minimal model on our semantic network with p estimated from the
uniform transition word association matrix. (a) The mean ratio between the inter-item response
time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the first word in a patch
and the last word in the preceding patch). The dotted line indicates where item IRTs would be
the same as the walker’s average IRT for the entire task. (b) The relationship between a walker’s
deviation from the marginal value theorem policy for patch departures (horizontal-axis) and the
total number of words a walker produced.

network. Crucially, this behavior depends on the representation used by the random walk model:
a random walk on a semantic network produces optimal foraging behavior, but a random walk
on corresponding spatial representations does not. Consequently, it seems that there is something
special about the semantic network representation that allows the simple random walk to appear
similar to optimal foraging.

Finding that different algorithms operating on different representations can produce the same
behavior might seem surprising, but has a precedent in cognitive psychology. The mental imagery
debate (Kosslyn, 1994; Pylyshyn, 1973) depended crucially on this issue – whether there are effec-
tive ways of identifying the algorithms and representations that human minds employ. Anderson
(1978) convincingly argued that we should not be surprised to find cases where algorithms and
representations that seem quite different nonetheless end up producing similar behavior – such
cases are the rule, rather than the exception. In fact, for a sufficiently rich set of algorithms and
representations, we can always find algorithm-representation pairs that cannot be discriminated
based purely on behavior.

The situation illustrated by our analyses is not necessarily as extreme as the cases that Anderson
considered, but it does illustrate one of the fundamental challenges of cognitive psychology: pos-
sible psychological representations and mechanisms are always underdetermined by the available
behavioral data, and even behavior that seems like the signature of one mechanism can sometimes
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be produced by others. In this case, further experiments may be able to discriminate between opti-
mal foraging and random walks, but these experiments must be specifically designed to distinguish
between these two accounts rather than motivated by the predictions of one account alone.

Conclusion
Identifying and retrieving information relevant to a cue is one of the basic capabilities of the hu-
man memory system. Understanding how people solve the task of searching this vast store of
information is likely to give us insight not just into the human mind, but into how to build better
artificial information retrieval systems. Optimal foraging and random walks on semantic networks
offer two quite different accounts of this process – one based on an intelligent search strategy, the
other on a rich representational framework. Both algorithms and representations also have links to
other disciplines, offering links to literatures in biology and computer science respectively. That
both accounts can produce similar behavior is surprising, but also exciting, in that it creates new
opportunities to explore these connections more deeply and develop a more complete picture of
this remarkable human capacity.
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Chapter 3

Universals and variation in color categories

3.1 Introduction
Focal colors, or best examples of color terms, lie at the center of the debate over language and color
cognition. An influential view (Kay & McDaniel, 1978) is that color naming across languages is
constrained by the Hering primaries (Hering, 1964) in the opponent pairs red vs. green, yellow
vs. blue, and black vs. white. The best examples of these six color terms are often understood
to be universal privileged points, or foci, in color space, such that languages differ in their color
naming systems primarily by grouping these universal foci into categories in different ways. There
is some empirical support for this view: the best examples of color terms across languages tend to
cluster near these six points (Berlin & Kay, 1969; Regier, Kay, & Cook, 2005), and an early study
(Heider, 1972b)—but not a recent followup (Roberson, Davies, & Davidoff, 2000)—also found
these colors to be cognitively privileged.

However, Roberson and colleagues (Roberson et al., 2000) claimed that this influential view
has matters exactly backwards. They argued that color categories are not constrained by universal
foci, but are instead defined at their boundaries by local linguistic convention, which varies across
languages. They proposed: “Once a category has been delineated at the boundaries, exposure to
exemplars may lead to the abstraction of a central tendency so that observers behave as if their cat-
egories have prototypes” (p. 395). On this view, best examples do not reflect a universal cognitive
or perceptual substrate, but are merely an after-effect of category construction by language.

A proposal by Jameson and D’Andrade (Jameson & D’Andrade, 1997) has the potential to
reconcile these two opposed stances. They suggested that there are genuine universals of color
naming, but that these do not stem from a small set of focal colors. Instead, on their view, universals
of color naming stem from irregularities in the overall shape of perceptual color space, which is
partitioned into categories by language in a near-optimally informative way. This proposal (see
also (Jameson, 2005a, 2005b, 2010; Komarova, Jameson, & Narens, 2007)) has been shown to
explain universal tendencies and cross-language variation in the extensions of color categories
(Regier et al., 2007, 2015) (see also (Baronchelli, Gong, Puglisi, & Loreto, 2010, 2015; Dowman,
2007; Griffin, 2006; Lindsey & A. Brown, 2009; Puglisi, Baronchelli, & Loreto, 2008; Steels &
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Belpaeme, 2005; Yendrikhovskij, 2001) for other approaches to the same question). However it is
the best examples of color categories, not their extensions, which lie at the heart of the debate.

Here, we address this open issue, completing the reconciliation of the two standardly opposed
views. Following Roberson et al. (Roberson et al., 2000), we argue that best examples of color
categories across languages are not reflections of underlying universal focal colors. However we
argue that best examples do not vary arbitrarily either. Instead, we note that color categories
across languages reflect the functional need for informative communication about color (Jameson
& D’Andrade, 1997; Regier et al., 2007, 2015), and argue that best examples are derived from
the resulting informative categories. On this view, all languages are driven by the same functional
forces, and thus unrelated languages will often independently settle on similar informative color
naming systems—and when they do, the best examples of those color categories should also be
similar. But color categories may also vary across languages, representing different informative
partitions of color space—and when categories do vary, the best examples of those categories
should vary with them. Here we test this account by asking whether best examples of categories
across languages can be predicted from category extensions, and whether such predictions account
both for universal tendencies and for cross-language variation in focal colors.

Pursuing these ideas requires an account of how the best example of a category is determined.
To this end, we use a rational model which formally characterizes the best example of a category in
terms of the support that it provides to a Bayesian inference. This model was originally proposed
(Tenenbaum & Griffiths, 2001b) to account for patterns of human inference that have been taken to
suggest a cognitive heuristic of “representativeness” (Kahneman & Tversky, 1972), as described
below. To preview our results, we find that this model accounts both for universal tendencies and
for variation in focal color choices across languages.

The remainder of the chapter proceeds as follows. We first describe the data we consider, and
a set of competing models, including the representativeness model, that predict best examples of
color categories from the extensions of those categories. We test these models against universal
tendencies in the data, and find that the representativeness model outperforms competing mod-
els, consistent with preliminary results using a different measure of model performance (Abbott,
Regier, & Griffiths, 2012). In a separate test, we then consider cross-language variation in the
same data, and again find that the representativeness model outperforms its competitors. We close
by discussing the implications of our findings.

3.2 Predicting best examples of color categories
Evaluating formal models of color foci requires a good source of color naming data. The primary
data we considered were those of the World Color Survey (WCS)1, which collected color naming
data from native speakers of 110 unwritten languages worldwide (Cook, Kay, & Regier, 2005).

1The WCS color naming data we analyze are available at http://www.icsi.berkeley.edu/wcs/data.html. Because
our analyses concern the relation between category extension (naming data) and best examples (focus data) on a per-
speaker basis, we considered only those categories for which both naming and focus data were available for the same
speaker.
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(a) (b)

Figure 3.1: (a) Color naming stimulus array. The rows correspond to 10 levels of Munsell value
(lightness), and the columns correspond to 40 equally spaced Munsell hues. The color in each cell
corresponds approximately to the maximum available Munsell chroma for that hue-value combi-
nation. (b) The chips of the stimulus array as plotted in CIELAB color space. The irregularity of
the outer surface of the color solid can be seen, most notably in the yellow region.

Participants in the WCS were shown each of the 330 color chips of the stimulus array in Figure
3.1(a), and were asked to name each chip with a color term in their native language; we refer to the
resulting data as “naming data”. Afterwards, participants were asked to pick out those cells in the
stimulus array that were the best examples (foci) of each color term they used; we refer to these as
“focus data”.

We compared several models that predict best examples of color categories from the extensions
of those categories. We represented each color in the stimulus array as a point in 3-dimensional
CIELAB color space (Kay & Regier, 2003) (see Figure 3.1(b)). For short distances at least, Eu-
clidean distance between two colors in CIELAB is roughly proportional to the perceptual dissim-
ilarity of those colors (Brainard, 2003) (but see also (Komarova & Jameson, 2013)). For each
named color category used by each speaker in each language of the WCS, we used each model to
predict that speaker’s focus data from that speaker’s naming data. We provide overviews of our
models and analyses below.

Representativeness model
Why do people believe that the sequence of coin flips HHTHT (where H=heads, T=tails) is more
likely than the sequence HHHHH to be produced by a fair coin? Using simple probability theory,
it is easy to show that the two sequences are in fact equally likely. Cognitive psychologists have
proposed that people use a heuristic of “representativeness” instead of performing probabilistic
computations in such scenarios (Kahneman & Tversky, 1972). We might then explain why people
believe HHTHT is more likely than HHHHH to be produced by a fair coin by arguing that the
former is more representative of the output produced by a fair coin than the latter. But how do
we define the notion of representativeness that the heuristic appeals to? Numerous proposals have
been made, connecting representativeness to existing quantities such as similarity (Kahneman &
Tversky, 1972) and likelihood (Gigerenzer & Hoffrage, 1995). Tenenbaum and Griffiths (2001b)
provided a rational analysis (Anderson, 1990) of representativeness by trying to identify the prob-
lem that such a quantity solves. They noted that one sense of representativeness is being a good
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example of a concept, and they showed how this could be quantified in the context of Bayesian
inference.

Formally, given some observed data d and a set of of hypothetical sources, H , we assume that
a learner uses Bayesian inference to infer which h ∈ H generated d. In that context, Tenenbaum
and Griffiths (2001b) defined the representativeness of data d for hypothesis h to be the evidence
that d provides in favor of a specific h relative to its alternatives:

R(d,h) = log
p(d|h)

∑h′ 6=h p(d|h′)p(h′)
(3.1)

where p(h′) in the denominator is the prior distribution on hypotheses, re-normalized over h′ 6= h.
This measure was shown to outperform similarity and likelihood in predicting human representa-
tiveness judgments for a number of simple stimuli. We propose that this measure can also be used
to predict focal colors, or best examples of named color categories, from the extensions of those
categories.

We first need a way to represent a speaker’s naming data as a probability distribution. We do so
as follows. For each named color category used by each speaker in each language of the WCS, we
modeled that category as a 3-dimensional Gaussian distribution in CIELAB space, and estimated
the parameters of that distribution using a normal-inverse-Wishart prior, a standard estimation
method for multivariate Gaussian distributions of unknown mean and unknown variance (Gelman,
Carlin, Stern, & Rubin, 2004). Specifically, given a set of M chips xi in color category t, where xi
holds the coordinates of that chip in CIELAB space, we obtain the estimates:

µt =
1
M

M

∑
i

xi , Σt =
SSt +λ0

M+ν0
(3.2)

where SSt is the sum of squares for category t: ∑
M
i (xi − µt)(xi − µt)

ᵀ, and λ0 and ν0 are the
parameters of the prior. λ0 was set by taking an empirical estimate of the variance in CIELAB
coordinates over all chips in the stimulus array, and ν0 was set to 1.

With a Gaussian distribution that characterizes the category named by color term t, we can
adopt the representativeness measure given in Equation 3.1 to determine how good an example
each color chip x is of color term t. Substituting x in for the observed data d and t for hypothesis h
we obtain the expression:

R(x, t) = log
p(x|t)

∑t ′ 6=t p(x|t ′)p(t ′)
(3.3)

where p(x|t) is given by the density function of the Gaussian described above and the priors p(t ′)
are proportional to the number of chips in named color category t ′. This model can be seen as
formalizing the claim of Rosch and Mervis (1975) that category prototypes, or best examples,
reflect not just high similarity to other members of the category (captured here in the numerator),
but also low similarity to members of other categories (captured in the denominator).

We test this measure against the alternative proposals mentioned above (Gigerenzer & Hof-
frage, 1995; Kahneman & Tversky, 1972): a likelihood model and two similarity models: a pro-
totype model and an exemplar model. In addition, we explore a model that selects as the focus
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for category t that chip in the extension of t that has the highest chroma. Chroma, or saturation,
corresponds to how colorful or “un-gray” a given color is, and in exploring this model we follow
the suggestion (Jameson & D’Andrade, 1997; Regier et al., 2007) that focal colors tend to be those
with high chroma (but see also (Witzel & Franklin, 2014)). These models represent different ways
in which the best example of a category may be predicted from the extension of that category. As
with the representativeness model, for a given color x and color term t, each model assigns a score
indicating how good x is as an example of t.

Likelihood model
In this model, the goodness score of color x as an example of color category t is given by the
density function of the Gaussian distribution that was fit to the naming data for t. Thus:

L(x, t) = log p(x|t) (3.4)

This model is similar to the representativeness model, but lacks the denominator which captures
competition among categories in that model.

Prototype model
In this model we define the focus, or prototype, of color category t to be the mean µt of the
distribution characterizing t (Reed, 1972). The score for this measure then becomes the similarity
of x to that prototype:

P(x, t) = Sim(x,µt) (3.5)

where Sim(·, ·) characterizes the similarity between two colors as a function of CIELAB distance:

Sim(x,y) = exp{−c dist(x,y)2} (3.6)

and c = 0.001, following previous work (Regier et al., 2007).

Exemplar model
The exemplar model uses a scoring metric similar to that of the prototype model, except rather
than computing the similarity of color x to a single prototype, we compute its similarity to each
color chip that falls in the extension of category t (Nosofsky, 1988), and sum the results:

E(x, t) = ∑
x j∈Xt

Sim(x,x j) (3.7)

where Xt is the set of color chips that fall in the extension of category t.
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Chroma model
The score for this model is given by the similarity of color x to that color chip ct which has the
highest chroma (saturation) value within the extension of category t. Thus we compute:

C(x, t) = Sim(x,ct) (3.8)

where ct is the chip within the extension of t that has the highest chroma value. In the case of
ties for ct—that is, several chips with the same maximum value for chroma—we randomly select
a chip from the set of ties.

3.3 Results
We assessed these models as follows. For each speaker of each language in the WCS, we first
considered that speaker’s naming data, and modeled the categories in those data as either a set of
Gaussian probability distributions (for the Representativeness and Likelihood models), or as a set
of 3-dimensional points in CIELAB (for the Prototype, Exemplar, and Chroma models). Then, for
each such category, we determined how good an example of that category each of the 330 chips in
the stimulus array is, according to each model. This yielded, for each model, a ranking of chips
in the array by predicted goodness, and we compared this model prediction with empirical WCS
focus data, that specify which chip(s) were in fact selected by that speaker as the best example(s)
of that category. Thus, we compare model predictions to empirical data on a per-speaker basis.
Below we present both qualitative and quantitative evaluations of the models.

Distribution of foci
A simple means of assessing the models is to generate predicted focal choices from each model’s
ranking of chips, and to then compare the distribution of those predicted focal choices with the
distribution of actual focus data from the WCS. Some speakers in the WCS provided more than
one focus (best example) for some categories; if a speaker provided n foci for a given category,
we selected the n top-ranked chips as a given model’s predicted focal choices for that category and
speaker. In this manner we obtained, for each model, one predicted focal choice for each empirical
focal choice in the data. We then counted the number of times each of the 330 color chips in
the stimulus array was selected as a focal choice, yielding a distribution of focal choices over the
stimulus array. Interestingly, every chip in the stimulus array was selected at least once as a focus
for some color term by some speaker of some language. We compared the empirical distribution
of foci across the array with the distribution predicted by each of the models. Following an earlier
analysis of WCS focus data (Regier et al., 2005), we plotted these distributions over the chromatic
portion of the array, where the 2-dimensional layout makes contours easily interpretable. The
resulting contour plots, of the empirical WCS focus distribution and the five models’ predicted
focus distributions, are shown in Figure 3.2.

The empirical distribution is shown in panel (a), and replicates earlier findings (Regier et al.,
2005). The distribution predicted by the representativeness model (panel b) matches this empirical
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Figure 3.2: Contour plots of the focus distributions in (a) the WCS, and as predicted by (b) the rep-
resentativeness model, (c) the likelihood model, (d) the prototype model, (e) the exemplar model,
and (f) the chroma model. Each contour line corresponds to 100 focal choices.
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Table 3.1: Quantitative assessment of each model against WCS focus distribution (parentheses
give number of languages for which this is the best performing model).

Model QF distance Rank Position
Representativeness 1.17 (76) 27.67 (104)
Likelihood 1.74 (6) 42.65 (1)
Prototype 1.96 (3) 48.30 (0)
Exemplar 1.64 (24) 38.98 (5)
Chroma 2.13 (1) 78.51 (1)

distribution qualitatively fairly well. Moreover, at least on informal inspection, the representative-
ness model appears to approximate the empirical distribution more closely than do the competing
models. The chroma model (panel f) at first appears to also approximate the empirical distribution
fairly well, but closer inspection reveals that several of the peaks of the model distribution do not
align correctly with those of the empirical distribution (see also (Witzel & Franklin, 2014)).

This qualitative assessment is reinforced by a quantitative one that considered all chips of
the array, not just the chromatic portion. The quadratic form (QF) distance is a measure of the
difference between two histograms, H1 and H2, over the same set of points in space, and it takes
into account the similarities between those points (Hafner, Sawhney, Equitz, Flickner, & Niblack,
1995). QF distance is defined as:

QFM(H1,H2) =
√

(H1−H2)>M(H1−H2) (3.9)

where M is an inter-point similarity matrix. In our analyses we defined M over the color chips of
the stimulus array with mi, j = Sim(i, j), where Sim(·, ·) characterizes the similarity between two
colors as a function of CIELAB distance:

Sim(x,y) = exp{−c dist(x,y)2} (3.10)

and c = 0.001, following previous work (Regier et al., 2007).
We computed the QF distance between the WCS empirical focus distribution shown in Figure

3.2(a) and each of the model distributions shown in Figure 3.2(b) through 3.2(f), with similarity
determined by the function Sim(·, ·) defined above. The results are shown in Table 3.1, with the
best model score shown in bold. The representativeness model outperforms the other models,
diverging less from the empirical distribution than its competitors do.

Each model produces as output a ranking of the stimulus chips, where rank is assigned in
descending order. Thus, another natural way to assess the models is to note the position of the true
empirical focal choice in this ranked list. The average rank position for each model is presented
in Table 3.1. As before, we find that the representativeness model outperforms the other models,
ranking the true foci higher on average.
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3.4 Language level analysis
The analyses above considered all focus choices in the WCS as a single distribution, pooling to-
gether choices made by different speakers of different languages. Color naming varies across
languages, so a natural question is whether the representativeness model also outperforms its com-
petitors when each language is considered separately. Such a language-level analysis would be
appropriate if we are to take seriously the hypothesis that category boundaries are determined in
part by local linguistic convention (Roberson et al., 2000).

We considered separately each of the 110 languages of the WCS, and conducted analyses
like those described above, but at the language level, pooling together focus choices that were
made by speakers of a single language. For each language, we noted which model best predicted
focus choices by speakers of that language, by each of our two metrics. Table 3.1(in parentheses)
shows that by both metrics, the representativeness model again outperforms its competitors: it
exhibits the best performance for a majority of the WCS languages. Four paired t-tests compared
average QF distance per language predicted by the representativeness model with that predicted by
each other model, in each case averaging across speakers and color terms for each language. The
representativeness model outperformed each other model, p� 0.001, Bonferroni-corrected for
multiple comparisons. Analogous results were also obtained when measuring rank position rather
than QF distance. Full details of this cross-language analysis, including results for individual
languages, are presented in Appendix B.

We also conducted similar analyses for two languages outside the WCS: Berinmo (Roberson
et al., 2000) and Dani (Heider, 1972a), which we present below. These analyses highlight both
cross-language and within-language (i.e. inter-individual) variation in focus choices.

Dani
We considered Dani color naming data as reported by Heider (1972a). Dani has been reported to
use primarily a two-term color system, mili and mola, corresponding roughly to “cool” and “warm”
colors, respectively, although Heider also found that roughly half the Dani participants also pro-
vided other terms for regions corresponding roughly to English red, yellow, and blue. Dani, with
only two major color terms, has fewer major color terms than any of the languages of the WCS.
Dani thus provides an opportunity to test our models against a system that is qualitatively different
in an important respect from those of the WCS.

Our models require two sorts of data relative to the same set of stimuli: naming data and best
example data. The experimental stimuli and procedure used by Heider (1972a) differed slightly
from those used in the WCS and presented in the main text. A reduced set of 160 maximally
saturated Munsell color chips were used, corresponding to every other column in the WCS chro-
matic grid, and data were not provided at the level of individual speakers. Instead, naming data for
Dani were reported in the form of language-level responses, aggregated over speakers, distributed
over the 160 chip chromatic grid. Such data were provided for all terms except for mola, which
was described as the complement of mili. Focus data were also provided at the language level,
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i.e. again aggregated over speakers, in the form of a histogram of reported best examples for each
term. These focus histograms were provided for mili and mola, but not for the less dominant terms
mentioned above, consistent with the view of Dani as primarily a two-term language.

Preparation of the data. Since we do not have individual speaker data, we constructed a single
naming map from the reported naming distributions to provide as input to our models. Naming
data were not provided for mola, so we inferred data for that term by assuming that all 40 Dani
participants provided a naming response for each chip in the stimulus array and that mola was the
only missing term after summing the counts for other color terms at a given stimulus chip. This
allowed us to create a mode map for Dani over the 160 chip chromatic grid, where each chip is
assigned the color term used by a plurality of speakers (the modal term for that chip). Figure 3.3
below displays the resulting Dani mode map. Here, the extension of each color term is shown as
a colored region, and the color assigned to that region is determined by taking the average RGB
coordinates of the chips in the region. The number of focus hits for mili and mola per chip, ag-
gregated over speakers in the language, is overlaid on top. Although Dani is generally regarded as
a two-term color system, two color chips in the mode map were given names other than mili and
mola by a plurality of speakers.
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Figure 3.3: Naming data for the Dani language, overlaid with the empirical focus distributions for
mili and mola.

Analyses and results. Our analyses were conducted at the language level, because the data for
this language were reported at the language level. We analyzed model predictions for only the
terms mili and mola because these were the only terms for which focus data were reported. Each
model returned a ranked list of all chips in the array. For each term, we recorded the number n
of chips that received 1 or more focus choices. We then computed rank position by averaging
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together the rank positions of these n chips in the ranked list produced by the model. To compute
QF distance, we compared the empirical histogram of focus choices for a given term to a model-
predicted histogram in which each of the n top-ranked chips received a count of 1 and each other
chip received a count of 0. The results of these analyses are provided in Table 3.2 below. We find
that the Representativeness model outperforms its competitors by both metrics.

Table 3.2: Quantitative assessment of each model against Dani focus distribution.

Model QF RP
Representativeness 2.09 35.29
Likelihood 2.54 39.99
Prototype 2.39 42.70
Exemplar 2.88 36.44
Chroma 2.64 45.59

Berinmo
The Berinmo data we consider (Roberson et al., 2000) were originally collected in an attempt to
replicate and extend earlier work based on Dani (Heider, 1972b). For this reason, the stimuli were
the same as those of the earlier Dani work. Roberson et al. (2000) reported results on Berinmo
color memory that differed in important respects from those obtained from Dani, but the similarity
in stimuli and procedure make the two studies directly comparable with respect to naming and
focus data. As in the case of Dani, Berinmo naming data and focus data were both reported at the
language level. The Berinmo naming data provided by Roberson et al. (2000) were presented in
the form of a mode map, which we illustrate in Figure 3.4 below. The focus data for each term
were reported in the form of a histogram over the naming grid, here shown overlaid on top of the
naming data.

Analyses and results. Because the data format for Berinmo was the same as that for Dani, we
followed the same procedure as with Dani. The results of the Berinmo analyses are provided in
Table 3.3 below. The Representativeness model outperforms its competitors by both metrics.

3.5 Color categories with unusual extensions
So far, we have shown that a model of focal colors as representative members of categories ac-
counts well for the distribution of WCS best example choices across the stimulus array, as well as
for the distribution of best example choices within many languages. These results are consistent
with our proposal that color foci are representative members of categories, and that their location in
color space reflects category extensions, which are in turn shaped by the functional need for color
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Figure 3.4: Naming data for the Berinmo language, overlaid with the empirical focus distribution.

Table 3.3: Quantitative assessment of each model against Berinmo focus distribution.

Model QF RP
Representativeness 1.37 12.27
Likelihood 1.69 14.31
Prototype 1.68 16.58
Exemplar 1.66 15.52
Chroma 2.64 24.75

naming systems to be informative (Regier et al., 2007, 2015). However, the analyses we have seen
so far do not discriminate between this hypothesis and a natural alternative: the traditional view
of color foci as reflections of unalterably universal privileged points in color space. For languages
with common color-naming systems, the two hypotheses make the same prediction: foci should
tend to fall in the canonical positions shown in Figure 3.2(a). This is predicted on the traditional
universal-foci account, because these are the proposed locations of the universal foci. Roughly the
same outcome is predicted by our account, as seen in Figure 3.2(b).

In a final investigation, then, we attempt to discriminate between these two hypotheses. The
hypotheses diverge in their predictions for color categories that have unusual extensions. If foci
are a universal groundwork for color naming, then in such unusual cases, foci will fall in the
universal (canonical) positions, despite the non-canonicality of the category extensions. In con-
trast, our account predicts that in such cases, foci should follow the category extensions, and fall
in non-canonical positions. What is not yet known is: (a) whether the representativeness model
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accounts for non-canonical empirical distributions better than universal foci do, and (b) whether
the representativeness model also outperforms the other competing models considered above on
non-canonical or unusual categories generally. To test these open questions, we began by defining
a formal model of the universalist account and a measure of category unusualness.

Universalist model
Like the other models we consider, the universalist model assigns a score indicating how good
a given color chip x is as an example of color term t. The score for the universalist model is
determined by the empirical WCS focus distribution shown in Figure 3.2(a), gated by the extension
of category t:

U(x, t) =W (x)× I(x, t) (3.11)

where W (x) is the number of times color chip x was chosen as a best example of any term by any
speaker in any language in the WCS, and I(x, t) is 1 if x ∈ t and 0 otherwise.

Category unusualness
We took the extension of a major color term2 to be that set of chips in the stimulus array that were
named by that color term by a plurality of speakers, and represented that set of chips as a set of
points in CIELAB space. We took the dissimilarity between any two categories X = {x1, . . . ,xp}
and Y = {y1, . . . ,yq} to be the Hausdorff distance H(X ,Y ) between the two corresponding sets of
points. The Hausdorff distance (Huttenlocher, Klanderman, & Rucklidge, 1993) is determined by
finding, for each point in each set, the nearest point in the other set, and selecting the largest of the
resulting distances:

H(X ,Y ) = max(h(X ,Y ),h(Y,X)) (3.12)

where
h(X ,Y ) = max

x∈X
min
y∈Y
||x− y|| (3.13)

and ||x− y|| is the Euclidean distance between points x and y in CIELAB space. The unusualness
of category c, u(c), is the average dissimilarity of c to all major color categories in the WCS:

u(c) =
1
N

N

∑
i=1

H(c,ci) (3.14)

where i indexes over all N major color categories in the entire WCS. Example categories at varying
levels of unusualness are presented in Appendix B. We also pooled together the focus choices for
this term across speakers of the language in question, as well as the analogous focus predictions
by each of the models. Finally, for both evaluation measures, we noted which model performed
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best for this category (had the lowest rank position or lowest QF distance of the empirical focus
distribution).

Figure 3.5 shows the results of this analysis. The scatterplots (left panels) show each category
as a dot. The dot’s position represents the category’s unusualness (horizontal axis), and the score
(Rank position in the top panel and QF distance in the bottom panel) of the best-performing model
for that category (vertical axis: lower is better for both measures). The dot’s color represents the
best-performing model for that category. In both scatterplots it can be seen that the universalist
model (red) performs well for the least unusual (most usual or common) categories; this is par-
ticularly apparent when using QF distance. This is unsurprising because the universalist model is
based on universal tendencies in focus choices. However for higher values of unusualness, the rep-

2We considered a color term to be a major color term in a language if it was used by a plurality of speakers of the
language for at least 10 of the 330 chips of the stimulus array (Regier et al., 2015); otherwise we considered it a minor
term and excluded it from this analysis.
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Figure 3.5: Effect of category unusualness. Left panels (scatterplots): Each dot represents a color
category in the WCS, and the dot’s color represents the best-performing model for that category.
The horizontal axis represents category unusualness, and the vertical axis represents the model per-
formance: rank position (top panel) and QF distance (bottom panel) of the best-performing model
for that category. Right panels (bar charts): The horizontal axis again represents category unusu-
alness, this time partitioned into 10 bins with the same number of categories per bin. The stacked
bars show, for each level of unusualness, the proportion of categories at that level of unusualness
that were best predicted by each model.
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resentativeness model (blue) begins to outperform the universalist model, and others, as predicted.
This progression of increasing dominance for the representativeness model with increasing cate-
gory unusualness is shown more schematically in the stacked barplots of the right panels. These
findings suggest that when boundaries fall in non-canonical positions, foci do as well. Moreover,
foci for unusual categories are better predicted by representativeness than they are by expectations
based on strictly universal foci, or by the other models.

3.6 Discussion
Focal colors, or best examples of color terms, lie at the center of the debate over color naming.
Focal colors have traditionally been viewed either as the underlying source of color naming uni-
versals, or as derived from category boundaries that vary widely with local linguistic convention.
In contrast, we have argued for a novel account of this disputed construct, that synthesizes as-
pects of the traditionally opposed views and accounts for data that challenge those views. We
have proposed that focal colors are representative members of color categories. This simple idea
accounts for universal tendencies in focal colors, yet also correctly predicts some deviation from
those universal tendencies, particularly for color categories with unusual extensions. Our proposal
coheres naturally with a recent explanation of color naming in terms of the functional need for in-
formative communication over irregularly shaped perceptual color space (Jameson & D’Andrade,
1997; Regier et al., 2007). That view explains cross-language universals and variation in color
naming without reference to a small set of focal colors, and it leaves the nature of focal colors
unexplained. Our proposal fills that gap. Taken together, the two proposals suggest a single overall
account of color naming: color categories across languages assume the forms they do because of
functional pressure for informative communication given the structure of color space, and foci are
representative members of those categories.
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Chapter 4

Large-scale word learning

4.1 Introduction
Many problems solved by the mind conform to the same abstract computational formulation: How
should a property be generalized to novel stimuli from a set of stimuli observed to have the prop-
erty? As there are many ways to extend the property that are consistent with some observed
evidence, these are problems of induction, where the evidence constrains, but does not determine,
the solution to a problem. The Bayesian generalization framework (Shepard, 1987; Tenenbaum &
Griffiths, 2001a) has been remarkably successful at explaining human generalization behavior in
a wide range of domains. However, its success is largely dependent on the choice of a hypothesis
space and a prior probability distribution on hypotheses, which are usually hand constructed by
the researcher for each specific problem. This is unsatisfying practically, because the models do
not scale beyond the originally modeled problem, and theoretically, as it is unclear whether their
success is due to the cleverness of the modeler and not because of a deep mathematical property of
the computational problem that people solve.

One possible solution is to use existing sources of information about the organization of a do-
main as the basis for specifying a hypothesis space and prior. This helps address both the practical
and the theoretical concerns raised by the Bayesian generalization model. In this chapter, we use
this approach to show how a hypothesis space and prior can be constructed automatically from
a large online database, making it possible to apply the Bayesian generalization framework to a
wide range of naturalistic stimuli. We focus on one specific generalization problem, word learning,
where people learn new words from observing a few objects that can be labeled with that word.
Given that the number of possible extensions of a word is essentially infinite, learning the objects
referred to by a word is a very difficult inductive problem (Quine, 1975). F. Xu and Tenenbaum
(2007b) showed how the Bayesian generalization framework could be used to explain how peo-
ple learn new words. However, to construct the hypothesis space of their Bayesian model, F. Xu
and Tenenbaum (2007b) elicited approximately 400 similarity judgments from their participants.
Clearly this is not practical to extend into every domain where people learn words. Thus, word
learning is an appropriate setting for exploring novel methods of constructing hypothesis spaces
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and prior distributions.
We propose a method for automatically constructing the hypothesis space and prior distribu-

tion of a Bayesian word learning model using freely available online resources. In particular, we
use WordNet (Fellbaum, 2010; Miller, 1995) as an initial source for automatically creating the
hypothesis space, and ImageNet (Deng et al., 2009) as a source of naturalistic images that can be
used as stimuli to test the resulting model in behavioral experiments. WordNet is a popular lexical
database of English comprised of over 100,000 relational sets of synonyms. ImageNet is a large
ontology of images conforming to the hierarchical structure of WordNet, with the aim of providing
over 500 high-quality images per noun in WordNet. These resources allow us to construct hy-
pothesis spaces and prior distributions for word learning without eliciting a single judgment from
participants and test the resulting model on a much larger scale than was previously possible. We
demonstrate that the Bayesian model formulated from WordNet captures participant judgments in
three behavioral experiments, addressing the practical and theoretical issues with Bayesian models
discussed earlier.

The plan of the rest of the chapter is as follows. In the next section we review the Bayesian
generalization model and examine how F. Xu and Tenenbaum (2007b) constructed the hypothesis
space for their Bayesian word learning model. We then show how to build a hypothesis space
from WordNet that can be used to evaluate word learning models on arbitrary conceptual domains.
Afterwards, we present two experiments utilizing this hypothesis space to validate the method: one
that replicates a previous study of adult word learning, and one that investigates word learning for
a set of complex concepts in novel domains. We then demonstrate how to adopt an existing large-
scale computer vision challenge to automatically construct word learning experiments for 4,000
concepts. Finally, the chapter concludes with a discussion of the implications of this work.

4.2 The Bayesian generalization framework
The Bayesian word learning model is a special case of the Bayesian generalization framework.
This framework has been used to model generalization in a number of domains including dimen-
sional concepts (Austerweil & Griffiths, 2010; Shepard, 1987; Tenenbaum, 1999), numerical con-
cepts (Tenenbaum, 2000), sequential rules (Austerweil & Griffiths, 2011), rule-based categorical
concepts (Goodman et al., 2008), and word learning (F. Xu & Tenenbaum, 2007b). Typically,
problems are formulated in this framework as follows: Assume we observe n positive examples
x = {x1, . . . ,xn} of concept C and want to compute P(y ∈C|x), the probability that some new ob-
ject y belongs to C given the observations x. We compute this probability by using a hypothesis
space H , which is a set of hypothetical concepts, where each hypothesis is defined by the objects
that would be members of the concept if the hypothesis were true, P(x|h).

Defining a Bayesian generalization model amounts to defining a hypothesis space H , a prior
probability distribution over hypotheses, P(h), and for each hypothesis, a likelihood function,
P(x|h), indicating the probability of observing a set of objects x given that the hypothesis is true.
A typical definition of the likelihood follows from assuming strong sampling, where objects are
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generated uniformly at random from the true hypothesis (Tenenbaum & Griffiths, 2001a)

P(x|h) =

{
1/|h|n if x⊂ h
0 otherwise

. (4.1)

This likelihood function instantiates the size principle for scoring hypotheses: hypotheses contain-
ing a smaller number of objects assign greater likelihood than hypotheses with more objects to the
same set of objects (Tenenbaum, 1999; Tenenbaum & Griffiths, 2001a).1 The prior distribution
over hypotheses, P(h) depends on the domain and in previous literature has ranged from a simple
uniform distribution over the hypothesis space (Shepard, 1987) to a stochastic process over tree
structures (Kemp & Tenenbaum, 2009). Given the prior and likelihood, the posterior probability
that a hypothesis is true given a set of objects belonging to a novel concept, P(h|x), follows from
Bayes’ rule: P(h|x) ∝ P(x|h)P(h). From this, we can compute the probability that a new object y
is also a member of the concept C by averaging the predictions of all hypotheses weighted by their
posterior probabilities:

P(y ∈C|x) = ∑
h∈H

P(y ∈C|h)P(h|x), (4.2)

where P(y ∈C|h) = 1 if the new object y is in hypothesis h, and 0 otherwise.

Word Learning as Bayesian Inference
F. Xu and Tenenbaum (2007b) used the Bayesian generalization model to explore how people learn
the appropriate generalizations for new words. It is commonly held that a child’s word learning
development (especially for nouns) follows a taxonomic assumption, where new words refer to
classes in a tree-structured hierarchy (Markman, 1991; Waxman, 1990). Furthermore, there is also
a basic-level bias (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) in which both children
and adults tend to generalize new words more often to a category at an intermediate level in a
taxonomy. Thus, F. Xu and Tenenbaum (2007b) derived a taxonomic-based hypothesis space for
their Bayesian word learning model by applying hierarchical clustering (Duda & Hart, 1973) to
the perceived similarity of every pair of objects. The hypothesis space, prior and likelihood are
defined by the tree resulting from this hierarchical clustering.

Nodes in the tree represent potential words (hypotheses) which extend to all the leaves they
cover, where the leaves of the tree correspond to the domain of possible objects. The height of a
node h (minimal distance from the node to a leaf) is a measure of the average pairwise dissimilarity
of objects covered by node h and approximates the heterogeneity of the objects that can be called
that word. The intuition that more distinctive clusters are more likely to have distinguishing names,

1Using a likelihood with strong sampling (analogous to a knowledgeable teacher showing positive examples of the
concept) as opposed to weak sampling, where objects are generated uniformly at random from any hypothesis (analo-
gous to learners searching for examples themselves), has support in developmental research showing both adults and
children are sensitive to these assumptions and generalize more conservatively under the former (F. Xu & Tenenbaum,
2007a). See also Navarro, Dry, and Lee (2012) for a further empirical investigation of different types of likelihood
functions.
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was incorporated by defining the prior P(h) to be proportional to the branch length separating node
h from its parent:

P(h) ∝ height(parent(h))−height(h), (4.3)

where parent(h) returns the parent of node h. To incorporate a basic-level bias (Rosch et al., 1976)
in the prior, the probability of hypotheses at the basic level were 10 times the value given by Equa-
tion 4.3 (see below for example basic-level concepts). As the height of node h also approximates
the number of objects in the extension of the possible word h, the likelihood of observing n objects
called word h is defined as

P(x|h) ∝

[
1

height(h)+ ε

]n

, (4.4)

where ε is a small constant so that the leaf hypotheses (those that refer to only a single object) do
not have infinite likelihood (as their height is zero).

Using this framework, F. Xu and Tenenbaum (2007b) accurately predicted how people extend
words to new objects depending on the diversity and number of objects labeled with that word. In
a set of experiments on both adults and children, they showed participants one or more positive
examples of a novel word while manipulating the taxonomic relationship of the objects the word
referred to. For example, participants might observe one Dalmatian, three Dalmatians (exemplars
at the subordinate-level), a Dalmatian, terrier, and mutt (exemplars at the basic-level), or a Dal-
matian, pig, and toucan (exemplars at the superordinate-level) being labeled with a novel word
(e.g. “fep”). After observing a word refer to one or three example objects at the subordinate, ba-
sic, or superordinate-level, they were asked whether the word referred to novel subordinate, basic,
superordinate, and out-of-domain objects.

When participants were given one example of an object that refers to a word (e.g. one Dal-
matian), they tended to select the subordinate-level matches (e.g. the two other Dalmatians) and
the basic-level matches (e.g. the two non-Dalmatian dogs). However, when they were shown three
subordinate-level examples of a concept (e.g. three Dalmatians), the participants tended to choose
only the subordinate-level matches (e.g. they only believed the word referred to the two other Dal-
matians). The Bayesian word learning model captured this phenomenon because the prior favors
words at the basic-level, but the likelihood favors words at the subordinate-level, and the likeli-
hood’s weight increases exponentially in the number of objects.

Unfortunately, the manner in which the hypothesis space was constructed (through hierarchical
clustering on pairs of similarity judgments) poses a serious constraint to assessing the model’s
validity. To construct the hypothesis space in the three domains tested by F. Xu and Tenenbaum
(2007b), where there are 15 images per concept, each participant had to provide roughly 400
similarity judgments. To test how well this framework extends to new concepts and domains
using their method for constructing the hypothesis space, an impractically large quantity of human
judgments would need to be elicited. In the following section, we introduce an alternative method
of constructing a hypothesis space for the Bayesian word learning model, which allows for testing
the framework without eliciting any judgments from participants.
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4.3 Constructing a hypothesis space for Bayesian word
learning

Using an online word ontology, we can automatically construct the hypothesis space of a Bayesian
word learning model. WordNet is a large lexical database of English represented as a network
of words linked by directed edges denoting semantic relatedness (Fellbaum, 2010; Miller, 1995).
Its structure was manually designed to group lexical concepts in an “is-a” hierarchy based on the
many-to-one mapping of synonyms. For example, a Poodle “is-a” type of dog, thus WordNet
has a directed edge from the node for dog to the node for Poodle. As WordNet is hierarchically
structured like the hypothesis space used by F. Xu and Tenenbaum (2007b), it is an ideal candidate
for constructing our hypothesis space.

Using a hypothesis space derived from an existing online ontology, we can better test the pre-
dictions of different generalization theories for word learning by examining their predictions for
a large range of concepts. In the rest of this section, we present the method used to construct a
hypothesis space from WordNet and outline the implementations of three generalization models
using this hypothesis space for large-scale word learning.

In the context of the Bayesian generalization framework, the hypotheses correspond to subsets
of the universe of objects that are psychologically plausible candidates as extensions of concepts
(Tenenbaum, 1999; Tenenbaum & Griffiths, 2001a). Using WordNet as the basis of our hypothesis
space, the set of objects is the set of leaf nodes from the noun-space of the directed graph and
the hypotheses correspond to both the inner nodes of the directed graph and the leaf nodes, which
distinguish between objects at the subordinate-level. To construct a hypothesis space from Word-
Net, we first extracted a tree from the 82,115 noun nodes of WordNet.2 The nodes are hypotheses,
which represent possible words, and form the hypothesis space for the model.

From this graph we create a hypothesis space that is a binary matrix, H , whose rows are the
objects (64,958 leaf nodes from the graph) and columns are the hypotheses (82,115 nodes, 17,157
of which are inner nodes and 64,958 are leaf nodes). Each entry (i, j) of the matrix H denotes
whether or not hypothesis node j is an ancestor of leaf node i in the WordNet graph (with a 1
indicating it is). The leaf nodes are included as hypotheses so that the model distinguishes between
subordinate objects.

Generalization models
With a hypothesis space derived from WordNet, we now have the ability to test the Bayesian model
of word learning on a much larger scale. In addition, we can use the hypothesis matrix as a fea-
ture space for testing alternative models. We compare the Bayesian model against two similarity
models: a prototype model and an exemplar model. Given a set of examples x = {x1, . . . ,xn} rep-
resenting some concept C (where the elements of x correspond to rows in the hypothesis matrix
H ), we can compute a score for each row y ∈ H denoting the probability that y is also a member

2Technically WordNet is a directed acyclic graph because some nodes have multiple parents (the method still
works in these cases).
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of C. We present the different ways to compute this score below.

Bayesian model. This is the Bayesian generalization framework that we discussed earlier. We
used strong sampling for the likelihood, P(x|h), which is computed via Equation 4.1, where the
size of h is the number of nodes that can be reached by a directed path from h. This simply
corresponds to the sum of the elements in the column corresponding to h.

The prior P(h) was defined to be Erlang distributed in the size of the hypothesis (a standard
prior over sizes in Bayesian models with preference for intermediate sized hypotheses; Shepard
(1987), Tenenbaum (2000))

P(h) ∝ (|h|/σ
2)exp{−|h|/σ}, (4.5)

where the σ parameter was set to 200 by hand fitting the model predictions to all human responses
(the same value was used in both experiments). This value favors medium sized hypotheses, which
is roughly equivalent to a basic-level bias. The probability that word C extends to object y after
observing a set of objects called C is

Bscore(y) = P(y ∈C|x) = ∑
h∈H

P(y ∈C|h)P(h|x), (4.6)

where P(y∈C) = 1 if y∈ h and 0 otherwise, and P(h|x), is the posterior distribution over hypothe-
ses.

Prototype model. In this model, we define the prototype of a set of objects, xproto, to have those
features owned by a majority of the objects in the set. The generalization measure for an object y
is

Pscore(y) = exp{−λp dist(y,xproto)}, (4.7)

where dist(·, ·) is the Hamming distance between the two vectors and λp is a free parameter (for
all of the results presented here, λp = 0.15, optimized by hand using half-interval search). Pscore
was then normalized over all objects y in the hypothesis space (all leaf nodes).

Exemplar model. We define the exemplar model using a similar scoring metric as the prototype
model, except rather than computing the distance of object y to a single prototype vector, we
compute a distance for each item x j in the set of observations x. The exemplar generalization
measure is thus computed as

Escore(y) = ∑
x j∈x

exp{−λe dist(y,xj)}, (4.8)

where dist(·, ·) is the Hamming distance between two vectors and λe is a free parameter (for all
of the results presented here, λe = 0.20, optimized using half-interval search). Escore was then
normalized over all objects y in the hypothesis space (all leaf nodes).
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4.4 Behavioral experiments to validate our approach
To evaluate the performance of our models using the WordNet-based hypothesis space, we con-
ducted two experiments using the paradigm of Xu and Tenenbaum (2007). The first experiment
replicates F. Xu and Tenenbaum (2007b) on their three object taxonomies (animals, vehicles, and
vegetables), which validates our approach for constructing a hypothesis space from WordNet and
using images from ImageNet as stimuli. The second experiment extends the paradigm into three
previously unexplored domains (clothing, containers, and seats), which have hierarchical structure,
but it is not as clear how well they conform to a natural basic-level taxonomy (Rosch et al., 1976).

Experiment 1: Replicating previous results
Participants. Thirty four participants were recruited via Amazon Mechanical Turk and compen-
sated $0.05 for each trial (training set) completed out of twelve possible. Each participant com-
pleted as many trials as he or she wished, and twenty unique participants completed each trial. All
participant responses were used.

Stimuli and Procedure. Within each taxonomy, the stimuli consisted of the images of objects
distributed across the superordinate, basic and subordinate-levels, and subsequently split into train-
ing and test sets. The training sets were the labeled objects given to participants of which there
were four conditions: a single subordinate-level example (e.g. a Dalmatian); three examples of the
same subordinate-level object (e.g. three Dalmatians); the subordinate-level object and two basic-
level objects (e.g. a Dalmatian, a Shih Tzu, and a Beagle); and the subordinate object and two
superordinate-level objects (e.g. a Dalmatian, a hippopotamus, and a toucan). This corresponds to
twelve trials total (four conditions for each of the three object taxonomies).

The test sets were the same regardless of the training set and consisted of eight objects matching
the currently tested taxonomy: two subordinate examples (e.g. two other Dalmatians); two basic-
level examples (e.g. a Cocker Spaniel and a Corgi); and four superordinate examples (e.g. a cat,
a bear, a sea lion, and a horse). There were also sixteen non-matching objects in the test set
corresponding to the objects that match the two other taxonomies.

For each trial, participants were instructed that they needed to help a cartoon frog who speaks
a different language from us, pick out objects that he wants. The frog shows one or more examples
of a novel word (e.g. “FEP”) and the participant is instructed to select other items that are a “FEP”
from the objects comprising the test set. A unique novel word was associated with each of the
twelve trials. See Figure 4.1 for an example.

Results. Figure 4.2 shows the results of this experiment, along with the predictions of the different
generalization models. For each training set condition, the data for each test item has been averaged
over participants and domains. The generalization judgments of participants (left-most panel of
Figure 4.2) follows the same qualitative trend as those reported in F. Xu and Tenenbaum (2007b).
There is a sharp drop in generalization to basic-level objects when seeing only a single subordinate
example compared to the condition when seeing three subordinate examples.
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Figure 4.1: Example word learning experiment trial using ImageNet as a source of stimuli.
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Figure 4.2: Participant generalization judgments and predictions of the Bayesian, prototype, and
exemplar models averaged across the three domains in Experiment 1. The generalizations for
non-matching items are omitted for brevity (neither the participants chose nor the Bayesian model
predicted non-matching objects, while the prototype and exemplar models predicted non-matches
less than 4% of the time for each condition).
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The Bayesian model predictions (second panel from the left) exhibits this same generalization
pattern (r2 = 0.98), while the prototype and exemplar models do not (r2 = 0.66 and r2 = 0.84, re-
spectively). This validates our method of automatically creating hypothesis spaces with WordNet.

Experiment 2: Novel Domains
Constructing hypothesis spaces automatically from online resources allows us to easily extend the
Bayesian model to new domains. In this experiment, we demonstrate the power of our approach by
applying the model to three taxonomic domains (clothing, containers, and seats), and empirically
validate its predictions.

Participants. Thirty six participants were recruited via Amazon Mechanical Turk and compen-
sated $0.05 for each trial completed out of twelve possible. As in Experiment 1, each participant
completed as many trials as he or she wished, and twenty unique participants completed each trial.
All participant responses were used.

Stimuli and Procedure. Table 4.1 contains examples of the objects we used for training in the
three hierarchical domains (clothing, containers, and seats). As in Experiment 1, the same test
objects were used for every training set, and the “non-match” test objects were the objects in the
test set which match the two other taxonomies that are not contained in the training set. As before,
this corresponds to twelve trials total. The procedure was identical to Experiment 1.

Results. Figure 4.3 presents the averaged results of how participants and the Bayesian model
generalized the learned words to the test objects based on the observed training set across the
different domains in Experiment 2. Across the three domains, the generalization probabilities
of the participants and Bayesian model with the same parameters are extremely similar. This is

Clothing Containers Seats
Object level 1 2 1 2 1 2

Subordinate

Basic

Superordinate

Table 4.1: Training domains and example stimuli at various taxonomic levels for Experiment 2.
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Figure 4.3: Participant generalization judgments and the predictions of the Bayesian model for
Experiment 2. From left to right, the columns present the results for the three taxonomies (clothing,
containers, and seats) and average results. Non-matching items are omitted for brevity (participants
only chose non-matches twice, both in the containers domain).

exemplified in the very good quantitative model fit on the averaged data (r2 = 0.95). Due to poor
performance in the previous experiment, the prototype and exemplar models are omitted from
Figure 4.3 for brevity (r2 = 0.80 and r2 = 0.90 averaged over domains, respectively).

Using the hypothesis space constructed automatically from WordNet explains the idiosyn-
crasies of participant generalization behavior in each domain (r2 = 0.97,0.88, and 0.91, for cloth-
ing, containers, and seats respectively). For example, the model accurately predicts that partici-
pants would generalize most broadly in the seats domain for the single exemplar and three basic-
level exemplar training sets. Additionally, the model captures that people generalized the least in
the containers domain for the three subordinate-level exemplar training sets. This would not have
been possible if the hypothesis space for each domain had the same structure.

Note that there is a larger amount of variance between model predictions and human perfor-
mance in Experiment 2 than Experiment 1. We believe that this is due to the domains not con-
forming to a natural taxonomy. For example, it is unclear if box should be the basic-level category
for a mail box and a cigar box; however, this is the basic level of these objects provided by Word-
Net. Regardless, the good quantitative fit of the Bayesian model’s predictions provides evidence
that using WordNet as a hypothesis space for word learning can capture people’s generalizations
even for hierarchies without clearly defined basic-level concepts. In the next section we explore
how to connect our extended word learning model to problems in Computer Vision and Machine
Learning, further leveraging the use of online resources to perform an even larger-scale evaluation.

4.5 Large-scale word learning
Now that we have validated the model, we consider a much larger and conceptually-diverse experi-
ment to better understand how people generalize at different levels of categorization and familiarity
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with objects. In constructing the stimuli for Experiments 1 and 2, we needed to manually select
the nodes used to represent different taxonomic concepts. However, large-scale experimentation
requires an efficient scheme to generate test data across varying levels of a concept hierarchy. To
this end, we developed a fully-automated procedure for constructing a large-scale dataset suitable
for a challenge problem focused on visual concept learning. In what follows we first show how to
construct this dataset and then use it to run a large-scale experiment over 4,000 different concepts.

Constructing a large-scale dataset
We used the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015) data as the basis for automatically constructing a hierarchically-organized set of concepts
at four different levels of abstraction. We had two goals in constructing the dataset: to cover
concepts at various levels of abstraction (from subordinate concepts to super-ordinate concepts,
such as from Dalmatian to living things), and to find query images that comprehensively test human
generalization behavior. We address these two goals in turn.

To generate concepts at various levels of abstraction, we use all 1,000 words in the ILSVRC
hierarchy as concept candidates, associating each word with its leaf node in WordNet as the most
specific level concept. We then generate three more levels of increasingly broad concepts along the
path from the leaf to the root for each leaf node in the hierarchy. Examples from these concepts are
used as the training set. Specifically, we use the leaf node class itself as the most specific trial type
L0, and select three levels of nested concepts L1, L2, L3 which correspond to three intermediate
nodes along the path from the leaf node to the root. We choose the three nodes that maximize the
combined information gain across these levels:

C (L1···3) = ∑
3
i=0 log(|Li+1|− |Li|)− log |Li+1|, (4.9)

where |Li| is the number of leaf nodes under the subtree rooted at Li, and L4 is the whole taxonomy
tree. As a result, we obtain levels that are “evenly” distributed over the taxonomy tree. Such
levels coarsely correspond to the sub-category, basic, super-basic, and super-category levels in the
taxonomy. For each concept, the training images shown to participants as examples of that concept
were randomly sampled from five different leaf node categories from the corresponding subtree in
the ILSVRC test images. For example, the four levels used in Figure 4.4 are blueberry, berry,
edible fruit, and natural object for the leaf node blueberry.

To construct the test set, we randomly sample twenty query images as follows: three each
from the L0, L1, L2 and L3 subtrees, and eight distractor images from L4, nodes found outside
the broadest subtree rooted at L3. This ensures a complete coverage over in-concept and out-
of-concept queries. We explicitly made sure that the leaf node classes of the query images were
different from those of the examples if possible, and no duplicates exist among the 20 queries. Note
that we always sampled the example and query images from the ILSVRC test images, allowing us
to subsequently train our models with the training and validation images from the ILSVRC dataset
while keeping those in the visual concept learning dataset as novel test images.
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blueberry (concept level L0) berry (concept level L1)

edible fruit (concept level L2) natural object (concept level L3)

Figure 4.4: Concepts constructed from the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Training set images sampled from the four levels for the leaf node blueberry, with the
levels L0, ...,L3 corresponding to the concepts blueberry, berry, edible fruit, and natural object,
respectively.

Experiment 3: The ImageNet Large Scale Visual Recognition Challenge
Participants. Participants were recruited via Amazon Mechanical Turk and compensated $0.05
for each trial completed out of 4,000 possible. As in the previous experiments, each participant
completed as many trials as he or she wished, and ten unique participants completed each trial. All
participant responses were used.

Stimuli and Procedure. We created 4,000 identical concepts (four for each leaf node) using the
protocol above. For each concept, the training set consisted of five example images and the test
set consisted twenty query images. Following the previous experiments, participants were asked
to help a cartoon frog pick out the objects he wants from the test set. A total of 40,000 trials were
collected, and a total of 100,000 images were shown to the participants.

Results. Figure 4.5 presents the averaged results of how participants and each of the models gen-
eralized to the test objects based on the observed training set across the different domains in this
large-scale experiment. Here we see the exemplar and prototype models approach human perfor-
mance much more closely than the Bayesian model. This is supported quantitatively by better
model fits averaged across all data (r2 = 0.99,0.92, and 0.74, for the exemplar, prototype, and
Bayesian models, respectively). However, we note the Bayesian model assumes perfect identifica-
tion of all images, and we question whether five examples is too few for grasping the conceptual
coverage of categories in level L3. For example, in Figure 4.4, “natural object” might be difficult
to infer from just these five example images. This provides an opportunity for future work: finding
the appropriate number of examples given the level of generalization one is trying to convey or
learn.
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Figure 4.5: Participant generalization judgments and predictions of the Bayesian, prototype, and
exemplar models averaged across the 4,000 concepts in Experiment 3. The horizontal axis for each
presents four levels at which training set examples were provided (L0 to L3). At each level, five
bars show the proportion of test set images from levels L0 to L4 that were selected as instances of
the concept (where L4 denotes non-matching items), with the results averaged over all domains.

4.6 Discussion
Although the Bayesian generalization framework has had success in explaining human general-
ization behavior across a number of domains, the hypothesis spaces are typically small-scale and
hand-constructed, which is unsatisfying both practically and theoretically. In this chapter, we ex-
plored a proposal for automatically constructing the hypothesis space using an online resource
as a potential solution to the methodological challenges posed by this problem. We validated a
Bayesian model using this hypothesis space by showing it can replicate previously observed word
learning phenomena, and demonstrating it can also explain how participants learned words in three
novel domains of varying taxonomic assumptions. Using the automatically constructed hypothe-
sis space, the model predicted the subtle changes in participants’ word learning behavior across
multiple domains, demonstrating the practical and theoretical benefits of our approach. We then
conducted a large-scale evaluation of this model by adopting an existing computer vision challenge
which utilizes the same resources we draw from, WordNet and ImageNet, with different results. In
Experiment 3, we found that the exemplar model had the best predictions of people’s generaliza-
tion behaviors, most likely due to difficulty inferring high-level concepts that have wide coverage
over leaf nodes from very few examples; a difference in the conceptual structure automatically
sampled from WordNet for higher-level concepts. This opens more questions about the taxonomic
nature of concepts more broadly, and provides many opportunities for future research.
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Chapter 5

Conclusions

The work in the present dissertation explores how people learn and reason with abstract knowledge,
focusing on the kinds of processes and representations used in semantic memory. In particular, I
presented three case studies, each of which investigated different assumptions for the semantic
representations and algorithms used for modeling a cognitive task. In this final chapter I review
some remaining questions from each of the case studies and outline potential directions for future
research. I then present theoretical connections across the chapters and to larger bodies of work,
concluding with a summary of the dissertation contributions.

5.1 Remaining questions and future directions
Chapter 2 demonstrated that simple random walks over rich semantic representations can produce
behavior consistent with optimal foraging in semantic fluency tasks, providing some interesting
directions for future research. Having two competing accounts of the same phenomena suggests
that the next step in exploring semantic fluency is designing an experiment that distinguishes be-
tween these accounts. One way to do this might be to explore the extent to which human memory
search really is strategic – offering people the opportunity to get a “hint” (say, an example category
member) might provide the way to do this, as it would be possible to examine whether people seek
hints at the moments predicted by the marginal value theorem.

An alternative approach to distinguish these models is considering whether the optimal forag-
ing account can also predict results that the random walk model has previously been used to ex-
plain. One such result is the correspondence of word fluency with PageRank (Griffiths, Steyvers,
& Firl, 2007) – something that follows directly from the random walk account, but might be more
challenging to account for in terms of optimal foraging. Likewise, additional support for optimal
foraging in memory has been found which directly measures variables associated with working
memory capacity and relates them to features associated with the search process (Hills, Mata,
Wilke, & Samanez-Larkin, 2013; Hills & Pachur, 2012). Accordingly, these findings provide
future tests for the random walk account.

Exploring some of the nuances of optimal foraging as an account for human memory search



CHAPTER 5. CONCLUSIONS 52

is likely to be a productive direction of future research as well. Human foraging behavior has
been examined in a few other domains, including information foraging (Pirolli & Card, 1999) and
searching for resources in a simulated spatial environment (Cain, Vul, Clark, & Mitroff, 2012;
Hutchinson, Wilke, & Todd, 2008; Kalff, Hills, & Wiener, 2010; Wolfe, 2013). In particular,
studies in simulated environments investigate the strategies people use in multiple-target search
and examine whether searchers adapt their strategies based on the target distribution statistics.
The common finding is that people are in fact sensitive to the resource distributions of their envi-
ronment, spending more time in resource-dense patches as predicted by optimal foraging theory.
However, their actual departure times from these patches tend to be at non-optimal rates (e.g., de-
pendent on patch quality and not the long-term average rate of return as predicted by the marginal
value theorem). It would be interesting to see whether modifying the optimal foraging model con-
sidered by Hills et al. (2012) to produce behavior more consistent with human search in these other
domains would increase or decrease its fit to the data from semantic fluency tasks.

Chapter 3 advances a proposal that reconciles traditionally opposed accounts of color naming
across cultures. In this view, people across cultures share a universal representation of color space
which contrains what a good color naming system is. We proposed that focal colors, or best ex-
amples of color terms, can also be derived from this representation, as representative members of
color categories. Given our proposed reconcilation, we should be able to create experimentally-
manipulated color categories and force participants to select best examples from them, to further
evaluate the predictions of the representativeness model. Furthermore, we can develop experi-
ments to investigate the social influences in color naming, under the iterated learning paradigm
(e.g., following J. Xu, Dowman, and Griffiths (2013)). This would provide the opportunity to ex-
perimentally test how evolutionary pressures for informative communication interact with general
principles of categorization.

The color data examined in Chapter 3 had minimal assumptions for agreement and handling
of noise. Future work will explore cleaner versions of the World Color Survey (WCS) data in
both individual-speaker and language-level analyses. In addition, a similar dataset to the WCS
is currently being digitally transcribed: The Meso-American Color Survey (MCS), currently only
partially presented in MacLaury (1997). Investigating how our account generalizes across a differ-
ent set of languages and color naming data would provide further support that color cognition is
constrained by a universally shared perceptual color space, following broader cognitive principles
of categorization.

Chapter 4 presented only a limited analysis of the results from Experiment 3, obtained using
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015)
data. Given the range of conceptual domains for which we have collected human generalization
judgments, we can perform a much more detailed investigation of the prior knowledge over dif-
ferent types of conceptual structures that people use when they learn words (e.g. do people prefer
shallow or deep taxonomies? what is the variance in basic-level generalization across conceptual
domains?). Additionally, we can incorporate how participant behavior is affected by the visual
similarity of the images in the training and tests sets (and its interaction with conceptual structure),
which would not be possible to explore with the previous Bayesian word learning model.

Developing a system for determining the appropriate referents of a word from labeled images
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also has the potential to extend state of the art performance in the field of computer vision. Over
the last decade, computer vision researchers have developed algorithms that can classify images
and their contents into a large number of categories (Everingham, Van Gool, Williams, Winn, &
Zisserman, 2010; Krizhevsky, Sutskever, & Hinton, 2012; Sermanet et al., 2014). Despite such
success, existing image classification algorithms work in a “yes-or-no” fashion. That is to say,
given an image and a category (e.g. “dog”), the classifier predicts if the image belongs to the
category or not. The categories could be mutually exclusive (as in early problems such as digit
classification), or nested (as in the context of e.g., ImageNet (Deng et al., 2009)), in which case
the classifier would predict multiple categories that the image belongs to. However, given a set of
categories that are all true for an image or a set of images, existing vision algorithms are not able to
further infer what level of the hierarchy is the true underlying concept. Although recent work has
proposed using hierarchical structures in object categories (Torralba, Murphy, & Freeman, 2007)
or shared attributes (Parikh & Grauman, 2011), learning which objects in an object hierarchy can be
referred to by a word (e.g., just Dalmatians or all dog species?) has only recently been explored in
computer vision. Jia, Abbott, Austerweil, Griffiths, and Darrell (2013) extended the word learning
model in Chapter 4 to include perceptual uncertainty in the recognition of the stimuli, finding the
generalization performance of this model dropped substantially from the performance of previous
models assuming perfect recognition. However, the perceptual classifier used in Jia et al. (2013)
has since been improved dramatically in both accurracy and speed (Jia et al., 2014), offering further
opportunities to investigate the role of perceptual features and recognition in word learning.

As word learning is a special case of the more general problem of generalization, our ap-
proach potentially could be applied to automatically construct hypothesis spaces for generalization
problems in other domains. For example, a Bayesian model of commonsense reasoning could be
formulated by automatically deriving hypothesis spaces from ConceptNet (Liu & Singh, 2004)
or OpenCyc (Matuszek, Cabral, Witbrock, & DeOliveira, 2006). Each of these resources can be
explored as potential representations to support different inferences for different inductive tasks.
This follows a development in modern machine learning, which has leveraged online resources to
make more successful learning algorithms (Medelyan, Legg, Milne, & Witten, 2009; Ponzetto &
Strube, 2006). We hope that this draws a closer connection between computer science and cogni-
tive science, which can lead to more psychologically valid, yet still scalable, artificial intelligence
systems.

5.2 Broader theoretical and practical implications
The research in Chapter 2 demonstrates the importance of careful distinction between process
and representation: a simple random walk search process over a rich structured representation
can produce results consistent with an optimal foraging search over a simpler vector-space rep-
resentation. The observation that different algorithms operating on different representations can
yield similar behavioral predictions echoes previous arguments about the challenges of identifying
cognitive representations and processes (Anderson, 1978; Kosslyn & Pomerantz, 1977; Pylyshyn,
1973). One may reasonably question how this effects the remaining dissertation work in Chapters 3
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and 4, where I propose specific processes and representations to account for particular behavioral
phenomena. Anderson (1978) advises that model parsimony and efficiency may help constrain
representations, and using the probabilistic framework provided us the leverage to reveal simi-
lar results in Chapter 2. In Chapters 3 and 4 we also use probabistic models as a framework to
evaluate proposals for process-representation pairs, and as in Chapter 2, we argue that future ac-
counts will need to be tested on experiments that distinguish their algorithmic and representational
commitments from ours.

The structural analysis of our semantic network in Chapter 2 showed that the categories of an-
imals identified by Troyer et al. (1997) were implicitly reflected in the distances between animal
nodes in the network. This relationship provides a potential explanation for why a random walk
will exhibit behavior that resembles strategically switching between clusters. However, the seman-
tic network also has a number of other structural attributes that might contribute to this behavior.
The recent development of “network science” offers a variety of graph-theoretic properties of net-
works that can be investigated (Baronchelli et al., 2013). In particular, network science has focused
on graphs that form “scale-free networks” – where most of the nodes have few connections but
some nodes have many connections – and “small-world networks” – where all nodes are within
a few links apart (Barabási & Albert, 1999; Milgram, 1967; Strogatz, 2001; Watts & Strogatz,
1998). These properties have been found to exist in numerous semantic networks built from En-
glish language resources, including the network from free associations that we consider (Steyvers
& Tenenbaum, 2005). In Appendix A we examine various structural modifications of our semantic
network, exploring how degree distributions, edge direction, and connectivity structure in the se-
mantic network effect the observed optimal foraging phenomena. These graph-theoretic structural
properties might also uncover interesting properties in semantic networks built from cross-cultural
data, which have recently been used to explain universals and variation in conceptual meaning
across languages (Borin et al., 2013; Youn et al., 2016).

Informative communication (Corter & Gluck, 1992; Regier et al., 2015) from Chapter 3, used
to explain universals and variation in color naming boundaries across cultures, can also provide an
account for the basic-level bias (Rosch et al., 1976) from Chapter 4, in which people have a bias
to generalize new words towards and intermediate taxonomic level. Here, the basic-level is argued
to be a natural solution to the problem of efficient communication. However, the analyses which
support this proposal are particularly small-scale and artificial. This provides another opportunity
to utilize existing online databases, like WordNet, to formally evaluate principles of cognition
on a large-scale (Griffiths, 2015). We propose that the structure of WordNet could be used to
discover which partitions of a taxonomic subset give rise to basic-level categories. A parallel line
of work explores how having multiple meanings for the same word effects word learning. Recently,
Dautriche, Chemla, and Christophe (2016) looked at the role of homophony (e.g., “bat”, an animal
or baseball item) in word learning and found children used the distribution of exemplars to inform
their generalizations and inferences about homophonous words. Srinivasan and Snedeker (2014)
on the otherhand explored how the taxonomic-assumption (Markman, 1991) constrains learning
polysemous words (e.g., “chicken”, the animal or its meat), and found that children are guided by
taxonomies, but utilize the lexical structures more for inference. An analogous set of studies could
be conducted with WordNet to find the extent in which these results generalize to adults using our
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method of large-scale evaluation from Chapter 4.
The Bayesian model of word learning has also been applied to other problems of inferring lin-

guistic meaning, utilizing different hypothesis spaces for learning verb frames (Niyogi, 2002), and
syntax acquisition (Chater & Manning, 2006). Besides WordNet, there are other online databases
of linguistic represention which could be explored as sources of hypothesis spaces for these dif-
ferent generalization tasks. Whereas WordNet is a popular resource for the hierarchical hyponymy
structure of nouns, the Proposition Bank (Palmer, Gildea, & Kingsbury, 2005) is a large resource
of verbs and their predicate-arguments, or semantic roles, built on top of syntactic parses from the
Penn Treebank (Marcus, Marcinkiewicz, & Santorini, 1993). FrameNet is another online database
created by linguists, providing the context of an event, or semantic frame, which gives rise to the
appropriate conceptual meaning (Baker, Fillmore, & Lowe, 1998). Furthermore, each of these
representations has been translated for multiple languages, allowing us to explore potential cross-
linguistic effects of semantic organization on generalization (Waxman, Senghas, & Benveniste,
1997).

Probabilistic models of cognition have helped reconcile traditionally opposing accounts of be-
havioral phenomena (Tenenbaum, 2000), and have uncovered inductive biases which previous
accounts could not find (F. Xu & Tenenbaum, 2007a). They have also been used to re-interpret
existing computational accounts of cognition such as in formal models of categorization, by view-
ing categories as probability distributions over collections of objects (Anderson, 1991; Fried &
Holyoak, 1984). The traditional models of categorization explored in Chapter 2 and Chapter 3
can be accounted for through this probabilistic lens. For example, prototype models (Reed, 1972)
can be interpreted as parametric density estimation (Ashby & Alfonso-Reese, 1995), and exemplar
models (Medin & Schaffer, 1978; Nosofsky, 1986) can be explained as non-parametric (kernel)
density estimation (Griffiths, Sanborn, Canini, & Navarro, 2008). Furthermore, these popular
models of categorization, which have been traditionally approached from an algorithmic level of
analysis, have recently been re-formalized as rational approximations to Bayesian inference (San-
born, Griffiths, & Navarro, 2010; Shi, Griffiths, Feldman, & Sanborn, 2010).

The machine learning community has also benefited from re-interpreting cognitive models to
address large-scale inference problems, providing the opportunity for further theoretical and prac-
tical advances. For example, a popular machine learning algorithm for clustering-on-demand with
sparse data, Bayesian Sets (Ghahramani & Heller, 2005; Heller & Ghahramani, 2006), was in-
spired by the Bayesian model of generalization. Recent work has shown a formal connection
between Bayesian Sets and representativeness (from Chapter 3) over sets as well (Abbott, Heller,
Ghahramani, & Griffiths, 2011). This opens an interesting set of domain-general principle to ex-
plore for future directions: relating the problems of learning categories from a few examples, and
finding good examples from categories. This formal connection additionally highlights the prac-
tical applications of probabilistic models of cognition (Griffiths, Abbott, & Hsu, 2016). Recent
trends in machine learning and computer vision utilizing deep convolutional neural networks pro-
vide new opportunities for collaboration with cognitive scientists to solve challenging problems
of induction. A particular problem of recent interest involves generating natural language image
captions which describe the objects and events in a given scene (Hendricks et al., 2016; Karpa-
thy & Fei-Fei, 2015; Mao et al., 2016). There is a detailed history of similar studies in cognitive
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psychology which have explored the kinds of descriptions that people generate for simple and
complex image scenes, and have revealed particular biases people use given the semantics of the
scene, the relationship between objects, and the different levels of concepts presented (R. Brown,
1958; Kosslyn, 1975; Lupyan, Thompson-Schill, & Swingley, 2010; Mervis & Rosch, 1981; Mur-
phy & Gregory, 2004; Osherson, Smith, Wilkie, Lopez, & Shafir, 1990; Rosch & Mervis, 1975;
Rosch et al., 1976; Tanaka & M. Taylor, 1991; K. Taylor, Devereux, Acres, Randall, & Tyler,
2012). Formalizing these inductive biases has the potential to greatly improve the performance
and “naturalness” of automated image captioning models.

5.3 Concluding remarks
Probabilistic models of cognition combine statistical evidence from the environment with struc-
tured knowledge representations to support the kinds of challenging inductive tasks people seem
to solve effortlessly. The case studies considered in this dissertation show how this framework can
be used to guide formal psychological investigations. In particular, this work presents alternative
accounts, synthesizes traditionally opposed views, and scales up existing models into more power-
ful explanatory tools. These studies contribute to a richer understanding of human cognition, and
to the development of machine learning algorithms that perform more like people.
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Appendix A

Supplementary analyses of semantic
memory search

This supplementary material presents the results for simulations not included in Chapter 2 of the
main text. These additional simulations explore the effects of our random walk model on various
structural modifications of the semantic network we operate upon. In particular, we explore how
degree distributions, edge direction, and connectivity structure in our semantic network effect the
observed optimal foraging phenomena reported in the chapter.

A.1 Effects of degree distributions and edge direction
Our analysis of the structure of our semantic network in Chapter 2 found that the categories of
animals identified by Troyer et al. (1997) were implicitly reflected in the distances between an-
imal nodes in the network. This relationship provides a potential explanation for why a random
walk will exhibit behavior that resembles strategically switching between clusters. However, the
semantic network also has a variety of other properties that might contribute to this behavior.

In this section, we consider the effects that the degree distribution of the semantic network has
on whether a random walk produces predictions consistent with optimal foraging. The degree of
a node refers to the number of connections (or neighbors) it has, which can be differentiated into
out-degree and in-degree for directed graphs, corresponding to the number of outward and inward
edges respectively. The degree distribution indicates the probability that a random node will have a
particular number of connections. Recent findings indicate that many real-world networks follow
a power-law degree distribution, with “heavy tails” that result in a small number of nodes having
a very large degree (Barabási & Albert, 1999; Strogatz, 2001). Since power-law distributions have
no characteristic scale of node degree, networks exhibiting this property are referred to as “scale-
free”. Steyvers and Tenenbaum (2005) examined the degree distribution of the semantic network
derived from word associations that we have used in our analyses. This examination found that an
undirected version of the network (where the direction of the edges was removed) had a power-
law degree distribution, whereas the the in-degree distribution for the directed network was near
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power-law but the out-degree distribution was not (while there is some variation, all nodes have a
relatively small out-degree).

We now explore whether these different degree distributions play a role in producing predic-
tions consistent with optimal foraging. By modifying the properties of the graph on which we
conduct the random walk, we can examine whether maintaining directional information is im-
portant, and whether having a power-law distribution in in-degree or out-degree is important to
producing the appropriate behavioral results.

Methods
We test two structural variations of our semantic network: a version with undirected edges, and a
version with the edge directions reversed. Recall, in the directed semantic network derived from
word-association data, a directed edge from word node j connects to word node i if the word i was
given as a response to cue j (corresponding to the link matrix Li j from above). In the undirected
network, two word nodes are connected by an edge if they were related associatively, regardless
of association direction (ie. if a link existed from i to j, or from j to i). In the reverse-directed
network, a directed edge from word node i connects to word node j if the word i was given as a
response to cue j (corresponding to the transpose of the link matrix).

We explored the effects of these structural changes using the uniform-transition model, as the
frequency of transitions in the word-association data account for only one direction of association.
We ran 1000 simulations of the uniform non-jumping and uniform jumping models for a duration
of 1750 iterations on both the reverse-directed and undirected networks. As before, the jumping
models had a probability of ρ = 0.05 of making a jump back to “animals”, selected primarily to
illustrate the impact of adding this additional component to the search process. Other small values
of ρ produced the same qualitative results.

Results and Discussion
Reverse-directed network. Each of the models was analyzed in the same manner as our random
walk simulation in the main text. The results for the uniform non-jumping and uniform jumping
models on the reverse-directed network are presented in Figure A.1, where the top row displays the
results of the uniform non-jumping model and the bottom row displays the results of the uniform
jumping model. The left column shows the mean ratio between the IRT for an item and the mean
IRT over all 1750 iterations in the simulations, relative to the order of entry for the item. As
before, we see that the first word starting a cluster has the highest overall retrieval time for both
networks (t(999) = 31.62, p < 0.001 and t(999) = 85.05, p < 0.001 for the uniform non-jumping
and uniform jumping models respectively), and the second word in a cluster takes much less time
to produce than the long-term mean (t(999) =−28.63, p< 0.001 and t(999) =−73.40, p< 0.001,
respectively). In addition, the IRTs for words preceding a cluster switch (indicated by “-1”) did
not differ significantly from most walkers’ long-term average IRTs (918 and 981 out of 1000
walkers were not significantly different for the uniform non-jumping and uniform jumping models
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respectively, and all of the walkers that were significantly different had pre-switch IRT averages
less than their long-term averages for each of the networks).

The right column of Figure A.1 examines consistency with the cluster-leaving policy indicated
by the marginal value theorem, where again we find that walkers with a larger absolute difference
(indicating they either left clusters too soon or too late) produced fewer words (a linear regression
model found a significant negative relationship between axes for both networks: slope = -0.70,
t(998) = 9.03, p < 0.001 and slope = -1.42, t(998) = 4.49, p < 0.001 for the uniform non-jumping
and uniform jumping models respectively).

Undirected network. The results for the uniform non-jumping and uniform jumping models on
the undirected network are presented in Figure A.2, where the top row displays the results of
the uniform non-jumping model and the bottom row displays the results of the uniform jumping
model. The left column shows the mean ratio between the IRT for an item and the mean IRT
over all 1750 iterations in the simulations, relative to the order of entry for the item. As before,
we see that the first word starting a cluster has the highest overall retrieval time for both net-
works (t(999) = 44.56, p < 0.001 and t(999) = 60.21, p < 0.001 for the uniform non-jumping and
uniform jumping models respectively), and the second word in a cluster takes much less time to
produce than the long-term mean (t(999) = −34.94, p < 0.001 and t(999) = −52.24, p < 0.001,
respectively). In addition, the IRTs for words preceding a cluster switch (indicated by “-1”) did
not differ significantly from most walkers’ long-term average IRTs (986 and 992 out of 1000 walk-
ers were not significantly different for the reverse-directed and undirected networks respectively,
and all of the walkers that were significantly different had pre-switch IRT averages less than their
long-term averages for each of the networks).

The right column of Figure A.2 examines consistency with the cluster-leaving policy indicated
by the marginal value theorem, where again we find that walkers with a larger absolute difference
(indicating they either left clusters too soon or too late) produced fewer words (a linear regression
model found a significant negative relationship between axes for both networks: slope = -0.54,
t(998) = 9.05, p < 0.001 and slope = -1.19, t(998) = 4.31, p < 0.001 for the uniform non-jumping
and uniform jumping models respectively).

We thus observe similar phenomena on these semantic networks when the edges are made
to be undirected or when they are reversed. Making the edges to be undirected or reversing the
edges results in a power-law degree distribution for both in-degree and out-degree, or power-law
degree distribution for the out-degree rather than in-degree distribution, respectively. Because
random walks on these transformed semantic networks produce similar behavior to random walks
on the original semantic network, degree distribution does not have a strong effect on the foraging
behavior produced by our random walker models.

A.2 Effects of connectivity structure
The simulations above show that the degree distribution of the semantic network has little effect
on whether a random walk produces behavior consistent with optimal foraging. In this section,
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Figure A.1: Results for the uniform non-jumping model and uniform jumping model on the
reverse-directed network. The left column displays the mean ratio between the inter-item response
time (IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the
order of entry for the item (where “1” refers to the relative IRT between the first word in a cluster
and the last word in the preceding cluster). The dotted line indicates where item IRTs would be
the same as the walker’s average IRT for the entire task. The right column displays the relation-
ship between a walker’s deviation from the marginal value theorem policy for cluster departures
(horizontal-axis) and the total number of words a walker produced.

we explore how the connectivity structure of our network may affect these results. A common
finding in real-world networks is that most nodes can be reached from any other node within a
short number of traversed edges – similar to the idea that most people can be connected by a
sequence of six friends or associates (Milgram, 1967; Watts & Strogatz, 1998). Networks with
this property are called “small-world” networks. Steyvers and Tenenbaum (2005) examined the
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Figure A.2: Results for (a) the uniform non-jumping model and (b) uniform jumping model on the
undirected network. The left column displays the mean ratio between the inter-item response time
(IRT) for an item and the walker’s long-term average IRT over the entire task, relative to the order
of entry for the item (where “1” refers to the relative IRT between the first word in a cluster and the
last word in the preceding cluster). The dotted line indicates where item IRTs would be the same as
the walker’s average IRT for the entire task. The right column displays the relationship between a
walker’s deviation from the marginal value theorem policy for cluster departures (horizontal-axis)
and the total number of words a walker produced.

average shortest-path lengths between nodes in the semantic network used in our analyses and
found results that were consistent with other small-world networks of similar size.

In the following simulation we explored whether the small-world property is sufficient to pro-
duce predictions consistent with optimal foraging theory. By randomly relabeling the nodes in the
semantic network, we can change which words are connected to one another without changing the
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small-world structure. This random relabeling also allows us to examine whether the property of
the semantic network that motivated our analyses – words from the same category tending to be
close together – is necessary in order for a random walk to behave similarly to optimal foraging.

Methods
To determine the effects of the small-world structure in our semantic network, we created a new
network with the same connections between nodes, but with a random relabeling of the words
that correspond to those nodes. This maintains the small-world structure, while disrupting the
relationship between edges and semantic relatedness. As before, we explored the effects of this
change using the uniform-transition model. We ran 1000 simulations of the uniform non-jumping
and uniform jumping models for a duration of 1750 iterations on the random-labeled network.

Results and Discussion
Each of the models was analyzed in the same manner as those in Simulation 1. The uniform
non-jumping and uniform jumping model results are presented in Figure A.3as panels (a) and (b),
respectively. The left column shows the mean ratio between the IRT for an item and the mean IRT
over all 1750 iterations in the simulations, relative to the order of entry for the item. Here we see
that all words take relatively the same amount of time to produce, regardless of their order in a
cluster (none of the bars is significantly different from the dotted line). These results violate the
predictions of the marginal value theorem. However, the right column of Figure A.3 shows that
walkers with a larger absolute difference (indicating they either left clusters too soon or too late)
produced fewer words (a linear regression model found a significant negative relationship between
axes: slope = -0.55, t(998) = 6.26, p < 0.001 and slope = -0.23, t(998) = 5.42, p < 0.001 for
the uniform non-jumping and uniform jumping models, respectively). These results are consistent
with the predictions of the marginal value theorem.

The results taken together indicate that having a small-world structure is not sufficient to pro-
duce results consistent with the marginal value theorem. Edges need to reflect semantic relatedness
– and words in the same semantic categories need to be close to one another – in order for the IRT
differences between cluster switches predicted by optimal foraging theory to be produced. The
results also suggest that the relationship between absolute difference in cluster leaving times and
number of words produced by a participant is a weaker indicator of whether the agent is guided by
an optimal foraging policy, because a random walk on the semantic network where the node labels
are shuffled produced an appropriate pattern with respect to this metric while failing to do so for
the IRT.
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Figure A.3: Results for (a) the uniform non-jumping model and (b) uniform jumping model on our
semantic network with random node relabelling. The left column displays the mean ratio between
the inter-item response time (IRT) for an item and the walker’s long-term average IRT over the
entire task, relative to the order of entry for the item (where “1” refers to the relative IRT between
the first word in a cluster and the last word in the preceding cluster). The dotted line indicates
where item IRTs would be the same as the walker’s average IRT for the entire task. The right
column displays the relationship between a walker’s deviation from the marginal value theorem
policy for cluster departures (horizontal-axis) and the total number of words a walker produced.
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Appendix B

Supplementary analyses of the World Color
Survey

B.1 Language-level analyses
Here we present language-level analyses of the WCS data, along with model performance for each.
We present the naming data as mode maps, displaying terms used by a plurality of the speakers.
The number of focus hits per color chip, aggregated over speakers in the language, are overlaid on
top, in line with our treatment of Dani and Berinmo from Chapter 4. Although the use of mode
maps for visualization provides only a partial view of a language’s color naming system, one can
clearly see both similarities and differences in color naming patterns across languages.

Language 1 - Abidji Model QF RP
Bayes 1.96 47.13
Like 1.70 58.08
Proto 1.73 65.84
Exemp 1.76 56.84
Chroma 2.98 98.24

Language 2 - Agarabi Model QF RP
Bayes 1.10 31.89
Like 1.37 44.18
Proto 1.35 43.90
Exemp 1.26 41.28
Chroma 2.32 81.43
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Language 3 - Agta Model QF RP
Bayes 1.35 36.10
Like 1.65 43.42
Proto 1.83 47.54
Exemp 1.45 38.99
Chroma 1.98 78.71

Language 4 - Aguacatec Model QF RP
Bayes 1.01 21.80
Like 1.88 34.16
Proto 1.83 40.63
Exemp 1.66 31.19
Chroma 2.23 81.47

Language 5 - Amarakaeri Model QF RP
Bayes 1.08 21.14
Like 1.25 36.02
Proto 1.21 43.92
Exemp 1.23 35.92
Chroma 3.13 57.58

Language 6 - Ampeeli Model QF RP
Bayes 1.58 33.98
Like 1.68 46.04
Proto 1.80 51.85
Exemp 1.57 44.85
Chroma 2.22 81.05

Language 7 - Amuzgo Model QF RP
Bayes 1.58 19.69
Like 1.56 28.04
Proto 1.54 27.06
Exemp 1.57 26.34
Chroma 1.75 28.90
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Language 8 - Angaatiha Model QF RP
Bayes 1.02 26.52
Like 1.48 40.03
Proto 1.68 45.69
Exemp 1.35 34.40
Chroma 1.58 77.99

Language 9 - Apinayé Model QF RP
Bayes 1.52 46.08
Like 1.75 50.38
Proto 1.73 75.86
Exemp 1.58 50.76
Chroma 2.21 93.68

Language 10 - Arabela Model QF RP
Bayes 2.12 42.12
Like 2.27 57.78
Proto 2.42 78.39
Exemp 2.08 57.34
Chroma 3.32 97.55

Language 11 - Bahinemo Model QF RP
Bayes 0.94 36.71
Like 1.36 53.03
Proto 1.55 58.03
Exemp 1.32 51.50
Chroma 1.59 81.31

Language 12 - Bauzi Model QF RP
Bayes 1.09 15.65
Like 1.31 40.01
Proto 1.36 42.21
Exemp 1.44 34.19
Chroma 2.07 92.83
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Language 13 - Berik Model QF RP
Bayes 1.23 30.17
Like 1.66 47.64
Proto 1.87 62.48
Exemp 1.60 44.50
Chroma 2.44 85.83

Language 14 - Bété Model QF RP
Bayes 1.04 28.20
Like 1.46 51.64
Proto 1.61 52.11
Exemp 1.19 41.60
Chroma 2.14 115.71

Language 15 - Bhili Model QF RP
Bayes 0.95 22.26
Like 1.34 35.51
Proto 1.34 38.52
Exemp 1.14 32.62
Chroma 1.69 87.41

Language 16 - Buglere Model QF RP
Bayes 1.00 18.13
Like 1.69 46.92
Proto 1.77 62.91
Exemp 1.42 42.12
Chroma 1.36 82.95

Language 17 - Cakchiquel Model QF RP
Bayes 1.04 32.92
Like 1.39 30.71
Proto 1.34 30.39
Exemp 1.41 28.94
Chroma 2.72 56.93
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Language 18 - Campa Model QF RP
Bayes 2.30 56.91
Like 1.99 72.67
Proto 2.10 74.47
Exemp 1.82 61.16
Chroma 4.36 119.79

Language 19 - Camsa Model QF RP
Bayes 0.91 15.37
Like 1.14 23.55
Proto 1.19 24.81
Exemp 1.21 23.52
Chroma 1.17 30.92

Language 20 - Candoshi Model QF RP
Bayes 1.21 22.26
Like 1.43 37.13
Proto 1.36 27.59
Exemp 1.44 29.93
Chroma 2.02 58.86

Language 21 - Cavineña Model QF RP
Bayes 0.98 17.08
Like 1.10 37.07
Proto 1.15 48.14
Exemp 1.05 36.71
Chroma 1.55 70.20

Language 22 - Cayapa Model QF RP
Bayes 1.18 21.64
Like 1.61 42.00
Proto 1.75 61.55
Exemp 1.41 39.32
Chroma 2.01 90.03



APPENDIX B. SUPPLEMENTARY ANALYSES OF THE WORLD COLOR SURVEY 79

Language 23 - Chácobo Model QF RP
Bayes 0.98 25.83
Like 1.52 47.23
Proto 1.63 63.38
Exemp 1.05 36.88
Chroma 2.10 156.58

Language 24 - Chavacano (Zamboangueño) Model QF RP
Bayes 0.79 12.54
Like 0.95 22.29
Proto 0.96 22.52
Exemp 0.88 20.49
Chroma 1.41 37.08

Language 25 - Chayahuita Model QF RP
Bayes 1.00 19.57
Like 1.06 30.31
Proto 1.08 38.98
Exemp 1.11 32.42
Chroma 1.23 61.36

Language 26 - Chinantec Model QF RP
Bayes 0.99 17.71
Like 1.34 31.81
Proto 1.38 34.09
Exemp 1.15 27.00
Chroma 1.48 60.02

Language 27 - Chiquitano Model QF RP
Bayes 0.92 22.56
Like 1.16 28.68
Proto 1.26 30.24
Exemp 1.03 27.55
Chroma 1.37 46.45
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Language 28 - Chumburu Model QF RP
Bayes 1.03 17.77
Like 1.33 31.86
Proto 1.37 34.61
Exemp 1.07 26.94
Chroma 1.56 69.44

Language 29 - Cófan Model QF RP
Bayes 1.02 18.44
Like 1.16 30.54
Proto 1.20 37.58
Exemp 1.16 28.65
Chroma 1.51 77.24

Language 30 - Colorado Model QF RP
Bayes 1.26 16.73
Like 1.38 37.98
Proto 1.35 39.84
Exemp 1.33 33.70
Chroma 1.57 72.92

Language 31 - Cree Model QF RP
Bayes 1.13 15.45
Like 1.13 16.06
Proto 1.13 20.21
Exemp 1.05 14.99
Chroma 0.93 21.95

Language 32 - Culina Model QF RP
Bayes 1.32 82.84
Like 1.75 81.94
Proto 2.04 89.68
Exemp 1.99 81.20
Chroma 3.67 113.37
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Language 33 - Didinga Model QF RP
Bayes 1.04 15.42
Like 0.95 31.70
Proto 0.96 37.87
Exemp 0.92 29.61
Chroma 1.78 88.03

Language 34 - Djuka Model QF RP
Bayes 0.92 24.54
Like 1.46 35.87
Proto 1.48 46.66
Exemp 1.23 33.60
Chroma 1.52 65.37

Language 35 - Dyimini Model QF RP
Bayes 0.99 23.78
Like 1.09 38.32
Proto 1.10 41.97
Exemp 0.94 35.35
Chroma 1.40 69.14

Language 36 - Ejagam Model QF RP
Bayes 1.29 29.88
Like 1.13 55.21
Proto 1.20 38.06
Exemp 1.09 38.27
Chroma 1.89 109.83

Language 37 - Ese Ejja Model QF RP
Bayes 0.85 22.27
Like 1.17 27.64
Proto 1.17 33.69
Exemp 1.11 26.78
Chroma 1.73 77.91
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Language 38 - Garı́funa (Black Carib) Model QF RP
Bayes 1.34 37.51
Like 1.63 50.88
Proto 1.61 65.41
Exemp 1.26 44.21
Chroma 2.29 119.70

Language 39 - Guahibo Model QF RP
Bayes 1.42 29.84
Like 1.40 40.66
Proto 1.51 54.59
Exemp 1.34 41.02
Chroma 2.24 84.67

Language 40 - Guambiano Model QF RP
Bayes 1.09 24.06
Like 1.30 38.76
Proto 1.25 41.61
Exemp 1.30 36.60
Chroma 1.40 61.16

Language 41 - Guarijı́o Model QF RP
Bayes 1.22 20.27
Like 1.47 39.28
Proto 1.51 44.67
Exemp 1.45 38.13
Chroma 4.27 69.73

Language 42 - Guaymı́ (Ngäbere) Model QF RP
Bayes 0.86 47.00
Like 1.54 58.34
Proto 1.66 69.01
Exemp 1.26 56.17
Chroma 1.55 80.04
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Language 43 - Gunu Model QF RP
Bayes 1.74 24.30
Like 2.15 40.13
Proto 2.11 38.32
Exemp 2.35 34.58
Chroma 2.39 80.91

Language 44 - Halbi Model QF RP
Bayes 1.23 32.45
Like 1.54 45.98
Proto 1.64 54.12
Exemp 1.39 41.69
Chroma 1.99 94.22

Language 45 - Huastec Model QF RP
Bayes 0.68 11.38
Like 0.94 26.33
Proto 0.95 28.73
Exemp 0.98 25.47
Chroma 1.43 43.00

Language 46 - Huave Model QF RP
Bayes 1.06 16.51
Like 1.01 26.16
Proto 1.05 26.03
Exemp 0.99 23.87
Chroma 1.43 41.13

Language 47 - Iduna Model QF RP
Bayes 1.01 20.49
Like 1.20 44.25
Proto 1.28 50.20
Exemp 1.16 39.21
Chroma 1.57 73.41
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Language 48 - Ifugao Model QF RP
Bayes 1.13 25.93
Like 1.31 33.67
Proto 1.44 35.83
Exemp 1.15 32.64
Chroma 1.53 69.81

Language 49 - Iwam Model QF RP
Bayes 0.70 41.90
Like 1.68 75.47
Proto 1.75 83.44
Exemp 1.67 65.57
Chroma 1.88 115.54

Language 50 - Jicaque Model QF RP
Bayes 1.59 22.09
Like 1.50 46.00
Proto 2.08 56.76
Exemp 1.51 41.80
Chroma 2.90 72.19

Language 51 - Kalam Model QF RP
Bayes 1.87 31.38
Like 1.68 43.43
Proto 1.78 52.42
Exemp 1.53 41.15
Chroma 3.19 89.89

Language 52 - Kamano-Kafe Model QF RP
Bayes 1.72 21.82
Like 1.64 35.36
Proto 1.70 35.71
Exemp 1.55 30.86
Chroma 3.67 63.81
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Language 53 - Karajá Model QF RP
Bayes 2.92 38.14
Like 2.71 55.93
Proto 3.04 81.09
Exemp 2.21 59.27
Chroma 4.38 118.70

Language 54 - Kemtuik Model QF RP
Bayes 0.83 23.09
Like 1.34 43.17
Proto 1.40 46.31
Exemp 1.20 38.84
Chroma 2.02 80.87

Language 55 - Kokni (Kokoni) Model QF RP
Bayes 0.82 31.73
Like 1.61 47.70
Proto 1.69 56.99
Exemp 1.14 44.16
Chroma 1.61 85.39

Language 56 - Konkomba Model QF RP
Bayes 1.18 29.14
Like 1.24 52.62
Proto 1.27 56.38
Exemp 1.32 43.76
Chroma 1.85 97.32

Language 57 - Kriol Model QF RP
Bayes 1.02 22.89
Like 1.30 31.25
Proto 1.33 30.06
Exemp 1.21 28.02
Chroma 2.20 52.26
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Language 58 - Kuku-Yalanji Model QF RP
Bayes 2.10 51.77
Like 1.99 64.31
Proto 2.12 59.12
Exemp 1.92 55.86
Chroma 2.91 101.62

Language 59 - Kuna Model QF RP
Bayes 1.16 32.00
Like 1.52 43.58
Proto 1.63 55.13
Exemp 1.43 41.01
Chroma 1.33 65.30

Language 60 - Kwerba Model QF RP
Bayes 0.95 32.16
Like 1.33 60.03
Proto 1.44 56.42
Exemp 1.37 48.92
Chroma 1.80 107.25

Language 61 - Lele Model QF RP
Bayes 0.81 27.96
Like 1.53 60.55
Proto 1.35 78.90
Exemp 1.19 60.06
Chroma 1.65 88.81

Language 62 - Mampruli Model QF RP
Bayes 0.91 28.14
Like 1.38 42.37
Proto 1.61 47.21
Exemp 1.19 39.20
Chroma 1.69 91.27
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Language 63 - Maring Model QF RP
Bayes 1.80 55.27
Like 1.88 68.78
Proto 2.08 68.91
Exemp 1.52 57.88
Chroma 3.51 107.36

Language 64 - Martu-Wangka Model QF RP
Bayes 1.66 31.32
Like 1.89 50.19
Proto 1.93 47.66
Exemp 2.16 47.32
Chroma 2.23 80.70

Language 65 - Mawchi Model QF RP
Bayes 0.77 28.00
Like 1.42 43.75
Proto 1.51 56.13
Exemp 1.11 43.56
Chroma 1.65 77.26

Language 66 - Mayoruna Model QF RP
Bayes 2.81 31.69
Like 2.14 38.25
Proto 2.14 46.27
Exemp 1.91 33.35
Chroma 3.96 111.51

Language 67 - Mazahua Model QF RP
Bayes 1.22 17.03
Like 1.60 24.83
Proto 1.55 26.67
Exemp 1.51 24.56
Chroma 1.96 38.59
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Language 68 - Mazatec Model QF RP
Bayes 0.85 20.38
Like 1.18 28.92
Proto 1.30 32.47
Exemp 1.23 28.77
Chroma 1.42 52.61

Language 69 - Menye Model QF RP
Bayes 0.87 29.62
Like 1.62 48.40
Proto 1.90 69.59
Exemp 1.29 44.54
Chroma 1.58 90.57

Language 70 - Micmac Model QF RP
Bayes 1.15 17.76
Like 0.97 21.71
Proto 0.88 22.98
Exemp 1.03 19.56
Chroma 1.32 42.31

Language 71 - Mikasuki Model QF RP
Bayes 0.87 14.79
Like 1.51 32.31
Proto 1.51 42.61
Exemp 1.38 33.34
Chroma 1.28 54.15

Language 72 - Mixtec Model QF RP
Bayes 1.30 25.51
Like 1.50 35.29
Proto 1.49 37.52
Exemp 1.48 33.93
Chroma 2.12 57.58
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Language 73 - Mundu Model QF RP
Bayes 0.92 45.63
Like 1.59 74.48
Proto 1.52 83.72
Exemp 1.26 67.17
Chroma 1.77 106.59

Language 74 - Múra-Pirahá Model QF RP
Bayes 1.03 12.07
Like 1.09 43.60
Proto 1.05 34.77
Exemp 0.90 29.74
Chroma 2.02 115.75

Language 75 - Murle Model QF RP
Bayes 0.99 24.18
Like 0.99 34.13
Proto 1.06 36.84
Exemp 1.05 33.54
Chroma 1.67 74.55

Language 76 - Murrinh-Patha Model QF RP
Bayes 0.85 37.60
Like 1.39 57.32
Proto 1.58 68.33
Exemp 1.28 55.53
Chroma 1.60 78.68

Language 77 - Nafaanra Model QF RP
Bayes 1.90 40.27
Like 1.49 51.09
Proto 1.70 47.47
Exemp 1.31 37.00
Chroma 2.53 132.76
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Language 78 - Nahuatl Model QF RP
Bayes 1.13 25.23
Like 1.14 35.64
Proto 1.16 35.63
Exemp 1.03 30.13
Chroma 1.40 38.17

Language 79 - Ocaina Model QF RP
Bayes 1.09 20.44
Like 1.37 40.63
Proto 1.44 51.11
Exemp 1.34 38.85
Chroma 1.74 65.92

Language 80 - Papago (O’odham) Model QF RP
Bayes 1.26 19.22
Like 1.01 29.40
Proto 1.13 40.19
Exemp 1.10 30.38
Chroma 2.24 60.58

Language 81 - Patep Model QF RP
Bayes 1.02 15.72
Like 1.21 33.40
Proto 1.27 32.43
Exemp 1.08 28.98
Chroma 1.44 59.71

Language 82 - Paya Model QF RP
Bayes 0.84 21.41
Like 1.42 40.32
Proto 1.55 50.27
Exemp 1.05 37.24
Chroma 1.53 88.70
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Language 83 - Podopa Model QF RP
Bayes 1.56 49.43
Like 1.66 68.16
Proto 1.68 72.85
Exemp 1.68 63.88
Chroma 1.85 92.45

Language 84 - Saramaccan Model QF RP
Bayes 0.98 18.36
Like 1.60 28.60
Proto 1.74 35.42
Exemp 1.34 26.94
Chroma 1.41 50.13

Language 85 - Seri Model QF RP
Bayes 1.05 22.33
Like 1.11 34.96
Proto 1.12 41.43
Exemp 1.06 35.55
Chroma 1.54 70.14

Language 86 - Shipibo Model QF RP
Bayes 1.21 34.23
Like 1.73 39.27
Proto 1.85 56.96
Exemp 1.80 38.53
Chroma 1.87 83.69

Language 87 - Sirionó Model QF RP
Bayes 1.26 27.21
Like 1.47 45.16
Proto 1.62 53.77
Exemp 1.37 41.13
Chroma 1.76 87.99
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Language 88 - Slave Model QF RP
Bayes 0.98 23.40
Like 1.18 35.54
Proto 1.22 40.34
Exemp 1.18 34.23
Chroma 1.55 54.69

Language 89 - Sursurunga Model QF RP
Bayes 1.09 25.65
Like 1.17 36.15
Proto 1.32 46.63
Exemp 1.04 34.70
Chroma 1.59 82.78

Language 90 - Tabla Model QF RP
Bayes 1.06 21.86
Like 1.30 38.22
Proto 1.45 49.31
Exemp 1.04 35.52
Chroma 1.49 70.80

Language 91 - Tacana Model QF RP
Bayes 0.99 23.51
Like 1.26 41.30
Proto 1.22 38.89
Exemp 1.25 37.33
Chroma 1.53 62.32

Language 92 - Tarahumara (Central) Model QF RP
Bayes 1.14 28.93
Like 1.20 34.77
Proto 1.37 36.78
Exemp 1.32 33.34
Chroma 2.03 70.93
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Language 93 - Tarahumara (Western) Model QF RP
Bayes 1.56 38.93
Like 1.02 32.13
Proto 1.09 41.61
Exemp 1.06 36.38
Chroma 1.46 51.02

Language 94 - Tboli Model QF RP
Bayes 0.76 18.55
Like 1.17 40.32
Proto 1.22 44.16
Exemp 1.04 34.83
Chroma 1.63 74.44

Language 95 - Teribe Model QF RP
Bayes 1.89 26.48
Like 1.82 37.32
Proto 1.54 37.74
Exemp 1.58 32.58
Chroma 3.52 71.63

Language 96 - Ticuna Model QF RP
Bayes 0.70 16.86
Like 1.23 36.39
Proto 1.44 46.55
Exemp 1.22 35.00
Chroma 1.69 79.22

Language 97 - Tifal Model QF RP
Bayes 0.97 39.95
Like 2.04 78.00
Proto 1.93 85.13
Exemp 1.99 69.90
Chroma 2.06 85.02
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Language 98 - Tlapanec Model QF RP
Bayes 1.50 25.05
Like 1.31 34.77
Proto 1.32 39.24
Exemp 1.23 34.32
Chroma 3.11 73.09

Language 99 - Tucano Model QF RP
Bayes 0.94 18.00
Like 1.18 41.03
Proto 1.44 46.19
Exemp 1.13 37.40
Chroma 1.52 80.45

Language 100 - Vagla Model QF RP
Bayes 0.98 14.44
Like 1.42 36.53
Proto 1.44 33.81
Exemp 1.34 31.65
Chroma 1.69 71.22

Language 101 - Vasavi Model QF RP
Bayes 0.70 25.24
Like 1.55 48.87
Proto 1.55 65.55
Exemp 1.09 45.16
Chroma 1.59 93.12

Language 102 - Waorani (Auca, Huao) Model QF RP
Bayes 1.77 37.64
Like 1.60 55.90
Proto 1.94 55.56
Exemp 1.68 42.69
Chroma 3.42 111.59
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Language 103 - Walpiri Model QF RP
Bayes 1.15 48.09
Like 1.25 52.95
Proto 1.37 56.05
Exemp 1.14 51.34
Chroma 2.39 82.77

Language 104 - Wobé Model QF RP
Bayes 2.20 57.67
Like 2.17 61.34
Proto 2.13 57.82
Exemp 1.79 42.31
Chroma 2.30 110.96

Language 105 - Yacouba Model QF RP
Bayes 1.12 24.77
Like 1.30 65.11
Proto 1.45 53.79
Exemp 1.20 49.73
Chroma 1.83 135.72

Language 106 - Yakan Model QF RP
Bayes 1.19 15.38
Like 1.42 24.01
Proto 1.47 27.46
Exemp 1.33 23.06
Chroma 1.74 42.57

Language 107 - Yaminahua Model QF RP
Bayes 1.00 30.31
Like 1.62 51.68
Proto 1.76 66.49
Exemp 1.44 49.80
Chroma 2.03 90.45
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Language 108 - Yucuna Model QF RP
Bayes 0.67 21.56
Like 1.58 45.99
Proto 1.56 60.67
Exemp 1.50 44.19
Chroma 1.37 58.48

Language 109 - Yupik Model QF RP
Bayes 1.35 29.81
Like 1.27 37.07
Proto 1.30 44.07
Exemp 1.26 36.15
Chroma 2.98 82.57

Language 110 - Zapotec Model QF RP
Bayes 0.84 14.25
Like 1.27 27.47
Proto 1.18 29.39
Exemp 1.17 25.14
Chroma 1.53 57.11

B.2 Category Unusualness
In this section we provide further treatment of the category unusualness analyses from the main
text. We present examples of WCS categories ranked by the unusualness measure below.
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Figure B.1: The 30 most unusual WCS categories (presented in descending order of average Haus-
dorff distance)
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Figure B.2: The 30 least unusual WCS categories (presented in ascending ranked order of average
Hausdorff distance)
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Figure B.3: WCS categories in the 25th percentile of unusual scores (presented in ascending ranked
order of average Hausdorff distance)
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Figure B.4: WCS categories in the 50th percentile of unusual scores (presented in ascending ranked
order of average Hausdorff distance)
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Figure B.5: WCS categories in the 75th percentile of unusual scores (presented in ascending ranked
order of average Hausdorff distance)




