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Abstract

This paper employs the one-sector Real Business Cycle model as a testing ground for
four di®erent procedures to estimate Dynamic Stochastic General Equilibrium (DSGE)
models. The procedures are: 1) Maximum Likelihood (with and without measurement
errors and incorporating priors), 2) Generalized Method of Moments, 3) Simulated
Method of Moments, and 4) the Extended Method of Simulated Moments proposed
by Smith (1993). Monte Carlo analysis shows that although all procedures deliver
reasonably good estimates, there are substantial di®erences in statistical and compu-
tational e±ciency in the small samples currently available to estimate DSGE models.
The implications of the singularity of DSGE models for each estimation procedure are
fully discussed.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have become a standard tool in

various ¯elds of Economics, most notably in Macroeconomics and International Economics.

DSGE models are attractive because they explicitly specify the objectives and constraints

faced by households and ¯rms, and then determine the prices and allocations that result

from their market interaction in an uncertain environment.

To date, calibration is by far the most common approach in the literature to examine the

empirical properties of DSGE models. In calibration, the value of the structural parameters is

¯xed to those estimated in previous microeconometric studies and/or those computed using

long-run averages of aggregate data. Then, the model is simulated using a synthetic series

of shocks, and the unconditional moments of the simulated economic series are computed

and compared with the ones of actual data. The model is usually evaluated in terms

of the distance between these two set of moments. This comparison can be casual or

based on measures of ¯t like the ones proposed, for example, by Gregory and Smith (1991),

Watson (1993), and DeJong, Ingram, and Whiteman (1996). Impulse-response analysis and

variance decomposition are also used to examine, respectively, the model's behavior following

exogenous shocks and to assess the relative importance of these shocks in explaining the

conditional and unconditional variances of the variables.

Although calibration is a very useful tool for understanding the dynamic properties of

DSGE models, there are some advantages in their fully-°edged econometric estimation.

First, parameter estimates are obtained by imposing on the data the restrictions of the

model of interest. This addresses the concern that the assumptions of the DSGE model

might be inconsistent with the assumptions employed by the micro studies that produced the

parameter estimates used in calibration. Second, the estimation of the DSGE model allows

one to obtain estimates of parameters that might be hard to estimate using disaggregated

data alone. Third, parameter uncertainty can be explicitly incorporated in impulse-response

analysis using, for example, bootstrap techniques to construct con¯dence intervals for the

model's response to a shock. Finally, standard tools of model selection and evaluation can

be readily applied. For example, one can test the residuals for serial correlation and ne-

glected Autoregressive Conditional Heteroskedasticity, compare the Root Mean Square Error

of the DSGE model with that of another DSGE model or a Vector Autoregression, perform

tests of parameter stability or directly test some of the model's identi¯cation assumptions.

All this is valuable information in the construction of more realistic economic models.1

1See Hansen and Heckman (1996), and Browning, Hansen, and Heckman (1999) for additional discussion.
For a defense of the merits of calibration, see Kydland and Prescott (1996).
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The estimation procedures studied here are Maximum Likelihood (ML), Generalized

Method of Moments (GMM), Simulated Method of Moments (SMM), and the Extended

Method of Simulated Moments (EMSM) proposed by Smith (1993). These procedures are

standard and their asymptotic properties are well know. The goals of this paper are to

describe in a pedagogical manner their application to the estimation of DSGE models, to

study their small sample properties, to compare their computational costs, and to discuss

fully the implications of the singularity of DSGE models for each estimation procedure.

The intention here is not to perform a \horse race" between di®erent estimation strategies.

Instead, the more constructive goal is to evaluate their relative strengths and weaknesses in

the context of a simple, but economically interesting model.

An important feature of DSGE models that has implications for all estimation procedures

is their singularity. DSGE models are usually singular because they generate predictions

about a larger number of observable endogenous variables than exogenous shocks are used

to feed the model. This means that there are linear combinations of the variables that hold

without noise. These restrictions of the theoretical model arise from a particular form of

misspeci¯cation: the model assumes a smaller number of shocks than are present in the real

world.

Singularity limits the number of variables/moments that can be exploited for the es-

timation of the model. For the particular DSGE model studied here, it is shown that

singularity a®ects more severely the method of Maximum Likelihood than the methods of

moments. The model cannot be estimated by ML using more than one variable, unless

additional errors are added. However, one can use data on up to two endogenous variables

for the methods of moments. This means that the methods of moments might yield more

precise estimates of the structural parameters than ML, despite the fact that they are limited

information procedures. It is also shown that singularity imposes restrictions on both the

order and the number of variables in a VAR representation of the data generated by a DSGE

model.

The paper also studies the e®ect of adding measurement errors and incorporating priors

on ML estimation. Adding measurement error provides a less stringent platform to assess

the theory and allows the researcher to exploit information on a larger set of variables to

estimate the model parameters. Monte Carlo results indicate that this strategy delivers

more e±cient parameter estimates than alternative procedures. The use of priors allows the

research to exploit information from previous microeconometric studies, long-run averages

of aggregate data, and/or economic theory. Priors are incorporated here into the Maximum

Likelihood framework using the mixed estimation strategy in Theil and Goldberger (1961)

and are shown to yield sharper estimates than those obtained by the classic ML estimator.
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The paper is organized as follows. Section 2 describes the DSGE model that will be used

as backdrop for the estimation procedures. Section 3 describes the estimation procedures

and their application to DSGE models. Section 4 presents the Monte Carlo design and

report its results. Section 5 concludes.

2 The Arti¯cial Economy

The discussion of the di®erent estimation procedures is best made in the context of a speci¯c

economic model. This paper employs a version of the well-known one-sector Real Business

Cycle model with indivisible labor [see Hansen (1985), and King, Plosser and Rebelo (1988)].2

The representative agent maximizes expected lifetime utility de¯ned by:

Ut = Et
1X

i=t

¯ i¡t [ln(ci) + Ã`i] ;

where ¯ 2 (0;1) is the subjective discount factor, ct is consumption, `t is leisure, and Ã is
the weight of leisure in the instantaneous utility function. There is no population growth.

Without loss of generality, the population size and time endowment are normalized to one.

Hence,

nt = 1¡ `t;
where nt is hours worked. The agent's income consists of wages and rents received from

selling labor and renting capital to ¯rms, and is allocated to consumption and investment:

ct + xt = wtnt + rtkt;

where xt is investment, wt is the real wage, rt is the real rental rate of capital, and kt is the

capital stock. The prices wt and rt are expressed in terms of units of the consumption good.

Investment increases the stock of capital according to:

kt+1 = (1¡ ±)kt + xt;

where ± 2 (0; 1) is the depreciation rate. In addition to the transversality condition, the

¯rst-order necessary conditions associated with the optimal choice of ct; nt;and kt+1 for this

problem are:

1=ct = ¯Et[(1=ct+1)(1 + rt ¡ ±)];
Ãct = wt:

2In preliminary work, I performed a limited number of Monte-Carlo experiments using a more complicated
DSGE model with monopolistic competition, price rigidity, adjustment costs to capital, and money in the
utility function. Conclusions are qualitatively similar to those reported here, but the complexity of the
model obscures some of the points illustrated below.
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The single, perishable good in this economy is produced by perfectly competitive ¯rms

using a constant returns to scale technology. Since in this setup the number of ¯rms

in equilibrium is indeterminate, it is convenient to focus on a representative ¯rm. The

representative ¯rm rents labor and capital from the agent and combines them according to:

yt = zt(kt)
®(nt)

1¡®;

where ® 2 (0; 1), yt is output and zt is a technology shock. The technology shock follows

the exogenous stochastic process:

ln zt+1 = ½ ln zt + ²t;

where ½ 2 (¡1; 1) and ²t is an innovation assumed to be independently, identically, and
Normally distributed with zero mean and variance ¾2: In every period, the ¯rm chooses

input levels to maximize pro¯ts and equates the marginal product of labor (capital) to the

real wage (rental rate). Due to the assumptions of perfect competition and constant returns

to scale, ¯rms make zero pro¯ts in equilibrium.

The competitive equilibrium for this economy is the sequence of prices fwt; rtg1t=0 and
allocations fct; nt; xt; kt+1; ytg1t=0 such that ¯rms maximize pro¯ts, agents maximize utility,
and all markets clear. In particular, goods market clearing requires that aggregate output

be equal to aggregate demand:

yt = ct + xt:

The usual strategy to solve DSGE models involves the linearization of ¯rst-order condi-

tions and constraints by means of a ¯rst-order Taylor series expansion around the model's

steady state. The linearized equations for this model are presented in the Appendix. These

equations form a dynamic system that determines the path of the six variables in the model,

namely consumption, capital, output, investment, hours worked, and the technology shock.3

Using the circum°ex to denote percentage deviation from steady state and after some ma-

nipulations, it is possible to write:
"
k̂t+1
Etĉt+1

#
= A

"
k̂t
ĉt

#
+Bẑt;

where

A =

"
a11 a12
0 a22

#
=

"
1 + ±°=(1¡ °) ¡±(1 + ®° ¡ ®)=(®¡ ®°)

0 ®=(& + ®¡ ®&)

#
;

B =

"
b1
b2

#
=

"
±=(®¡ ®°)

&½=(& + ®¡®&)

#
;

3For convenience and without loss of generality, I have substituted out the wage and rental rate by
equating them to the marginal products of labor and capital, respectively.

[4]



& = ®¯(k=n)®¡1; k=n = ((1=¯ + ± ¡ 1)=®)1=(®¡1) is the steady-state capital-labor ratio,

° = 1¡ ±(k=n)1¡® is the steady-state consumption-output ratio, and variables without time
subscript denote steady state values. The rational expectations solution of this system can

be found using, for example, the approaches proposed by Blanchard and Kahn (1980) and

Sims (1997) to obtain:

k̂t+1 = a11k̂t + a12ĉt + b1ẑt; (1)

ĉt = Áckk̂t + Ácz ẑt; (2)

where Áck and Ácz are combinations of the eigenvectors and eigenvalues of the matrix A and,

consequently, depend nonlinearly on the structural parameters.

In what follows, it is convenient to de¯ne the 2 £ 1 vector »t = (k̂t; ẑt)0 that collects

the state variables of the system, and the 3 £ 1 vector st = (ŷt; n̂t; ĉt)0 that contains the

observable variables that the researcher will use later in the estimation of the model. Using

the linearized equations of the model, it is possible to write the components of st as functions

of the capital stock and technology shock alone:

st =

2
64
ŷt
n̂t
ĉt

3
75 = ©»t =

2
64
Áyk Áyz
Ánk Ánz
Áck Ácz

3
75

"
k̂t
ẑt

#
: (3)

The last row of st (i.e., the expression for consumption) reproduces exactly equation (2).

Finally, notice that the elements of the 3£2 matrix© are nonlinear functions of the structural
parameters of the model.

This model takes as input the predetermined level of capital and one exogenous shock,

and generates predictions about (at least) three observable endogenous variables, namely

output, consumption and hours worked. Since the number of shocks is less than the number

of endogenous variables, there are linear combinations of these variables that are predicted

to hold without noise. For example, one can eliminate both k̂t and ẑt from (3) to obtain:

(ÁykÁcz ¡ ÁyzÁck)n̂t + (ÁnzÁck ¡ ÁnkÁcz)ŷt ¡ (ÁnzÁyk ¡ ÁyzÁnk)ĉt = 0: (4)

Similarly, using the equations for ŷt and ĉt in (3) and the linearized law of motion for capital,

it is possible to write

[Áyz + ±°(ÁyzÁck ¡ ÁykÁcz)=(1¡ °)]ĉt ¡ (1¡ ±)Áyz ĉt¡1
¡[Ácz + ±(ÁyzÁck ¡ ÁykÁcz)=(1¡ °)]ŷt + (1 ¡ ±)Ácz ŷt¡1 = 0: (5)

Combining (4) and (5), it is easy to show that the systems (ŷt; n̂t; ŷt¡1; n̂t¡1) and (n̂t; ĉt;

n̂t¡1; ĉt¡1) are also singular. That is, for any sample size, the sample variance-covariance

matrix of these systems are singular. We will see below that the singularity of DSGE models

has di®erent and nontrivial implications for each estimation procedure.
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3 Estimation Methods

3.1 Maximum Likelihood

The Maximum Likelihood (ML) estimation of DSGE models is complicated by the fact that

they frequently involve unobserved or poorly measured state variables (e.g, the capital stock).

However, it is possible to exploit the recursive nature of the model and its fully-speci¯ed laws

of motion to apply ¯ltering techniques like the one proposed by Kalman (1960). The Kalman

¯lter allows the construction of inferences about the unobserved state vector and permits

the evaluation of the joint likelihood function of observable endogenous variables. In turn,

the maximization of this likelihood function yields consistent and asymptotically normal

estimates of the structural parameters of the model. This approach has been employed by,

among others, McGrattan (1994), Hall (1996), McGrattan, Rogerson, and Wright (1997),

Ireland (1999, 2001), Kim (2000), Bouakez, Cardia, and Ruge-Murcia (2001), and Dib and

Phaneuf (2001).4

The state-space representation of the DSGE model above consists of the following state

and observation equations. The state equation is constructed by substituting (2) into (1)

to obtain the law of motion of k̂t+1 in terms of k̂t and ẑt only, and by using the linearized

process of the technology shock (see the last equation in the Appendix). Then, it is possible

to write:

»t+1= F»t + vt+1;

where

F =

"
a11 + a12Áck a12Ácz + b1

0 ½

#
;

is a 2 £ 2 matrix and vt = (0;²t)0 is a 2 £ 1 vector. The observation equation consists of

the process of one of the observable endogenous variables in (3):

xt = hst = h©»t = H»t;

where h is a 1£ 3 selection vector.5 For example, in the case where the model is estimated

using output data alone, h = (1; 0; 0) and xt = ŷt:

Let us collect the structural parameters of the model in the q £ 1 vector µ: Denote by

@t¡1 = (xt¡1; xt¡2; : : : ; x1) the set of past observations of xt; by ~»tjt¡1 the time t¡1 forecast
4Hansen and Sargent (1980) propose a ML procedure for the estimation of dynamic linear rational ex-

pectations models. However, their procedure is not designed to deal with unobserved state variables and
was originally proposed for the estimation of partial equilibrium models. Christiano (1988), Altug (1989),
and Bencivenga (1992) employ variants of Sargent and Hansen's method to estimate general equilibrium
models. Fern¶andez-Villaverde and Rubio (2002) propose the use of a nonlinear Sequential Monte Carlo
¯lter to evaluate the log likelihood function of the nonlinearized DSGE model.

5The reason why xt contains only one variable will become clearer below.
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of »t constructed on the basis of @t¡1; and by Ptjt¡1 the Mean Square Error of this forecast.
Then, under the assumption that the technology innovation, ²t; is normally distributed, the

density of xt conditional on @t¡1 is

f (xtj@t¡1; µ) =N(H~»tjt¡1;HPtjt¡1H
0):

The Maximum Likelihood estimator of µ is

~µml= max L(µ);
fµg (6)

where L(µ) denotes the log likelihood function:

L(µ) = ¡(T=2) ln(2¼)¡ (1=2) ln jHPtjt¡1H0j
¡(1=2)

TP
i=1
(xt ¡H~»tjt¡1)0(HPtjt¡1H0)¡1(xt ¡H~»tjt¡1);

and T is the sample size.

Since the process of »t is stationary by construction, the Kalman ¯lter recursion can be

started with the unconditional moments ~»1j0 = E(»t) = (0; 0)0 and P1j0 = E(»t»
0
t): The

subsequent forecasting and updating of »t and the computation of the MSE of ~»tjt¡1 are

obtained using the Kalman algorithm described, for example, in Hamilton (1994, ch. 13).

Under standard regularity conditions [see Judge et al. (1985, p. 178)], the ML estimator is

consistent and asymptotically normal:

p
T (~µml ¡ µ) ! N (0; (==T )¡1);

where = = ¡E(@2L(µ)=@µ @µ0) is the information matrix. In the Monte Carlo, = is

estimated using the numerically computed Hessian of the log likelihood function at the

optimum.

Since there is only one random shock in this model, any attempt to estimate it by

Maximum Likelihood using data on more than one variable yields a singular HPtjt¡1H
0

matrix. To see why, write the innovation in xt:

xt ¡ E(xtj@t¡1) = H(»t ¡ ~»tjt¡1);

and note that when xt contains more than one variable, the innovations to the variables in xt

(say, consumption and output) are perfectly correlated and proportional to the technology

shock. More generally, DSGE models cannot be estimated by ML using more observable

variables than structural shocks are speci¯ed in the model.

While this DSGE model cannot be estimated by ML using more than one variable, we

will see below that for the methods of moments examined here it is possible to use data on

[7]



up to two endogenous variables. In this sense, the singularity of DSGE models a®ects the

method of Maximum Likelihood more severely than the methods of moments.

There are two strategies to deal with the singularity of DSGE models in the Maximum

Likelihood framework. First, one can estimate the model using just as many observable

variables as structural shocks. This strategy is followed by Kim (2000), Ireland (2001),

Bouakez, Cardia, and Ruge-Murcia (2001), and Dib and Phaneuf (2001). Second, one can

add error terms to the observation equation of the state-space representation as in McGrattan

(1994), Hall (1996), McGrattan, Rogerson, and Wright (1997) and Ireland (1999).

3.1.1 Adding Measurement Errors

Adding extra error terms to the observation equation of the state-space representation of

the DSGE model yields:

xt = hst + ut = h©»t + ut = H»t + ut;

where xt is now a d £ 1 vector, d = 1; 2; or 3 is the number of observable variables used

to estimate the model, h is a d £ 3 selection matrix, and ut is a d £ 1 vector of shocks

assumed independently, identically, and Normally distributed with zero mean and variance-

covariance matrix E(utu0t) = R: Based on Sargent (1989), it is customary to interpret ut

as measurement error. It is further assumed that E(viu0j ) = 0 for all i ¸ j; meaning

that measurement error contains no information about current or future technology shocks.

The extension to serially correlated errors is straightforward and is discussed in Hansen and

Sargent (1998, ch. 8).

As before, the ML estimator of µ is

~µml= max L(µ);
fµg (7)

but now the log likelihood function is:

L(µ) = ¡(T=2) ln(2¼)¡ (1=2) ln jHP0tjt¡1H0 +Rj
¡(1=2)

TP
i=1
(xt ¡H»t)

0(HP0tjt¡1H
0 +R)¡1(xt ¡H»t):

Notice that since (by assumption) R is full rank, then HP0
tjt¡1H

0 + R will no longer be

singular when the number of observable variables included in xt is larger than the number

of structural shocks.

One drawback of this approach is that measurement error lacks a truly structural inter-

pretation and it essentially represents speci¯cation error. One can think of the singularity

of DSGE models as arising from a particular form of misspeci¯cation: in the real world

[8]



there are many more types of shocks than the ones assumed by the model. This is the main

speci¯cation error that is captured by the term ut: When ut is modeled as serially correlated

[for example as in Ireland (1999)], other forms of speci¯cation error can be also captured by

this term.

On the other hand, it can be argued that adding extra error terms is just a simple strategy

to deal with misspeci¯cation. Relationships like (4) and (5) might hold approximately in the

data, even if not without noise as predicted by the DSGE model. Thus, adding measurement

error provides a less stringent platform to assess the theory. On the empirical side, adding

measurement error allows one to exploit information on a larger set of variables to estimate

µ and, as we will see below, delivers more e±cient parameter estimates than alternative

procedures.

3.1.2 Incorporating Priors

Economic theory, previous microeconometric studies, and long-run averages of aggregate data

can be informative about the parameter values in structural macroeconomic models. This

prior knowledge about µ can be represented in a prior density and combined with aggregate

time series data to obtain a posterior density of µ. The posterior density summarizes

our knowledge about µ after observing the data and is the basis of probabilistic statements

regarding the structural parameters. There is a sense in which calibration can be interpreted

as a Bayesian procedure where the prior density of µ is degenerate and concentrated on a

single numerical value. With such a strong prior, observations of the data series contribute

nothing to our knowledge of the parameter values and the posterior density coincides with

the prior one.

A simple way to incorporate priors into the Maximum Likelihood framework is based on

the mixed estimation strategy in Theil and Goldberger (1961). This approach was originally

developed for the linear regression model and leads to a Generalized Least Squares (GLS)

estimator that incorporates optimally prior information regarding the parameter values. It is

easy to show that the mean and variance of this GLS estimator corresponds exactly to mean

and variance of the Bayesian posterior distribution [see Hamilton (1994, p. 359)]. Stone

(1954) gives a Maximum Likelihood interpretation to the same estimator. DeJong, Ingram,

and Whiteman (2000) and Chang, Gomes, and Schorfheide (2002) incorporate priors in the

estimation of DSGE models and use (respectively) importance sampling and the Metropolis-

Hastings algorithm to compute numerically the moments of the posterior distribution.

For the mixed estimation strategy, write the prior distribution of the parameters as

¹ = Kµ + e; (8)

[9]



where ¹ is q£1 vector, K is a known q£q nonsingular matrix, and e is q£1 vector of random
errors assumed Normally distributed with zero mean, variance-covariance matrix §, and

independent of vt and ut: The matrix § is assumed known and represents the researcher's

uncertainty about the prior information. This speci¯cation of the prior distribution is

general in that it allows the characterization of the priors in terms of linear combinations of

the parameters, and permits correlations across priors in the form of nonzero elements in the

o®-diagonal of §: In the special case where K is diagonal, the prior would take the familiar

form f (µ) = N (¹; §):

The mixed estimation strategy interprets the prior information as a set of q additional

observations of ¹ and combines themwith the sample of T observations of the data @T = (xT ;
xT¡1; xT¡2; : : : ; x1) to obtain an estimate of µ as in:

~µqb= max L(µ)+L(¹(µ)):
fµg (9)

where L(¹(µ)) is the log of the density of ¹ in (8) and L(µ) was de¯ned above. For

the Monte Carlo, I will treat this quasi-Bayesian estimate of µ as asymptotically normally

distributed with variance-covariance matrix (=)¡1 and estimate the information matrix using
the numerically computed Hessian at the optimum.

Notice that the estimator de¯ned in (9) corresponds to the mode of the log of the posterior

distribution f(µj@T ): However, under the assumption of Gaussianity, the mode corresponds
exactly to the mean and, consequently, the point estimate of µ obtained here is the same

as the one obtained using the approach in DeJong, Ingram, and Whiteman (2000). In

the special case where the prior is di®use or improper, the estimator ~µqb converges to the

classical ML estimator. When the prior is proper, the quasi-Bayesian estimate of µ can be

interpreted as the one obtained by the maximization of a penalized log likelihood function.

The penalty L(¹(µ)) depends on the strength of the researcher's prior about µ and has the

e®ect of \pulling" the estimator towards the mean of the prior density.

3.2 Simulated Method of Moments

In calibration, the researcher computes the unconditional moments of synthetic series simu-

lated using given parameter values and then compares them with the unconditional moments

of the data. The Simulated Method of Moments (SMM) estimator pursues this idea further

by updating the parameter values in a manner that reduces the distance between these two

sets moments. SMM estimators have been proposed by McFadden (1989) and Pakes and

Pollard (1989) to estimate discrete-choice problems and by Lee and Ingram (1991) and Du±e

and Singleton (1993) to estimate time-series models.

[10]



Let us de¯nemt to be a p£1 vector of empirical observations on variables whose moments
are of interest. Elements of mt could include, for example, ŷtĉt; ŷtŷt¡1; etc. De¯ne mi(µ)

to be the synthetic counterpart of mt whose elements are computed on the basis of arti¯cial

data generated by the DSGE model using parameter values µ. The sample size is denoted

by T and the number of observations in the arti¯cial time series is ¿T: The SMM estimator,
~µsmm; is the value of µ that solves

min G(µ)0WG(µ);
fµg (10)

where

G(µ) = (1=T )
TX

t=1

mt ¡ (1=¿T )
¿TX

i=1

mi(µ);

is a p£ 1 vector, andW is the optimal weighting matrix

W = lim V ar

Ã
(1=

p
T )

TP
t=1
mt

!¡1
:

T ! 1
(11)

Notice that, as usual, by using the optimal weighting matrix in minimizingG(µ)0WG(µ); a

larger weight is given to the moments, or the linear combinations of moments, that are most

informative.

Under the regularity conditions in Du±e and Singleton (1993),

p
T (~µsmm ¡ µ)! N (0;(1 + 1=¿)(D0W¡1D)¡1);

where D = E(@mi(µ)=@µ) is a q £ p matrix assumed to be ¯nite and of full rank. In the

Monte Carlo, the derivatives @mi(µ)=@µ are computed numerically and the expectation

approximated by the average over the simulated ¿T data points. W is computed using the

Newey-West estimator with a Barlett kernel.

An advantage of method of moments estimators is that a general speci¯cation test of the

DSGE model can be constructed using the chi-square test proposed by Hansen (1982). As

it is well known, this test can be applied provided that the model be overidenti¯ed, meaning

p > q: In the case of SMM:

T (1 + 1=¿ )[G(~µsmm)
0WG(~µsmm)] ! Â2(p¡ q);

where G(~µsmm)0WG(~µsmm) is the value of the objective function at the optimum [see Lee

and Ingram (1991, p. 204)].

Although it is not immediately obvious, the singularity of DSGE models also a®ects their

estimation by SMM. In particular, singularity restricts the variables that can be included

[11]



in the vector m: For example, multiplying (4) by ŷt shows that n̂tŷt; ŷ2t ; and ĉtŷt are not

linearly independent. Thus, if one were to include these three variables as elements of m,

the matrix D would not be of full rank. Similarly, multiplying (5) by ŷt shows that ŷ
2
t ; ĉtŷt;

ŷt¡1ŷt; and ĉt¡1ŷt are not linearly independent either. Hence, the DSGE model imposes

restrictions on the moments that can be exploited for its estimation by SMM.

For the DSGE model studied here, a set of linearly independent objects is (ŷ2t ; ĉ
2
t ; ĉtŷt;

ĉtĉt¡1; ŷtŷt¡1): These variables are linearly independent despite relations (4) and (5) because

n̂tŷt; ŷtĉt¡1 and ĉtŷt¡1 are not included in mi: For the Monte Carlo experiments below, I

also use mi = (ŷ2t ; n̂
2
t ; n̂tŷt; n̂tn̂t¡1; ŷtŷt¡1)

0 and mi = (n̂2t ; ĉ
2
t ; ĉtn̂t; ĉtĉt¡1; n̂tn̂t¡1)

0; in order

to examine the sensitivity of the results to the variables and moments employed.

The singularity of the DSGE model has di®erent implications for the SMM and Maximum

Likelihood estimation methods. First, singularity means that (unless measurement errors

are added) one can use only one observable variable to estimate the model by ML, but

information on up to two variables to estimate the model by SMM. This means that SMM

might be more e±cient than ML, despite the fact that the former is a limited information

procedure. Second, SMM requires at least as many moments as parameters are to be

estimated (i.e., p ¸ q) but only linearly independent objects can be included in m: Thus,

singularity might impose limits on the number of structural parameters that can by identi¯ed

by SMM.

3.3 Generalized Method of Moments

For the DSGE model here, it is possible to compute analytical expressions for the uncon-

ditional moments of the variables as a function of the structural parameters. This means

that in the objective function (10), the simulation-based estimate (1=¿T )
¿TP
i=1
mi(µ) could be

replaced with its analytical counterpart E(m(µ)): Then, a Generalized Method of Moments

(GMM) estimator of µ can be obtained by minimizing the distance between the empirical

moments of the data and the theoretical moments predicted by the model. This approach

has been followed, among others, by Christiano and Eichenbaum (1992), and Ambler, Guay,

and Phaneuf (1999). GMM is also used by Braun (1994) to estimate the Euler equations

of a DSGE model. Christiano and den Haan (1996) examine the e®ects of alternative de-

trending methods and estimates of the weighting matrix for the small sample properties of

GMM. Although the analytical computation of the moments can be algebraically tedious,

GMM estimates are computationally and statistically more e±cient than SMM.
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The GMM estimator is de¯ned by

~µgmm= min G(µ)0WG(µ);
fµg (12)

where

G(µ) = (1=T )
TX

t=1

mt ¡ E(m(µ));

and W is the q £ q optimal weighting matrix de¯ned in (11). Under standard regularity

conditions p
T (~µgmm ¡ µ)! N (0;(D0W¡1D)¡1);

where D = @E(m(µ))=@µ is a q£ p matrix assumed to be ¯nite and of full rank. In princi-
ple, one could obtain @E(m(µ))=@µ analytically using the expressions for the unconditional

moments E(m(µ)): Note, however, that these derivatives need to be computed only once,

when standard errors are calculated.6 Thus, for the Monte Carlo, I follow the simpler route

of computing @E(m(µ))=@µ numerically prior to the calculation of the standard errors. As

before, the optimal weighting matrix,W; is computed using the Newey-West estimator with

a Barlett kernel.

Comparing the asymptotic variance-covariance matrix of SMM and GMM estimates, note

that they di®er by the term (1 + 1=¿ ) that premultiplies (D0W¡1D)¡1 in the former case.

SinceW depends only on the data, and the simulated moments converge to the analytical

ones as ¿T ! 1; then the di®erence in the standard errors of both estimates is primarily
due to the term (1+1=¿ ); rather than to di®erences in the estimates ofW andD: The term

(1 + 1=¿) can be thought of as a measure of the increase in sample uncertainty due to the

use of simulation to compute the population moments. Since (1+ 1=¿) ! 1 as ¿ ! 1; the
e±ciency of SMM converges to that of GMM as the length of the simulated series increases.

Moreover, since ¿ is chosen by the researcher, the e®ect of simulation on sample uncertainty

can be reduced by selecting an appropriately large value of ¿:

It is easy to see that the e®ect of simulation on sample uncertainty decreases rapidly as

¿ increases. For ¿ = 5, the standard errors of SMM estimates are (1 + 1=5)1=2 ¼ 1:10 times

larger than the ones obtained using GMM. For ¿ = 10 and 20, they are approximately 1:05

and 1:025 times larger than those obtained using GMM. Hence, it would appear that the

di®erence in statistical e±ciency between SMM and GMM can be made reasonably small by

increasing ¿ . However, we will below that SMM is less computationally e±cient than GMM

and that the time per replication under SMM increases proportionally with ¿:

6Also, one might want to compute @E(m(µ))=@µ analytically in order to supply an expression for the
gradient in the optimization routine. As we will see below, this would make GMM even more computationally
e±cient than alternative estimation methods.
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The implications of the singularity of DSGE models for GMM estimation are basically

the same as those for SMM. First, singularity limits the unconditional moments that can

be exploited by GMM to those that form a linearly independent set. Second, since identi-

¯cation requires at least as many moments as parameters are to be estimated, limits in the

number of moments that can be employed can have implications for the number of structural

parameters that can be identi¯ed. Finally, GMM might be more e±cient than Maximum

Likelihood (without measurement errors) because one can use information on more observ-

able endogenous variables. For the model here, GMM can use moments computed using up

to two variables, but one can only use one observable variable to estimate the model by ML

without adding measurement errors.

Finally, a global speci¯cation test for overidenti¯ed DSGE models can be performed using

the chi-square statistic proposed by Hansen (1982):

T [G(~µgmm)
0WG(~µgmm)] ! Â2(p¡ q);

where G(~µgmm)0WG(~µgmm) is the value of the objective function at the optimum.

3.4 Extended Method of Simulated Moments

The Extended Method of Simulated Moments (EMSM) is a version of SMM proposed by

Smith (1993). Under SMM, an estimate of µ is constructed by minimizing the distance

between the unconditional moments of the data and those of an arti¯cial series simulated

using given parameter values. Under EMSM, the estimate of µ is constructed by minimizing

the distance between the parameters of a Vector Autoregression (VAR) estimated from the

data and those estimated from an arti¯cial series simulated using given parameter values.

More formally, denote by ´ the p£ 1 vector with the estimates of a VAR representation
of the data. Denote by ´(µ) the synthetic counterpart of ´ with the estimates of a VAR

representation of arti¯cial data generated by the DSGE model. As before, the sample size

is denoted by T and the number of observations in the arti¯cial time series is ¿T: Then, the

EMSM estimator of µ, ~µemsm; is the value that solves

min [´ ¡ ´(µ)]0V[´ ¡ ´(µ)];
fµg (13)

where V is the p£ p optimal weighting matrix. In the case where the information matrix

equality holds, Smith suggests using the inverse of the variance-covariance matrix of the

estimate ´ as an estimator of V:

Under the regularity conditions in Smith (1993),

p
T (~µemsm ¡ µ)! N (0;(1 + 1=¿)(J0V¡1J)¡1);
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where J = E(@´(µ)=@µ) is a q £ p matrix assumed to be ¯nite and of full rank. In the

Monte Carlo, the derivatives @´t(µ)=@µ are computed numerically and the expectation

approximated by the average over the simulated ¿T data points.

Smith suggests a test based on Hansen's (1982) chi-square statistic as speci¯cation test

of an overidenti¯ed DSGE model:

T (1 + 1=¿ )f[´ ¡ ´(~µemsm)]
0V[´ ¡ ´(~µemsm)]g ! Â2(p¡ q);

where [´¡ ´(~µemsm)]0V[´¡ ´(~µemsm)] is the value of the objective function at the optimum.

The singularity of the DSGE model has implications for both the order and the number

of variables included in the synthetic VAR. More precisely, the arti¯cial data generated by

the DSGE model does not have an unconstrained VAR representation. In the case of the

RBC model studied here, recall that the systems (ŷt; n̂t; ĉt); (ŷt; ĉt; ŷt¡1; ĉt¡1); (ŷt; n̂t; ŷt¡1;

n̂t¡1); and (n̂t; ĉt; n̂t¡1; ĉt¡1) are singular, meaning that their sample variance-covariance

matrices are singular. This implies that the data generated by this simple DSGE model has

only a bivariate VAR representation of order one.7 Any attempt to estimate a VAR with

the three observable variables and/or using more than one lag will fail because the matrix

of explanatory variables is not of full rank.

Since in constructing the synthetic VAR, one is limited to two of the three observable

endogenous variables and to only one of their lags, I use VARs of order one on (ŷt; n̂t); (ŷt;

ĉt) and (n̂t; ĉt) in the Monte Carlo experiments below in order to examine the sensitivity of

the results to the variables used.

4 Monte Carlo Experiments

4.1 Design

The small sample properties of the estimation procedures above are studied here using Monte

Carlo analysis. All experiments are based on 500 replications using a sample size of 200

observations. This sample size corresponds to, say quarterly observations of the series for

a period of 50 years. In order to limit the e®ect of the starting values used to generate the

series, 100 extra observations were generated in every replication. Then, for the estimation

of the model, the initial 100 observations were discarded.

7Smith is able to specify a bivariate VAR of order two for a model similar to the one here because he
assumes a second disturbance that a®ects the productivity of the new investment good. Since in this case,
the linearized law of motion for capital has an error term, systems like (ŷt; ĉt; ŷt¡1; ĉt¡1) in (5) are not
singular.
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I focus on three observable variables, namely output, consumption and hours worked, and

examine whether estimates are sensitive to using di®erent combinations of these variables in

the estimation procedures. In order to reduce the computational burden in the Monte Carlo

experiments, I concentrate on three (of the ¯ve) model parameters, namely the subjective

discount factor (¯); the autocorrelation coe±cient of the technology shock (½), and the

standard deviation of the technology innovation (¾): Thus, µ = (¯; ½; ¾)0 is a 3£ 1 vector.
The data were generated using parameter values (¯; ½;¾) = (:95; :85; :04): The share of

capital in production (®) and the depreciation rate (±) were ¯xed in all experiments to

:36 and :025; respectively. This Monte Carlo design is realist in the sense that the true

parameter values correspond to the ones typically found in empirical analysis.8

For the Monte Carlo experiments with measurement errors, ut » N (0;:012I(d)); where

I(d) is the identity matrix of size d; and d is the number of observable variables used to

estimate the model. For the Monte Carlo experiments with priors, I consider independent

prior densities for ¯ and ½: ¯ » N (:95; :0252); ½ » N(:85; :072); and a di®use prior for ¾: In

terms of the prior representation in (8), they correspond to
"
:95
:85

#
=

"
1 0
0 1

# "
¯
½

#
+ e; with e » N

Ã"
0
0

#
;

"
:0252 0
0 :072

#!
: (14)

The priors for ¯ and ½ mean that, before observing the data, the researcher believes that with

a 95 percent probability their true values are in the intervals (:901; :999) and (:713; :987),

respectively.

For SMM and EMSM, I used three di®erent values of ¿ = 5; 10; 20; meaning that the

simulated series are, respectively, 5, 10, and 20 times larger than the sample size of 200

observations. Here, I also simulated 100 extra observations in every simulation and then

discarded the initial 100 observations when computing the moments or the VAR parameters.

For these simulation procedures, I ¯xed the seed in the random numbers generator in each

replication and used the same draw for the model estimation. A problem with using blocks

of random numbers is that they are perforce small [Ripley (1987, p. 138)]. However, in this

case the use of common random draws is essential to calculate the numerical derivatives of

the maximization algorithm. Otherwise, the objective function would be discontinuous and

the optimization algorithm would be unable to distinguish a change in the objective function

due to a changes in the parameters from a change in the random draw used to simulate the

series.
8A slightly larger value of ¯, say ¯ = :99; would more appropriate if one were to adhere to the interpre-

tation of the series as quarterly observations of the variables. However, from the numerical perspective, it
is convenient to work with a value of ¯ that is close, but not too close, to the admissible boundary of 1:
In unreported work, I performed a very limited set of Monte-Carlo experiments using the parameterization
(¯;½;¾²) = (:98; :95; :04) with similar results to the ones reported.
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4.2 Results

Monte Carlo results are reported in Tables 1 through 6. In all tables, Mean is the average

of the estimated parameter values. A.S.E. is the average asymptotic standard error. Both

averages are taken over the 500 replications in each experiment. Median and S.D. are the

median and standard deviation of the empirical parameter distribution. Comparing Median

and Mean with the true parameter value, and S.D. with A.S.E., is informative about the

small sample distribution of the estimates. For example, if the Mean is well below the true

parameter value, this indicates the downward bias of the estimate. If Mean and Median are

substantially di®erent, this indicates that the small sample distribution of the estimates is

skewed. If S.D. is much larger than A.S.E., this indicates that using the asymptotic formula

to compute the standard error might understate the true variability of the estimate in small

samples.

In all tables, Size is the proportion of times that the null hypothesis that the parameter

takes its true value is rejected using a t-test with nominal size of 5 percent. In other words,

Size denotes the empirical size of this t-test. S.E. is the standard error of this empirical size

and is computed as the standard deviation of a Bernoulli variable. In ideal circumstances,

the nominal and empirical sizes of the t-test would be close. More formally, the 95 percent

con¯dence interval around the empirical size would contain the nominal size of 5 percent.

However, we will see below that in practice there are substantial size distortions because the

asymptotic standard error is not always a good approximation to the small-sample standard

error of the estimates. In Tables 4 through 6, OI is the empirical size of the Â2 test of the

overidenti¯cation restrictions.

Table 1 reports results using the method of Maximum Likelihood without adding mea-

surement errors/priors. Recall that singularity implies that the model cannot be estimated

by ML using more than one observable variable. Experiments 1 through 3 refer to the

experiments using output, consumption, and hours worked, respectively.

Despite the fact that the model is a general equilibrium one, not all variables appear

to be equally informative about all structural parameters. In other words, the choice of

variable(s) employed in Maximum Likelihood estimation might matter. (We will see below

that this is also true for the methods of moments). In particular, the average estimate and

A.S.E. of ¯ vary substantially depending on whether one uses data on output, consumption,

or hours worked. When the model is estimated using data on output alone, the average

estimate of ¯ is well below its true value and the A.S.E. is very large. When the model is

estimated using data on either consumption or hours worked, the average estimate is very

close to the true value and the A.S.E. is small. All this means that for the simple RBC
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model studied here, a sharper estimate of the subjective discount factor can be obtained

using consumption or hours worked, rather than output.

The e®ect of the choice of variable on the point estimates of the other structural param-

eters is minor. However, the standard error of the empirical distribution and the A.S.E.

of ½ seem to vary with the variable employed. For example, the A.S.E. of ½ is 30 percent

larger when consumption, rather than output, is used to estimate the model. Thus, the

autoregressive coe±cient of the technology shock is estimated more precisely using output

than either consumption or hours worked.

The asymptotic standard errors approximate well the small-sample standard deviation

of the estimates. However, the di®erence between them is large enough that in some cases

there are size distortions for the t-test (computed using the A.S.E.) of the null hypothesis

that the true parameter value is the one used to generate the data.

Table 2 reports results using Maximum Likelihood with measurement errors added to

sidestep the singularity of the DSGE model. Parameters are estimated using combinations

of two or the three observable endogenous variables. In all experiments, parameters are

estimated very precisely and standard errors are by far the smallest among the procedures

studied. The choice of variables employed has no e®ect on the point estimates but a limited

e®ect on the standard errors. The empirical distributions of the parameters appear very

close to the asymptotic one. The nominal size of the t-test that the parameters take their

true values is well within their 95 percent con¯dence interval around the empirical size in all

experiments.

Table 3 reports results using Maximum Likelihood without measurement errors but in-

corporating the priors speci¯ed in (14). As in Table 1, Experiments 1 through 3 refer

(respectively) to the experiments using output, consumption, and hours worked. Because

the prior about ¾ was uninformative, results regarding this parameter are basically the same

as those reported in Table 1 without priors. Regarding ¯ and ½; the mean of the prior

density was (by design) the same as the true value used to generate the sample. Recall

that an interpretation of the prior is that of a penalty on the log likelihood function as the

estimate deviates from the prior mean. As a result, estimates obtained using ML with priors

tend to be numerically closer to their true values than ML estimates without priors.

An interesting case is the estimate of ¯ obtained using output data. Results from Table

1 suggest that output is not very informative regarding the discount factor. Consequently

when the prior and the output data are combined, the resulting posterior distribution of the

estimate looks very similar to the prior density.

In most cases, the A.S.E. is larger than the standard deviation of the parameter estimates.

Hence, asymptotic standard errors seem to overestimate the variability of the parameter
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estimates in small samples. As a result, the t-test of the hypothesis that the parameter

takes its true value has a smaller empirical than nominal size and tends to underreject the

null hypothesis.

Tables 4 and 5 report results using the Simulated and Generalized Methods of Moments,

respectively. In all cases, the mean and median of the estimated parameters are close to

their true values. Standard errors are reasonably low, though larger than those obtained

using ML with measurement errors added.9

Estimated standard errors vary with ¿ as predicted by the discussion in Section 3.4.

That is, SMM standard errors based on simulated series with ¿ = 5;10 and 20 are roughly

1:1; 1:05; and 1:025 times larger than those obtained using GMM, respectively. However,

this variation in e±ciency is of the same order of magnitude as that observed across moments

employed in the estimation procedures. This means that the choice of the length of the

simulated series in SMM might be as important as the choice of moments to match.10

As reported above for Maximum Likelihood, the choice of moments to match under SMM

and GMM can have some e®ect on the precision of the parameter estimates. This is because

not all moments are equally informative about all structural parameters. (See below the

related discussion about EMSM). For example, in Table 4, the standard deviation of the

estimate of ¯ obtained using the moments of output and hours worked is roughly 30 percent

larger than the one obtained using the moments of consumption and hours worked, for the

same value of ¿.

There are some di®erences between the A.S.E. and the standard deviations of the em-

pirical distribution of the parameters. Since the t-statistics are computed using asymptotic

standard errors, this translates into fairly large size distortions for the t-test. There is no

obvious pattern for the size distortions, but they appear to vary more with the moments

matched than with the length of the simulated series (in SMM).

The last column in Tables 4 and 5 report the empirical size of the Â2 test of the overi-

denti¯cation restrictions of the model. Notice that in all cases the empirical size of the

test is well below its nominal size of 5 percent. This means that a researcher comparing

9Recent research [see, for example, Fuhrer, Moore, and Schuh (1995)] shows that GMM can yield biased
parameter estimates when applied to conditional moments of the data (e.g., Euler equations). The reason is
that in this case instruments are used to frame the model implications in terms of orthogonality conditions
to which GMM is then applied. Their research ¯nds that GMM can have very poor small sample properties
when the instruments are weak. However, notice that GMM is applied here to unconditional moments of
the data and no instruments are required. This means that the problems caused by weak instruments do
arise here, but could arise potentially when one combines conditional and unconditional moments to estimate
DSGE models by GMM.

10In practice, however, it might be hard to know apriori what are the most informative set of linearly
independent moments.
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the Â2 statistic with the 5 percent critical value of the appropriate distribution is very likely

to conclude that the overidenti¯cation restrictions of the DSGE model cannot be rejected.

This is because rather than taking a 5 percent probability of rejecting a true model, the

researcher is actually taking only a 1 percent probability (approximately). In some cases

(see, for example, Experiments 7 and 9 in Table 4), the model's overidenti¯cation restrictions

were never rejected by the Â2 test in the 500 replications. The fact that Hansen's Â2 easily

fails to detect a misspeci¯ed model is well known in the literature [see, among others, Newey

(1985)]. The results in this paper suggest that the severe size distortions of the Â2 test also

arise in the context of fully-speci¯ed DSGE models.

Finally, Table 6 reports results using the Extended Method of Simulated Moments

(EMSM). In all experiments, the mean and median of the estimated parameters are close

to their true values. The standard errors of the estimates of ¯ and ½ are the largest among

the procedures studied, but the standard deviation of the technology shock, ¾; is estimated

more precisely by EMSM than by any other method.

As in ML, SMM, and GMM, the choice of variables/moments to use in estimation has

some e®ect on the precision (but not on the consistency) of the estimates. This can be

traced back to the fact that not all variables/moments are equally informative about all

structural parameters. For example, ¾ can only be identi¯ed under EMSM when ´ includes

the standard deviation of the residuals of the Vector Autoregression. Thus, the autocorrela-

tions and cross correlations of the variables do not seem informative regarding the standard

deviation of technology shocks. In line with the ¯nding that under ML, consumption and

hours worked are more informative than output about the subjective discount rate, the stan-

dard deviation of the empirical distribution of ¯ is smallest when the bivariate VAR consist

of ĉt and n̂t:

There are very large size distortions for both the t-test that the parameters take their

true value and the Â2 test of the overidenti¯cation restrictions. As for SMM/GMM, there

is no clear pattern for these size distortions, but they seem to vary more with the moments

matched than with the length of the simulated series.

It is enlightening to go beyond the summary statistics in these Tables and plot the

empirical distribution of the parameter estimates obtained under the di®erent methods. The

frequency histograms for estimators of ¯;½; and ¾ are plotted in Figures 1 to 3, respectively.

They correspond to results in Experiments 2 in Tables 1 and 2, Experiment 3 in Table 5,

and Experiments 5 and 8 in Tables 4 and 6. The reason I focus on these experiments, is

because they help illustrate more general results uncover by the Monte Carlo analysis.

Five conclusion can be drawn from these Figures. First, Maximum Likelihood estimates

obtained adding measurement errors are by far the most e±cient, with the empirical distri-
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butions tightly packed around the true parameter values. This is explained by the fact, that

once extra errors are added to sidestep the singularity of the model, ML can exploit informa-

tion on more variables than alternative methods. Since ML is a full-information procedure,

it imposes all model restrictions on the series employed leading to sharper estimates of the

parameters.

Second, the methods of moments estimators can be more e±cient than Maximum Like-

lihood with no measurement errors. This was anticipated from the earlier observation that

singularity implies that the model can only be estimated by ML using one observable vari-

able (without adding measurement errors), but using moments of up to two variables by the

methods of moments. However, it is very likely that this ¯nding is speci¯c to the one-shock

DSGE model examined here and might not carry over to the models with a larger number

of structural shocks.11

Third, informative priors can be combined with sample data to sharpen the researcher's

inferences regarding the structural parameters of DSGE model. This can be seen in Figures

1 and 2 by comparing the empirical distribution of the estimators of ¯ and ½ obtained using

ML with and without priors.

Fourth, the di®erence in e±ciency between GMM and SMM does not appear to be

very large, though the empirical distribution obtained by SMM with ¿ = 5 (not reported) is

somewhat more di®use than the others. Hence, the e®ect of simulation on sample uncertainty

and the precision of parameter estimates can be moderated by a suitable choice of ¿:

Fifth, the choice of variables/moments employed can have some e®ect on the precision

(but not on the consistency) of the estimators. This can be seen in Figures 1 and 2

by comparing the empirical distribution of the estimators of ¯ and ½ obtained by SMM

and EMSM using the moments of output/hours worked and consumption/hours worked.

EMSM estimates based on the moments of output/hours worked have a very di®use empirical

distribution and a substantial number of outliers, though their mean is close to the true

parameter value used to generate the sample.

One of the reason DSGE model are interesting is because they allow the researcher to

examine the response of a model economy to shocks. An advantage of the full estimation

of DSGE models is that parameter uncertainty can be incorporated to construct con¯dence

intervals around the model's dynamic response to a shock. Since impulse-responses depend

nonlinearly on the structural parameters, it is useful to examine how the precision of the

estimates translates into less or more precise impulse-responses. Figures 4 to 11 plot the

dynamic responses of consumption, output, hours worked, and the capital stock following a

11For example, in the preliminary work mentioned in footnote 2, where there were two structural shocks,
ML and SMM were very similar in statistical e±ciency.
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technology shock. The dotted lines are the 90 percent con¯dence intervals for the response.

The parameter estimates used to construct these ¯gures come from the same experiments

used to obtain Figures 1 to 3.

Figure 4 to 11 support four conclusions. First, the mean response does not depend on

the estimation method because all methods deliver unbiased estimates of the parameters.

However, there are some di®erences in the coverage probabilities of the estimated con¯dence

intervals because not all estimation procedures are equally e±cient. Second, the tightest

con¯dence intervals around the impulse-response are obtained using Maximum Likelihood

estimates (with added measurement errors) [see Figure 5]. Since we are fairly certain that

these ML estimates are close to their true values, we can also be con¯dent that the impulse-

response to a shock based on these estimates is also close the true one. Third, con¯dence

intervals for the response based on EMSM estimates obtained using output/hours worked

moments are the widest [see Figure 10]. This re°ects the di®use empirical distributions of

¯ and ½ reported in Figures 1 and 2. Fourth, aside from these two cases, there are no large

di®erences in the con¯dence intervals obtained using di®erent estimators of the structural

parameters. This means that the di®erences in parameter e±ciency across estimation meth-

ods reported above, does not translate necessarily into substantial di®erences in the coverage

probabilities of their impulse responses.

The estimation of DSGE models can be computationally demanding because the model

needs to be solved for each observation in each iteration of the optimization procedure that

maximizes (or minimizes) the relevant objective function. Thus, an important goal of

this paper is to compare the di®erent estimation methods in terms of their computation

time. Table 7 reports in the ¯rst column the average number of seconds taken to complete

a replication, including the computation of standard errors. The average is taken over

all replications for all experiments that employ the same estimation method. The second

column reports the ratio of the number in column one to the corresponding one for GMM,

that is taken as benchmark. For example, for ML this ratio is 3:44=:67 = 5:1; and means that

Maximum Likelihood takes on average 5 times longer than GMM to complete a replication.

From this Table is clear that GMM is by far the most e±cient procedure computationally,

followed by Maximum Likelihood. On the other hand, GMM requires the analytical calcu-

lation of the unconditional moments implied by the model. This task can be algebraically

tedious and time-consuming for models more complicated than the one studied here. There

is a large di®erence in computational e±ciency between SMM/EMSM and GMM, and the

time per iteration appears to increase proportionally with ¿: The reason is that SMM and

EMSM require the solution of the DSGE model and computation of the gradients using ¿
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times more observations than GMM.12

5 Summary

The Monte Carlo analysis in this paper shows that standard econometric techniques can be

applied for the full estimation of DSGE models. Although singularity means that there

are restrictions on the variables/moments that can be exploited for model estimation, it is

possible to obtain unbiased and reasonably precise estimates of the structural parameters of

the model using the methods of Maximum Likelihood or versions of the method of moments.

Results here indicate that, despite the fact that the model is a general equilibrium one,

not all variables/moments are equally informative about all structural parameters. This

has no consequence for the point estimates, since all method yield unbiased and consistent

parameter estimates, but it appears to have some moderate implications for the size of the

estimated standard errors.

For the one sector Real Business Cycle model studies here, the method of Maximum

Likelihood with measurement errors added, yields the most e±cient parameter estimates

among the procedures considered. The Simulated and Generalized Methods of Moments

are roughly comparable in terms of statistical e±ciency, but SMM is more computationally

demanding. On the other hand, GMM requires the analytical computation of the uncon-

ditional moments, that can be a time-consuming task in more complicated models than the

one studied here.

Both SMM and GMM are more e±cient than Maximum Likelihood without added mea-

surement errors. The reason is that the singularity of the model limits to one the number

of variables that can be using in ML, but one can use moments of up to two variables in the

methods of moments. However, this result is probably speci¯c to one-shock DSGE models

and might not carry on to the models with a larger number of structural shocks that are

more representative of the current state of the literature.

12Results regarding EMSM need to be interpreted with caution. For all estimation methods, the maxi-
mization (or minimization) routines were started at the true parameter values in order the make the Monte
Carlo experiment more e±cient. However, I found that for EMSM, the algorithm would frequently blow up
if the routine was started at the true value of ¾: Hence, for EMSM, the minimization routine was started
using a value for ¾ much larger than the one used to generate the sample. Just for this reason alone EMSM
would take longer to converge than the other estimation methods. This means that the numbers in Table
7 most likely overstate the computational time required by EMSM.
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Table 1. ML Results

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E.

1 yt :7256 :4077 :1740 :8408 :0390 :0260 :0400 :0020 :0520
:9313 :3747 :0170 :8429 :0343 :0071 :0400 :0019 :0099

2 ct :9440 :0235 :0480 :8367 :0517 :0560 :0398 :0020 :0660
:9740 :0236 :0096 :8429 :0542 :0103 :0398 :0021 :0111

3 nt :9457 :0346 :0320 :8296 :0477 :0160 :0398 :0020 :0580
:9541 :0432 :0079 :8366 :0368 :0056 :0397 :0019 :0105

Notes: The true values are ¯ = :95; ½ = :85; and ¾ = :04: Mean is the arithmetic average of

the estimated parameter values;, A.S.E. is the average asymptotic standard error; Median

and S.D. are the median and standard deviation of the empirical parameter distribution;

Size is an estimate of the actual size of the t-test with nominal size of 5 percent of the null

hypothesis that the parameter takes its true value; and S.E. is the standard error of the

actual test size. The experiments were based on 500 replications.
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Table 2. ML Results with Measurement Errors

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E Size
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E.

1 yt; ct :9502 :0024 :0520 :8486 :0091 :0560 :0040 :0021 :0500
:9502 :0024 :0099 :8493 :0099 :0103 :0400 :0021 :0097

2 yt; nt :9500 :0023 :0420 :8492 :0079 :0520 :0399 :0020 :0640
:9501 :0022 :0090 :8494 :0083 :0099 :0400 :0021 :0109

3 ct;nt :9499 :0018 :0440 :8496 :0064 :0340 :0399 :0021 :0480
:9499 :0018 :0092 :8500 :0065 :0081 :0400 :0021 :0096

4 yt; ct;nt :9499 :0015 :0520 :8497 :0056 :0620 :0399 :0020 :0660
:9500 :0016 :0099 :8499 :0059 :0099 :0399 :0021 :0111

Notes: See notes to Table 1.
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Table 3. ML Results Incorporating Priors

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E Size
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E.

1 yt :9500 :0250 0:0000 :8459 :0332 :0240 :0400 :0020 :0400
:9500 :0008 ¡ :8472 :0279 :0068 :0400 :0019 :0088

2 ct :9498 :0164 :0180 :8445 :0402 :0060 :0397 :0020 :0580
:9499 :0124 :0059 :8469 :0322 :0035 :0397 :0020 :0105

3 nt :9482 :0192 :0020 :8436 :0318 :0180 :0400 :0020 :0400
:9493 :0094 :0020 :8467 :0247 :0059 :0400 :0021 :0640

Notes: See notes to Table 1. The priors used are: ¯ » N (:95; :0252); ½ » N (:85; :072); and

a di®use prior for ¾:
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Table 4. Results using Simulated Method of Moments

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size OI
# Var. ¿ Median S.D. S.E. Median S.D. S.E. Median S.D. S.E. S.E.

1 yt; ct 5 :9505 :0128 :0160 :8368 :0411 :1040 :0395 :0042 :0360 :0100
:9511 :0089 :0056 :8466 :0504 :0137 :0396 :0032 :0083 :0044

2 yt; ct 10 :9503 :0122 :0300 :8370 :0392 :0840 :0393 :0040 :0240 :0120
:9505 :0095 :0076 :8442 :0478 :0124 :0394 :0028 :0068 :0049

3 yt; ct 20 :9506 :0120 :0260 :8372 :0382 :0880 :0394 :0039 :0320 :0120
:9509 :0088 :0071 :8426 :0443 :0127 :0394 :0029 :0079 :0049

4 yt;nt 5 :9497 :0138 :0860 :8400 :0314 :1880 :0395 :0037 :0820 :0060
:9508 :0153 :0125 :8452 :0470 :0175 :0394 :0037 :0123 :0035

5 yt;nt 10 :9483 :0133 :0740 :8367 :0303 :1320 :0396 :0035 :0740 :0020
:9497 :0148 :0117 :8414 :0417 :0151 :0394 :0036 :0117 :0020

6 yt;nt 20 :9496 :0131 :1000 :8428 :0291 :1420 :0398 :0035 :0720 :0020
:9510 :0147 :0134 :8496 :0426 :0156 :0395 :0037 :0116 :0020

7 ct; nt 5 :9501 :0107 :0520 :8413 :0294 :1580 :0396 :0032 :0860 :0000
:9502 :0099 :0099 :8444 :0409 :0163 :0396 :0034 :0125 ¡

8 ct; nt 10 :9510 :0101 :0520 :8436 :0277 :1640 :0397 :0030 :0920 :0020
:9516 :0098 :0099 :8475 :0377 :0166 :0396 :0034 :0129 :0020

9 ct; nt 20 :9499 :0101 :0600 :8411 :0277 :1260 :0395 :0030 :0820 :0000
:9502 :0098 :0106 :8458 :0376 :0148 :0820 :0033 :0123 ¡

Notes: See notes to Table 1. For Experiments 1 to 3, mt = (ŷ2t ; ĉ
2
t ; ĉtŷt; ĉtĉt¡1; ŷtŷt¡1)

0; for

Experiments 4 to 6, mt = (ŷ2t ; n̂
2
t ; n̂tŷt; n̂tn̂t¡1; ŷtŷt¡1)

0; and Experiments 7 to 9, mt = (n̂2t ;

ĉ2t ; ĉtn̂t; ĉtĉt¡1; n̂tn̂t¡1)
0:
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Table 5. Results using Generalized Method of Moments

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size OI

Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E. S.E.

1 yt; ct :9501 :0118 :0100 :8369 :0375 :1020 :0395 :0039 :0180 :0040
:9502 :0084 :0044 :8429 :0457 :0135 :0395 :0026 :0059 :0028

2 yt; nt :9484 :0128 :0720 :8382 :0288 :1480 :0397 :0034 :0780 :0020
:9496 :0137 :0116 :8418 :0400 :0159 :0396 :0035 :0120 :0020

3 ct;nt :9499 :0099 :0540 :8380 :0272 :1360 :0395 :0029 :0740 :0000
:9497 :0094 :0101 :8407 :0383 :0153 :0395 :0030 :0117 ¡

Notes: See notes to Tables 1 and 3.
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Table 6. Results using the Extended Method of Simulated Moments

¯ ½ ¾
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size OI
# Var. ¿ Median S.D. S.E. Median S.D. S.E. Median S.D. S.E. S.E.

1 yt; ct 5 :9560 :0261 :2700 :8436 :0807 :3200 :0400 :0004 :7220 :0620
:9543 :0295 :0199 :8652 :1134 :0209 :0400 :0021 :0200 :0108

2 yt; ct 10 :9566 :0252 :2500 :8446 :0744 :3160 :0398 :0004 :7500 :0540
:9574 :0299 :0194 :8759 :1172 :0208 :0399 :0020 :0194 :0101

3 yt; ct 20 :9559 :0246 :3060 :8366 :0701 :3660 :0400 :0003 :7840 :0600
:9564 :0327 :0206 :8724 :1283 :0215 :0400 :0020 :0184 :0106

4 yt;nt 5 :9499 :0254 :2380 :8120 :0915 :2400 :0401 :0002 :8480 :2340
:9505 :0319 :0190 :8519 :1513 :0191 :0401 :0021 :0161 :0189

5 yt;nt 10 :9463 :0251 :2020 :8020 :0948 :1960 :0400 :0002 :8780 :1700
:9478 :0291 :0180 :8420 :1484 :0178 :0399 :0021 :0146 :0168

6 yt;nt 20 :9448 :0254 :2040 :7854 :0970 :2000 :0398 :0002 :8680 :2280
:9489 :0316 :0180 :8460 :1838 :0179 :0397 :0019 :0151 :0188

7 ct; nt 5 :9482 :0262 :0020 :8390 :0980 :0000 :0400 :0006 :6260 :0040
:9488 :0108 :0020 :8457 :0426 ¡ :0399 :0022 :0216 :0028

8 ct; nt 10 :9484 :0255 :0040 :8405 :0945 :0000 :0400 :0005 :6160 :0020
:9489 :0103 :0028 :8459 :0405 ¡ :0400 :0021 :0218 :0020

9 ct; nt 20 :9488 :0251 :0100 :8414 :0925 :0020 :0401 :0005 :5840 :0040
:9487 :0109 :0044 :8451 :0433 :0020 :0401 :0020 :0220 :0028

Notes: See notes to Table 1. For Experiments 1 to 3, the VAR consists of ŷt and ĉt; for

Experiments 4 to 6, the VAR consists of ŷt and n̂t; and for Experiments 7 to 9 the VAR

consists of n̂t; and ĉt: In all cases a VAR of order one is used.
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Table 7. Comparison in Terms of Computing Time

Seconds Compared with
Method ¿ per Replication GMM

ML ¡ 3:44 5:1
ML (with errors) ¡ 2:95 4:4
ML (with priors) ¡ 2:56 3:8
SMM 5 7:52 11:2

10 14:74 22:0
20 27:41 40:1

EMSM 5 27:89 41:6
10 59:15 88:3
20 90:96 135:8

GMM ¡ 0:67 1

Notes: The Monte Carlo was performed using GAUSS for Windows running in a Dell Inspiron

7500 with Pentium III processor.
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A Appendix A : The Log-linearized Model

In what follows, variables without time subscript denote steady state values and the cir-

cum°ex denotes percentage deviation from steady state. For example, ĉt = (ct ¡ c)=c is

the percentage deviation of consumption from its steady state at time t: For the model in

Section 2, the linearized ¯rst-order conditions of the agent's problem are (notice that the

marginal products of labor and capital have already been substituted out):

Etĉt+1 = ĉt + &(®¡ 1)Etk̂t+1 + &(1¡ ®)Etn̂t+1 + &Etẑt+1;
n̂t = ¡(1=®)ĉt + k̂t + (1=®)ẑt:

where & = ®¯(k=n)®¡1 and the steady-state capital-labor ratio k=n = ((1=¯+±¡1)=®)1=(®¡1):
The linearized production function and resource constraint are:

ŷt = ®k̂t + (1¡ ®) n̂t + ẑt;
ŷt = °ĉt + (1 ¡ °)x̂t;

where ° is the consumption-output ratio in steady and equals 1 ¡ ±(k=n)1¡®: Finally, the
linearized law of motions for capital and the technology shock are:

k̂t+1 = (1¡ ±)k̂t + ±x̂t;
ẑt+1 = ½ẑt + ²t:

[31]
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