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Abstract: Candida albicans and Streptococcus mutans are known to synergistically interact with each
other in the oral cavity. For example, glucosyltransferase B (GtfB), secreted by S. mutans, can bind to
the C. albicans cell surface, promoting dual-species biofilm formation. However, the fungal factors
mediating interactions with S. mutans are unknown. The C. albicans adhesins Als1, Als3, and Hwp1
are key players in C. albicans single-species biofilm formation, but their roles, if any, in interacting
with S. mutans have not been assessed. Here, we investigated the roles of the C. albicans cell wall
adhesins Als1, Als3, and Hwp1 on forming dual-species biofilms with S. mutans. We assessed the
abilities of the C. albicans wild-type als1∆/∆, als3∆/∆, als1∆/∆/als3∆/∆, and hwp1∆/∆ strains to
form dual-species biofilms with S. mutans by measuring optical density, metabolic activity, cell
enumeration, biomass, thickness, and architecture of the biofilms. We observed that the C. albicans
wild-type strain formed enhanced dual-species biofilms in the presence of S. mutans in these different
biofilm assays, confirming that C. albicans and S. mutans synergistically interact in the context of
biofilms. Our results reveal that C. albicans Als1 and Hwp1 are major players in interacting with
S. mutans, since dual-species biofilm formation was not enhanced when the als1∆/∆ or hwp1∆/∆
strains were cultured with S. mutans in dual-species biofilms. Als3, however, does not seem to play a
clear role in interacting with S. mutans in dual-species biofilm formation. Overall, our data suggest
that the C. albicans adhesins Als1 and Hwp1 function to modulate interactions with S. mutans and
could be potential targets for future therapeutics.

Keywords: Candida albicans; Streptococcus mutans; biofilms; polymicrobial biofilms; dual-species
biofilms; oral cavity; Als1; Hwp1; interspecies interactions; microbiota

1. Introduction

The opportunistic fungal pathogen Candida albicans is a normal colonizer of the oral
cavity, gastrointestinal tract, and genitourinary tract of healthy humans. However, due to
host environmental changes or immunocompromisation, C. albicans can become pathogenic
and cause superficial and disseminated infections [1,2]. Biofilm formation is a common
virulence factor of C. albicans that enhances its persistence and pathogenicity in the host [2].
In the oral cavity, C. albicans alone can form biofilms and cause infections [1], but C. albicans
can also form synergistic biofilms with certain bacteria, such as those in the Streptococcus
genus [3,4]. These interspecies interactions have been shown to enhance microbial coloniza-
tion [5,6] and persistence, particularly in the oral cavity [7,8]. The presence of Streptococcus
mutans, for example, is known to lead to the upregulation of common C. albicans virulence
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genes, such as HWP1, SAP4, and SAP6, when S. mutans and C. albicans are co-cultured to-
gether in biofilms [9–11]. In addition, these dual-species biofilms have been shown to cause
enhanced tissue invasion and damage to the oral epithelium compared to single-species
biofilms of S. mutans and C. albicans alone [9].

Fungal cell wall proteins are important for mediating cell–cell interactions between
C. albicans cells. For example, the C. albicans cell wall adhesins Als1 and Als3 in the
agglutinin-like sequence (Als) family are important for C. albicans cell–cell interactions
during single-species biofilm formation [12–14]. In addition, Hwp1, a protein expressed on
the C. albicans hyphal cell surface, is also important for promoting cell–cell interactions and
single-species biofilm formation in C. albicans [15,16].

On the bacterial side, S. mutans is known to secrete a glucosyltransferase, GtfB, that
has been shown to promote coaggregation between S. mutans and other microorganisms,
including C. albicans, enhancing dual-species biofilm formation [7,17,18]. GtfB has been
shown to bind to different sites along the C. albicans cell well [7,18], suggesting that specific
fungal cell wall components could be involved in mediating its binding.

Here, we investigate the roles of the C. albicans cell wall proteins Als1, Als3, and Hwp1
on dual-species biofilm formation between S. mutans and C. albicans. Our results reveal that
C. albicans Als1 and Hwp1 function to modulate interactions with S. mutans in the context
of dual-species biofilms.

2. Material and Methods
2.1. Experimental Design

Experiments followed established protocols designed to evaluate aspects of biofilm
formation [19]. Single-species and dual-species biofilms were compared to assess the roles
of C. albicans Als1, Als3, and Hwp1 proteins in interacting with S. mutans using C. albicans
mutant strains deleted for ALS1, ALS3, and HWP1, respectively. Single-species C. albicans
wild-type biofilms, single-species S. mutans wild-type biofilms, and dual-species C. albicans-
S. mutans wild-type biofilms were used as controls. Biofilms were formed on the bottoms
of 6-well or 96-well plates for 24 h to obtain mature biofilms. Subsequently, biofilms were
analyzed to assess optical density, metabolic activity, cell enumeration, biomass, thickness,
and architecture. Cell–cell interactions between microorganisms were visualized at the
cellular level via optical microscopy. Experiments were performed in triplicate unless
stated otherwise.

2.2. Strains and Media

All strains used in this study have been previously published and are listed in Table 1.
Deletion strains of C. albicans lacking ALS1, ALS3, and HWP1 as well as a double-deletion
strain lacking both ALS1 and ALS3 were used for the biofilm assays. In addition, an
S. mutans GFP-tagged reference strain was used.

Table 1. Strains used in this study.

Strain Source

C. albicans wild-type (WT) SC5314 [20]
S. mutans UA 159 [21]

S. mutans pDL278_P23-sfgfp [22]
C. albicans als1∆/∆ [15]
C. albicans als3∆/∆ [15]

C. albicans als1/als3∆/∆ [13]
C. albicans hwp1∆/∆ [16]

C. albicans als1∆/∆ + ALS1 [13]
C. albicans als3∆/∆ + ALS3 [15]

C. albicans hwp1∆/∆ + HWP1 [16]
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C. albicans strains were grown from −80 ◦C glycerol stocks at 30 ◦C on Yeast Ex-
tract Peptone Dextrose (YPD) (Thermo Fisher Scientific, Waltham, MA, USA) agar plates.
Overnight C. albicans cultures were grown at 30 ◦C with shaking at 225 rpm in YPD liquid
media. S. mutans strains were grown from −80 ◦C glycerol stocks at 37 ◦C with 10% CO2
on Brain Heart Infusion (BHI) (Thermo Fisher Scientific) agar plates. Overnight S. mutans
cultures were grown on BHI supplemented with 1% glucose (37 ◦C with 10% CO2). RPMI
1640 medium (Sigma Aldrich, St. Louis, MO, USA) was used for the biofilm assays because
it supports biofilm formation of both C. albicans and S. mutans [23].

2.3. Biofilm Growth Conditions

Cell enumeration using a hemocytometer relative to the optical density readings
was performed for each microorganism to establish a 1:1 ratio of each species in culture,
which was equivalent to an OD600 of 1 × 106 colony forming units per mL (CFUs/mL) for
C. albicans, and an OD600 of 0.15× 106 CFUs/mL for S. mutans. These CFUs/mL were added
to 6-well or 96-well plates for single-species biofilm formation and the same CFUs/mL
of each species was added to 6-well or 96-well plates for dual-species biofilm formation.
Plates were sealed with Breathe-Easy® sealing membranes and incubated at 37 ◦C for
90 min at 250 rpm shaking with 10% CO2. Cells were washed with phosphate-buffered
saline (PBS) to remove non-adhered cells and a fresh RPMI 1640 medium was added to
each well. Biofilms were grown for 24 h.

2.4. Standard Optical Density Biofilm Assay

The standard biofilm optical density biofilm assay was performed as previously
described [19]. Following biofilm growth on 96-well plates, the media were aspirated from
the wells, and the biofilm formed on the bottom of each well was measured according to
OD600 readings obtained using a plate reader. An average of 24 readings per well were
obtained and normalized by subtracting the OD600 reading of a blank well containing an
RPMI 1640 medium only.

2.5. Cell Metabolism Biofilm Assay

The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)
reduction assay was performed to measure the biofilm metabolic activity, as previously
described [19]. A mixture of 0.5 mg/mL of XTT (Sigma Aldrich) in PBS and 0.32 mg/mL of
phenazine methosulfate (Sigma Aldrich) in water was added to each well and incubated in
the dark for 30 min. After incubation, OD492 readings were taken in a plate reader.

2.6. Biofilm Cell Enumeration Assay

The biofilm cell enumeration assay was performed as previously described [19]. After
the 24 h period of biofilm formation, the media were aspirated from the 96-well plates,
and the biofilms were washed to remove non-adhered cells. The biofilm formed on the
bottom of each well was vigorously scraped using a pipette tip and resuspended in PBS.
Cell suspensions were homogenized and serially diluted in PBS. Aliquots were plated onto
YPD plates for C. albicans (grown at 30 ◦C for 48 h) and onto Mitis Salivarius Agar (MSA)
plates for S. mutans (grown at 37 ◦C for 72 h) to enumerate colony-forming units (CFUs) for
each species. We note that although C. albicans colonies can also grow on MSA plates, they
are clearly distinct from the S. mutans colonies, and supplementation of the medium with
antibiotics is not necessary. Additionally, with MSA plates, under these growth conditions,
S. mutans colonies come up first and are easily counted before C. albicans colonies begin to
appear on the plates.

2.7. Biofilm Biomass Determination

The biofilm biomass assay (i.e., dry weight assay) was performed as previously de-
scribed [19]. Biofilms were grown on the bottoms of 6-well plates. Media was aspirated
from the wells and PBS was added to each well. Biofilms were vigorously scraped and



Microorganisms 2023, 11, 1391 4 of 12

resuspended from the bottoms of each well using a pipette tip. Biofilm cell suspensions
were aspirated and filtered onto mixed cellulose esters membranes (Millipore, Burlington,
MA, USA) using a filtration device (Millipore). Membranes were subsequently dried for
24 h at 37 ◦C, and the weights of the membranes (in mg) were measured to obtain the dry
weights of the biofilms. Data were normalized by subtracting the average weight of the
control (media only) membrane.

2.8. Confocal Scanning Laser Microscopy (CSLM) Biofilm Assay

The confocal scanning laser microscopy (CSLM) biofilm assay was performed as
previously described [19], with slight modifications (detailed below). Representative
images of biofilms (n = 3 per group) were obtained via CSLM using a Zeiss LSM 880
upright confocal microscope. Biofilms were grown on the bottoms of silicone squares
for 24 h using the same biofilm growth conditions described above. Biofilms were fixed
with a formaldehyde solution (38% formaldehyde in water). C. albicans biofilms were
stained with Concanavalin A-Alexa Fluor 594 (Sigma Aldrich) and visualized using a
555 nm diode (red) laser. The S. mutans GFP-tagged strain was visualized via excitation at
488 nm (green). Z-Stacks were obtained at 652 × 652 pixels, imaging every 0.5 µm intervals
using a water-dipping 40X objective lens. The .czi files were analyzed using the project
stacks function in ImageJ to generate side views. Biofilm thickness was measured in µm
by taking the median thicknesses of each strain/condition (n = 3) using the Zeiss ZEN
software version 3.6. Three .czi files of each sample (containing a combined total of at
least 100 cells in a 0.5 µm interval) were used to quantify the average number of potential
physical interactions between C. albicans and S. mutans cells.

2.9. Optical Microscopy

Planktonic cultures of C. albicans and S. mutans were grown separately overnight in
YPD (for C. albicans), and BHI supplemented with 1% glucose (for S. mutans). Cultures
were diluted to an OD600 of 0.5 in an RPMI 1640 medium and co-cultured at 37 ◦C with
10% CO2 for 4 h, with shaking at 250 rpm. An aliquot of the co-cultures was visualized
using an EVOS FL microscope with a 60× oil immersion objective. Representative images
of potential physical interactions were obtained for three independent experiments. Three
images of each experiment (containing a combined total of at least 100 cells) were used
to quantify the average number of potential physical interactions between C. albicans and
S. mutans cells.

2.10. Statistical Analyses

Data were analyzed using the Statistical Package for the Social Sciences (SPSS) software
(version 22.0). Means and standard deviations were calculated. Based on the results of
Levene’s test for equality of variances, Student’s unpaired two-tailed t-tests for unequal
variance or one-way ANOVAs were performed. GraphPad Prism software (version 9.4)
was used to generate the graphs.

3. Results

To test our hypothesis that Als1, Als3, and Hwp1 play roles in dual-species C. albicans-
S. mutans biofilm formation, we first compared the biofilms formed by the single-species
and dual-species biofilms of each strain using the standard optical density biofilm assay [19],
which correlates with biofilm thickness. Using this assay, we found a synergistic interaction
between C. albicans and S. mutans, where an increase in optical density was observed for
the dual-species wild-type biofilms, compared to the single-species C. albicans wild-type
biofilms and the single-species S. mutans wild-type biofilms (Figure 1). We found that the
presence of S. mutans had no effect on the biofilm formation capacity of the C. albicans
als1∆/∆ or hwp1∆/∆ strains compared to the single-species als1∆/∆ or hwp1∆/∆ strains,
respectively; however, the presence of S. mutans strikingly increased the biofilm formation
capacity of the C. albicans als3∆/∆ strain compared to the single-species als3∆/∆ strain
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(Figure 1). We note that complementation (addback) strains als1∆/∆ + ALS1, hwp1∆/∆ +
HWP1, and als3∆/∆ + ALS3 restored the mutant phenotypes for dual-species biofilms back
to near wild-type levels (als1∆/∆ + ALS1, OD600 = 0.18 ± 0.01; hwp1∆/∆ + HWP1, OD600 =
0.16 ± 0.02; als3∆/∆ + ALS3, OD600 = 0.15 ± 0.02). Interestingly, the presence of S. mutans
impaired the biofilm formation capacity of the C. albicans als1∆/∆/als3∆/∆ double-deletion
strain compared to the single-species als1∆/∆/als3∆/∆ strain (Figure 1).
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deviations.

Similar results to the optical density biofilm assay were obtained for the XTT cell
metabolism biofilm assay and the dry weight biofilm biomass assay [19], where an increase in
metabolic activity (Figure 2) and biomass (Table 2) was observed for the dual-species wild-type
biofilms, compared to the single-species C. albicans wild-type biofilms and the single-species
S. mutans wild-type biofilms. In addition, the presence of S. mutans increased the metabolic
activity (Figure 2) and biomass (Table 2) of the C. albicans als3∆/∆ strain compared to the
single-species als3∆/∆ strain, but had no effect on the metabolic activity (Figure 2) or biomass
(Table 2) of the C. albicans als1∆/∆ or hwp1∆/∆ strains compared to the single-species als1∆/∆
or hwp1∆/∆ strains, respectively. Likewise, the presence of S. mutans reduced the metabolic
activity (Figure 2) and biomass (Table 2) of the C. albicans als1∆/∆/als3∆/∆ double-deletion
strain compared to the single-species als1∆/∆/als3∆/∆ strain.
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Table 2. Biofilm dry weights.

Strain
Dry Weight (Mean ± SD) (mg)

Single Dual

C. albicans WT 10.09 ± 0.26 12.03 ± 0.54 *
S. mutans UA159 1.88 ± 0.28 -

C. albicans als1∆/∆ 4.75 ± 0.22 5.16 ± 0.27
C. albicans als3∆/∆ 4.56 ± 0.23 8.06 ± 0.27 *

C. albicans als1/als3∆/∆ 4.43 ± 0.32 3.31 ± 0.27 *
C. albicans hwp1∆/∆ 3.38 ± 0.20 3.74 ± 0.24

* Statistically significant difference (p < 0.05) between single-species and dual-species biofilms according to
Student’s unpaired two-tailed t-tests assuming unequal variance.

To determine the number of cells of each species present in the biofilms, we next
measured the CFUs for each biofilm sample [19]. Overall, S. mutans CFUs were higher
in all dual-species biofilms compared to S. mutans CFUs in all single-species biofilms
(Figure 3), indicating that S. mutans benefits from C. albicans by increasing its cell popula-
tion. Furthermore, C. albicans CFUs were lower in dual-species biofilms of the C. albicans
als1∆/∆/als3∆/∆ double-deletion strain compared to the single-species als1∆/∆/als3∆/∆
strain (Figure 3). C. albicans CFUs were also lower in the single-species biofilms of the
als3∆/∆ strain compared to the dual-species biofilms of the als3∆/∆ strain (Figure 3).
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To assess biofilm architecture and thickness, we next performed confocal scanning
laser microscopy (CSLM) assays on the biofilms [19]. Thickness measurements of biofilms
were determined based on the CSLM medians of all images taken for a given strain and
condition and are reported in Table 3. We observed that wild-type dual-species biofilms
were overall thicker than C. albicans single-species biofilms as measured in the CSLM
side-view images (Figure 4; Table 3). In addition, as expected, all single-species C. albicans
mutant strains produced defective biofilms (Figure 4; Table 3). Consistent with our results
reported above for the other biofilm assays, the thicknesses of the biofilms of the als1∆/∆
and hwp1∆/∆ strains were similar between the single-species and dual-species biofilms
(Table 3). In addition, the presence of S. mutans in the dual-species biofilms increased
the biofilm thickness of the C. albicans als3∆/∆ strain compared to the single-species
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als3∆/∆ strain (Table 3). Overall, the CSLM results indicate that S. mutans benefits from the
presence of C. albicans in all dual-species biofilms. We note that single-species S. mutans
biofilms formed thin cell aggregates restricted to the bottoms of the substrates, while in
dual-species, the S. mutans cells were observed throughout the biofilms, often appearing
along C. albicans hyphal cells. Specifically, the CSLM images of the dual-species biofilms
showed predominance of S. mutans cells in close physical proximity to C. albicans-elongated
hyphal cells in the wild-type als1∆/∆, als3∆/∆, and als1∆/∆/als3∆/∆ strains (Figure 4;
Table 4). In dual-species biofilms with the hwp1∆/∆ strain, however, there appeared to be a
predominance of S mutans cells in close physical proximity to C. albicans around yeast-form
cells (Figure 4; Table 4).

Table 3. Median biofilm thicknesses from CSLM images.

Strain
Thickness (n = 3) (µm) ± SD

Single Dual

C. albicans WT 235 ± 10 265 ± 10
C. albicans als1∆/∆ 100 + 15 100 ± 10
C. albicans als3∆/∆ 55 ± 5 130 ± 10

C. albicans als1/als3∆/∆ 90 ± 10 70 ± 10
C. albicans hwp1∆/∆ 15 ± 5 15 ± 5
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Figure 4. CSLM biofilm assay. Biofilms were imaged using a Zeiss LSM 880 upright confocal
microscope. C. albicans biofilms were stained with Concanavalin A-Alexa Fluor 594 (red) and
visualized using a 555-nm diode laser. The S. mutans GFP strain (green) was detected via excitation
at 488 nm. Representative images are shown. All Z-Stacks were obtained at 652 × 652 pixels, with
imaging undertaken at 0.5 µm intervals using a water-dipping 40X objective. The .czi files were
analyzed using the project stacks function in ImageJ to generate side-views. Scales bars = 50 µm.
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Table 4. Average number of potential binding interactions observed using CSLM between C. albicans
and S. mutans cells under dual-species biofilm conditions.

CO-Culture
C. albicans Morphology (n = 3) (%) *

Yeast Hyphae

C. albicans WT + S. mutans WT 5 ± 2 52 ± 12
C. albicans als1∆/∆ + S. mutans WT 2 ± 1 50 ± 9
C. albicans als3∆/∆ + S. mutans WT 7± 4 45 ± 9

C. albicans als1/als3∆/∆ + S. mutans WT 5 ± 1 31 ± 8
C. albicans hwp1∆/∆ + S. mutans WT 14 ± 5 6 ± 3

* The hyphae category consists of both hyphae and pseudohyphae morphologies.

Given our observation that S. mutans cells appeared generally to be in close physical
proximity to C. albicans hyphal cells in the context of dual-species biofilms (Figure 4;
Table 4), we also performed optical microscopy of planktonic cultures to visualize in more
detail the physical proximity and/or potential cellular interactions occurring between
C. albicans and S. mutans under non-biofilm co-culture conditions. Co-cultures of the wild-
type C. albicans and S. mutans strains showed on average increased physical proximity of
S. mutans cells to C. albicans hyphal cells compared to yeast-form cells (Figure 5; Table 5).
Interestingly, co-cultures of the C. albicans als1∆/∆, hwp1∆/∆, and als1∆/∆/als3∆/∆ strains
with S. mutans showed strikingly fewer potential binding events on average compared to
co-cultures of the C. albicans wild-type strain with S. mutans (Figure 5; Table 5). Co-cultures
of the C. albicans als3∆/∆ strain with S. mutans showed similar potential binding events of
S. mutans, specifically to C. albicans hyphal cells, compared to co-cultures of the C. albicans
wild-type strain with S. mutans (Figure 5; Table 5).

Table 5. Average number of potential binding interactions observed via optical microscopy between
C. albicans and S. mutans cells under planktonic conditions.

Co-Culture
C. albicans Morphology (n = 3) (%) *

Yeast Hyphae

C. albicans WT + S. mutans WT 0 ± 1 18 ± 4
C. albicans als1∆/∆ + S. mutans WT 0 ± 0 3 ± 2
C. albicans als3∆/∆ + S. mutans WT 0 ± 0 22 ± 6

C. albicans als1/als3∆/∆ + S. mutans WT 0 ± 0 4 ± 2
C. albicans hwp1∆/∆ + S. mutans WT 1 ± 1 2 ± 1

* The hyphae category consists of both hyphae and pseudohyphae morphologies.
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Figure 5. Optical microscopy cellular images of planktonic co-cultures of C. albicans and S. mutans.
Representative images are shown that were taken using an EVOS FL microscope with a 60X oil
immersion objective. Red arrows indicate potential binding events of S. mutans along C. albicans cells.
Scales bars = 50 µm.

4. Discussion

The oral cavity is home to thousands of microorganisms existing in biofilm microbial
communities and is an important niche in the study of interspecies interactions [24,25].
The opportunistic fungal pathogen C. albicans and the opportunistic bacterial pathogen
S. mutans are prevalent microorganisms in the oral cavity [1,26], where they are known
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to benefit from one another’s presence [7,8]. When C. albicans and S. mutans are grown
together in biofilms under oral cavity conditions, the presence of S. mutans has been shown
to enhance fungal virulence by increasing the yeast–hyphal transition in C. albicans [8,9]. In
addition, under oral cavity conditions, C. albicans has been shown to acidify its environment,
thereby supporting the growth and metabolism of S. mutans [27]. Together, C. albicans and
S. mutans can form pathogenic dual-species biofilms in the oral cavity that can lead to the
development of caries and other oral diseases [9].

Cell–cell interactions between C. albicans and S. mutans are thought to occur through
physical binding events between proteins that are either already present on the cell surface
and/or that are secreted by one microorganism to mediate binding to the other microor-
ganism [28,29]. For example, glucosyltransferase B (GtfB), secreted by S. mutans, can bind
to the C. albicans cell surface, promoting dual-species biofilm formation between the two
species [17]. However, the C. albicans factors mediating interactions with S. mutans are
unknown. Here, we investigated the roles of the fungal cell surface adhesin proteins Als1,
Als3, and Hwp1 in interacting with S. mutans.

Als1 is a GPI-anchored adhesin that is involved in C. albicans single-species biofilm
formation, cell–cell and cell-surface interactions, as well as interactions with the host
epithelium [14,15,30]. Als1 is known to be required for physically interacting with the
oral bacterium Streptococcus gordonii [31], and thus it is feasible that Als1 could be a key
player in mediating interactions with other oral bacterial species, such as S. mutans. Als3
is a GPI-anchored adhesin with 88% amino acid sequence similarity to Als1 [32] that is
involved in C. albicans single-species biofilm formation and is known to play functionally
redundant roles with Als1 [13,15]. Given its functional redundancy with Als1, we reasoned
that Als3 could also be a key player in mediating interactions with S. mutans. Hwp1 is a
well-known C. albicans adhesin that is expressed only on hyphal cells and is covalently
linked to the fungal cell wall via a remnant of its GPI anchor [33,34]. Like Als1 and Als3,
Hwp1 is also important for C. albicans single-species biofilm formation [16,35], and we
reasoned that it could also be a candidate cell-surface protein for mediating interactions
with S. mutans. Based on this information, we hypothesized that Als1, Als3, and Hwp1
play roles in interacting with S. mutans during dual-species biofilm formation.

To test our hypothesis, we assessed the abilities of the C. albicans wild-type als1∆/∆,
als3∆/∆, als1∆/∆/als3∆/∆, and hwp1∆/∆ strains to form dual-species biofilms with
S. mutans by measuring the optical density, metabolic activity, cell enumeration, biomass,
thickness, and architecture of the biofilms. We also performed confocal and optical mi-
croscopy assays under biofilm and planktonic conditions to quantify potential binding
interactions occurring between C. albicans and S. mutans cells, where we observed that
S. mutans cells were generally found to be in close proximity with C. albicans hyphal cells
rather than yeast-form cells. We observed that the C. albicans wild-type strain formed
enhanced dual-species biofilms in the presence of S. mutans in all of the different biofilm
assays, confirming that C. albicans and S. mutans synergistically interact in the context
of dual-species biofilms. Our results revealed that C. albicans Als1 and Hwp1 are major
players in interacting with S. mutans since dual-species biofilm formation was not en-
hanced when the C. albicans als1∆/∆ or hwp1∆/∆ strains were cultured with S. mutans
in dual-species biofilms. The role of Als3, however, in interacting with S. mutans is not
as straightforward. In general, we observed that when the C. albicans als3∆/∆ strain was
cultured with S. mutans in dual-species biofilms, biofilm formation was rescued to varying
degrees depending on the biofilm assay used. In all of the assays, the rescue was within
or close to wild-type levels, indicating that Als3 does not seem to play a clear role in
interacting with S. mutans in dual-species biofilms. Finally, in all of the assays used, the
combined absence of Als1 and Als3 in the als1∆/∆/als3∆/∆ strain showed a detrimental
impact on dual-species biofilm formation beyond that of either of the single als1∆/∆ or
als3∆/∆ strains alone. Although there is not a clear-cut explanation for this finding, one
possibility is that when both C. albicans Als1 and Als3 are absent, and with the additional
presence of S. mutans cells, the overall structural integrity of the dual-species biofilm is
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disrupted. We note that our dual-species biofilm experiments were performed using a
1:1 ratio of S. mutans-to-C. albicans cells to seed the biofilms. We chose this ratio so that each
species could be equally represented irrespective of their cell size differences and because
we obtained robust dual-species biofilms under these seeding conditions. Nonetheless, it is
possible that the dual-species biofilm architectures and interactions that we observed here
could be population-dependent and would change if different seeding ratios were used.

Given our findings that C. albicans Als1 and Hwp1 function to modulate interactions
with S. mutans, and that these two proteins are located on the C. albicans cell surface, Als1
and Hwp1 could be promising therapeutic targets to consider in the future development of
novel therapeutics to treat polymicrobial biofilm infections.
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