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High-Gain Monolithic 3D CMOS Inverter using

Layered Semiconductors

Angada B. Sachid, Sujay B. Desai, Ali Javey, Chenming Hu

Department  of  Electrical  Engineering  and  Computer  Sciences,

University of California, Berkeley, CA, USA

We  experimentally  demonstrate  a  monolithic  3D  integrated

complementary  metal  oxide  semiconductor  (CMOS)  inverter  using

layered  transition  metal  dichalcogenide  (TMD)  semiconductor  N-

(NMOS)  and  P-channel  (PMOS)  MOSFETs,  which  are  sequentially

integrated  on  two  levels.  The  two  devices  share  a  common  gate.

Molybdenum disulphide and tungsten diselenide are used as channel

materials for NMOS and PMOS, respectively,  with ON-to-OFF current

ratio (ION/IOFF) greater than 106, and electron and hole mobility of 37 and

236  cm2/Vs,  respectively.  The  voltage  gain  of  the  monolithic  3D

inverter is about 45 V/V at supply voltage of 1.5 V and gate length of 1

µm. This is the highest reported gain at the smallest gate length and

lowest supply voltage for any 3D integrated CMOS inverter using any

layered semiconductor.
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Device scaling has been essential to increase integration density in semiconductor

circuits  and  systems with  the  accompanied  benefits  of  higher  speed and lower

power  dissipation  1.  With  scaling,  several  second  order  effects  like  variability,

parasitic resistance, and parasitic device and interconnect capacitance are limiting

the performance of the devices, circuits and systems  2.  Monolithic 3-dimensional

(3D)  integration  in  which  active  device  layers  are  sequentially  fabricated  can

improve the circuit and system performance by reducing the average interconnect

length and capacitance, thereby increasing the circuit speed and decreasing power

dissipation  3. 3D integration also enables the integration of heterogeneous active

materials.  To this effect,  monolithic 3D integration of logic circuits,  memory and

sensors were demonstrated.  Layered transition metal  dichalcogenides (TMD) like

molybdenum  disulphide  (MoS2),  tungsten  diselenide  (WSe2)  and  so  on  show

promising electronic and opto-electronic properties 4. TMDs allow precise thickness

control  down  to  a  monolayer  thickness  (less  than  a  nanometer),  which  could

potentially solve an important problem in scaled devices, i.e. variation in channel

thickness in ultra-thin body devices  5.  Many of the TMD materials like MoS2 and

WSe2 have  a  lower  dielectric  constant,  which  can  reduce  the  drain-to-channel

coupling and hence improve the short-channel performance of highly scaled devices
6.  The  relative  dielectric  constant  is  ~10.7  for  bulk  and  reduces  to  ~3.4  for

monolayer thickness of MoS2. The in-plane and out-of-plane dielectric constants of

bulk MoS2 are 7.43 and 15.4, respectively, and for monolayer MoS2, they are 1.63

and 7.36, respectively 7. Transistors using MoS2 and WSe2 have shown low mobility

degradation with gate-to-channel electric field even at monolayer channel thickness
8-10.  Field-effect hole mobility as high as 300 cm2/Vs was reported for monolayer

WSe2 MOSFET  10.  Hence,  monolithic  3D integration using TMDs is  interesting for

further scaling. 

In  the  planar  complementary  metal  oxide  semiconductor  (CMOS)  static  logic

gates, the NMOS and the PMOS transistors are placed on the same plane. The gate,

source and drain electrodes are connected appropriately to form the inverter circuit

as shown in Fig. 1(a). It can be seen that a pair of NMOS and PMOS devices are

present in the circuit and electrically they share the same gate electrode. A typical

layout for the inverter is shown in Fig. 1(b). The NMOS and the PMOS share the gate

electrode. In many circuits like NAND, NOR, XOR, XNOR etc., the source and drain

electrodes  cannot  always  be  shared,  and  must  be  electrically  isolated  in  the

generalized device structure as shown in Fig.  1(c).  This type of  shared gate 3D

architecture was explored for silicon MOSFETs and FinFETs, and TMDs 11,12. To date,

the only monolithic 3D integration using TMDs showed a CMOS inverter voltage gain

(ΔVOUT/ΔVIN) of about 10 V/V at supply voltage (VDD) of 3 V 11. In comparison to 11, in
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this work we have added forming gas anneal, which is used as a cleaning step after

the  transfer  of  WSe2.  Forming  gas  anneal  was  used  to  reduce  the  output

conductance of the WSe2 PMOS device and hence improve the voltage gain of the

CMOS  inverter.  In  this  work,  we  report  a  high-gain  monolithic  3D  integrated

common-gate CMOS inverter using MoS2 as NMOS and WSe2 as PMOS with a peak

switching gain of about 45 V/V at VDD = 1.5 V, which is the highest reported gain at

the  smallest  gate  length  and  the  lowest  supply  voltage  for  any  reported  3D

integrated CMOS inverter using any channel material.

Device fabrication was carried out on p+ doped silicon substrate with 260 nm of

silicon dioxide (SiO2).  MoS2 and WSe2 flakes were transferred onto the substrate

using mechanical  exfoliation method.  Flakes with 3 nm to 6 nm thickness were

chosen  for  further  device  fabrication.  The  chosen  MoS2 flakes  were  etched into

rectangular shapes using xenon difluoride (XeF2) gas  13. 40 nm of nickel (Ni) was

evaporated and lifted-off to form the source/drain contacts to MoS2 (Fig. 2(a)). 1 nm

of SiOx was evaporated as the seeding layer and 20 nm zirconium dioxide (ZrO2)

deposited using atomic layer deposition (ALD) at 110  oC acts as the high-κ gate

oxide (Fig. 2(b)). Fig. 2(c) shows the first layer MoS2 MOSFET with 40 nm Ni metal

common gate for the MoS2 N-MOSFET in the first layer and the WSe2 P-MOSFET that

will be formed on top of the first layer. Next, 20 nm of ZrO2 was deposited at 110 oC

using ALD (Fig. 2(d)). WSe2 flake was transferred on top of the gate dielectric using

a  pick-and-place  transfer  method  (Fig.  2(e))  8.  The  flake  was  etched  into  a

rectangular shape using XeF2 gas. At this stage, forming gas anneal was performed

at 120 oC for 30 minutes. Forming gas anneal is known to remove organic residues
14. Forming gas anneal helps to clean the surface of WSe2. 10 nm of platinum (Pt)

and 30 nm of gold (Au) was evaporated and lifted-off to form the S/D contacts to

WSe2. Fig. 2(g) shows the device after the gate metal formation. Fig. 2(h) shows the

final device after S/D contacts are formed on WSe2. 

Fig. 3 and Fig. 4 show the ID–VG and  ID–VD characteristics of representative MoS2

NMOS  and  WSe2 PMOS  devices,  respectively.  The  threshold  voltage  (VT)  was

extracted using constant current method with a current reference of 10 -7 A/μm. For

the MoS2 NMOS, VT was extracted to as -0.56 V. The drain current at VD = 1 V and

VG–VT = 1 V is about 10 μA/μm. The ION/IOFF ratio is over 106. For the WSe2 PMOS, VT,

drain current at VD = -1 V and |VG–VT| = 1 V, and ION/IOFF ratio are about -1.48 V, 50

μA/μm, and 107, respectively. Electron field-effect mobility for MoS2 was extracted

as 37 cm2/Vs and hole field-effect  mobility for WSe2 was 236 cm2/Vs,  which are

commensurate with those reported in literature  8-10,15.  Contact resistance of MoS2

MOSFET is 1.45 kΩ-μm and that for WSe2 MOSFET is 1.04 kΩ-μm on each side. The

peak transconductance (gm) for MoS2 and WSe2 MOSFETs is about 15 μS/μm and 42
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μS/μm,  respectively.  The  devices  show  excellent  output  saturation.  The  output

conductance (gds) at |VG–VT| = 1 V for MoS2 and WSe2 MOSFETs is less than 1 nS/μm

each. In 11, the output conductance of the reported WSe2 PMOS device was about 5

μS/μm. Forming gas anneal step that was added after the transfer of WSe2 helped to

obtain a cleaner surface and improved the output conductance. The voltage gain for

a CMOS inverter is (gmn+gmp)/(ron||rop), where ro is the output resistance of the device

and the subscripts  n and  p refer to the NMOS and PMOS devices, respectively  16.

High  gm and  ro (=1/ gds) are required to achieve high switching voltage gain in a

CMOS inverter. Fig. 5 shows the voltage transfer characteristics and peak gain of a

representative monolithic 3D integrated CMOS inverter. Highest peak gain of about

45 V/V is observed at VDD = 1.5 V and LG = 1 μm, which is the highest gain reported

at the smallest gate length and lowest supply voltage for a monolithic 3D CMOS

inverter using any channel material. To use an inverter in a circuit, switching must

be achieved between 0 and VDD, preferably at around VDD/2. The inverter shown in

Fig. 5 does not switch between 0 and VDD as the VT of NMOS is negative. Hence, the

noise margins for the inverter cannot be calculated. Methods like gate work function

engineering  17,  channel  doping  9,16,18 and  local  back  biasing  11,19 can  be  used to

achieve the correct VT for NMOS. Fig. 6 shows the impact of substrate back-biasing

(VB) on the performance of MoS2 NMOS and inverter. By applying a more negative

back bias, the  VT of the MoS2 NMOS increases and becomes less negative. The  VT

changes from -1.32 V to -0.45 V when the back bias is changed from -50 V to -70 V,

respectively. The back-bias-coefficient (γ = δVT/δVB = Coxb/Coxf = toxf/toxb ) is about 44

mV/V,  where  the  subscripts  oxf and  oxb refer  to  the  front  and  back  oxides,

respectively  20. The low γ is due to the thick SiO2 layer and can be increased by

decreasing the thickness of the SiO2 layer. Substrate back bias shifts the switching

point (VIN at VOUT = VDD/2) of the inverter to more positive values of VIN as the VT of

NMOS increases (Fig. 6(b)). The switching point shifts by about 200 mV positive

when  the  back  bias  changes  from -50  V  to  -70  V.  Voltage  gain  increases  with

increase in RBB (Fig. 6(c)). The voltage gains are 26 V/V, 31 V/V and 45 V/V at VB = -

50 V, -60 V and -70 V, respectively. This shows that MoS2 NMOS with positive VT can

further improve the voltage gain of the monolithic 3D CMOS inverter. The inverter

voltage gain is benchmarked against the other reported implementations of planar

and 3D CMOS inverters  11,15,16,19,21,22.  Among all  the reported monolithic 3D CMOS

inverters using any channel materials, this work shows the highest voltage gain of

45  V/V,  obtained  at  VDD =  1.5  V  and  LG =  1  μm (Fig.  7).  Previously  reported

implementation of MoS2-WSe2 monolithic 3D CMOS inverter showed a voltage gain

of 10 V/V at  VDD = 3 V  11.  Monolithic 3D CMOS inverter using InAs (NMOS) /  Ge

(PMOS) showed voltage gain of 45 V/V at VDD = 4 V and LG = 1.5 μm 23. CNT-based

3D CMOS inverter showed a gain of about 8 V/V at  VDD = 5 V  22. The gain of the
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inverter increases with smaller channel length modulation parameter, λ, which is

inversely proportional to the gate length (LG). CMOS inverters with longer  LG will

show higher gain. Hence, this work shows that highest gain at the smallest gate

length for a 3D CMOS inverter using any channel material.  

Monolithic  3D  integration  is  essential  to  increase  the  integration  density

accompanied  with  higher  speed  and  lower  power  dissipation.  We  demonstrate

monolithic  3D  integrated  CMOS  inverter  using  layered  transition  metal

dichalcogenides.  For  a  monolithic  3D  CMOS  inverter  using  any  layered

semiconductor,  we  report  the  highest  voltage  gain  of  about  45  V/V,  which  is

achieved at a supply voltage of 1.5 V and gate length of 1 μm.

This work was funded by Applied Materials, Inc. and Entegris, Inc. through the I-

RiCE program.
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Figure Captions

Fig. 1. (a) Planar implementation of CMOS inverter. (b) Layout of a planar CMOS

inverter.  (c)  Monolithic  3D  CMOS  inverter  with  common  gate  and  electrically-

isolated source/drain electrodes. 

Fig.  2.  Device  fabrication  flow:  (a)  MoS2 flake  (thickness  =  3.5  nm)  on  Si/SiO2

substrate after source/drain Ni contacts; (b) after ZrO2 deposition using ALD; (c) Ni

top gate is formed; (d) ZrO2 is deposited using ALD; (e) WSe2 flake (thickness = 2.8

nm) is placed on the gate stack using dry transfer; and (f) Pt/Au contacts are formed

on WSe2.  Optical image of the device after (g) S/D contacts and gate formation to

MoS2; and (h) Pt/Au S/D formation on WSe2. WSe2 MOSFET is fabricated right on top

of the MoS2 MOSFET. Gate length for NMOS and PMOS is 1 μm. 

Fig. 3. ID–VG and ID–VD characteristics of MoS2 N-MOSFET

Fig. 4. ID–VG and ID–VD characteristics of WSe2 P-MOSFET

Fig. 5. (a) Voltage transfer characteristics of the monolithic 3D CMOS inverter, and

(b) Peak voltage gain as a function of supply voltage. 

Fig.  6.  (a)  ID–VG characteristics  as  a  function  of  VB.  (b)  Voltage  transfer

characteristics of a monolithic 3D CMOS inverter as a function of VB. (c) Voltage gain

of the monolithic 3D CMOS inverter as a function of VB. (d) Current drawn from the

supply voltage as a function of VIN.

Fig.  7.  Benchmarking  of  our  TMD  monolithic  3D  CMOS  inverter  against  other

reported 3D CMOS inverters. MoS2-WSe2 3D 11, InAs/Ge 3D 23, and CNT 3D 22. 
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6

-3.0 -2.5 -2.0 -1.5 -1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5(d)

VIN (V)

I D
D

(μ
A

)

VB = -50 V to 
-70 V

Step = -10 V

VDD = 3 V

–70 V

–50 V

-2 -1 0 1 2
10-9

10-8

10-7

10-6

10-5

-2.4 -2.1 -1.8 -1.5

0

10

20

30

40

50

 

-3.0 -2.5 -2.0 -1.5 -1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

(b)

VIN (V)

V
O

U
T

(V
)

VB = -50 V to 
-70 V

(c)

VIN (V)

G
ai

n 
(V

/V
)

Step = -10 V

VDD = 3 V

VB = -50 V to 
-70 V

Step = -10 V

VDD = 3 V

(a)

VG (V)

I D
(A

)
VB = -50 to -70 V
Step = -10 V

VD = 50 mV

–70 V

–50 V

–70 V–50 V

–70 V–50 V

12



Figure 7
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