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The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in

the second decade of the twenty first century. Its period of phenomenal growth likely lies

ahead. AI-operated machines and technologies will extend the reach of Homo sapiens

far beyond the biological constraints imposed by evolution: outwards further into deep

space, as well as inwards into the nano-world of DNA sequences and relevant medical

applications. And yet, we believe, there are crucial lessons that biology can offer that

will enable a prosperous future for AI. For machines in general, and for AI’s especially,

operating over extended periods or in extreme environments will require energy usage

orders of magnitudes more efficient than exists today. In many operational environments,

energy sources will be constrained. The AI’s design and function may be dependent

upon the type of energy source, as well as its availability and accessibility. Any plans for

AI devices operating in a challenging environment must begin with the question of how

they are powered, where fuel is located, how energy is stored and made available to the

machine, and how long the machine can operate on specific energy units. While one

of the key advantages of AI use is to reduce the dimensionality of a complex problem,

the fact remains that some energy is required for functionality. Hence, the materials and

technologies that provide the needed energy represent a critical challenge toward future

use scenarios of AI and should be integrated into their design. Here we look to the brain

and other aspects of biology as inspiration for Biomimetic Research for Energy-efficient

AI Designs (BREAD).

Keywords: AI, biomimetic, energy, edge computing, neurobiology, neuromorphic computing

ARTIFICIAL INTELLIGENCE’S ENERGY REQUIREMENTS

The last few years have seen a rapid expansion of Artificial Intelligence (AI) and Machine Learning
(ML) breakthroughs. What were once AI solutions to toy problems have now become human level
complex problem-solving. These solutions have moved out of research labs and into commercial
applications. However, most AI and ML algorithms for these complex problems are implemented
in large data centers housing power hungry clusters of computers and Graphical Processing Units
(GPUs). In contrast, natural, biological intelligence is power efficient and self-sufficient. In this
article, we argue for Biomimetic Research for Energy-efficient AI Designs (BREAD) as AI moves
toward edge computing in remote environments far away from conventional energy sources, and
as energy consumption becomes increasingly expensive.
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Current Solutions to AI’s Energy
Requirements
With the growth of the Internet, data traffic (traffic to and from
data centers) is escalating exponentially, crossing a zettabyte
(1.1 ZB) in 2017 (Andrae and Edler, 2015). Figure 1 shows
this trend. Currently, data centers consume an assessed 200
terawatt hours (TWh) each year equivalent to 1% of global
electricity demand (Jones, 2018). A 2017 International Energy
Agency (IEA) report noted that with the ongoing explosion of
Internet traffic in data centers, electricity demand will likely to
increase by 3% (IEA, 2017). While it is difficult to estimate
the exact role of AI within data centers, analysis from reports
(Andrae and Edler, 2015; Sverdlik, 2016; IEA, 2017; Gagan, 2018;
CBInsights, 2019) suggests that it is non-trivial— on the order
of 40% (see Figure 1). For example, Google projected in 2013
that people searching by voice for three minutes a day using
speech recognition deep neural networks would double their
datacenters’ computation demands, and this was one impetus for
developing the Google TPU (Jouppi et al., 2017). Additionally,
Facebook has stated that machine learning is “applied pervasively
across nearly all sevices” and that “computational requirements
are also intense” (Hazelwood et al., 2018).

The rise of highly efficient data factories, known as hyperscale
facilities, use an organized uniform computing architecture
that scales up to hundreds of thousands of servers. While
these hyperscale centers can be optimized for high computing
efficiency, there are limits to growth due to a variety of constraints
that also affect other electrical grid consumers. However, the shift
to hyperscale facilities is a current trend, and if 80% of servers
in US conventional data centers were moved over to hyperscale
facilities, energy consumption would drop by 25%, according to
Lawrence Berkeley National Laboratory report, 2016.

One way the hyperscale centers have cut down their power
usage is through efficiencies in cooling. By locating in cooler

FIGURE 1 | The graph shows that total energy use and share of AI in the total

energy use will increase in the 2020s. The AI share in total energy use is on the

order of 40% by 2030. Trends estimated from Andrae and Edler (2015) and

IEA (2017).

climates, the data centers can ingest the cool air outside
with positive results. Another solution is employing warm
water cooling loops, a solution tuned for temperate and
warm climates. An innovative solution to address the energy
constraints of AI systems is to employ an AI-powered cloud-
based control recommendation system. For example, Google
employs a cloud-based AI to collect information about the
data center cooling system from thousands of physical sensors
prior to feeding this information into deep neural networks.
The networks then compute predictions for how different
combinations of possible activities will affect future energy
consumption (Shehabi et al., 2016).

Although hyperscale centers and smart cooling strategies
can lower energy consumption, these solutions do not address
applications where AI is operating at the edge or when AI
is deployed in extreme conditions far away from convenient
power supplies. We believe that this is where future AI systems
are headed.

Our view is that there is a pressing need to address the
energy issue as it applies to the future of AI and ML. While
there is a growing research effort toward developing efficient
machine learning methods for embedded and neuromorphic
processors (Esser et al., 2015; Hunsberger and Eliasmith, 2016;
Rastegari et al., 2016; Howard et al., 2017; Yang et al., 2017; Severa
et al., 2019), we recognize that these methods do not address
the full needs of future applications, despite offering compelling
first steps. Generally, currentmethodsmodify existing techniques
rather than develop de novo algorithms.

In this paper, we emphasize how biology has addressed the
power consumption problem, with a particular focus on energy
efficiency in the brain. Furthermore, we look at non-neural
aspects of biology that also lead to power savings. We suggest
that these strategies from biology can be realized in future
AI systems.

CURRENT STATE OF AI AS IT PERTAINS
TO ENERGY CONSUMPTION

Edge Computing in Remote and Hostile
Environments
Trends in many human-built systems point to directions where
sensing, processing, and actuation is situated on distributed
platforms. The emerging Internet-of-Things (IoT) are cyber
technologies (Atzori et al., 2010), hardware and software, that
interact with physical components in environments which
may or may not be populated by humans. IoT devices are
often thought of as the “edge” of a large, sophisticated cloud
processing infrastructure. Processing data at the “edge,” reduces
system latency by removing the delays in the aggregation
tiers of the information technology infrastructure (Hu et al.,
2015; Mao et al., 2016; Shi et al., 2016). In addition to
minimizing latency, edge processing increases system security
and mitigates privacy concerns when processing data in the
cloud. In cases where the data path between the edge and
user is very long, such computation can, by feature extraction,
reduce the dimensionality and hence the expense of sending
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information. However, edge processing may be far away from
power sources and may need to operate without intervention
over long time periods.

Exploration of remote and hostile environments, such as space
and deep ocean, will most likely require AI and ML solutions.
These environments are inherently hostile to the circuitry that
sub-serves current AI and ML technologies.

Unless human beings can be “radiation-hardened,” robotic
space probes will continue to dominate exploration and
exploitation of space in domains ranging from low earth
orbit to interstellar exploration. All of these are subject to a
variety of hazards which are potentially hazardous to CMOS-
based AI. These include collisions with high energy photons
(such as gamma rays), micrometeorites, planetary weather,
and anthropogenic attacks. Planetary missions such as NASA’s
Curiosity Mars rover have revealed additional challenges from
weather (such as sandstorms) that have put missions at risk.
Radioisotope thermal generation (RTG) power was added to
the Curiosity Mars rover design to combat the vulnerabilities
to solar energy systems on previous missions. While Curiosity’s
computational systems do not constitute true AI, the power
demands of the entire Curiosity rover (including drills and
actuators) are of a similar order of magnitude. Recent concerns
over limitations on the availability of radioisotopes (Aebersold,
1949) combined with safety concerns (Staff, 1948; Al Kattar et al.,
2015) during the launch phase will constrain future deep space
missions that might use nuclear power (Billings, 2015; Grush,
2018; Lakdawalla, 2018; Grossman, 2019).

As with Space, in deep ocean environments, power constraints
are also a current challenge. Current non-nuclear powered
Autonomous Underwater Vehicles (AUVs) have limited
capabilities due to restrictions on energy storage and the
availability of fuel sources. Furthermore, the extremely high
pressures of deep-sea environments offer their own challenges,
not only to energy supply for AI but also to the mass and
construction of protection containers for the electronics. Ocean
glider AUV’s use buoyancy engines with fins to convert force in
the vertical direction to horizontal motion (Webb et al., 2001;
Schofield et al., 2007; Rudnick, 2016; Rudnick et al., 2016, 2018).
While very slow, such AUV’s are far less energy-constrained than
other current technologies. However, the power generated by
such engines is not currently suitable for powering AI systems.
Batteries are used for such functions andmust be recharged at the
ocean surface using photo-voltaic cells. There are proposals to
use nuclear fission power generation to enable deep-sea battery
recharging stations for military AUV’s, though these remain at
the development stage and have similar safety considerations to
those mentioned above for space (Hambling, 2017).

In many of these domains, AI will be the preferred
computational modality because of latency issues related to long-
distance communication with Earth-based controllers. Operating
in such domains will have the additional challenge of energetic
constraints because readily available solar power may not always
be available in domains such as Earth’s moon, solar system planets
with weather and deep space (including interstellar). The primary
alternative energy source for such domains is nuclear (both
fission and fusion-based). Such power sources are in contrast to

the current radioisotope thermo-electric technologies used for
missions such as the Mars Curiosity Rover. While break-even
fusion power has yet to be demonstrated on Earth, the abundance
of fusion fuels in the solar system makes such power sources
attractive. In all these cases, the nuclear technology must have
a similar resiliency to that of the AI in terms of hazards, and it
will be optimal to consider such requirements holistically at the
design stage.

Existence Proof, Human Brains as Efficient
Energy Consumers
The original goal of AI was to extract principles from human
intelligence. On the one hand, these principles would allow
for a better understanding of intelligence and what makes us
human. On the other hand, we could use those principles
to build intelligent artifacts, such as robots, computers, and
machines. In both cases, the goal is to use human intelligence
as a use case, which derives from the function of the brain. We
believe that there are also important energy efficiency principles
that can be extracted from neurobiology and applied to AI.
Therefore, the nervous system can provide much inspiration for
the construction of low power intelligent systems.

The human nervous system is under tight metabolic
constraints. These constraints include the essential role of glucose
as fuel under conditions of non-starvation, the continuous
demand for approximately 20% of the human body’s total
energy utilization, and the lack of any effective energy-reserve
among others (Sokoloff, 1960). And yet, as is well known, the
brain operates on a mere 20 W of power, approximately the
same power required for a ceiling fan operating at low speed.
While being severely metabolically constrained is at one level a
disadvantage, evolution has optimized brains in ways that lead to
incredibly efficient representations of important environmental
features that stand distinct from those employed in current
digital computers.

The human brain utilizes many means to reduce functional
metabolic energy utilization. Indeed, one can observe at
every level of the nervous system strategies to maintain high
performance and information transfer, while minimizing energy
expenditure. These range from ion channel distributions, to
coding methods, to wiring diagrams (connectomes). Many of
these strategies could inspire newmethodologies for constructing
power efficient artificial intelligent systems.

At the neuronal coding level, the brain uses several strategies
to reduce neural activity without sacrificing performance.
Neural activity, (i.e., the generation of an action potential,
the return to resting state, and synaptic processing) is
energetically very costly, and this can drive the minimization
of the number of spikes necessary to encode either an
engram or the neural representation of a new stimulus
(Levy and Baxter, 1996; Lennie, 2003). Such sparse coding
strategies appear to be ubiquitous throughout the brain
(Olshausen and Field, 1997, 2004; Beyeler et al., 2017).

Furthermore, dimensionality reduction methods
from machine learning can explain many neural
representations (Beyeler et al., 2016). Because brains face strict
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constraints on metabolic cost (Lennie, 2003) and anatomical
bottlenecks (Ganguli and Sompolinsky, 2012), which often force
the information stored in a large number of neurons to be
compressed into an order of magnitude smaller population of
downstream neurons (e.g., storing information from 100 million
photoreceptors in 1 million optic nerve fibers), reducing the
number of variables required to represent a particular stimulus
space figures prominently in efficient current coding theories of
brain function (Linsker, 1990; Barlow, 2001; Atick, 2011). Such
views posit that the brain performs dimensionality reduction by
maximizing mutual information between the high-dimensional
input and the low-dimensional output of neuronal populations.
Although dimensionality reduction is typically used in machine
learning to improve generalization, it may have implications
for energy efficiency in real and artificial neural networks. By
decreasing the number of neurons required to represent stimuli,
while adhering to sparsity constraints, energy savings can be
achieved without loss of information.

The brain must respond quickly to stimuli and changes in the
environment. However, this implies an increase in neural activity,
which would be energetically costly. Evidence suggests that this
is not the case and that the brain utilizes strategies to maintain
a constant rate of activity. For example, the nervous system can
respond quickly to perturbations by shifting the specific timing
rather than increasing the absolute number of spikes (Malyshev
et al., 2013). Moreover, the balance of excitation and inhibition
can further maintain a steady rate of neural activity while still
being responsive (Sengupta et al., 2013a; Yu et al., 2018). In these
ways, the overall energy utilization of the human brain stays
relatively constant, while the local rate of energy consumption
varies widely and is dependent upon functional neuronal activity
and the balance between excitatory and inhibitory neurons (Olds
et al., 1994). In a similar way, neural networks and neuromorphic
hardware may reduce the activity of unused or unnecessary
nodes, when other nodes are highly active. Thus, keeping the
overall power budget constant. For example, the SpiNNaker
system will turn off turn off cores when they are not needed
(Furber et al., 2013). This strategy may be applied dynamically
during operation.

At a macroscopic scale, the brain saves energy by minimizing
the wiring between neurons and brain regions (i.e., number of
axons), yet still communicates information at a high-level of
performance (Laughlin and Sejnowski, 2003). Unlike current
electronic chips, the brain packs its wiring into a three-
dimensional space, which not only reduces the overall volume
but also can reduce the energy cost. Energy is further conserved
by maintaining high local connectivity with sparse distal
connectivity. White matter, which are myelinated axons that
transmit information over long distances in the nervous system,
make up about half the human brain but use less energy than gray
matter (neuronal somata and dendrites) because of the scarcity
of ion channels along these axons (Harris and Attwell, 2012).
These myelinated axons speed up signal propagation and reduce
the volume of matter in the brain. However, information transfer
between neurons and brain areas is still preserved by the overall
architecture, which essentially is a small world network (Sporns
and Zwi, 2004; Sporns, 2006). That is, even though the probability

of any two distal cortical neurons being connected is extremely
low, any two neurons are only a few connections away from
each other.

The nervous system also optimizes energy consumption
at the cellular and sub-cellular levels. Minimizing wiring
has energy implications for both hardware and software.
In hardware, routing of information within and between
processors can have an impact on energy consumption. In
software, the handling of synapses, as is in the brain, takes
the most processing power. There are typically many more
synaptic events to handle than neuron updates. Minimizing
the wiring or number of connections could potential yield
energy savings.

It has been suggested that the brain strives to minimize
its free energy by reducing surprise and predicting outcomes
(Friston, 2010). Thus, the brain’s efficient power consumption
may have a basis in thermodynamics and information theory.
That is, the system may adapt to resist a natural tendency
toward disorder in an ever-changing environment. Top-down
signals from downstream areas (e.g., frontal cortex or parietal
cortex) can realize predictive coding (Clark, 2013; Sengupta
et al., 2013a,b). In this way organisms minimize the long-
term average of surprise, which is the inverse of entropy,
by predicting future outcomes. In essence, they minimize the
expenditures required to deal with unanticipated events. The
idea of minimizing free energy has close ties to many existing
brain theories, such as the Bayesian brain, predictive coding,
cell assemblies, and Infomax, as well as an evolutionary-
inspired theory called Neural Darwinism or neuronal group
selection (Friston, 2010). For field robotics, a predictive
controller could allow the robot to reduce unplanned actions
(e.g., obstacle avoidance) and produce more efficient behaviors
(e.g., optimal foraging or route planning). For IoT and edge
processing, predictions could reduce communication data.
Rather than sending redundant predictable information, it
would only need to “wake up” and report when something
unexpected occurs.

In summary, the brain represents an important existence
proof that extraordinarily efficient natural intelligence can
compute in very complex ways within harsh, dynamic
environments. Beyond an existence proof, brains provide
an opportunity for reverse-engineering in the context of machine
learning methods and neuromorphic computing.

Energy Efficiency Through Brain-Inspired
Computing
A key component in pursuing brain- and neural- inspired
computing, coding, and neuromorphic algorithms lies in the
currently shifting landscape of computing architectures. Moore’s
law, which has dictated the development of ever-smaller
transistors since the 1960s, has become more and more difficult
to follow, leading many to claim its demise (Waldrop, 2016).
This has inspired renewed interest in heterogeneous and non-
Von Neumann computing platforms (Chung et al., 2010; Shalf
and Leland, 2015), which take inspiration from the efficiency
of the brain’s architecture. Neuromorphic architectures can
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offer orders-of-magnitude improvement in performance-per-
Watt compared to traditional CPUs and GPUs (Indiveri et al.,
2011; Hasler and Marr, 2013; Merolla et al., 2014). However, the
benefit of neuromorphic computing can and will depend on the
application chosen. For modeling biological neural systems, the
performance improvements already may be considerable (e.g.,
the Neurogrid platform claims 5 orders of magnitude efficiency
improvement compared to a personal computer Benjamin et al.,
2014). Additionally neural approaches enable IBM’s TrueNorth
chip to power convolutional neural networks for embedded
gesture recognition at less than one Watt (Amir et al., 2017).
In another comparison, a collection of image (32 × 32 pixel)
benchmark tasks on TrueNorth resulted in approximately 6,000
to 10,000 frames/Second/Watt, whereas the Nvidia Jetson TX1
(an embedded GPU platform) can process between 5 and 200
(ImageNet) frames per second at approximately 10–14 Watts
net power consumption (Canziani et al., 2016). Although we
note that it is difficult to have fair network and dataset parity
across platforms, and that neuromorphic systems supporting
even millions of neurons may be too small-scale for application-
level machine learning problems.

Neuromorphic architectures refer to a wide variety of
computing hardware platforms (Schuman et al., 2017),
from sensing (Liu and Delbruck, 2010; Posch et al., 2014)
to processing (Indiveri et al., 2011; Merolla et al., 2014),
analog (Fieres et al., 2008) to digital (Furber et al., 2013; Merolla
et al., 2014); see Figure 2. However, in most cases the defining
characteristics take inspiration from the brain:

1. Massively parallel, simple integrating processing units
(neurons)

2. Sparse and dynamic low-precision communication via
“spikes.”

3. Event-driven, asynchronous operation.

This event-driven, distributed, processor-in-memory approach
provides robust, low-power processing compatible with many
neural-inspired machine learning and artificial intelligence
applications (Neftci, 2018). Hence, size, weight and power
(SWaP) constrained environments, such as edge and IoT devices,
can leverage increased effective remote computation capabilities
and provide real-time, low-latency intelligent and adaptive
behavior. Moreover, the often noisy nature of learned artificial
intelligence systems (some incorporate noise by design Srivastava
et al., 2014) may lead to more robust computation in extreme
environments such as space.

Heterogeneous (spiking and non-spiking) architectures are
improving performance and latency, exemplified by a 30–80x
improvement on deep learning tasks (Putnam et al., 2014;
Jouppi et al., 2017), and new neuromorphic architectures, such
as Intel’s Loihi, are themselves heterogeneous which improves
communication between neural and conventional cores (Davies
et al., 2018). Emerging neural computing platforms may benefit
traditional large-scale computation both indirectly [e.g., system
health (Das et al., 2018), failure prediction (Bouguerra et al.,
2013)] and directly (e.g., meshing, surrogate models Melo
et al., 2014), and recent work indicates that neuromorphic
processors may be useful for direct computation due their

high-communication, highly-parallel nature (Lagorce and
Benosman, 2015; Jonke et al., 2016; Aimone et al., 2017;
Severa et al., 2018). However, we do remark that currently
several challenges exist hindering wide-range adoption of
these platforms. Some of the primary difficulties include: (1)
Neuromorphic chips are a niche product and difficult to procure
at volume; (2) There is insufficient software interfaces for
developing applications; (3) Many algorithms are incompatible
or may underperform on neuromorphic hardware; (4) Large-
scale applications are often too large; (5) Cross-compiling
code and I/O require considerable time and bandwidth from a
host machine. See Diamond et al. (2016), Severa et al. (2019),
Hunsberger and Eliasmith (2016), Disney et al. (2016), Davison
et al. (2009), Ehsan et al. (2017), and Wolfe et al. (2018) for
more details and possible approaches toward solving these
challenges. Moreover, some of the themes from the Existence
proof, human brains as efficient energy consumers section
(e.g., minimizing wiring, keeping firing rates constant, using
sparse and reduced representations) could be incorporated into
neuromorphic designs.

Neural inspiration has also impacted data collection in the
form of spiking neuromorphic sensors which generally follow
the same three characteristics as neuromorphic architectures.
The two most common categories are silicon cochleas (Watts
et al., 1992; Chan et al., 2007) and retina-inspired event-
driven cameras (Delbrück et al., 2010; Delbruck et al., 2014),
though neuromorphic olfaction is also under active research and
development (Vanarse et al., 2016). Neuromorphic sensors can
often be thought of as a method for high-speed preprocessing,
fundamentally changing the sample space. For example, for
imagery this allows for low-bandwidth, high-sampling, and high-
dynamic range imagery (Delbrück et al., 2010; Posch et al., 2015).
These benefits, in turn, have enabled low-latency, low-power
applications such as gesture recognition (Ahn et al., 2011; Amir
et al., 2017), robotic control (Conradt et al., 2009; Delbruck and
Lang, 2013), and movement determination (Drazen et al., 2011;
Haessig et al., 2018). The sparse, spiking representations can
pose an algorithmic challenge, at times being incompatible with
common processing methods designed around rasterized data.
However, spiking sensors are innately compatible with spiking
neuromorphic processors, and combining neuromorphic sensors
with a neuromorphic processor can avoid the costly conversion
between binary data formats and spikes.

Computational requirements of artificial intelligence
algorithms limit their remote applications today. Consequently,
most current consumer or commercial machine learning
technologies are reliant on connections to remote data centers.
However, as neuromorphic technologies transition from research
platforms to everyday products, learning systems can and will
proliferate in capability and scope. Combined with the expected
growth of edge and IoT devices, we can expect persistence and
pervasive learning devices. These learning devices, extensions
of current trends in smart devices (e.g., digital assistants, smart
home control, wearables), will be enhanced with personalized
online learning and enabled with adaptive, intelligent and
context-dependent perception and behaviors. Ultra-low energy
neuromorphic chips will carry out computations using milliwatts
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FIGURE 2 | Various neuromorphic platforms are pictured. (1) SpiNNaker 48-node board utilizes ARM chips to calculate neuron dynamics (Furber et al., 2013). (2) A

fully assembled BrainScaleS wafer module. Image from Schmitt et al. (2017). (3) Schematic of the functional crossbar representation of a IBM TrueNorth core. Image

from Merolla et al. (2014). (4) Neuromorphic core structure on Intel Loihi consists of four main computing modes, from Davies et al. (2018). (5) Frames (annotated with

driving data; top) and events (bottom) recoded on a retina-inspired DAVIS sensor (Brandli et al., 2014), similar to that pictured in the inset. Sample images from Binas

et al. (2017).

of power. In the industrial, medical and security spaces, the
same technologies will provide low-powered sensors capable of
extended deployment in a variety of extreme environments.

There is ample precedent for brain-inspired approaches to
engineering design that may lead to energy-efficient AI and
edge computing. Both designing algorithms to mimic the brain’s
behavior, and building new computer hardware that mimic
neural dynamics can lead to energy efficiency (see Figure 3)
(Calimera et al., 2013). However, many of the brain’s energy
efficiency strategies, such as minimizing wiring, maintaining
constant activity and prediction outcomes, are not implemented
in current neuromorphic architectures and should be explored in
the future.

OTHER ENERGY EFFICIENT STRATEGIES
IN BIOLOGY

Energy efficiency can also be inspired by observing nature’s
non-neural solutions. For example, the wing of an aircraft
takes inspiration from the wings of flying animals (birds,

bats, and insects). The shape of a modern naval submarine
has evolved from early boat-like designs prevalent during the
First and Second World Wars toward a more streamlined
whale-like shape. Even DNA-based computation–by itself
incredibly energetically efficient–takes inspiration from the
conserved phylogenetic information transfer mechanism of
Earth’s biosphere. The adaptive immune system, with its
sophisticated “learning and memory” through selection also
represents a low-energy approach to artificial intelligence that
may eventually have applications to AI-enhanced cyber-security
applications (Forrest, 1993; Somayaji et al., 1998; Forbes, 2004;
Forrest and Beauchemin, 2007; Rice and Martin, 2007; Keller,
2017). This selectionist approach, which was inspired by the
immune system, led to an influential brain theory where
the synaptic selection took place during neural development
and through experiential synaptic plasticity (Edelman, 1987,
1993). Such a Darwinist approach can lead to efficient neural
network structures.

As edge computing and mobile sensing devices become
ubiquitous, efficient mobility, whether on land, air, or water
will become increasingly important. Figure 4 shows examples
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FIGURE 3 | The image shows that in the design of bio-mimetic circuitry, either the existing hardware will be slightly adjusted to copy the behavior of brain parts, or

new computing architecture will be designed so that it completely emulate the high energy-efficient biotic neural structures (Image adapted from Calimera et al., 2013).

FIGURE 4 | Examples of morphological computation in nature and in engineering. (1) Thermal soaring is a form of flight where birds can stay in the air without

providing power from flapping. From Akos et al. (2010). (2) A robotic swarm inspired by social insects. From Rubenstein et al. (2014). (3) An efficient walking robot that

exploits passive dynamics. From Bhounsule et al. (2014). (4) The dexterity of the human hand is realized with soft skin and high resolution touch receptors at the

fingertips. From Balter (2015).
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of how biological organisms have evolved to leverage their
environment, and this morphological computation can lead to
efficient movement and information processing (Pfeifer et al.,
2014). For example, swarm intelligence (see Figure 4, panel
2), which is inspired by social insects, can solve a number
of problems with a collection of low power simple agents.
Interesting solutions emerge through the agents’ interactions
Rubenstein et al. (2014).

Bipedal walking is somewhat of a controlled fall, where energy
is conserved by allowing gravity to take over after the swing
phase of a step (see Figure 4, panel 3). This strategy has been
adopted in passive walker robots that utilize orders of magnitude
less energy than conventional walking robots (Collins et al.,
2005; Bhounsule et al., 2014). Birds of prey and long-range
migrating birds take advantage of thermal plumes to reduce
energy usage during flight (see Figure 4, panel 1) (Akos et al.,
2010; Weimerskirch et al., 2016; Bousquet et al., 2017). Gliders
have mimicked this strategy in their flight control systems (Allen
and Lin, 2007; Edwards, 2008; Reddy et al., 2018). Similar to
many fish and marine mammals, oceanographic submersible
gliders can harvest energy from the heat flow of thermal gradients
(Webb et al., 2001; Schofield et al., 2007; Rudnick, 2016; Rudnick
et al., 2016, 2018). These submersible gliders can operate across
thousands of kilometers over months to years. Some fish species
and flying insects alter their environment (i.e., the water or air
vortices) to create additional thrust (Triantafyllou et al., 2002;
Sane, 2003). The human hand is a marvel of morphological
computing. The shape of the hand naturally and reflexively grasps
onto object. The first point of contact is high resolution sensors
made of compliant material (i.e., the fingertips). Such structures
greatly reduce the neural computing load for complex tasks (see
Figure 4, panel 4).

Inspiration from biology at the population scale can lead
to efficient solutions to problems. Social insects and bacterial
colonies have inspired highly distributed robots or computing
systems (Rubenstein et al., 2014; Werfel et al., 2014). In these
cases, each agent has very low power computation requirements,
and no single agent is a point of failure. However, the interactions
between these agents can lead to complex problem-solving, which
is sometimes referred to as swarm intelligence.

Taken together, future AI systems that take inspiration
from biology and other energy harvesting approaches will
have a distinct advantage for long-term operation in harsh or
remote environments. Following these biological strategies could
allow for energy efficient sensor networks at the edge, more
efficient manufacturing, and systems that operate over much
longer timescales.

CONCLUSIONS

AI is on a trajectory to fundamentally change society in much
the same way that the industrial revolution did. Even without
the development of General Artificial Intelligence, the trend is
toward human-machine partnerships that collectively will have
the ability to substantially extend the reach of humans inmultiple
domains (e.g., space, cyber, deep sea, nano). However, as with

many things, there is no free lunch: AI will require energy inputs
that we believe must be accounted for at all stages of the AI design
process.We believe that such design solutions should leverage the
solutions that biology, especially the human brain, has evolved
to be energy efficient without sacrificing functionality. These
solutions are critical components to what we call intelligence.

AI has the potential to change society drastically; the evolving
human-machine partnerships will substantially extend the reach
of humans in multiple domains. For this to happen, AI will
require energy inputs that must be an early component of future
integrated AI design processes. A coherent strategy for design
solutions should leverage the solutions that biology, especially
biological brains, offers in maintaining energy efficiency and
preserving functionality. This strategy advances the following
recommendations to ensure both private and government
support for research and innovation.

Recommendation 1: A Multinational
Initiative to Make BREAD
To coordinate investments and channel knowledge from the life
sciences to AI energetics into a holistic AI design, we advocate
the launch of a global technological innovation initiative, which
we call Biomimetic Research for Energy-efficient, AI Designs
(BREAD). Ideally, BREAD would be backed by professional
societies such as the Association for Computing Machinery
(ACM), American Psychological Association (APA), Institute
of Electrical and Electronics Engineers (IEEE), and Society for
Neuroscience, as well as federal agencies. Energy sustainability
would be central in BREAD, but the initiative would encompass
all aspects of AI from hardware to sensors.

Recommendation 2: Integrate Biomimetic
Energetic Solutions Into Future AI Designs
Future AI development will require an integrated design
process where energy supply is not an add-on or assumed.
Thermodynamic considerations alone make the energetic
considerations important, particularly for those at the Edge, such
as IoT and Space environments, which are inherently hostile to
CMOS or future successor chip technologies. Current AI, such as
deep learning, approaches the problem by situating data centers
close to abundant and cheap electric power sources much like
what Google, Facebook, and IBM do. We believe that a more
fruitful approach for AI design is to leverage the solutions evolved
by biology (nervous system, metabolism, morphology) in the
future AI design, to what we call ‘biomimetic strategies.’

Recommendation 3: An Industry Backed
Research Lab or Consortium
Since the initial costs of integrating biomimetic solutions into
AI are likely to be front-loaded, we recommend that stakeholder
industrial partners with governments establish a pre-competitive
research laboratory that preserves intellectual property, similar to
IMEC in Belgium. IMEC was created so that CMOS design firms
might prototype new chips in a state-of-the-art environment.
Alternatively, an industry backed research and development of
technology, similar to the Semiconductor Research Consortium
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(SRC), would be another model to move forward on energy
efficient bio-inspired AI solutions. Such models could catalyze
the technological innovations necessary for success.

Recommendation 4: A Trainee Pipeline
A critical component of BREAD would be to establish a
pool of scientists at the intersection of AI and energy issues
who can integrate knowledge from biology, computer science,
neuroscience, and engineering. Thus, aligned with BREAD,
research institutions should consider new graduate offerings
at this nexus. In the US, the Engineering Directorate of the
NSF, the DOE or the DOD might support doctoral candidates
and post-doctoral trainees in this area through fellowships
and scholarships.

In conclusion, we see the future development of AI as
requiring new strategies for embedding energy demands
of the machine into the overall design strategy. From our
standpoint, this must include biomimetic solutions. As
indicated above, there is much precedence for this type of
engineering in other high aspects of technology, especially
those that must operate in challenging environments. Now such
engineering must be applied to future AI design so that the
technological trajectory of this paradigm-changing technology
is secure.
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