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Adaptive Optimization and Systematic Probing
of Infrastructure System Maintenance Policies
under Model Uncertainty

Samer Madanat'; Sejung Park?; and Kenneth Kuhn®

Abstract: We present an application of systematic probing for selecting optimal maintenance, repair, and reconstruction (MR&R)
policies for systems of infrastructure facilities under model uncertainty. We use an open-loop feedback control approach, where the model
parameters are updated sequentially after every inspection round. The use of systematic probing improves the convergence of the model
parameters by ensuring that all permissible actions are applied to every condition state. The results of the parametric analyses demonstrate
that the MR&R policies converge earlier when systematic probing is used. However, the savings in the expected total costs as a result of
probing are minor, and are only realized when the optimal probing fractions are used. On the other hand, the additional costs incurred
when the wrong probing fractions are used are significant. The major conclusion from this work is that state-of-the-art adaptive infra-

structure management systems, that do not use probing, provide sufficiently close to optimal policies.
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principles.

Introduction

Infrastructure management systems (IMSs) are decision-support
tools that aid transportation and public works agencies in plan-
ning the maintenance activities of their facilities. IMSs support
the following tasks: Inspection of facilities, prediction of the de-
terioration of facilities through performance models, and selection
of optimal maintenance, repair, and reconstruction (MR&R) poli-
cies over the planning horizon.

Facility deterioration is a probabilistic process, often repre-
sented by a stochastic model. In existing IMSs, the parameters of
these models were developed on the basis of expert judgment or
empirical observations of select distresses, and assumed to be
constant over the planning horizon. Expert judgment or empirical
observations of select distresses, however, may not accurately
represent the true facility deterioration process. This may lead
to erroneous predictions and inappropriate MR&R policies, which
result in increasing the total lifecycle costs for the agency and
users. On the other hand, available condition data, collected
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during the life of the facilities, can be used to improve the accu-
racy of the deterioration models.

The majority of state-of-the-art IMSs use Markov decision
processes as MR&R policy decision-making modules. In a MDP,
deterioration is represented by transition probabilities. The transi-
tion probabilities can be determined based on expert judgment
(Harper and Majidzadeh 1991) or empirical observations. In the
latter case, statistical estimation with time series or panel data
was used in Carnahan et al. (1987), Madanat et al. (1995), and
Mishalani and Madanat (2002).

The objective of optimization models is to minimize the total
costs associated with MR&R activities and user costs. Optimal
maintenance policies are obtained through dynamic programming
(DP) or linear programming (LP). DP has been used for single
facility problems (Feighan et al. 1988; Madanat 1993; Madanat
and Ben-Akiva 1994; Durango and Madanat 2002), and LP
has been utilized for network-level problems (Golabi et al. 1982;
Harper and Majidzadeh 1991; Smilowitz and Madanat 2000).
This paper focuses on the network-level problem. There is un-
certainty in the parameters of models used to represent facility
deterioration. This is due to incomplete information regarding
construction quality and material composition of the facilities,
limited sample sizes of the data sets used for deterioration model
calibration, and the use of laboratory testing as a substitute for
field data when the latter are not available.

The developers of modern IMSs have recognized the presence
of uncertainty in the deterioration models used in practice. There-
fore, they have included a model-updating step in these manage-
ment systems, where data collected as part of condition surveys
are used to update deterioration model parameters. For example,
Harper and Majidzadeh (1991) used Bayesian methods to update
the parameters of their deterioration models. Likewise, in the
popular bridge management system Pontis, transition probability
matrices are updated over time (Golabi and Shepherd 1997).
Durango and Madanat (2002) proposed a decision-support
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system, where the uncertainty in the deterioration model is repre-
sented by a probability mass function of deterioration rates.
Rather than updating the parameters of the deterioration model, it
is this probability mass function of deterioration rates that is up-
dated in light of inspection data in their system. Irrespective of
these differences, the common element in these three systems is
that they are adaptive; in that they combine model updating and
optimization.

Broadly speaking, there are two types of adaptive optimization
routines. Open-loop feedback control (OLFC) methods alternate
between updating model parameters and optimizing decision
making with respect to the most recent estimates of parameters.
Closed-loop control improves on this methodology by explicitly
considering the future updating of deterioration model parameters
within present time MR&R optimization. Unfortunately, consid-
eration of the many ways a network of facilities may deteriorate
and how this will lead to different updated deterioration model
parameters is not possible within a LP framework. For this rea-
son, adaptive infrastructure management systems that deal with a
network of related facilities are based on OLFC approaches.

In the present paper, model uncertainty is modeled by treating
the transition probabilities as continuous random parameters. The
successive updating of deterioration model parameters improves
the representation of the actual deterioration process, only if the
transition probabilities converge to their true values. For this to
happen, a large number of state transitions have to be observed
for every state and MR&R action combination. This means that
all MR&R activities must be applied to every condition state a
sufficient number of times. This may not happen in adaptive IMSs
because the optimization process will tend to select only a subset
of MR&R activities to apply to each condition state. As a result,
the transition probabilities for state-action pairs that are not se-
lected a sufficient number of times may converge to incorrect
values. This is a limitation of all OLFC-based adaptive optimiza-
tion models that exist in the infrastructure management literature,
but one that has not been addressed systematically before.

One way of resolving this issue is to randomly assign all ac-
tivities to a small number of facilities, thus guaranteeing that all
activities are applied to every condition state. This approach is
known as systematic probing. In this paper, an approach for the
optimization of MR&R policies under model uncertainty by using
systematic probing is presented.

This paper is organized as follows. The following section de-
scribes the MR&R optimization formulation in more detail. The
subsequent section, entitled “Updating Transition Matrices and
OLFC,” explains the method used for updating the deterioration
models with field data and the OLFC approach. The next section,
entitled “Systematic Probing” describes the application of system-
atic probing. Finally, the last section—entitled ‘“Parametric
Study”—shows the result of a computational study and discusses
the usefulness of this approach.

MDP-Based MR&R Optimization Model

The key assumption of MDP-based MR&R optimization is that
facility deterioration is a Markovian process, which means that
the state of the facility in a period only depends on the state of the
facility and the MR&R action taken in the preceding period. The
deterioration process is represented by transition probabilities. It
is assumed that inspections are performed periodically, and that
the true state of a facility is revealed through inspections. The
following model represents the transition probabilities:

| Long-Term Optimization J

v

Optimal Fractions of Facilities
for Long-Term Problem

Used as a
boundary

< condition

Short-Term Optimization

v

Optimal Fractions of Facilities
for Each Year

Fig. 1. Relation between long-term and short-term optimization

mi(a) = P(s™' =jls'=i,c'=a)

1<ij<K,t=0,1,....,T-1,acA (1)

where 1,;(a) =transition probability of the facility changing state i
to j under maintenance activity a; s'=condition state of a facility
in year f; i and j=indices of the state of a facility; k=number of
discrete states of a facility; ¢'=maintenance activity performed in
year t; a=index of a maintenance activity; A =set of maintenance;
and T=number of years in the planning horizon.

The transition probabilities are arranged in transition matrices.
A transition matrix is shown next

mi(a) m(a) wx(a)
wo-| MY e
(@) Txy(a) mixla)

where I1(a)=transition matrix given that maintenance activity a
is performed.

The optimal MR&R policy for a network of similar infra-
structure facilities can be obtained by using LP. The objective of
this network-level optimization is to minimize the expected cost
associated with performing MR&R activities, and the associated
user costs subject to budget and level of service constraints. The
decision variables are the fractions of the facilities in the network
that are in various states, and to which different MR&R actions
should be applied. The LP provides randomized MR&R policies
rather than a single deterministic policy for each state. This ap-
proach was first proposed by Golabi et al. (1982).

Two types of LP optimizations are solved: A long-term and a
short-term optimization. The long-term optimization model is
based on an infinite planning horizon. It seeks optimal policies
that minimize the average cost per period for a steady-state dis-
tribution of the facilities and maintenance activities. The short-
term optimization minimizes the total cost over a predetermined
and finite planning horizon. In the short-term optimization model,
the steady-state distribution obtained in the long-term optimiza-
tion is used as a boundary condition for the distribution of facili-
ties and MR&R activities at the end of the planning horizon. This
is illustrated in Fig. 1. The two models are described next.
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Long-Term Optimization

K
Min. >, > wiia)-[gli,a) +u(i) + 7] (3)

i=1 acA

s.t. w(,a)=0 VYia 4)

K
> > wii,a)=1 (5)

i=1 acA
K
2 wia)=2 2 wlia)-wya) Y ()
acA i=1 acA
K
Bmin < 2 2 w(i,a) : g(l’a) < Bmax (7)
i=1 acA
Oini = 2 W(i,0) < Qo Vi ®)
acA

where w(i,a)=fraction of facilities in the infrastructure network
that is in state i and receives maintenance activity a; g(i,a)=cost
associated with performing MR&R activity @ when a facility is in
state i; u(i)=user cost when a facility is in state /; r=inspection
cost; B;,=lower limit of budget; B,,,=upper limit of budget;
Onin;=lower limit of the fraction of facilities allowed in state i;
and Q,,..;=upper limit of the fraction of facilities allowed in
state i.

The objective function given by Eq. (3) minimizes the ex-
pected cost per year. Listed in Egs. (4)—(8) are the constraints
necessary for this minimization problem. Constraints (4) and (5)
specify that each decision variable (i.e., each fraction of facilities)
should be non-negative, and that the sum of all the fractions
should be equal to 1.0. Constraint (6) shows the Chapman-
Kolmogorov equation. This equation, in this long-term problem,
forces the distribution of facilities to remain constant over time.
The budget constraints are given by Eq. (7), which allow both
minimum and maximum values. The level of service constraint
(8) forces the condition of the system to fall in an acceptable
range. This constraint means that a minimum fraction of facilities,
defined in the lower limit, Q,;, should be in good states; and
that the fraction in poor states should not exceed the upper limit,
Omax ;- Inspection cost is a constant in this formulation, but could
be modified to be a function of condition state or management
policy. The inclusion of inspection cost is meant to draw attention
to its importance in the asset management process.

It should be noted that user costs are typically not included in
these formulations, because they are difficult to quantify. This is
the reason that level of service constraint (8) is used, so as to
incorporate a policy-makers’ desire for having pavements in ac-
ceptable condition without introducing the complications of user
Costs.

Short-Term Optimization

T K
Min. > > > w'i,a)-[g(i,a) +u(i) +r] (9)

t=1 i=1 acA

s.t. w(,a=0 Viat=1.2,...,T (10)

K

> X wiia)=1

i=l acA

Vi=1,2,....T (11)

> wlia)=¢"G) Vi (12)

acA

K
2 wtl(j,a) =2 E w'(i,a) -mya) Vjr=12,....T

acA i=1 aeA

(13)

K
> D wlia)-mya)= X wija) Vi (14)

i=l acA acA

K
B <> > w(a) - glia)<B., Vi=12 ..T

=1 aeA

(15)

Qi< 2 Wii,a) < Qs Vit=12,....T (16)

acA

where w'(i,a)=fraction of facilities that is in state i and receives
maintenance activity a in year t; ¢°(i) =initial fraction of facilities
in state i; w(i,a)=steady-state fraction of facilities in the
infrastructure network that is in state i and receives maintenance
activity a, obtained from the long-term optimization; B =lower
limit of budget for year r; B!, =upper limit of budget for year f;
Orin;=lower limit of the fraction of facilities allowed in state i
for year t; O, /=upper limit of the fraction of facilities allowed
in state i for year .

The LP formulation for the short-term optimization model is
similar to the long-term optimization model. The difference is that
the decision variables and the budget and level of service con-
straints are time dependent in the short-term model. This time
dependency is denoted by the superscript ¢ in the model. The
objective function (9) minimizes the total cost over the short-term
horizon. The required constraints for this minimization problem
are listed in Egs. (10)—(16). Constraint (10) guarantees the non-
negativity of fractions. The sum of the fractions should sum
to 1.0, per constraint (11). Constraint (12) guarantees that the
fraction of facilities in state i in year 1 is equal to ¢°(i), which is
known. The Chapman-Kolmogorov equation (13) guides the de-
terioration processes of the different facilities after year 1. The
optimal solution obtained in the long-term optimization, w(i,a),
acts as a boundary condition on the distribution of states at the
end of the planning horizon in constraint (14). The budget con-
straint and level of service constraint are stated in Egs. (15) and
(16). Again, user costs are usually not included in the formulation
if a level-of-service constraint is used.

The formulations above assume that all facilities can be rep-
resented by the same set of transition probabilities, i.e., that we
have a homogeneous network. This simplification was made for
clarity of exposition.

In reality, an agency solves a number of MR&R optimizations,
one for each homogeneous group of facilities, and each with its
own budget constraint. To find the optimal allocation of the total
budget across groups, an agency uses the following procedure:
Each group’s optimization is solved for a range of budget con-
straints. For each group, the change in the value of the objective
function at optimality for a unit change of the budget is the value
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of the shadow price of the budget constraint at that point. The
optimal allocation of the total budget across groups is attained at
the points where the shadow prices are equal across groups, and
the groups’ budget constraints sum up to the total agency budget.

Updating Transition Matrices and OLFC

This section describes how the transition probabilities can be up-
dated with new data provided by inspections. It is assumed that an
inspection of all facilities is performed at the beginning of each
year, revealing the true condition of the facilities.

Notation

. xﬁ,(a): Number of facilities that are in state i at the beginning
of year ¢ to which maintenance activity a is applied, and are in
state j at the beginning of year 7+1;

¢ X;(a)=2§:1x;j(a)§ Vi,a,t;
© nia)=2_pxj(a); Yij.a.th
* Nia)==!_Xi(a); Vi,a,rt

. Trﬁf(a): Estimated transition probability from state i to j under
maintenance activity a in year ¢; and
e II(a): Estimated transition matrix for maintenance activity a

in year t.

Through inspections at the beginning of year 7+ 1, we observe
the number of facilities whose conditions change from state i in
year ¢ to state j in year 7+ 1 under maintenance activity a. This is
denoted by xj;(a) for all i,j,t, and a. Then, nj(a) and N(a) are
calculated. With this information, the transition probabilities are
updated at the beginning of year 7+1 by maximum likelihood
estimation (MLE). The MLE for transition probabilities, at the
beginning of year r+1, is

t

t
wia)= 2 xfa) [ 2 XNa)=nlyNia) Yij.ar (17)
k=0 k=0
The Bayesian updating of the transition probabilities provides the
same result as in Eq. (17) (DeGroot 1970).

Procedure

For year ¢,

e Inspect all facilities;

e Observe x;'(a); Vi,j,a;

e Update the transition probabilities

Trf-;l(a) :nffl(a)/Nﬁ_l(a) Vi,j,a (18)

* Obtain the updated transition matrices [I""'(a); Va.
This process is summarized in Fig. 2.

OLFC

An OLFC approach was used to incorporate the updated transi-
tion probability matrices into the MR&R optimization models. In
the OLFC, short-term and long-term optimizations are rerun after
transition matrices are updated. At the start of each year, the set of
optimal MR&R policies over the planning horizon is obtained
based on the updated transition matrices, but only the optimal
policy for the current year is performed. It may seem odd to be
constantly rerunning “long-term optimizations,” but this ensures
that actions are always taken in accordance with current best

4
0
v

= Decision-Making * Inspection « Inspection
based on 11°(a) i xla) Vija I x(a) Vija
« Perform MR & R actions

* Update: [T'(a) Va
« Decision-Making
based on IT'(a)
+ Perform MR & R actions

« Update: [1%(a) Va
+ Decision-Making
based on *(a)
« Perform MR & R actions

« Determine
: M%a)
x{a)  Vija

Fig. 2. Performance model updating procedure

estimates of transition probabilities. As transition probabilities
converge, so too will optimal long-term policies. The OLFC al-
gorithm is described next.

Algorithm

For year ¢,

e Inspect all facilities at the beginning of year ¢;

e Update transition matrices;

e Use the updated transition matrices in the LP to determine the
fractions of the facilities in the network in different states on
which maintenance activity a is performed for all years in the
planning horizon

={w'(i,a), ... ,w(i,a)}; Via; and

e Apply w'(i,a) Vi,a for the network in year ¢ only.

The linear program that is applied in the OLFC is the same as the
linear program shown earlier. The only difference is that the tran-
sition matrix is updated every year. Fig. 3 illustrates the OLFC
optimization procedure.

Systematic Probing

The successive updating of deterioration models will improve the
representation of the real deterioration process only if the transi-
tion probabilities converge to the true values. As shown in Kumar
and Varaiya (1986) and Bertsekas (2000), it is possible that, in
certain cases, the parameters converge to the wrong values.

Update transition
probabilities

l Long-Term Optimization |<—

v

w(i,a

 —
—)LShort-Term Optimization I
v

W' (i, a),......, w" ()}

v

Apply W' (i,a)

Used as a
boundary
condition

Fig. 3. Open-loop feedback MR&R optimization
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Maximum likelihood produces consistent estimates. Therefore,
the transition probabilities for a policy that is selected periodically
by the optimization will converge to the true values. In other
words, if each MR&R action is selected a large number of times
for every condition state, then convergence to the true values is
guaranteed. On the other hand, there is no similar guarantee for
the transition probabilities corresponding to policies that are not
selected periodically by the optimization.

The problem with OLFC methods used in adaptive infrastruc-
ture systems is that they always select actions that are “optimal”
given the current deterioration model, and never select actions
that may appear suboptimal, but that produce data that may reveal
more information about systems dynamics (i.e., the effectiveness
of various MR&R actions). In the language of Sutton and Barto
(1998), at the core of adaptive control, there is a dilemma be-
tween exploitation and exploration. OLFC methods overlook the
latter in favor of the former. If the initial performance model does
not select the true optimal management policies, the optimization
will tend to favor alternate policies. Data will be stockpiled about
these alternate policies. By contrast, the true optimal policies
will be avoided and little knowledge will be gained about their
effectiveness. In circumstances like this, the infrastructure man-
agement system will take a relatively long time to identify the
true optimal management policies, if it ever does so.

The solution is to ensure that all MR&R actions are applied to
every condition state so that all transition probabilities are up-
dated a sufficient number of times. This is especially important in
the early years of infrastructure management; the faster informa-
tion is gathered, the faster true optimal policies can be identified.
One way to balance exploitation and exploration is to use system-
atic probing (Sutton and Barto 1998).

In this paper, the early period of the planning horizon is as-
signed for probing. During the probing period, every MR&R ac-
tion is applied to every state, in order to produce a sufficiently
large number of observations to update all transition probabilities.
In year ¢, (1-€) X 100% of the facilities receive the MR&R ac-
tions that are selected by the optimization while the remaining
€' X 100% receive random MR&R actions. The probing fractions
€' can either be a decreasing function of ¢ or a constant. As a
result of probing, all transition probabilities are updated fre-
quently at the beginning of the planning horizon because all
MR&R actions have been applied to all states a relatively large
number of times.

From a practical point of view, it is difficult to imagine an
agency applying randomly selected MR&R policies to even a
small subset of its infrastructure facilities. But these random poli-
cies need not be applied to in-service facilities. Many state high-
way agencies in the U.S., and many in other industrialized
countries, have developed full-scale experimental test facilities
for research purposes. Examples include the MnRoad test site in
Minnesota, which comprises experimental test sections and in-
service pavement sections; the WesTrack test site in Nevada, a
full-scale experiment that consists of a specially built track; and
test sections subjected to heavy vehicle simulators in California,
Indiana, Texas, and other states. As part of these experiments,
researchers can, and in some cases already do, apply randomly
selected MR&R activities to such pavement sections.

Parametric Study

A parametric study was conducted to compare the OLFC optimi-
zation with and without systematic probing. The savings achieved

Table 1. Cost ($/Lane-Yard)
MR&R activities

Condition

of User
pavement 1 2 3 4 5 6 7 costs
1 0.00 690 1990 21.81 25.61 29.42 2597 100.00
2 0.00 2.00 1040 1231 16.11 1992 2597 25.00
3 0.00 1.40 878 10.69 14.49 1830 2597 22.00
4 0.00 083 7.5 9.06 12.86 16.67 2597 14.00
5 0.00 0.65 473 6.64 1043 1425 2597 8.00
6 0.00 031 220 411 791 1172 2597 4.00
7 0.00 0.15 2.00 391 7.71 11.52 2597 2.00
8 0.00 004 190 381 7.61 11.42 2597 0.00

as a result of using systematic probing are quantified.

We used a case study in the field of pavement management.
The data, such as transition probability matrices, costs of per-
forming MR&R activities, and user costs, were taken from Du-
rango and Madanat (2002). The user costs represent the vehicle
operating costs associated with the condition of pavement. The
condition of pavements was expressed by discrete states from one
to eight, as in Carnahan et al. (1987). A higher number means a
better condition. Seven MR&R activities exist: Do nothing (1),
routine maintenance (2), one-in overlay (3), two-in overlay (4),
four-in overlay (5), six-in overlay (6), and reconstruction (7). The
costs associated with performing MR&R activities and the user
costs are shown in Table 1, which were taken from Carnahan
et al. (1987). The user costs represent vehicle operation costs
that depend on the condition of pavement. The inspection cost
was assumed to be 10% of the average MR&R costs. For the
short-term optimization, the planning horizon (7) was assumed to
be 25 years.

The following initial distribution of facilities was assumed:
60% of facilities are in State 8, 20% in State 7, 10% in State 6,
5% in State 5, 3% in State 4, 2% in State 3, and 0% in States 2
and 1. The minimum level of service constraint restricts, such that
no facilities should be in State 1. The budget was limited to $100/
lane-yard-year. Like inspection costs, the inclusion of a budget
constraint aims to draw attention to its importance in network-
level adaptive infrastructure management.

For computational reasons, we included some tolerance limits
in constraint (14) so that the steady-state distribution of facilities
and maintenance activities is attained with the specified tolerance.
We used a tolerance ¢ of 0.01. Constraint (14) was modified to

2 w'ia) - mya@) = 2 wiia)-(1-¢) Vi (19)

aeA acA

S wlia) mya) < X wiia) - (1-4) Vi (20)

aeA aeA

OLFC Optimization without Systematic Probing

The basic logic of the computational study is that the initial tran-
sition matrices do not represent the true deterioration process, and
the infrastructure facilities perform according to their true de-
terioration characteristics. The initial and true matrices were se-
lected from among three categories of deterioration of Durango
and Madanat (2002): Slow, medium, and fast. For example, in
one trial, the slow deterioration rate was selected as the initial
process estimate; while the real process was described by the
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Table 2. Total Costs with Constant Probing Fraction

Table 4. Total Costs with Diminishing Probing Fraction

Deterioration Probing fraction
process (e*100% )
Real Initial 0% 2% 4% 6% 8% 10%

Fast Medium 101.54 102.75 9931 104.29 10547 107.89
Slow 84.34 8648 81.59 8622 8947 9294

Medium Fast 55778 59.04 55.77 60.89 6571  70.49
Slow 41.89 47.83 4956 52.03 5421 57.68

Slow Fast 47.14 46.63 5025 51.69 5572 58.94
Medium 3549 3544 38.05 428 45.11  47.39

medium deterioration rate. In this case, we predicted the perfor-
mance of infrastructure facilities, and selected MR&R activities
with the matrices corresponding to the slow deterioration in the
first year. The optimal policy for the first year was applied, but the
deterioration of infrastructure facilities after implementing the
optimal policy was simulated based on the medium transition
matrices. The inspection results at the beginning of the second
year were generated using the medium transition matrices. We
updated the initial transition matrices with the information from
the inspections. Then, the optimal MR&R policies for the second
year were selected by using the updated transition matrices. The
selected activities were performed and the results of inspection at
the beginning of the following year were generated based on the
medium transition matrices. This procedure was repeated simi-
larly over the planning horizon. The total cost was the sum of
costs actually incurred over the planning horizon.

Open-Loop Feedback Control Optimization
with Systematic Probing

The basic logic is the same as the OLFC optimization without
systematic probing. However, as explained earlier, during the
probing period, €' X 100% of the facilities receive random actions.
The facilities that receive random actions are evenly chosen from
all states. Two types of systematic probing were used in the
computational study: A constant probing fraction strategy and di-
minishing probing fraction strategy. With the constant probing
fraction strategy, € is constant. Five cases were implemented: €
ranged from 0.02 to 0.10 in increments of 0.02. In the diminishing
probing fraction strategy, € was reduced every 2 years from 0.10
to 0.0 in increments of 0.02.

Table 3. Year to Convergence in Policies with Constant Probing Fraction

Deterioration Probing fraction
process (e*100%)

Real Initial 0% 2% 4% 6% 8% 10%
Fast Medium n/a n/a 24 23 21 19
Slow n/a n/a 23 23 21 18
Medium Fast 14 13 11 10 8 8
Slow 18 18 17 17 13 9
Slow Fast 15 12 11 9 9 8
Medium 4 3 3 3 3 3

Deterioration process Probing strategy

Real Initial Diminishing Constant
Fast Medium 96.02 99.31
Slow 81.73 81.59
Medium Fast 56.07 55.717
Slow 40.56 41.89
Slow Fast 49.08 46.63
Medium 43.09 35.44

Total Cost Comparison

The total costs in each case with constant probing fractions are
shown in Table 2. In all cases except one (when the real deterio-
ration rate is medium and the initial deterioration rate is slow),
lower costs were obtained by using systematic probing. This re-
sult is related to the time needed for convergence in policies.
These times are shown in Table 3.

Systematic probing allows every state to be visited and every
action to be applied. Thus, all transition probabilities are updated.
Intuitively, when the fraction is larger, convergence in the transi-
tion probabilities is faster. This is why the convergence in policies
occurred earlier with the larger probing fractions. The cases
where convergence was not achieved within the planning horizon
are denoted as n/a in the Table 3.

There is a tradeoff in total costs. With larger probing fractions,
the policies converge faster and the MR&R costs after conver-
gence are reduced. On the other hand, the costs of systematic
probing are higher. This is because a larger fraction of suboptimal
MR&R actions are applied during the probing period.

In the second part of the parametric study, a diminishing
probing fraction strategy was used. The total costs are shown in
Table 4. As can be seen, in certain cases, the total costs were
reduced further relative to the constant probing fraction strategy.
This was true in the case where the real deterioration rate is fast,
the initial rate is medium, and—in the case—where the real de-
terioration rate is medium and the initial deterioration rate is slow.
In these scenarios, it is important to quickly account for the fact
that deterioration is proceeding faster than anticipated, but further
model refinement is less critical. The number of years to reach
convergence in policies is shown in Table 5.

The cost savings achieved by using systematic probing are
shown in Table 6. The cost savings represent the differences be-
tween the cost incurred without systematic probing and the cost
incurred by the most efficient probing strategy. The parametric
study showed that using systematic probing, in the cases exam-
ined, reduces total costs if the optimal probing fractions are used.

Table 5. Year to Convergence in Policies with Diminishing Probing
Fraction

Deterioration process

Year to

Real Initial convergence
Fast Medium 22
Slow 20
Medium Fast 10
Slow 15
Slow Fast 11
Medium 3
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Table 6. Cost Savings

Deterioration process Cost savings

Real Initial $/lane-yard %
Fast Medium 5.52 5.44
Slow 2.75 3.26
Medium Fast 0.01 0.02
Slow 1.33 3.17
Slow Fast 0.51 1.08
Medium 0.05 0.14
Conclusion

An adaptive infrastructure MR&R optimization methodology that
incorporates updating of transition matrices was presented. The
methodology is based on an OLFC approach. Parametric studies
showed that using systematic probing can lead to cost savings
over the OLFC without systematic probing, if the optimal probing
fractions are selected. The parametric studies also showed that the
cost savings are related to the time needed for convergence in
policies. The MR&R policies converged faster when probing was
used.

As argued earlier in this paper, systematic probing can be
achieved by performing a full set of MR&R activities on test
facilities as part of experimental studies. Such experiments are
underway in several states, as well as in other countries. The
results of the parametric studies performed in this paper indicate
that there are significant savings that can be achieved by using the
results of such experiments jointly with the results of inspections
of in-service facilities to update the parameters of infrastructure
performance models. These results dovetail with those obtained in
empirical studies (such as, Prozzi and Madanat 2004), which in-
dicated that models developed by combining experimental and
field data had higher accuracy than those developed with only one
source of data, because experimental data included a broader
range of action-condition combinations, while field data more
closely represented the process of deterioration in the field.

On the other hand, the results of the previous section also
showed that probing with the wrong probing fractions could sig-
nificantly increase the expected cost. Given that highway agencies
are unlikely to know what the optimal probing fractions are for
their systems, it may be safer to avoid systematic probing until
further research is conducted. In the meantime, the major conclu-
sion from this work is that state-of-the-art adaptive IMSs, that do
not use probing, provide sufficiently close to optimal policies.
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