
UC Irvine
UC Irvine Previously Published Works

Title
Vulnerable GPU Memory Management: Towards Recovering Raw Data from GPU

Permalink
https://escholarship.org/uc/item/4f98q66w

Journal
Proceedings on Privacy Enhancing Technologies, 2017(2)

ISSN
2299-0984

Authors
Zhou, Zhe
Diao, Wenrui
Liu, Xiangyu
et al.

Publication Date
2017-04-01

DOI
10.1515/popets-2017-0016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f98q66w
https://escholarship.org/uc/item/4f98q66w#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Vulnerable GPU Memory Management: Towards
Recovering Raw Data from GPU

Zhe Zhou, Wenrui Diao,
Xiangyu Liu

The Chinese University of
Hong Kong

{zz113, wr013,
lx012}@ie.cuhk.edu.hk

Zhou Li
ACM Member

lzcarl@gmail.com

Kehuan Zhang, Rui Liu
The Chinese University of

Hong Kong
{khzhang,

ruiliu}@ie.cuhk.edu.hk

ABSTRACT
In this paper, we present that security threats coming with
existing GPU memory management strategy are overlooked,
which opens a back door for adversaries to freely break the
memory isolation: they enable adversaries without any priv-
ilege in a computer to recover the raw memory data left by
previous processes directly. More importantly, such attacks
can work on not only normal multi-user operating systems,
but also cloud computing platforms.

To demonstrate the seriousness of such attacks, we recov-
ered original data directly from GPU memory residues left
by exited commodity applications, including Google Chrome,
Adobe Reader, GIMP, Matlab. The results show that, be-
cause of the vulnerable memory management strategy, com-
modity applications in our experiments are all affected.

1. INTRODUCTION
Graphics Processing Unit (GPU) has become an indis-

pensable component in today’s computing systems. To effi-
ciently handle graphic processing tasks, its architecture can
support highly parallel computations. This distinctive fea-
ture also extends its capabilities beyond graphic process-
ing: along with the emerging of GPGPU (General-Purpose
Computing on GPU) technique, GPU is utilized for a broad
spectrum of computing tasks, like genome sequencing, signal
processing, etc.

Unfortunately, the boost in performance sacrifices secu-
rity. For efficiency, discrete GPUs are equipped with ex-
clusively used and heterogeneous memory system, which is
managed by GPU independently and is out of the control
of CPU, the center of the computing system. Such design
introduces the potential of memory isolation issue: isolation
policies enforced by operating system and executed by CPU
may not identically performed.

The security issue regarding GPU memory management
was overlooked, because the undocumented and close-source
design memory system hindered people’s way to realize its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

(a) Address Bar

(b) Tab Caption

Figure 1: Recovered image From GPU memory indicating
the URL of the displayed web page

seriousness. No corresponding patch has been released by
the mainstream GPU vendors since the first time people
cast doubt on the security of the strategy [9]. The reported
security potention was labeled as low-risk, because the data
stored in the GPU memory cannot be directly recovered due
to the undocumented structure. Even in the latest study,
side-channel attacks over the GPU disclosed users’ browsing
history, but still didn’t expose the seriousness.

In this paper we investigate this problem in-depth and
argue that the security risks of contemporary GPU
memory architectures are underestimated. To this
end, we examine possible attacks that can recover raw data
from GPU memory residues left behind by innocent appli-
cations and extract sensitive information within. Our study
and evaluation results show that adversaries are indeed able
to get original images, texts and matrix data that are all
highly sensitive.

The path to successful attack is however obscured. We
have to overcome several challenges, especially in image re-
covery. We need to identify tiny image-like objects (varies
from several kilobytes to several megabytes) and their for-
mats from a big memory space (usually in several gigabytes).
We also need to infer image’s layout, i.e. the length and
width. To point out, such information is not preserved in
GPU memory. We tackle the first challenge through exploit-
ing the unique combinations of the byte values of image pix-
els. For the second challenge, we design a novel algorithm
based on one key insight on image data: when examined in
frequency domains, the similarities between adjacent rows
of an image should show some cyclical pattern, and in ideal
situations, the cycle is equal to image width. With these
techniques, the boundary and format of an image can be
determined and the image can be recovered without quality
loss.

The consequences of the vulnerable memory management
strategy presented in this paper are much more serious than
previous researchers expected. First, the raw data recov-

ar
X

iv
:1

60
5.

06
61

0v
1

 [
cs

.C
R

]
 2

1
M

ay
 2

01
6

ered from memory is highly sensitive. While previous re-
searchers thought GPUs have some undocumented mecha-
nism to hide the plain text memory, such that only side-
channel information like distribution statistics were used
to infer what was processed on GPU [14]. Second, our
method can work with a wide spectrum of commodity GPU-
accelerated applications. We selected some popular GPU-
accelerated applications with large user base to test our at-
tack, including Google Chrome (browser), Adobe Reader
(document processor), GIMP (image processing), Matlab
(scientific computing). All of them are vulnerable in the end.
For example, Google Chrome employs GPU to perform high
speed page rendering, and we are able to reconstruct the
image fragments within address bar, tab and page content.
Examples of recovered address bar and tab are shown in Fig-
ure 1a and Figure 1b and the web site address can be easily
recognized from them. What’s more, we show that account
name and even email titles of a user can also be obtained
(see Section 5.4). Another interesting case is Adobe Reader,
in which we show the text fragment embedded within PDF
document can be recovered. Considering nowadays GPU
acceleration is increasingly adopted by mainstream software
(e.g., Microsoft Office and Libre Office), it is expected that
more and more sensitive data would be sent to GPU for
processing, and then exposed to adversaries if the attacks
are launched. Third, besides the traditional multi-user sys-
tems, attacker can also launch attacks on the virtualized
platform (e.g., in cloud scenario), which further extends the
victim population to those well protected systems adver-
saries could not access directly.

Contributions. We summarize this paper’s contribu-
tions as follows:

• We firstly identified that GPU memory management
strategy is vulnerable. We found that the GPU memory
management strategy can be exploited by malicious
programs to cross the memory isolation boundary to
get the raw memory data belonged to other processes,
which is highly risky and leads to much more serious
consequences than researchers expected before.

• A novel methodolgy to recover original images from
GPU memory residues. We proposed a new approach
that can automatically identify and recover images from
the GPU memory residues left behind by legitimate
applications. Based on our insights on image data and
signal processing techniques, we designed a new al-
gorithm that can determine image layout and extract
images effectively. Compared with previous works on
GPU security issues, our approach is the first to show
that original images and sensitive information can be
directly recovered from GPU memory residues.

• In-depth evaluation. We evaluated our attacks against
popular applications with each coming from one typ-
ical use of GPUs, including Web browsing, document
processing, photo editing, scientific computing etc. The
results show that all of them are vulnerable to such
attacks. Besides the ordinary multi-user systems, we
further tested our approach on virtualized platforms
and find it also works.

Roadmap. The rest of the paper is organized as follows.
Section 2 presents background knowledge around GPU ar-
chitecture and its security implications. Section 3 describes

the adversary model and our assumptions. Section 4 de-
scribes how to get memory residues and how the algorithm
recovers image from them. Section 5 elaborates the test set-
tings and evaluation results. Section 6 summarizes related
works, followed by Section 7 that concludes the paper.

2. BACKGROUND
In this section, we first overview the computing model of

GPU. Then the security issue about the memory manage-
ment is reviewed in the end and we highlight the contribu-
tions of our attack.

2.1 GPU Computing Model
GPU is responsible for highly parallel computing works,

which resulted to a very different architecture from CPU.
GPU has a large amount of computing units and its inde-
pendent memory chip. To compute, data must be copied
from main memory that is controlled by CPU and OS to
GPU memory that is invisible to CPU. GPU manages and
operates its own memory. After GPU finished the comput-
ing, the result is copied back to main memory.

Users can only operate GPU as well as the GPU memory
through APIs provided by GPU like OpenCL or OpenGL.
OpenCL APIs already allow users to operate memory nearly
natively.

2.2 Vulnerabilities in GPU
GPU is designed for the purpose of more efficient com-

puting, but the security implications are not fully studied.
The GPU manages its own memory, neglecting the policy
enforced by operating system, which resulted in an inconsis-
tency between two memory management strategies. Main
memory managed by CPU is not cleared immediately when
it is freed, but operating system guarantees that the memory
read by a process without any initialization is zero. GPU
however does not provide such guarantees. Previous works
demonstrated that the the memory read out without initial-
ization is not zero.

Without documentation to the memory management strat-
egy, people did not recover data directly from the memory,
but it does not stop researchers from launching side-channel
attacks. For example, Lee in [14] demonstrated that the
memory has different bytes distribution when user visit dif-
ferent web pages, so it can be inferred that which sites are
visited by the user, though the bar of the attacks is high:
attackers must profile a pile of web pages to infer which site
is visited by the user [14]. And the granularity of the in-
formation recovered is coarse: only which one among a set
can be inferred, so it cannot be inferred if the user visits
unpopular web sites.

2.3 GPU in Virtualized environments
Nowadays, all mainstream cloud platforms provide GPU

equipped virtual machines [5]. Different from other resources
like network and storage which can be easily shared by dif-
ferent VMs, a GPU is often assigned to a dedicated VM
in virtualized environment [15]. The technique assigning a
GPU to a VM is named GPU Passthrough.

With a passed through GPU, computation using GPU
on VM can reach bare-metal level. After the VM finishes
its computation and shuts down, the GPU of hypervisor is
kept powered up because physical machine is not shutdown.

Then hypervisor can assign the GPU card to another VM
depending on scheduling.

3. ADVERSARY MODEL
The adversary model in this paper is the same as what

has been specified by previous works [15, 14, 10]. The tar-
geted machine is equipped with discrete GPU which sup-
ports computing APIs (i.e., OpenCL or CUDA). We assume
that an adversary has successfully acquired the permission
to run malicious code under an unprivileged account on
the target machine. What the adversary wants to do is to
bypass memory protection and get sensitive information left
by other processes by only reading and analyzing the GPU
memory without special privilege.

In cloud setting, we assume that an adversary can rent a
GPU equipped virtual machine from service provider. Vic-
tim users also possess a virtual machine on the same physical
machine. Once the victim shutdowns his VM and the adver-
sary starts his VM, adversary can dump the GPU memory
left by the VM of victim, because GPU does not lose power
and does keep all the data on memory during the VM switch-
ing.

The adversary only needs the capability to access (read
and write) the GPU memory, which does not require any
restricted permission. By writing the GPU memory, the ad-
versary could mark out memory regions not possessed by
applications, and by reading the GPU memory, the adver-
sary could dump current GPU memory or examine the sta-
tus of GPU memory allocation (e.g., to identify the sudden
and large increase of available memory indicating that the
victim application just deallocated a large chunk of used
memory [14]).

4. IMAGE RECOVERING
In this section, we propose a method to recover graphi-

cal data from the GPU. The most important task of GPU is
graphic processing, so if attacker can recover original graphic
data from the GPU, it implies that the GPU memory man-
agement strategy is highly vulnerable. We first present tech-
niques about how to identify image-like tile from GPU mem-
ory. The boundary identified in the step is not precise.
Then, we describe how to reconstruct image from the tile,
i.e., how to infer the image layout including image width and
length. At last, the paper shows how to precisely rearrange
the recovered image.

4.1 Tile Extraction
When an application utilizes GPU to accelerate image ren-

dering, the image content will be loaded into GPU memory
at some point. Our initial step is to extract the data blocks
(or tiles) which are likely to contain or be part of mean-
ingful images. This turns out to be a non-trivial task for
two reasons. First, the metadata about the image objects
is not stored in GPU memory. In other words, the location
and layout of the images objects are unknown to adversary.
Second, GPU is also used for general-purpose computations
like encryption and non-graphical blocks might be left in
memory and mixed with image objects. We leverage several
distinctive features of images to identify the tiles. We modi-
fied the prime-probe method used in [14] to extract memory
and the process is elaborated below:

Memory initialization. Our attack targets images left by

applications of interests (like browser) and the data gener-
ated in other cases are not considered. The memory regions
which are used to keep such images are recognized during
the memory initialization procedure. Before the start of
the victim applications, the malicious program marks the
whole video memory with 0xff (e.g., 512 MB for AMD
Radeon HD 6350) using GPGPU API (e.g., clCreateBuffer
or clEnqueueWriteBuffer in OpenCL). Thus, the data left
by applications terminated ahead are all wiped out and the
newly allocated data can be attributed to the targeted run-
ning applications.

Data blocks extraction. After the memory is initialized,
the malicious program runs at the background and queries
for the size of available memory periodically. If the size
of available memory increase, a chunk of memory is deallo-
cated by the running applications, and the malicious pro-
gram will collect the memory residues. Here, we need to
check if the applications of interests are running to avoid
unnecessary analysis, i.e., collect memory used by irrelevant
applications. The list of running processes is queried at the
same time (e.g., we use ps command to read process list
on Linux platform) and the analysis is continued only if
the targeted applications are within the list. We again use
GPGPU API (e.g., clEnqueueReadBuffer in OpenCL) to
extract meaningful data blocks. Since GPU processor does
not clear the memory residues of applications and develop-
ers in most cases do not wipe out the used memory, there
is high chance that sensitive information is remained in the
dump.

One may think that the images can be easily extracted
from memory dump by removing all 0xff bytes. Unfortu-
nately, this simple approach is ineffective as 0xff is also
legally used to represent pixel’s color and alpha component
value, so if naively remove all oxff , graphical data will be
broken down.

This motivates us to identify blocks constituting the image
and then stitching them together. Our strategy is to divide
the dumps into blocks of fixed size, and merge the ones that
are consecutive and used by applications. The block size
has to be determined first. The size should be smaller than
a image because otherwise two or more images would be in
the same block and be regarded as one image. The block
size can neither be too small because otherwise big white
chunk (all oxff trunk) in a image would break image down.
After a lot of experiments, we chose 4K as the block size that
works well in most cases. Therefore, we split the memory
into 4K-size blocks and filter out the blocks that are filled
with 0xff as they are probably not used after initialization.
We also remove the blocks that are all 0x00 since they are
clean blocks zeroed out by developers or OS. The blocks are
concatenated into a bigger block if they are consecutive
in memory space, and we call it tile. After this step, the data
blocks left by victim processes are extracted.

The structure of the graphical data is unknown. As men-
tioned before, GPU manufacture didn’t provide documen-
tation about how they map the logic address into physical
address. But, at least, we are convinced that developer will
not disorder the memory of an image in the logic address
space, because computing API does not provide 2D array
support so developers often store 2D objects like image in
GPU memory using 1-D vector.1

1We search the term ”opencl 2D array” in Google, and the

We found GPUs do have a lot of storage techniques to
achieve higher memory performance. For example, accord-
ing to the advertising document, recent GPUs have memory
compression which automatically compresses the data to be
stored into the memory using delta algorithm and decom-
presses the memory automatically when it is accessed. There
raises a question that whether those techniques will disorder
the pixels in the tiles. After reviewed those techniques, we
found that they are all transparent to upper layer, which
means that no matter how data are re-ordered, compressed
and encoded, the data read out by program are the original
ones. According to our evaluation result, the byte sequences
in data blocks are retained.

Data blocks pruning. The obtained blocks in the last step
still need further pruning - blocks might be used to keep non-
graphical data and they are not considered by us for now.
Favorably, the distinctive structure of image’s data helps us
to identify the graphical blocks. For one image, each pixel
is represented by a 4-byte word, or 4 8-bit channel. The 4
channels correspond to color Red (R), Green (G), Blue (B)
and Alpha component (A) value of the pixel separately. The
alpha component value indicates the level of transparency of
the pixel. From the survey over a large number images, we
found that this value is either 0x00 or 0xff , indicating the
pixel is mostly set to be nontransparent or the channel is
unused. So, we can judge if the data block is graphical by
checking its alpha channel values.

For a graphical data block, we also need to determine the
order of channels to guide the later reconstruction step. In
theory, developers can choose any order but they usually use
the first or last byte of the 4-byte word for alpha channel
and sequentially align RGB values for compatibility. The
common image format is therefore either RGBA or ARGB.
To find out which format is used, we compute the percentage
of 0xff or 0x00 stored in each byte of 4-byte word (p), and
compare it against a threshold (th). If p > th for the last
byte, the image format is considered as RGBA. If p > th
for the first byte, the image format is considered as ARGB.
Otherwise, the block is discarded. In the evaluation, th is
set to 20%.

At last, we remove the heading and trailing elements filled
with values of 0x00 or 0xff and only keep the part in the
middle (It does not mean that the boundary is now precisely
determined). Ideally, a tile contains and only contains one
image and this has been proved to the dominant case by
our pilot experiments. However, we did observe a small
portion of tiles which contain parts from two or more images,
because the locations of the included images in the memory
space are too close.

4.2 Image Layout Inference: Problem
After a tile is extracted, the next step is to infer the layout

information associated with the embedded image. Assume
the tile occupies N 4-byte words in memory and the image
occupies W 4-byte words (W ≤ N) sequentially. The image
could reside at any sub-area of the tile. We denote the num-
ber of 4-byte words ahead of the image as s and the number
after as e and N = s+W + e. We need to identify s and e
to retrieve the sub-area. Since an image is represented with
a 2-dimensional matrix, we also need to identify the number
of rows (say, n) and columns (say, m, which equals to W/n)

top results all advise readers to use the code statement like
“#define A(x,y) a[x*width + y]” to emulate 2D array.

to recover the original image.

(a) Normal Image (b) Signal-less TV Image

Figure 2: Normal Image and Random Image

Commonly, the size of an image ranges from several KB
to several MB. It is infeasible to enumerate all the combina-
tions of s, e and n, and then let the attacker to decide which
combination can lead to the restoration of the original im-
age. On the other hand, an image (especially the sensitive
one) is quite different from other artificially generated data:
there lies strong similarity between consecutive rows
and consecutive columns (see Figure 2a). Another favor-
able condition is that though an image could be compressed
when stored at hard disk or transmitted through network,
it is decompressed and usually loaded into matrix structure
in GPU memory and the similarity is preserved. Trans-
parent memory acceleration techniques may not break the
similarities because hardware guaranteed that upper layer
application will not observe their existence except perfor-
mance increases. We leverage this key insight to infer n or
m and henceforth s and e (the details are described in Sec-
tion.4.3). Our approach, however, is not designed to recover
randomly generated image like the screen of analogy tele-
vision when there is no signal (see Figure 2b) or an image
filled with identical pixel. These types of images usually do
not enclose sensitive information and are disposed.

4.3 Image Layout Inference: Approach
When processed by GPU, an image is usually stored in a

2-dimensional matrix (denoted by a), and the value of a pixel
can be read from a[i, j], where i and j denotes the ith row
and jth column in the image matrix. On the other hand,
a tile is just a sequential data block represented by an 1-
dimensional vector (denoted f) while a[i, j] = f [s+i×m+j].
Our goal is to infer the correct s and m which fulfills this
equation. As stated in Section 4.2, the consecutive rows
of an image are similar (a[i, :] is similar to a[i + 1, :], for
0 ≤ i ≤ n − 2), and we leverage this constraint to find the
correct s and m.

However, we still need an appropriate metric to quantify
similarity between rows. By examining different metrics, we
found out the best one is the amplitude spectrum in the fre-
quency domain of image matrix. If m is correctly inferred,
the distribution of element values in each row should be
similar, leading to strong periodicity of row values. In the
subsequent paragraphs, we introduce an algorithm which
first infers m and then derives s based on m. Our approach
is demonstrated through four types of tiles with increasing
difficulty for processing. For each type, we remove one con-
straint from the previous type and the final type reflects
the tile extracted from genuine GPU memory dump. In the
end, we solve the number of redundant 4-byte words ahead
and behind the image (s and e). Throughout this section,
we use tiles shown in Figure 3 as examples to motivate our
approach.

Tile type I We start from an easy case where the similarity
can be trivially quantified. We assume there is no trailing
and leading redundant pixels and all rows are identical (s =
0, e = 0 and ∀i1, i2 ∈ [0, n − 1], a[i1, :] = a[i2, :]). We
illustrate such type of tile in Figure 3f in which one row
filled with distinct pixels (see Figure 3e) is duplicated for
three times. In this case, f is turned into a periodic function
where f [x] = f [x + m], ∀x ∈ [0, (n − 1) × m − 1] and m
is the interval. Here, we leverage spectrum produced by
FFT (Fast Fourier Transform) algorithm to capture this
interval. Fourier Transform can decompose a signal from
time domain into frequency domain and is widely used in
signal processing and image processing, etc[4, 3].

We denote amplitude spectrum of f produced by FFT by
F (pixels are gray-scaled before FFT). We studied F and
found out that the interval between two non-zero compo-
nents equals to n, the number of rows. So, in this case, the
image can be easily recovered, we demonstrate the prove for
this observation below:
F for this tile is illustrated in Figure 3b and Figure 3e

shows the spectrum of only a row F0(k). F (kn) = F0(k)
for k = 0, 1, 2, ..., (m − 1)) and F (kn) are non-zero (we call
them main components) while the the amplitudes for other
components are zero, according to the properties of period-
ical signal. So, the interval between two neighboring main
components equals to the number of rows (n) of the image
matrix. The width m can be computed through N/n and
the image is therefore recovered by reshaping the tile us-
ing those parameters. With the parameters, image can be
recovered.

Tile type II. Images we encountered normally do not have
such a property that all rows are identical. In this case,
we assume that neighboring rows are similar but not always
identical. Still, we assume there is no element in the tile
ahead or end. We found that again FFT can be used to
infer the number of rows and columns of the image matrix.

As an example, we assume the tile looks like Figure 3g and
the amplitude spectrum F of the tile vector f is illustrated
in Figure 3c. This time, the main components of F (k) occur
when k = 0, n, 2n, ..., (m− 1)× n, which is the same as the
spectrum of tile type I. However, due to the differences be-
tween two neighboring rows, the main components disperse
and the amplitudes of the non-main components are greater
than zero now. Still, they are much smaller than those of
main components and the main components can be easily
identified. We explain the scenario below:

We introduce n virtual images v1, ..., vn and all of them
have the same layout as the original image. Particularly,
vi is constructed through replicating the ith row of a for n
times, thus ∀i, x ∈ [0, n− 1], vi(x, :) = a[i, :]. We denote the
amplitude of vi for the kth element by Vi(k) and obviously
it equals to Fi(

k
n

) according to the previous analysis, if k is
a multiple of n. For a sample tile shown in Figure 3g, the
value of an element can be represented by f(i× n+ j) and
also by Fi(k) through inverse FFT:

f(i× n+ j) = vi(x, j) =
1

N

N−1∑
k=0

W
−k(xm+j)
N Vi(k)

=
1

N

N−1∑
k=0

W
−k(xm+j)
N Fi(

k

n
)

=
1

N

m−1∑
k=0

W−knj
N Fi(k)

where WN is the twiddle factor

The above equation suggests that f consists of sub-components
with frequency of the multiple of n. Based on our observa-
tion that the consecutive rows vary slightly, the differences
between Fi(k) and Fi+1(k) should also be small, and the
combined F (k) should be large when k is the multiply of n.
For other k, the combined F (k) is still small, which makes
the main components stand out at 0, n, 2n, ..., (m − 1) × n.
Similarly, we compute the interval between two main com-
ponents to derive the value of n and then m.

Tile type III. Next, we consider the case that there are a
block of pixels ahead of and another block of pixels trailing
the original image object and the value of each element in
the blocks is zero. As stated in the theorem in DFT [3],
the amplitude spectrum does not change when circularly
shifting the original signal. So the leading block ahead of
the image, if any, can be shifted to its end without any
impact to the spectrum. We illustrate the image with both
leading and trailing block in Figure 3h and the image with
only trailing block in Figure 3i and their spectrum are the
same (see Figure 3d). We also assume the trailing block is
filled with zero to avoid the disturbance of non-zero padding
to the original spectrum in this simplified condition.

0 m 2m

A
m

pl
itu

de

Frequency

Figure 4: Spectrum of F (k) generated from tile type III

In the area of signal processing, padding zero value to
the end of the signal could enhance the resolution of the
spectrum. In other words, the number of points used to ob-
serve the spectrum increases. Comparatively in this case,
after FFT, the interval between two consecutive main com-
ponents will no longer equal to the height (n) of the original
image. For instance, the main components are located at
kn′ in Figure 3d instead of kn in Figure 3c even though
the size of two images are the same. On the other hand,
theoretically, the number of the main components is not
changed, which can be used to infer the width (m) of the
image. Yet, this approach is not robust when the main

0 1 2 ... m−1

Am
pl
itu
de

Frequency

(a)

0 n 2n ... (m−1)*n

Am
pl
itu
de

Frequency

(b)

0 n 2n ... (m−1)*n

Am
pl
itu
de

Frequency

(c)

0 n’ 2n’ ... (m−1)*n’

Am
pl
itu
de

Frequency

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure 3: Images used to illustrate 3 types of images

components are not prominent (e.g., the spectrum of com-
ponent at (m − 1) ∗ n′ is close to the neighboring compo-
nents in Figure 3d). We solve this problem through
another round of FFT over F (k) and pick the main
component with the highest spectrum from the re-
sult, denoted FF (k). This approach works because the
main components occur every n′ points, which suggests its
occurring frequency is m. Figure 4 illustrates the spectrum
of Figure 3d. Clearly, the component with the maximum
amplitude is located at m after filtering out low frequency
components by HPF (High Pass Filter). While the main
components at km (k > 1) also show much higher ampli-
tudes than neighboring components, their amplitudes are
lower than the amplitude of component at m. This can be
explained from the nature of image: the similarity between
a pair of interleaving rows should be relatively high but still
lower than that between a pair of consecutive rows. After
m is computed, we can derive n by dividing m from N . n
might be inaccurate since tile in this case contains more el-
ements than the image object, which will be adjusted in the
padding removal step.

Prior to picking out main components from FF (k), we re-
move the low-frequency components first (achieve HPF).
The low-frequency components could have high spectrum
amplitude (e.g., when frequency is 0 its values is smaller than
the value at m), because neighboring pixels are all similar,
which results in a lot of low-frequency components. We use
a threshold here to prune the low-frequency components. A
threshold too high (more than m) would directly filter out
the right answer. If it is too low, a wrong main component
would be selected. We set it to the first frequency point
whose amplitude below the mean value, because we found
the low frequency components decreases very fast. Their val-
ues will decrease below the mean value within some points
while the first main component is much higher than mean.

Non-zero Paddings. We assume the paddings ahead and
after the image are all 0 in the last simplified case which does
not hold for all tiles extracted from real-world GPU dump.
They could be filled by any value. The spectrum would
be changed when they happen to show different periodicity
and are the tile is not long enough. The chances, however,

are low, given the quantity of meaningful pixels are usually
much more than the paddings. Therefore, the approach
for tile type III can be applied to calculate m for this case
(both leading and trailing paddings are non-zero) without
any modification.

Algorithm 1 ImageRecover

Input: f ; . f is the tile
F1 ← abs(fft(f));
F2 ← abs(fft(F1));
Fm ← mean(F2);
F2 ← F2/Fm . Normalization
cutFreq ← locateF irstSmallerThanOne(F2);
F2(0 : cutFreq − 1)← 0; . High Pass Filter
m← locateMax(F2);
if F2(m) < θ0 then

Throw(notEnoughLength)
end if
N ← length(f);
n← bN/mc;
a← reshape(f(0 : n ∗m− 1), n,m);

for i ∈ [0 : m− 1] do
dist[i]← distance(a(:, i), a(:, (i+m− 1)mod m))

end for
dist← dist/mean(dist); . Normalization
s← locateMax(dist);
s′ ← locateSecond(dist);
if dist(0) < θ1 && dist(s)/dist(s′) > θ2 then

n← b(N − s)/mc;
a← reshape(f(s : s+ n ∗m− 1), n,m);

end if
Output: a;

Padding removal. Finally, we propose ways to compute s
and remove the leading block. Without removing the leading
block, the recovered image will not be correctly aligned, such
an example is shown in Figure 3j. We elaborate how to
derive s for reshaping the image (see Figure 3k) below.

Our computation is again based on the observation that
the consecutive columns should be sufficiently similar. Imag-

ine the elements of a tile are placed sequentially into a matrix
after m is correctly inferred (see Figure 3j). To transform
this matrix to the original image matrix, each row of the
matrix should be shifted left for s mod m elements if s el-
ements are posited ahead. We aims to calculate s mod m
and remove those paddings.

The first and the last columns of the tile matrix should be
quite similar as they are in fact (m− s)th and (m− s− 1)th
columns in the original image. On the other hand, the sth
and (s − 1)th columns of the tile matrix should be quite
different as they are in fact the first and last columns (or
boundaries) in the original image.

We leverage the findings above to design the following al-
gorithm to infer s. First, we build a distance array dist,
where the ith element stores the distance between ith and
(i− 1)th columns (∀i ∈ [1,m− 1]) of tile matrix, and dist[0]
stores the distance between the last and the first columns.
The distance between two columns is calculated as count-
ing the number of element pairs of which the differences are
larger than a predefined threshold θ3. If dist[0]/mean(dist) <
θ1 and max(dist)/second(dist) > θ2 (θ1 and θ2 are two
thresholds), there exists s leading elements and s is set to be
the index of the maximum element in dist. If the first check
using θ1 is satisfied, the first and last column are pretty sim-
ilar and they should be located in the middle of original im-
age. If the check with θ2 is satisfied, it implies a column pair
in the middle of the matrix somewhere has a distinctively
low similarity and should be the real image boundary. Then,
we remove the first s elements from the tile and reshapes the
tile to a matrix with width m and height (N − s)/m. Fig-
ure 3k illustrates the final image.

To notice, we do not attempt to infer the position of trail-
ing block and remove it, because the trailing block only
brings in additional lines below the image when displayed.
Likewise, when s > m, our algorithm removes s mod m el-
ements and leaves additional lines above the image. These
additional lines would not prohibit the adversary from rec-
ognizing the texts and objects.

The algorithm and parameters. The whole algorithm
including preprocessing, identifying the number of rows and
columns, and removing leading block is shown in Algorithm 1.
We found if the input tile f is not long enough, the main
components may be overwhelmed by other components. So,
we make a parameter θ0 and set it to 1.5 in our evalua-
tion. It is used to warn attackers when the main component
we found is not high enough. When the first main compo-
nent we found is less than the threshold, it is likely that the
tile inferred is incorrect and we mark it with the “potential
false-positive” before sending out to the attacker. The other
3 thresholds θ1, θ2 and θ3 are set to 2, 1.2 and 5 respectively
after parameter tuning by preliminary tests.

5. EVALUATION
During the evaluation, we first evaluated the accuracy of

the recovery algorithm in both single machine and virtual
machine, which suggests that our algorithm works well. To
more clearly demonstrate its impact to real world, we also
evaluate our image recovery attack against popular desktop
applications, which are extensively used for image or text
rendering. The result is surprising: not only do we show
the attack can succeed in totally different applications, we
also recover users’ sensitive information like account name,

email titles. Compared to previous research (e.g., Lee et.
al. [14]), the attack surface is broader and the information
revealed is far more substantial. We elaborate the settings
and results as follow.

5.1 Testing Environment and Performance
We conducted the evaluation on AMD and Nvidia plat-

forms. The specifications of testing environment are de-
scribed in Table 1. Malicious application we developed uses
OpenCL APIs to operate GPU memory and Matlab func-
tions to recover image. We demonstrate the effectiveness
of our attack against 4 popular applications on Ubuntu:
Google Chrome, Adobe PDF Reader, GIMP, Matlab. Ex-
cept Matlab, all the other applications are run on AMD
platform as OpenCL is natively supported. Matlab is eval-
uated on Nvidia platform as it requires CUDA support to
operate GPU, which is only available on Nvidia platform.
Though there is a 3rd-party toolkit named opencl-tool-box
that enables Matlab developers to use GPU resources on
AMD platform which only supports OpenCL, it is not in-
corporated into Matlab’s official release and has not been
updated since Jan 2013 [7]. Therefore, we did not test Mat-
lab on AMD platform.

Our attack against the applications follows the same rou-
tine: the malicious application we built initializes the GPU
memory and monitors the usage of GPU memory. Then,
the victim application is launched and we simulate a series
of users operations, like viewing a web page and viewing a
PDF document. Finally, the victim application is closed and
the malicious application is reactivated due to the sudden
increase of available memory. The GPU memory is instantly
dumped and analyzed by the malicious application for im-
age recovering. Finally, the malicious application saves the
restored image as image files formatted in either RGBA or
ARGB which is decided during the step of data blocks prun-
ing. To notice, we did not make GPU memory exclusive to
the malicious and victim applications during experiments.

The overhead of each attack is bounded to the specifica-
tions of platform and the layout of GPU but it is in general
unnoticeable. We run our malicious application against each
victim application for 5 times and calculate the average time
consumed in different steps. It takes 75 to 95 ms for memory
initialization and 110 to 130 ms for data blocks extraction &
pruning on AMD platform. While on Nvidia platform, the
overhead significantly increases. It takes 350 ms for mem-
ory initialization and 550 ms for data blocks extraction &
pruning. We speculate the overhead increases mainly due
to the larger memory of the Nvidia platform. The over-
head for layout inference is bounded to the size of tile (the
time complexity of Algorithm 1 is O(n logn) where n is the
tile size). The largest tile we encountered is 15MB and can
be processed in 13ms. Meanwhile, the number of tiles for
a memory dump is up to 625 among all the experiments.
The overhead of this step in most cases would not exceed
a second. In total, the attack could end in several seconds
which hardly raises the suspicion from user. The highest
CPU usage we observed during the inference phase is 45%.

Our accuracy test result shows that almost every image
can be recovered in different size, brightness, noise etc. The
detailed result is included in the Appendix. Next, we de-
scribe our attack result against top-tier victim applications
in details.

AMD Platform Nvidia Platform
GPU HD 6350 (CEDAR) / Sapphire R7 250X GTX 750 (Maxwell GM107)
Video Memory 512MB / 1GB 1GB
GPU Driver Version fglrx 15.200 340.29
OS Version Ubuntu 14.04 LTS Ubuntu 14.04 LTS
CPU Intel Xeon E3-1225 v2 Intel Core 2 Duo E8400
Main Memory 24GB 4GB

Table 1: Platforms used for evaluation.

5.2 Accuracy Evaluation
Before testing against real-world applications, we evalu-

ated the accuracy of our approach in reconstructing the
original image. To this end, we developed a toy applica-
tion whose sole task is to load an image into GPU memory.
In particular, the application reads one JPG file from the
set of test JPG files on disk, decodes it into bitmap format,
stores it in GPU memory and then exits without zeroing out
the used memory region. The malicious application will then
attempt to reconstruct the original image from the uninitial-
ized memory. The test ends when all JPG files are loaded.
We did not use other commercial or open-source applica-
tions since they may split the image into pieces and render
them in parallel.

The testing image set comes from the 29 sample images
from INRIA Holidays dataset, which is widely used for eval-
uating computer vision algorithms [11, 6]. We begin with
the evaluation on the accuracy of recovering original sample
images. Next, we zoom out those images to different sizes
and assess the impact of image size to our approach. At
last, we apply different types of transformation on the sam-
ple images to understand the limitation of our approach,
i.e., which factor impedes the success reconstruction by our
approach.

Scale Typical Successfully Recovered but
Ratio Size Recovered not in Samples

1 1024*768 29 18
0.5 512*384 29 8
0.25 256*192 29 7
0.125 128*96 29 13
0.0625 64*48 29 28

Table 2: Accuracy test for the self-developed application.

Table 2 shows the test result for the initial two evaluation
tasks. Specifically, all of the original images are successfully
recovered. When scaling the size ratio of the image from 1
to 0.0625 (the size is down to 64*48, the icon size), the result
is not changed with all images successfully restored, which
indicates our approach is robust against images with varying
sizes. Interestingly, we also recovered images which were not
loaded by our application sometimes. We suspect these im-
ages were rendered by applications running simultaneously
with our application.

Then we test the capability of our approach in dealing
with less meaningful images. Adding noise is a common way
to obscure the meaningful pieces within images and we apply
Gaussian noises on the sample images and check whether
they can still be restored. We add Gaussian random number
falling within the range of N(0, σ) (σ is the noise standard
deviation and the larger σ means more noisy) to each pixel of
the original images before loading them into GPU memory.
Table 3 shows the number of successfully recovered images

under different settings of σ.

Noise σ 1 5 10 20 30 40
Recovered # 29 29 28 26 25 23

Table 3: Successfully recovered images under different noise
settings.

(a) Original image. (b) Image interfered with
noise.

(c) Image with increased
brightness.

(d) Image with decreased
brightness.

Figure 5: The original image and the transformed versions.

As suggested by the result, our algorithm can recover im-
ages even when they are interfered by large Gaussian noise.
When the noise standard deviation σ is increased to 40, the
interfered images are barely recognizable to human, yet they
can still be recovered with high success rate at 79.3%. Fig-
ure 5a and Figure 5b show the the original image and the
image interfered by Gaussian noise when σ = 40. Both im-
ages can be correctly restored from memory dumps.

We also assess the impact from other image transforma-
tions, including adjusting brightness and contrast. We in-
creased and decreased the brightness and contrast of the 29
images by 80% separately, and the resulting images are al-
ready unrecognizable. Figure 5c and Figure 5d show the
images after brightness is adjusted2. Surprisingly, all such
images are restored by our approach with 100% success rate.
The result strongly supports the robustness of our approach.

5.3 Virtualized Environment Experiments
With the advent of cloud, there are increasingly more com-

panies start to rent virtual machines running on their spare

2The images with new contrast setting are not shown here
as they are even less discernible.

computing platforms to users with computation demands
but don’t want to manage physical machines. To satisfy
users with strong computation demand, service provider pro-
vides optional GPU support to their virtual machines. And
users can rent one virtual machine with GPU to run their
GPU-accelerated programs. We want to know whether our
method can be applied to such a virtualized environment
because it implies abundant victim users.

We have rented a GPU passthrough capable GPU, the
Sapphire R7 250X, to set up a virtualized test bed. The
GPU of the AMD platform was temporally replaced by the
rented card to make virtual machine GPU capable. We used
QEMU 2.4.50 as the hypervisor to run virtual machines with
GPU passthrough.

Our evaluation procedure follows this routine: attacker’s
VM is started first to initialize the GPU memory and then
shut down. Next, victim turns on his VM, uses our self-
developed application used for accuracy evaluation to load
the 29 images to GPU memory and then shut down. At last,
attacker starts his VM to extract GPU memory and recover
images. One may wonder why we do not run two VMs at the
same time. That’s because a GPU can be passed through
to exactly only one VM. During the VM switching process,
the physical machine cannot be restarted because restarting
the physical machine will reset the GPU and its memory.

Our evaluation results show that, among the 29 images,
25 was completely recovered while 2 was completely missing
and the left 2 images can be recovered partially. The result
is not as good as what in single machine context. We believe
it is because the time gap between the termination of victim
app and residues extraction is increased. When attacker
has a process running together with victim, he can monitor
the GPU memory usage and extract residues immediately
after the victim application terminates. However, in the
virtualized context, attacker can only extract the residue at
least after a VM switching process, which leads to a lot of
uncontrollable factors that may pollute the memory. But,
the ratio of recovered images is still prominent, indicating
the threat to virtualized environment cannot be neglected.

5.4 Case 1: Google Chrome
More and more web applications are developed to process

users’ personal information nowadays. Browser vendors de-
signed various mechanisms to protect users’ data, like pri-
vate browsing. These mechanisms intend to defend against
malicious web pages or extensions planted by attackers but
are powerless against the adversary capable of stealing GPU
memory. The problem exacerbates in up-to-date browsers
where GPU-acceleration is intensively used. We use Google
Chrome as an example to demonstrate the seriousness of
this problem. Gmail is used here as a showcase to demon-
strate what types of content can be recovered by our attack.
In addition, we exercise automated information extraction
techniques against memory dumps from different web sites
to assess the overall impact of the attack.

Recovered content from Gmail. In this attack, we as-
sume the victim user logs into her Gmail account and the
email titles are all displayed. We run the analysis routine
against the page of email list of one user and are able to
recover 113 images from the GPU memory dump, among
which, the largest one has 512K pixels, the smallest has 926
pixels and the average size of the images is 23.74 KB (PNG
format). The images are manually classified upon their vi-

sual positions in the browser UI. The details of the leaked
images are described below separately:

Figure 6: Tab of Gmail

• Tab: The tab of Google Chrome displays the favicon and
the title specified by the web page. It could tell which web
site is visited by the user. Moreover for Gmail page, the
information revealed is more than just the name of web site.
As shown in Figure 6, the email address and the number
of unread emails are also displayed in the tab. Leaking
email address is of course unwanted for the victim as it
can be exploited to send targeted phishing emails or har-
vest user’s social profiles by querying popular social network
sites. What’s worse, this issue is not unique to Gmail and
equal or more information could be disclosed from the tab
of other sites. For instance, Amazon displays the name of
the product user is viewing and YouTube displays the name
of the video user is watching.

Though our initial exploration indicates that critical in-
formation could be leaked, the extent of the inferred result
should be taken a grain of salt. Google Chrome limits the
number of characters displayed in a tab. The tab will be
squeezed when many tabs are opened (it begins to resize
when more than 7 tabs are opened in a 14-inch laptop with
screen resolution set to 1600x1200). This design results in
partial reveal of the title of a web site: for example, the
Gmail tab only displays the first 14 characters of user name
(under the same screen setting) and therefore a long user
name will not be fully recovered. However, a large number
of users choose short user names[1] and knowing 14 charac-
ters is still a big lift if the adversary plans brute-force crack.

Figure 7: Address bar of Gmail

• Address bar: An image containing the address bar is also
recovered by our program and is shown in Figure 7. To
notice, the image does not show the whole region of the ad-
dress bar or even the full URL. In fact, Chrome attempts
to render the address with GPU when “AutoComplete” is
turned on and user is typing. The recovered image reflects
the characters that have been input. Though not fully dis-
played, this partial image can still tell that the user is using
Gmail. When the user is not typing in address bar, a differ-
ent type of image will be generated and an example is shown
in Figure 1a. By collecting the leaked information from such
images (also combining with tab images), an adversary is
able to partially reconstruct user’s browsing history which
clearly violates user’s privacy. Previous research by Lee et.
al. [14] profiled 1000 web site homepages ahead and at-
tempts to identify which one has been visited. Our attack
takes a big step forward as potentially any site visited can
be inferred without prior profiling and it is also resilient to
the content change of web sites.

• Page body: Most of the images recovered can be attributed
to the page body. Figure 8 shows one segment of Gmail in-
box content and the senders and initial characters of emails

www.gmail.com www.youtube.com www.yahoo.com www.facebook.com www.twitter.com
Characters 2388 9184 690 6183 2110

Words 416 453 215 826 481
Faces 0 24 8 8 16

Table 4: Leakage from different websites

Figure 8: Part of Gmail inbox

are displayed which are obviously sensitive to the user. Since
current web applications are designed to intensively deal
with personal information, the threat could be more sub-
stantial if the malicious program is able to run on the vic-
tim’s machine for long time and restore images from dif-
ferent web pages. Among these recovered images, we also
found seemingly unmeaningful textures like the border of
an object box. We suspect they are peeled from the origi-
nal objects due to browser’s splitting algorithm. They can
be combined with their counterparts through puzzle-solving
algorithm.

Automated information extraction. All the images are
manually examined for this Gmail case but it is not scal-
able, especially when a large number of users are monitored
or the tabs of Chrome are frequently closed and opened.
We want to reduce attacker’s workload by only sending the
sensitive images for analysis. In fact, it is quite challenging
to automatically select the sensitive images, which requires
extensive knowledge of user’s background and application’s
context. A more practical goal could be identifying the im-
ages enclosing texts and faces, which are already meaningful
in common scenarios and can be automated.

For this purpose, we use Adobe PDF professional OCR
module to find texts (the images need to be converted into
PDF first) and build a Matlab program leveraging a widely-
used library computer vision system toolbox to recognize
faces. Only the images containing either texts or faces are
passed to the next step, i.e., analyzed by the attacker. We
evaluate them on Gmail images and reduce the number of
images of interest to 31 (out of 113 images in total) while all
images about tab, address bar and inbox are identified. The
overhead incurred in this process is also small, only costing
several seconds in OCR and face recognition. We assume
the modules are run on attacker’s server but they could be
run on victim’s machines as well. For the latter setting, only
detected images are transmitted, which significantly reduces
the network overhead and makes the attack even stealthier.

Our attack against Gmail shows sensitive information can
be successfully revealed but it is unclear yet whether the
issue is universal. We try to answer this question by evalu-
ating our algorithm on 4 other web sites with top popularity:
YouTube, Yahoo, Facebook, Twitter. Since there is no ex-
isting metric to quantify the sensitive data leaked, we choose
to measure the number of words and faces recognized from
the images. As shown in Table 4, approximately hundreds of

Figure 9: The list of attended universities and schools iden-
tified from user’s Facebook page

words and tens of faces could be identified for each web site.
Though not all texts and faces are sensitive (e.g., we found
a lot of them are related to advertisements), the chances of
leakage are still high. Particularly, the social network sites
like Facebook and Twitter tend to leak more useful infor-
mation. Tweets and Facebook posts have been discovered
among the recovered images. Figure.9 shows a tile exhibiting
Facebook user’s educational experiences (sensitive personal
information is mosaicked). Besides, we also tried to evaluate
our attack against e-banking. The results showed to attacker
the account balance, credit card account number and
transaction details.

Discussion. Finally, we want to understand why segments
are extracted rather than the whole web page. According
to the design document[2], Chrome breaks the page into
small tiles and allocates GPU resources for some of them
based on their predefined priorities[8]. Besides, not all image
segments are preserved in GPU memory when dumped by
our attack program. Under the real-world settings, there
are GPU memory restrictions that limit the number of tiles
residing in GPU and memory manager is allowed to evict
tiles from GPU memory. Therefore, not all segments can be
recovered.

We not only demonstrate our attack on Google Chrome
but Firefox is also under threat. In fact, it is confirmed that
Firefox also leaves residues in GPU memory [14]. We tested
gmail against Firefox. Firefox does not produce residue
images related to address bar and tab caption, but more
severely, it yields a relatively complete block showing
the page body. In gmail case it is a large image contain-
ing the sender, title and part of email contents. Such leaked
information is definitely more valuable to attackers.

5.5 Case 2: Adobe Reader
Adobe Reader uses GPU to accelerate the rendering pro-

cess of PDF documents. We consider the texts and graphs of
a PDF as sensitive and tests if they can be extracted by ex-
ploiting the residues left by the application. We use a PDF
of a research paper as an example and the content recovered

is described below.

Recovered content from PDF. It turns out both the
graphs and texts are rendered in GPU. Similar to the Chrome
case, segments of figures and texts are recovered. Interest-
ingly, the segments do not only belong to the page shown
at foreground, but some of them also belong to the pages
rendered at background.

• Fragments of figures: We found some of the recovered
images are actually fragments of a given figure. We have
not tried to combine the fragments to recover the original
figure but it is possible certain algorithm could achieve this
goal, for example, by taking the advantage of similarities
among the edges of neighboring fragments.

(a) A normal line of text

(b) A line of text with noise

Figure 10: Two typical images recovered from residues left
by Adobe Reader

• Lines of text: It turns out Adobe Reader separates text
region into long stripes. Figure 10a shows a normal line of
text recovered (some letters are incomplete) and Figure 10b
shows one line of text with noise above and below. Though
not fully recovered, the text from the images can be eas-
ily read by attacker. When too many images are extracted
from GPU, the adversary can use the OCR and natural lan-
guage processing technique to reduce the number of images
requiring manual analysis.

5.6 Case 3: GIMP
In this section, we evaluate a popular image processing

software on Unix platform, GIMP. Under the default con-
figuration, GIMP does not rely on GPU to render images.
However, when the image is large, the user is recommended
to turn on GPU acceleration, which can be done through
linking to a graphics library named GEGL when GIMP is
started. A user can simply pass "GEGL_USE_OPENCL=yes"

when launching GIMP. Our attack is tested under this set-
ting. Specifically, we opened an image file, applied some
different image filter (e.g., edge-laplace) for each running,
and then closed the image file.

Recovered content from GIMP figures. Our evalua-
tions showed the type of filter will decide the outcome of
the attack. For some filters, nothing can be revealed from
the image either before or after applying the filters. But for
other filters, the recovered images are actually close to the
whole original images having been passed to GIMP, without
any fragmentation.

(a) Before (b) After

Figure 11: Images recovered from leakage with stripes before
and after the compression

Besides, we also restored images with vertical stripes inter-
sected with the original images (see Figure 11a). This case
is likely caused by the implementation of GEGL which does
not adopt the standard image format (RGBA and ARGB).
Since such stripes could affect the step of information in-
ferring, we remove them with a “compressing” process: the
width of the recovered image is shrunk to 25% and a pixel
in the new image is combined from the 4 consecutive pixels
horizontally. The image derived from Figure 11a is shown
in Figure 11b.

This case suggests that even if the developer does not use
standard RGBA or ARGB format, the sensitive information
of the image can still be extracted, by tweaking our ap-
proach. The pseudo-periodicity still holds despite the loss
of the color map information, which results in produced im-
ages with correct alignment but inaccurate color. However,
a large portion of the image can be recognized with tech-
niques like text recognition.

5.7 Case 4: Matlab
Matlab is widely used by academia and industry for scien-

tific computing. It also provides various libraries to support
image processing, and developers could leverage the power
of GPU with parallel computing toolbox. We assume the
developer first loads from hard disk drive a picture and then
converts it into a GPU-compatible object “gpuArray”. This
image object will be passed to GPU for processing, and Mat-
lab is closed when processing finished. Finally, the residues
in GPU memory are dumped and analyzed.

Recovered content. The loaded picture is split by Mat-
lab into fragments and therefore the whole picture can not
be directly recovered. However, the size of the fragments
is still large enough which makes it possible to partially or
fully restore the original image with rearrangement. Af-
ter the fragments are put together, we found the generated
picture is in fact flipped along the diagonal of original pic-
ture. This is because Matlab stores a picture into a ma-
trix through column-by-column instead of normal row-by-
row fashion, making the image automatically transposed in
memory. Thus our proposed algorithm can still be applied
by simply transposing the image matrix back.

Discussion. Matlab is a very popular computing tool,
which has already been used for many different fields. Mat-
lab with Parallel Computing Toolbox is often run by devel-
opers on high-performance computer with powerful GPU.
The high-performance computer is shared by different users
in many cases, since the computing resources are expensive
and it is a waste when the computer is idle. So, there is
a higher chance where the attacker can get victim users’
images from these kinds of computers.

6. RELATED WORKS
GPU vulnerabilities. As the techniques for GPU com-
puting advance, different security issues also emerge. Pre-
vious research shows the defense around GPU is far from
perfect [16, 12]. Lombardi et. al. carried out a compre-
hensive analysis over GPU used in cloud and revealed sev-
eral leakage issues. Pietro etc. discovered leakage in CUDA
framework and their evaluation showed that global memory,
shared memory and registers are all vulnerable [10]. Clé-
mentine et. al. proposed an attack to acquire leakage across
virtual machines [15]. In a work by Ladakis et. al. [13], they

implemented a stealthy keylogger using GPU. The closest
work to our research is done by Lee et. al. [14] in which
they are able to infer which web site has been visited by a
victim based on color distribution of GPU memory. Instead,
we are able to recover images with sensitive information.

Memory forensic. Memory forensic has been studied
long time ago as a way to help government and police collect
electronic evidences from criminal’s devices. In recent years,
development has been made in recovering images from main
memory for forensic needs. Saltaformaggio et. al. proposed
a method to reconstruct Android APP’s GUI displays by
reconstructing the GUI tree topology and reconstruct the
drawing operations [17]. They also introduced a method
to recover photographic evidence produced by smartphone
camera by using the memory possessed by the intermedi-
ary service [18]. In addition, a method to re-use appli-
cation’s logic to recover images from criminal’s computer
memory [19] was proposed recently. These works assume
pre-knowledge of the applications has been acquired and
apply program analysis for image reconstruction. Under
their settings, the data structures for keeping images can be
obtained. Our problem is much more challenging as GPU
memory keeps no meta-data of images. Still, the image data
can be decoded by leveraging the internal similarity feature,
as proved by our work.

7. CONCLUSION
In this paper, we proved GPU memory management strat-

egy is vulnerable, by proposing a novel attack to recover the
images from the leftover of other applications or other VMs
in GPU memory. Our recovery technique is motivated by
the observation that there is strong correlation between rows
and columns of an image. By evaluating on highly popular
applications, we show the severity of the security problems
regarding GPU memory management. Sensitive information
like credit card number and email titles can be readily ex-
tracted, if it is preciously calculated by GPU. As a result,
the severity is underestimated by previous research and the
security issues have to be mitigated.

8. REFERENCES
[1] Average username length. http://www.eph.co.uk/

resources/email-address-length-faq/.

[2] The chromium projects design documents: Gpu
accelerated compositing in chrome. http://www.
chromium.org/developers/design-documents/gpu-

accelerated-compositing-in-chrome.

[3] Discrete fourier transform. http://www.robots.ox.
ac.uk/~sjrob/Teaching/SP/l7.pdf.

[4] Fast fourier transform. http://mathworld.wolfram.
com/FastFourierTransform.html.

[5] Gpu cloud computing. http://www.nvidia.com/
object/gpu-cloud-computing-services.html.

[6] Inria holidays dataset.
http://lear.inrialpes.fr/~jegou/data.php.

[7] opencl-toolbox.
https://code.google.com/p/opencl-toolbox/.

[8] Tile prioritization design of chrome.
https://docs.google.com/document/d/

1tkwOlSlXiR320dFufuA_M-RF9L5LxFWmZFg5oW35rZk.

[9] Xdc2012: Graphics stack security.
https://lwn.net/Articles/517375/.

[10] R. Di Pietro, F. Lombardi, and A. Villani. Cuda leaks:
Information leakage in gpu architectures. arXiv
preprint arXiv:1305.7383, 2013.

[11] H. Jégou, M. Douze, and C. Schmid. Hamming
embedding and weak geometry consistency for large
scale image search-extended version. 2008.

[12] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi,
and G. H. Loh. Architectural vulnerability modeling
and analysis of integrated graphics processors.

[13] E. Ladakis, L. Koromilas, G. Vasiliadis,
M. Polychronakis, and S. Ioannidis. You can type, but
you can ↪aŕt hide: A stealthy gpu-based keylogger. In
Proceedings of the 6th European Workshop on System
Security (EuroSec), 2013.

[14] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing
webpages rendered on your browser by exploiting
GPU vulnerabilities. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 19–33, 2014.

[15] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
Confidentiality issues on a gpu in a virtualized
environment. In Proceedings of the 18th International
Conference on Financial Cryptography and Data
Security (FC), 2014.

[16] M. J. Patterson. Vulnerability analysis of GPU
computing. PhD thesis, Iowa State University, 2013.

[17] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu. Guitar: Piecing together android app guis from
memory images. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and
Communications Security, pages 120–132. ACM, 2015.

[18] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu. Vcr: App-agnostic recovery of photographic
evidence from android device memory images. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages
146–157. ACM, 2015.

[19] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu.
Dscrete: automatic rendering of forensic information
from memory images via application logic reuse. In
Proceedings of the 23rd USENIX conference on
Security Symposium, pages 255–269. USENIX
Association, 2014.

http://www.eph.co.uk/resources/email-address-length-faq/
http://www.eph.co.uk/resources/email-address-length-faq/
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
http://mathworld.wolfram.com/FastFourierTransform.html
http://mathworld.wolfram.com/FastFourierTransform.html
http://www.nvidia.com/object/gpu-cloud-computing-services.html
http://www.nvidia.com/object/gpu-cloud-computing-services.html
http://lear.inrialpes.fr/~jegou/data.php
https://code.google.com/p/opencl-toolbox/
https://docs.google.com/document/d/1tkwOlSlXiR320dFufuA_M-RF9L5LxFWmZFg5oW35rZk
https://docs.google.com/document/d/1tkwOlSlXiR320dFufuA_M-RF9L5LxFWmZFg5oW35rZk
https://lwn.net/Articles/517375/

	1 Introduction
	2 Background
	2.1 GPU Computing Model
	2.2 Vulnerabilities in GPU
	2.3 GPU in Virtualized environments

	3 Adversary Model
	4 Image Recovering
	4.1 Tile Extraction
	4.2 Image Layout Inference: Problem
	4.3 Image Layout Inference: Approach

	5 Evaluation
	5.1 Testing Environment and Performance
	5.2 Accuracy Evaluation
	5.3 Virtualized Environment Experiments
	5.4 Case 1: Google Chrome
	5.5 Case 2: Adobe Reader
	5.6 Case 3: GIMP
	5.7 Case 4: Matlab

	6 Related Works
	7 Conclusion
	8 References

