
UCLA
UCLA Electronic Theses and Dissertations

Title
A Real-Time and Robust Multivariate Estimator for Dynamic Systems with Heavy-Tailed
Additive Uncertainties

Permalink
https://escholarship.org/uc/item/4fd4m19b

Author
Snyder, Nathaniel Jeffrey

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fd4m19b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

A Real-Time and Robust Multivariate Estimator for

Dynamic Systems with Heavy-Tailed Additive

Uncertainties

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mechanical Engineering

by

Nathaniel Jeffrey Snyder

2023

© Copyright by

Nathaniel Jeffrey Snyder

2023

ABSTRACT OF THE DISSERTATION

A Real-Time and Robust Multivariate Estimator for Dynamic

Systems with Heavy-Tailed Additive Uncertainties

by

Nathaniel Jeffrey Snyder

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Jason L. Speyer, Chair

In this dissertation, a real-time, analytic and recursive multivariate state-estimation

algorithm is developed for time-invariant, time-varying and nonlinear dynamical sys-

tems. Unlike Gaussian based state-estimation algorithms, the proposed state-estimation

algorithm uses Cauchy random variables to model the uncertainties in the process and

measurement functions. For this reason, it is referred to as the multivariate Cauchy esti-

mator (MCE). The MCE uses a characteristic function representation of the conditional

probability density function of the system state vector, given the measurement history,

which generates the conditional mean and covariance estimates of the system state vector

at each estimation step. The characteristic function of the MCE is enhanced in this dis-

sertation from its previous form by an innovative, computationally tractable, and reduced

structure. In particular, the backward recursive, or tree-like, evaluation procedure of the

previously-used characteristic function is replaced by a linear parameterization. This lin-

ear parameterization compresses the backward recursive characteristic function at each

estimation step and allows similar terms of the characteristic function to now be combined

together, which was previously not possible. Compressing the characteristic function is

shown to lead to the elimination of over 99% of terms that previously comprised it after

several estimation steps, although the number of terms after a measurement update still

grows. Therefore, a method is developed to run the MCE for arbitrary simulation lengths

and for the multivariate setting, despite the growing size of the characteristic function.

Furthermore, the estimation structure of the MCE is extended to handle nonlinearities in

both the system dynamics and the measurement model, in a fashion similar to that of the

ii

extended Kalman filter. It is then shown that the MCE algorithm can achieve real-time

computational performance by exploiting the parallel structure of the compressed char-

acteristic function, which is done by distributing the computation onto general-purpose

graphical processing units. Through several linear and nonlinear dynamic simulations,

the MCE and the extended MCE are shown to outperform the Kalman filter and the

extended Kalman filter, respectively, for dynamical systems within heavy-tailed noise en-

vironments. Monte Carlo experiments illustrate the exciting robustness properties of the

proposed estimator over the class of symmetric alpha-stable probability density functions.

iii

The dissertation of Nathaniel Jeffrey Snyder is approved.

Robert Thomas M’Closkey

Jeffrey D. Eldredge

Lieven Vandenberghe

Jason L. Speyer, Committe Chair

University of California, Los Angeles

2023

iv

To my loving and supportive family. Thanks for everything.

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Symmetric-α-Stable Probability Density Functions 8

1.3 Least Squares Fitting of Probability Density Functions 9

1.4 Least Squares Fitting of Characteristic Functions 11

1.5 Contributions . 12

2 Background on the Characteristic Function of the Multivariate Cauchy

Estimator 16

2.1 Estimator Formulation . 16

2.1.1 Measurement Update Co-alignment 20

2.2 Time-Propagation of the Characteristic Function 21

2.3 Shortcomings of the Backward Recursive Characteristic Function 22

3 Compressing the Characteristic Function of the Multivariate Cauchy

Estimator 24

3.1 Insights on the Backward Recursive Characteristic Function 25

3.2 Hyperplane Arrangements, Cells, and Cell Enumeration 26

3.3 A Basis Expansion for Sign-Vectors . 31

3.3.1 Parameterizing the G-Function 32

3.4 Equivalence of the Backward Recursive and Compressed Characteristic

Functions . 33

3.4.1 Measurement Update at Estimation Step 1|1 33

vi

3.4.2 Time Propagation at Estimation Step 2|1 36

3.4.3 Measurement Update at Estimation Step 2|2 37

3.5 Numerical Example of Equivalence . 45

3.6 Term Reduction for the Compressed Characteristic Function 53

3.7 Dynamic Propagation Properties of the Compressed Characteristic Function 54

3.7.1 Discarding Negligible Terms . 56

4 An Efficient Algorithm for Compressing the G-Function 58

4.1 Preliminaries . 58

4.2 Procedure for the Efficient Computation of α
k|k
i 59

4.2.1 Finding the Coefficients of |I| = n 60

4.2.2 Finding a Point in the Upper Cell of a Vertex 62

4.2.3 Finding the Coefficients of |I| < n 62

4.2.4 Unpriming the Coefficients of |I| ≤ n 63

4.2.5 Finding the Coefficients of Arrangements with Degeneracies . . . 64

4.2.6 Time-Complexity of the Proposed Algorithm 65

4.2.7 Converting Between the Indicator and Sign Basis 66

4.2.8 Comments on the Proposed Implementation 67

5 The Sliding Window Approximation 69

5.1 Derivation of the Sliding Window Approximation 69

5.1.1 Sliding Window Initialization for Multivariate Systems 70

5.1.2 Software Architecture of the Sliding Window 76

6 Distributed Computation of the Multivariate Cauchy Estimator 77

6.1 The CUDA-C Programming Paradigm 77

6.1.1 Hardware Level Abstraction . 78

6.1.2 Software Level Abstraction . 80

6.2 An Algorithmic Cookbook for the Distributed Multivariate Cauchy Esti-

mator . 83

6.2.1 Overview . 83

vii

6.2.2 Time-Propagation . 83

6.2.3 Time-Propagation Co-alignment 84

6.2.4 Measurement Update (Child-Term Generation) 86

6.2.5 G Evaluation . 87

6.2.6 Measurement Update Co-alignment 89

6.2.7 Alpha Parameterization using Incremental Enumeration 90

6.2.8 Alpha Parameterization using Pinchasi’s Method 96

6.2.9 Term Reduction . 99

7 Extended Multivariate Cauchy Estimator for Nonlinear Dynamical Sys-

tems 102

8 Experiments 106

8.1 A Linear Three-State Simulation in Cauchy Noise 107

8.1.1 Formulation . 107

8.1.2 Numerical Results . 108

8.2 A Three-State Nonlinear Homing Missile Simulation in Heavy-Tailed Noise 119

8.2.1 Formulation . 119

8.2.2 Experimental Simulations and Results 123

8.3 A Five-State Low Earth Orbit Satellite Simulation in Heavy-Tailed Noise 129

8.3.1 Formulation . 129

8.3.2 Numerical Results . 132

9 Conclusions and Future Work 138

A Appendix 142

A.1 Least Squares fit of Symmetric-α-Stable Characteristic Functions 142

A.2 Equating Gauss-Markov to Poisson Telegraph Statistics 145

viii

List of Figures

1.1 Scalar Cauchy pdf over estimation horizon 7

1.2 Cauchy and Gaussian pdfs . 10

1.3 Least squares fit of scalar Cauchy and Gaussian pdfs 11

3.1 Visualization of the cells of hyperplane arrangements 27

3.2 Incremental enumeration visualization 30

5.1 Sliding window approximation . 70

6.1 Hardware abstraction of a GPU . 78

6.2 Software abstraction of a GPU program 81

6.3 Visualization of GPU driven Incremental Enumeration 92

8.1 Three state Cauchy estimator over eight steps 108

8.2 Three state Cauchy Estimator over a long estimation horizon 115

8.3 Process and measurement noise realization for Fig. 8.2 116

8.4 Close-up of Fig. 8.2 . 117

8.5 Schematic of the three-state target-pursuer homing missile problem. . . . 120

8.6 Process and measurement noise realization for Fig. 8.7 125

8.7 Performance of EKF against Cauchy Estimator for homing missile simulation126

8.8 Close-up of Fig. 8.7 . 127

8.9 Monte Carlo averages for homing missile simulation 128

8.10 Measurement and process noise realization for LEO satellite simulation . 133

8.11 Performance of EKF against EMCE for LEO satellite simulation 134

8.12 State history of change in atmospheric density for LEO satellite simulation 134

ix

8.13 State history of atmospheric density for LEO satellite in low noise 137

8.14 Performance of EKF against EMCE for LEO satellite in low noise 137

x

List of Tables

8.1 Term reduction results . 109

8.2 Original Cauchy estimator execution rates 110

8.3 Serial C/C++ execution rates for Cauchy estimator 111

8.4 Performance increase of chapter 4 method over chapter 3 method 111

8.5 CUDA-C execution rates for Cauchy estimator 112

8.6 Execution rates using a-priori term reduction 113

8.7 Results of the discarding terms approximation 114

8.8 2,3,4,5 dimensional system execution rates 118

xi

Vita

2017 B.S. with Honors in Mechanical Engineering, The Pennsylvania

State University, Schreyer Honors College

2017-2019 Graduate Research Assistant at the University of California, Los

Angeles, Electrical and Computer Engineering Department

2019 M.S. in Mechanical and Aerospace Engineering, The Univeristy of

California, Los Angeles

2019-2023 Graduate Research Assistant at the University of California, Los

Angeles, Mechanical and Aerospace Engineering Department

Publications

N. Snyder, M. Idan, and J. L. Speyer, “Distributed computation of a robust estimator

based on cauchy noises,” in 2021 60th IEEE Conference on Decision and Control (CDC),

2021

N. Snyder, M. Idan, and J. L. Speyer, “Real-time robust multivariate estimator for dy-

namic systems with heavy-tailed additive uncertainties,” in IEEE Journal on Transactions

on Automatic Control (under review), 2023

xii

Chapter 1

Introduction

The central goal of this dissertation is to present the contributions made to a newly en-

hanced and now real-time state estimation algorithm for linear and nonlinear dynamical

systems, referred to hereafter as the multivariate Cauchy estimator (MCE). To this day,

practically all state-of-the-art estimation algorithms use a Gaussian assumption when

modeling the statistical uncertainties for both the process and the measurement models

for a dynamical system. Although computationally tractable and cheap, the Gaussian

probability density function (pdf) does not account well for statistical outliers in its dis-

tribution due to the light and exponentially decaying tails of its pdf. If a data-processing

algorithm using the Gaussian noise assumption observes a measurement that falls many

standard deviations away from its mean, the outlier may not be dealt with appropriately.

This shortcoming has necessitated many heuristics to be included within a Gaussian state

estimation framework.

Such a circumstance is easily shown when considering the behavior of a Kalman filter

that has processed a new measurement that varies greatly from the one prior. The

explanation for such deviation is either due to the process making a large and impulsive

change in its state or from a large amount of noise entering the sensor acquisition system

over the observation period. If the explanation is truly due to a large jump in the

underlying system state, the filter may discount such a jump if it is modeled with a

Gaussian whose covariance greatly underestimates large deviations. If the explanation

1

is truly due to measurement noise, the net effect of the Kalman gain operating on the

measurement residual may cause a large (and false) update to the state estimate. In

either case, the filter may need many (statistically ‘well-behaved’) new observations to

re-converge.

The proposed estimation algorithm, the MCE, is different. It explicitly models both

the process and measurement uncertainties as additive Cauchy random variables. Cauchy

random variables are said to have ‘heavy’ probability tails, meaning that the decay of

its probability curve (from the peak) is sub-exponential. The result is that the Cauchy

random variable allots far greater probability towards events which would fall many stan-

dard deviations away from the mean of a Gaussian. This, coupled with the extraordinary

fact the (analytic and recursive) structure of the MCE’s underlying pdf can form multi-

modal hypotheses of the state allows this estimator to quickly hedge between the state

hypotheses, or ‘beliefs’. Such a mathematical structure will be shown to be particularly

useful for environments in which the statistical uncertainty of either the process or the

measurements of a system are heavy-tailed, (i.e, volatile or impulsive), more so than

a Gaussian pdf would suggest. For statistical uncertainties that are seen to have well-

defined and almost Gaussian behavior, followed by periods where large outliers in the

data are observed, the MCE is exceptionally robust.

This chapter first formally motivates in section 1.1 the need for robust and real-time

state estimators for linear and non-linear dynamic systems operating in heavy-tailed noise

environments. The Cauchy, Gaussian, and class of symmetric alpha stable (S−α−S) pdfs

(i.e., ‘heavy-tailed’ pdfs), along with their characteristic functions are then introduced

in section 1.2. This is followed by a discussion on how one can statistically equate the

two distributions, or to a third (heavy-tailed S−α−S) distribution in sections 1.3 and 1.4.

This ‘fitting’ of pdfs is necessary when conducting the heavy-tailed experiments in chap-

ter 8 between the family of Kalman filtering algorithms and the proposed MCE. The

contributions provided by this dissertation are then formally enumerated in section 1.5.

2

1.1 Motivation

Phenomena of the world does not always behave Gaussian. It has been well recog-

nized that reliance on the Gaussian pdf can be dangerous, since noise data in many

practical systems in engineering, economics, biology, financial movements, earthquakes,

atmospheric turbulence, etc., are poorly described by Gaussian pdfs and can be captured

better by heavy-tailed ones [1]. To better deal with statistically volatile and impulsive

data, heuristics have traditionally been incorporated into algorithms that wish to main-

tain the Gaussian assumption. Such examples include research efforts to ‘robustify’ the

Kalman filter in some manner to make the Gaussian assumption less brittle towards

heavy-tailed data, or by altogether replacing the underlying density, for example, by a

student’s-t distribution [2].

Nevertheless, for linear dynamic systems with additive Gaussian noises, the Kalman

filter (KF) along with the linear-exponential-Gaussian (LEG) filters have been the main

estimation paradigms in the fields of economics, finance, and engineering [3, 4]. Variants

of the KF, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF),

particle filter (PF), and Gaussian mixture models (GMM) have all been proposed to

either deal with possible nonlinearities in the dynamics, multi-modal state hypothesis, or

large environmental uncertainties [5]. In general, these estimation structures have gained

popular appeal due to their efficacy and off-the-shelf implementations.

Although the KF, LEG, EKF, UKF, PF, GMM algorithms possess their own distinct

advantages, state estimation in the presence of system nonlinearities and heavy-tailed

uncertainties is still very challenging. For systems with linear dynamics, the KF and LEG

algorithms may greatly underestimate the presence of large statistical outliers. One could

tune the process and measurement noise covariances to accommodate an observed ‘worst-

case’ deviation, however, the performance within the interim periods of time will suffer

greatly. While the EKF is able to accommodate nonlinear dynamics and measurement

models, it can be susceptible to divergence and failure when linearizing around a poor

state estimate when large outliers are observed [5]. Moreover, it is well known the state

uncertainty due to the linearization step is underestimated. Filters such as the UKF avoid

3

the pitfalls associated with linearization by sampling a set of aptly chosen points, which

captures the current system mean and covariance estimates well. The UKF is preferred

to the EKF when the system dynamics are highly nonlinear, however, the algorithm will

nevertheless suffer when the system and environment noises are not Gaussian.

Particle filters can, however, be a universal approximator to any pdf. Through a sam-

pling procedure provided by a proposal distribution and subsequently a particle weight-

ing step (the likelihood of the observation, given the particle state), the particle set as

a whole can maintain multi-modal state hypotheses. Therefore, the particle filter holds

a substantial robustness advantage over the algorithms previously listed. However, to

represent multiple beliefs that can arise from nonlinear dynamics within a heavy-tailed

noise environment, the particle set will require many particles to appropriately estimate

the posterior distribution. Moreover, the curse of dimensionality makes this estimator

highly unusable when the system state becomes large. Unlike the aforementioned algo-

rithms, real-time performance is now a centrally important issue, as one must maintain

a sufficiently large set of particles to determine the posterior density while meeting the

real-time system performance requirements1. A good comparison of several of the afore-

mentioned algorithms can be found in [7], which illustrates their performance issues while

operating within a heavy-tailed noise environment.

Formally, the Gaussian probability density function (pdf) belongs to the larger family

of alpha-stable probability distributions. Alpha stable distributions are defined, gener-

ally, through their characteristic functions and by four parameters of fit: the stability

parameter α ∈ (0, 2], skewness parameter β ∈ (0, 1], location parameter µ ∈ (−∞,∞),

and scale parameter σ ∈ (0,∞) [8]. For what follows, our scope will be limited to the

class of estimators that naturally arise from the family of symmetric-alpha-stable (S-α-

S) distributions for α = 1, 2, where the distribution is known (Cauchy and Gaussian,

respectively) and said to be symmetric if β = 0. Distributions with α = 2 are said to

1There is a litany of design decisions one would need to consider when constructing a particle filter
for robust estimation in non-Gaussian environments. Decisions include choosing a proposal distribution
to sample from, importance resampling strategies, mitigating particle depletion, actively changing the
size of the particle set, injection of random particles for robustness, etc. However, these issues are not
enumerated here. See [6] for a comprehensive overview.

4

possess well-defined mean and variance, whereas distributions whose α < 2 have infinite

variance, or heavy tails.

Many naturally occurring phenomena can be modeled more appropriately by heavy-

tailed distributions than a Gaussian would permit. For example, distance and bearing

measurements can be estimated using an active radar in clutter, where the time series

data fits an S-α-S probability density of α = 1.7 well [9]. From private conversations,

radar in the presence of jamming, clutter, and scintillation noises has even been observed

to follow distributions with a S−α−S value of α as low as 1.1. In [10], it is observed that the

disturbances observed from sonar sensors used in bearings-only-tracking are heavy-tailed

and non-Gaussian. In [11], it is further seen that air turbulence emits data distributions

with heavier tails than a Gaussian distribution would suggest. In [12], upper atmospheric

density data was seen to exhibit characteristics inconsistent with the Gaussian model,

and a drag coefficient estimation problem for low earth orbiting satellites benefited from

employing a heavy-tailed Bayesian estimation scheme. For data that is consistent with

α ∈ (1, 2), heavy-tailed modeling is (in part) troublesome, as there exists no closed-form

S-α-S probability density function (although the characteristic function does exist). Due

to the lack of an analytic pdf for S-α-S values of α ∈ (1, 2), closed-form algorithms do

not exist for dynamically generating a conditional probability density function (cpdf) in

these environments.

Although the (unconditional) Cauchy pdf has infinite variance and mean, it is shown

in [13] that the cpdf exists and exhibits a finite mean and variance, expressed in a closed

form. While few, if any, real-world processes are truly Cauchy distributed, because the

tails of this distribution over-bounds those of realistic physical phenomena, it is hypoth-

esized that estimators based on Cauchy densities will be robust to the unknown physical

densities in question [14]. In [14, 15], it was shown that a multivariate estimator based

on the Cauchy pdf performed superior to that of the KF in a Cauchy noise simulation

and performed very similarly in a Gaussian noise simulation. The original multivari-

ate Cauchy estimator (MCE) of [16] is closed form, analytic, and recursively updates

the characteristic function of the unnormalized conditional probability density function

5

(ucpdf) of the system-state vector given the measurement history, at each estimation

time step. Notably, the estimator is capable of analytically hypothesizing multi-modal

beliefs. This is unlike the particle filter, which discretely hypothesizes its beliefs through

the particle set.

The ability to (analytically) hedge between multiple beliefs is motivated in Fig. 1.1, as

was first depicted in [13]. The behavior of the estimator between measurement indices 54

and 55 and then between 59 and 60 are particularly noteworthy. At index 54, both a small

process noise and a large measurement noise deviation were realized, respectively. We

see that the estimator wagers the observation is likely due to process noise, and adjusts

its mean estimate accordingly. However, the pdf enlarges its one standard deviation

confidence bound greatly to account for the volatility in the observed measurement. We

see that, unlike the Kalman filter, the conditional variance of the estimate is indeed a

function of the measurement history. Now at step 55, the measurement noise and process

noise are both much smaller. The Cauchy estimator realized its wager was overconfident,

and immediately shifts the pdf mass close to that at index 53. There, it significantly

reduces its one standard deviation confidence bound.

Later, at index 59, a very large process noise and a small measurement noise are

realized, respectfully. The behavior of the estimator, now, is surprising. The estimator

constructs a primary belief the state is in a similar vicinity as the previous state estimate,

wagering the observation is likely due to measurement noise. However, it also sets up

a second belief that the system state could have actually jumped due to the process

noise. The estimator is now hedging between the two-state hypotheses of where the

system state could be through constructing a bimodal pdf and a large one standard

deviation confidence bound. At index 60, the estimator sees the new measurement is

consistent with its second belief. The probability density is adjusted accordingly, turning

its previously bimodal belief into a unimodal belief centered around its second mode. We

see the confidence bound additionally tightens dramatically, and the state estimate is

now very close to the true state. The findings from this experiment are that the Cauchy

estimator can 1) dynamically adjust its covariance based on the measurement history, 2)

6

Figure 1.1: Top: Pdf of the scalar Cauchy estimator in a Cauchy noise simulation.
Bottom: Process and measurement noise realization.

hypothesize multiple beliefs of the state, and 3) quickly hedge between them.

The original characteristic function of the MCE in [16], however, presented major

challenges for achieving a real-time implementation. The characteristic function was

seen to be composed of many terms at each estimation step. Each term would generate

factorially many new child terms at the successive estimation step. Although it was seen

that a large number of these terms were similar, they could not be combined together.

This was due to the fact that the terms of this characteristic function were themselves

dependent upon all past terms generated at each estimation time step (and thus past

characteristic functions). This is to say, the characteristic function generated a backward

recursive ‘tree-like’ structure, where each newly generated child term was a function of

7

all past parent terms and their associated parameters. Therefore, the backward recursive

structure of the characteristic function causes two main issues. The first is memory

burden. All terms of past estimation steps along with terms of the current estimate

step must be held in computer memory. The second issue is that similar child terms

could not be combined together. It was seen that many of these terms existed in the

characteristic function. This was further exacerbated by the factorial growth rate of terms

after a measurement update, producing even more similar terms at future estimation

steps. Together, the computation and memory burden of the estimator, unfortunately,

was immense after only several estimation steps. The body of work presented in this

dissertation focuses on resolving many of the aforementioned computational and memory

issues of the characteristic function of [16].

1.2 Symmetric-α-Stable Probability Density Functions

The pdfs and characteristic functions used in this dissertation are presented here. The

focus of this work surrounds estimators that arise from members of the S−α−S family

of distributions. Distributions of this family can be expressed generally through their

characteristic function as

ϕX(ν;α, σ, µ) =

∫ ∞

−∞
fX(x)e

jνxdx = ejνµ+|σν|α ∈ C, (1.1)

where the real-valued and scalar S−α−S random variable X has realization x and a pdf

denoted as fX(x). Above, j is the imaginary number. The values µ ∈ R, σ ∈ (0,∞), α ∈

(0, 2] parameterize the characteristic function. The location parameter µ describes where

values of x are centered, the scaling parameter σ describes the width of the distribution,

and the stability parameter α describes the decay rate of the tails of the pdf [17].

Of particular interest is when α is set to a value of either 1 or 2. When α = 1, the

Cauchy pdf is recovered as

fX(x;µ, σ) =
1

2π

∫ ∞

−∞
ϕX(ν; 1, σ, µ)e

−jνxdν =
1

π

[
σ

(x− µ)2 + σ2

]
, (1.2)

8

where both the mean and second moment of the Cauchy random variable are infinite, i.e.,

E[x] = ∞, E[x2] = ∞, respectively. In (1.2), µ is the median parameter of the Cauchy

pdf and indicates where the peak of the Cauchy pdf is located. Above, σ is the scaling

parameter. When α = 2, the Gaussian pdf is recovered as

fX(x;µ, σ) =
1

2π

∫ ∞

−∞
ϕX(ν; 2,

σ√
2
, µ)e−jνxdν =

1

σ
√
2π
e−

(x−µ)2

2σ2 , (1.3)

where the mean and variance are given as E[x] = µ, E[(x − µ)2] = σ2, respectively.

Note in (1.3) the Gaussian characteristic function is defined with σ√
2
. The multivariate

Gaussian pdf is easily found by writing (1.1) in its multivariate form for α = 2 and

recovered as

fX(x; x̄, P) =
1

(2π)
n
2

√
det(P)

e−
1
2
(x−x̄)TP−1(x−x̄), (1.4)

where x ∈ Rn denotes the n-dimensional Gaussian random vector of mean x̄ ∈ Rn and

covariance P ∈ Sn×n++ . S++ denotes that P is symmetric positive definite.

Depicted in Fig. 1.2 are zero-centered Cauchy and Gaussian pdfs (α = 1, 2, respec-

tively) overlayed for different σ values. It is clear the Cauchy pdf allots larger probability

in the tails of its pdf when compared to the Gaussian distribution. Even at values of

±4, the tails of either Cauchy pdfs have significantly more probability density than the

depicted Gaussians.

1.3 Least Squares Fitting of Probability Density Func-

tions

To compare estimators that are based on either Gaussian or Cauchy noise models, the

underlying Gaussian and Cauchy pdfs will need to be fitted to one another in a statistical

sense [14, 15, 18]. That is, if the process or measurement noises are simulated as Gaussian,

an appropriate Cauchy pdf must be fitted to this Gaussian pdf in order to use the MCE.

Conversely, for noises that are simulated as Cauchy, an appropriate Gaussian pdf must

be fitted to the Cauchy pdf in order to use a Kalman filter.

9

Figure 1.2: Gaussian and Cauchy pdfs with scaling parameters σ = {1.0, 0.5} overlayed,
respectively.

The Cauchy and Gaussian distributions can be fitted to one another in the least

squares sense by minimizing

argmin
σP

∞∫
−∞

(
fXT

(x;µT , σT)− fXP
(x;µP , σP)

)2
dx, (1.5)

where fXP
(x;µP , σP) is the proposal pdf to be fitted, with σP being the optimization

variable in question (i.e, the scale parameter of the proposal pdf), and fXT
(x;µT , σT)

represents the target pdf to fit to. Note that the optimization only takes place over the

variable σP and not µP . If the target distribution is not zero-centered (i.e., µT ̸= 0),

then µP can simply be set equal to µT since both distributions are single-peaked and

symmetric.

When the target pdf is the Gaussian and the proposal pdf is the Cauchy, the op-

timization for σP yields a ratio of σP
σT

= 0.7195. This indicates the Cauchy scaling

parameter which minimizes (1.5) is the Gaussian value scaled down by 0.7195. If the

Cauchy pdf is set to the target pdf and the Gaussian is the proposal pdf, the ratio be-

comes σP
σT

= 1
0.7195

= 1.3898. Conversely, the Gaussian scaling parameter which minimizes

10

(1.5) is the Cauchy value scaled up. This makes intuitive sense, as the Cauchy pdf has

much heavier tails than the Gaussian pdf does. Figure 1.3 shows the result of fitting the

Cauchy pdfs in Fig. 1.2 to the Gaussian pdfs. The derivation of(1.5) can be found in

appendix A.1.

Figure 1.3: Cauchy pdfs fitted to Gaussian pdfs, respectively, in the least squares sense.

It should be noted here that there are many ways in which one can measure the

distance between two distributions. A popular choice is the KL-divergence measure.

Unlike the least-squares approach, however, minimizing the KL-divergence measure for a

Gaussian fit to a Cauchy pdf does not produce desirable results, and yields an ‘optimal’

choice of σ → ∞ for the Gaussian scaling parameter. This is due to the heavy tails of

the Cauchy pdf. This occurs as the KL metric attempts to give more probability to the

light tails of the Gaussian. For this reason (and convenience), least squares fitting was

chosen.

1.4 Least Squares Fitting of Characteristic Functions

For noise data that is not Gaussian or Cauchy, but is seen to be something in between

(i.e, α ∈ (1, 2)), both the Gaussian and Cauchy pdfs will need to be fit to this third

11

distribution. Unfortunately, (1.5) cannot be used, as pdfs for α ∈ (1, 2) do not have

analytic and closed-form solutions. However, the characteristic function does exist, as

shown by (1.1). Furthermore, using Plancherell’s theorem (here for real-valued functions

due to µ{P,T} = 0) which states that the integral of a squared real-valued function is equal

to the integral of its squared frequency spectrum, the problem in (1.5) is equivalent to

argmin
σP

∞∫
−∞

(ϕXT
(ν;σT , αT)− ϕXP

(ν;σP , αP))
2 dν

= argmin
σP

 ∞∫
−∞

e−2|σT ν|αT dν − 2

∞∫
−∞

e−|σT ν|αT −|σP ν|αP dν +

∞∫
−∞

e−2|σP ν|αP dν

 . (1.6)

The middle integral above (in general) does not have an analytic expression. However,

numerical minimization of (1.6) can be applied. Equation (1.6) now allows any two (or

more) distributions in the S−α−S family to be fit to one another, in the least squares

sense. Furthermore, sampling from any of the S−α−S distributions can be done by using

the algorithm of [19]. In chapter 8, the methods outlined here and in section 1.3 are used

to fit the process and measurement statistics for the MCE/EMCE and the KF/EKF

estimation algorithms to its respective environmental noise distribution.

1.5 Contributions

The central contribution of this dissertation is to reformulate the characteristic function

of the MCE from [16] into a computationally reduced structure that is capable of real-time

multivariate estimation applications. The contributions of this dissertation are organized

into its chapters, as follows.

In chapter 2, background on the original MCE algorithm is given. The central com-

putational and memory burden of its structure is then discussed. It is shown next in

chapter 3 that the original backward recursive characteristic function of the MCE can be

removed and replaced with a ‘compressed’ representation at each estimation step. The

main contribution here is that by viewing several parameters of a single term of the charac-

12

teristic function instead as the coefficients of hyperplane arrangements, a cell-enumeration

method from either [20, 21] can be applied to find the unique set of sign-vectors describing

the cells of the arrangement. The sign vectors found by the cell-enumeration algorithm

allow for a linear system of equations to be formed. The solution of which is shown to

compress the characteristic function. The ability to compress the characteristic function

now allows similar terms that meet a special criterion to be reduced together. The result

of this enhancement is that after several estimation steps (i.e., around seven to eight mea-

surement updates) more than 99% of the terms previously comprising the characteristic

function are removed.

The parameterization derived in chapter 3 is then shown to have a dynamic propa-

gation formula in section 3.7. A related dynamic propagation property was seen in [13]

for the scalar Cauchy estimator, but only now has a closed-form dynamic propagation

equation been discovered for these parameters in the multivariate case. The newfound

parameterization of terms can be used in conjunction with an interesting result presented

in [22] for linear time-invariant (LTI) systems. The result of [22] analytically shows that

it is a-priori known which terms of the characteristic function can reduce together. Now

that it is possible to combine terms together by compressing the characteristic function,

terms at the known indices of reduction can be combined into a single term simply by

adding together their parameterization vectors. This removes the need to search through

all terms for reductions, which would require a search that is run-time quadratic. The net

result is that for LTI systems, the estimator can be run exceptionally fast. Moreover, for

all dynamic systems (time-invariant, time-varying, and nonlinear), it is observed numeri-

cally that for many terms of the characteristic function, the norm of the parameterization

vector approaches zero after several estimation steps. This fact implies an additional op-

timization: terms whose parameterizing vector approaches a norm of machine zero can

be discarded from the characteristic function. Since the term is discarded, it will not

generate any more terms at future estimation steps.

Now that the compressed structure of the characteristic function has been uncovered,

chapter 4 develops a significantly more efficient algorithm to construct the parameteri-

13

zation vector of each term. This method is shown to be much more efficient at finding

the parameterization than the previous method of running a cell-enumeration algorithm

and then a linear system solver. The algorithm proposed uses several insights from [23]

regarding functions of hyperplane arrangements that have constant value within their

cells.

Formalizing how the MCE will run simulations for long horizons of time is developed

in chapter 5. Although the compressed structure of the characteristic function reduces

memory consumption and allows for similar terms to be combined, the number of terms

after a measurement update will still grow, albeit now more slowly. A method, termed the

sliding window approximation, was proposed in [15] for two-state linear systems to cap

the growth rate and run the estimation structure continuously with a fixed computation

load per estimation step. The method has been enhanced and is now generalized to

multivariate systems. This allows the MCE to run for arbitrarily long simulations with

a very minor impact on its state-estimation performance.

The next contribution is to distribute the computation of the MCE, discussed in

chapter 6. All subroutines required to evaluate its characteristic function have been

implemented using parallel computing on a graphics processing unit (GPU). This is ac-

ceptable, as all terms of the characteristic function are independent of one another. The

CUDA-C programming language [24] was chosen for this implementation. Distributing

the computation of the compressed characteristic function has enabled impressive speed

increases from the original MCE formulation. To motivate this point, processing the

eighth estimation step for a three-state dynamic system once took over twelve hours in

Matlab using the original characteristic function. Now, this can be done in approximately

10 milliseconds using the new GPU-driven framework for three-state systems. Using the

new sliding window approximation, the MCE can now be run at 100 Hz. For smaller

window sizes, the estimator can be run well over 1000 Hz and still drastically outperform

the Kalman filter. For LTI systems, the estimator can run even faster.

Chapter 8 illustrates the utility of the compressed MCE for engineering applications

through several motivating examples. Slight changes are first made in chapter 7 to the

14

MCE, so nonlinear dynamics and measurement models can be provided, termed the

extended multivariate Cauchy estimator (EMCE). These accommodations are similar to

how the EKF handles nonlinear systems. A formal analysis of the run-time performance

of the proposed framework is provided to showcase the speed improvements. Simulations

are then provided which demonstrate the performance of the MCE for heavy-tailed noise

environments. Notably, a large-scale Monte Carlo experiment illustrates the robustness

properties of the EMCE for a nonlinear system over the class of S−α−S density functions

and for a range of α-stability parameters between 1 and 2.

15

Chapter 2

Background on the Characteristic

Function of the Multivariate Cauchy

Estimator

This chapter provides background on the original ‘backward-recursive’ characteristic func-

tion of the MCE algorithm, first derived in [16]. This is needed to understand the for-

mulation of the compressed characteristic function, presented in chapter 3. The original

MCE is introduced in section 2.1. The MCE has two main steps: a measurement update

step and a time propagation step, which are given in sections 2.1 and 2.2, respectively.

Section 2.3 enumerates the computational and memory issues of the original characteristic

function summarized by this chapter.

2.1 Estimator Formulation

Given the discrete-time linear dynamic system

xk+1 = Φkxk + Γkwk, (2.1a)

zk = Hkxk + vk, (2.1b)

16

with xk ∈ Rn representing the system-state vector at estimation step k, the transition

matrix Φk ∈ Rn×n, the process-noise vector of heavy-tailed Cauchy random variables

wk ∈ Rr and the control matrix Γk ∈ Rn×r. The measurement vector zk ∈ Rp is modelled

with Hk ∈ Rp×n and Cauchy noise vk ∈ Rp. Here, Φk,Γk, Hk can either be time-invariant

or time-varying. The vectors x1, wk, vk are modeled as independent and heavy-tailed

realizations of Cauchy random variables.

The goal of the estimation problem is to determine the conditional mean and covari-

ance of the system state-vector Xk given the measurement history Yk = {Z1, ..., Zk} at

estimation step k. Note that Xk, Yk, Zk are used to represent the random vectors while

xk, yk, zk represent their realizations. The cpdf of the system state-vector at step k given

the measurement history realization yk = {z1, z2, ..., zk} can be written generally as

fXk|Yk(xk|yk) =
fXk,Yk(xk, yk)

fYk(yk)
=

fZk|Xk,Yk−1
(zk|xk, yk−1)fXk|Yk−1

(xk|yk−1)fYk−1
(yk−1)

fYk(yk)
.

(2.2)

Since the propagation of the cpdf (2.2) for scalar linear systems with additive Cauchy

noises could not be extended to multivariate systems, it was shown in [16], however, that

the characteristic function of the unnormalized conditional probability density function

(ucpdf) of the multivariate system indeed exists. The characteristic function of the ucpdf

is initialized at k = 1 as

ϕ̄X1(ν) = exp

[(
−

n∑
ℓ=1

p1ℓ
∣∣⟨a1ℓ , ν⟩∣∣

)
+ j⟨b1, ν⟩

]
(2.3)

where ν ∈ Rn is the spectral vector. The parameter p1ℓ , ℓ = [1, .., , n] is the scaling param-

eter of the Cauchy pdf. This is used to model the initial uncertainty of the corresponding

system state x1,ℓ. The parameter b1ℓ , ℓ ∈ [1, ..., n] is the median value (location parameter)

for the Cauchy pdf. This parameter describes where in space the corresponding initial

state x1,ℓ is likely located. The parameters a1ℓ ∈ Rn, ℓ ∈ [1, ..., n] are chosen as orthogonal

directions. Note that the condition Ha1iℓ ̸= 0 must hold for all indices ℓ ∈ [1, ..., n], and

the directions a1ℓ should be chosen to uphold this condition.

17

After selecting b1, p1, a1l , the MCE algorithm then processes the first measurement

z1 ∈ R (i.e, the measurement update step). As is shown in [16], the characteristic function

of the ucpdf can be expressed generally at any estimation step k after processing the k-th

sensor measurement zk as

ϕ̄Xk|Yk(ν) =

∞∫
−∞

fXk,Yk(xk, yk)e
jνT xkdxk

=

N
k|k
t∑
i=1

g
k|k
i

(
y
k|k
gi (ν)

)
exp

(
y
k|k
ei (ν)

)
. (2.4)

The superscript k|k indicates an estimate at step k uses all the measurements up to zk.

The characteristic function is expressed as a sum of N
k|k
t terms and starts with a single

term at initialization (i.e., the parameters b1, p1, a1l). The subscript ‘i’ denotes a particular

term i ∈ [1, ..., N
k|k
t]. Each term i is a product between complex-valued functions of the

spectral vector ν, given by

g
k|k
i

(
y
k|k
gi (ν)

)
=

1

2π

gk−1|k−1r
k|k
i

(
y
k|k
gi1(ν) + h

k|k
i

)
jc
k|k
i + d

k|k
i + y

k|k
gi2(ν)

−
g
k−1|k−1
r
k|k
i

(
y
k|k
gi1(ν)− h

k|k
i

)
jc
k|k
i − d

k|k
i + y

k|k
gi2(ν)

 , (2.5)

where

y
k|k
gi1(ν) =

(
ϱ
k|k
i

)T
λ
k|k
i (ν) ∈ Rk−1, ϱk|ki ∈ R(k−1)×mk|k

i (2.6a)

y
k|k
gi2(ν) =

(
q
k|k
i

)T
λ
k|k
i (ν) ∈ R, qk|ki ∈ Rm

k|k
i (2.6b)

λ
k|k
il (ν) = sgn

(〈
a
k|k
il , ν

〉)
, l ∈ [1, ...,m

k|k
i], λ

k|k
i (ν) ∈ Rm

k|k
i , (2.6c)

and an exponent of

y
k|k
ei (ν) = −

m
k|k
i∑
l=1

p
k|k
il

∣∣∣〈ak|kil , ν〉∣∣∣+ j
〈
b
k|k
i , ν

〉
∈ C. (2.6d)

18

The normalization factor fYk(yk) of (2.2) and (2.4) is given by

fYk(yk) = ϕ̄Xk|Yk(ν)
∣∣
ν=0

=

N
k|k
t∑
i=1

g
k|k
i

(
y
k|k
gi (ν)

)∣∣∣
ν=0n

∈ R. (2.7)

In (2.5), c
k|k
i , d

k|k
i , y

k|k
gi2 ∈ R and the vector arguments q

k|k
i , λ

k|k
i (ν) are the parameters

generated at step k|k after processing a sensor measurement and m
k|k
i is the number of

elements in the vector parameters of term i at k|k. The subscript ℓ ∈ [1, ...,m
k|k
i] is used to

reference one of them
k|k
i elements. The parameters y

k|k
gi1(ν), h

k|k
i ,∈ Rk−1 are the arguments

to the recursive numerator function g
k−1|k−1

r
k|k
i

(·) ∈ C and the parameter ϱ
k|k
i contains

updated q
(·)
i parameters (at step k) from past characteristic functions at the time steps 1

through k−1, stored as a 2-D vector. Note that at k = 1, g
r
1|1
i
(·) = 1. Equation (2.5) is at

the heart of the computational and memory challenges of the characteristic function due

to g
k−1|k−1
r
k|k
i

(·). It is a recursive function of all parameters of past characteristic functions

generated at time steps 1, ..., k−1. The subscript r
k|k
i indicates the parameters held in

ϱ
k|k
i and generated by past characteristic functions are updated at k|k and provide the

arguments to those past characteristic functions of steps k−1|k−1 recurring back to step

1. Due to the hierarchy of divisions effectively created by g
k−1|k−1
r
k|k
i

(·), the characteristic

function at the current step k|k requires the parameters of all past time steps to be stored

in memory. This relation between the parameters of steps 1, ..., k resembles a ‘tree-like’

structure. For simplicity, the parameters y
k|k
gi1(ν) and y

k|k
gi2(ν) of (2.6a) and (2.6b) can be

thought of as functions of the sign-vectors λ
k|k
i (ν) of (2.6c) and the spectral vector ν.

In (2.6d), y
k|k
ei (ν) is a function of parameters pil ∈ R, ak|kil , b

k|k
i ∈ Rn, forming a sum over

the absolute value of the inner products of vectors a
k|k
il and ν and then weighted by p

k|k
il .

The imaginary part is formed through the inner product of ν and b
k|k
i . Both λ

k|k
i (ν) and

a
k|k
il are central to the discussion of chapter 3. The derivation of the functional forms

of the parameters a
k|k
il , b

k|k
i , c

k|k
i , d

k|k
i , p

k|k
i , q

k|k
i , ϱ

k|k
i , h

k|k
i can be found in [16], but will also

be presented in section 3.4 when comparing the compressed form of the characteristic

function in detail to the form presented above.

The conditional mean x̂k and estimation error covariance Pk can be constructed after

19

the measurement update step from the first and second derivatives, respectively, of the

characteristic function evaluated at ν = ϵν̄, ϵ→ 0 for some ν̄ ̸= 0n. They are given by

x̂k =
1

jfYk

N
k|k
t∑
i=1

g
k|k
i (ν̄)ȳ

k|k
ei (ν̄) ∈ Rd, (2.8)

Pk = −
1

fYk

N
k|k
t∑
i=1

g
k|k
i (ν̄)ȳ

k|k
ei (ν̄)

(
ȳ
k|k
ei (ν̄)

)T
− x̂kx̂Tk ∈ Rd×d, (2.9)

with

ȳ
k|k
ei (ν̄) = −

m
k|k
i∑
l=1

p
k|k
il λ

k|k
il (ν̄)a

k|k
il + jb

k|k
i ∈ Cd, (2.10)

and fYk is evaluated as in (2.7) while replacing ν = 0n with ν̄. For minor restrictions that

apply to ν̄ and for a detailed derivation of (2.8) to (2.10), see [16].

2.1.1 Measurement Update Co-alignment

It was observed in [16] that it is possible for two or more directions a
k|k
ij , a

k|k
iℓ , ∀ j <

ℓ, j, ℓ ∈ [1, ...,m
k|k
i] for a term i ∈ [1, ..., N

k|k
t] to be ‘co-aligned’, which can be defined as

(
a
k|k
ij

)T
a
k|k
iℓ

∥ak|kij ∥2∥a
k|k
iℓ ∥2

= ±1, (2.11)

This is problematic, as forming the new parameters a
k+1|k+1
i(·) will be ill-defined (see sec-

tion 3.4 or [16] for the measurement update form of a
k|k
i(·)). To remedy this situation, for

all parameters a
k|k
ij , a

k|k
iℓ for j < ℓ, j, ℓ ∈ [1, ...,m

k|k
i] of a term i which satisfies (2.11), the

parameter a
k|k
iℓ at index ℓ is removed. Then, the parameter p

k|k
ij , q

k|k
ij of index j can be

updated updated as

p
k|k
ij ← p

k|k
ij + p

k|k
iℓ abs

(
∥ak|kiℓ ∥2

)
(2.12a)

q
k|k
ij ← q

k|k
ij + q

k|k
iℓ sgn

((
a
k|k
ij

)T
a
k|k
iℓ

)
. (2.12b)

20

This property has important ramifications for the compressed characteristic function

when deriving its form in chapter 3. After a measurement update and the co-alignment

step, the number of terms in the characteristic function becomes

N
k|k
t =

N
k|k−1
t∑
i=1

(m
k|k−1
i + 1), (2.13)

m
k|k
i ≤ m

k|k−1
i ≤ m

k−1|k−1
i + r. (2.14)

Equation (2.13) illustrates that the characteristic function has a factorial growth rate

with respect to the number of terms N
k|k
t . The relation m

k|k
i ≤ m

k|k−1
i of (2.14) is due to

the co-alignment property presented above, where r in the upper bound is the number of

elements in term i added after the time propagation step (and is equal to the number of

process noises in wk of (2.1), more on this next).

2.2 Time-Propagation of the Characteristic Function

To propagate the MCE from estimation step k to k + 1, the time propagation step is

applied. Again, these expressions will be useful when showing the equivalence of the

compressed characteristic function in section 3.4 to the forms presented here. The form

of the time-propagated characteristic function is given as,

ϕ̄Xk+1|Yk(ν) =

N
k|k
t∑
i=1

g
k+1|k
i

(
y
k+1|k
gi (ν)

)
exp

(
y
k+1|k
ei (ν)

)
. (2.15)

where

g
k+1|k
i

(
y
k+1|k
gi (ν)

)
=

1

2π

gk−1|k−1r
k+1|k
i

(
y
k+1|k
gi1 (ν) + h

k|k
i

)
jc
k|k
i + d

k|k
i + y

k+1|k
gi2 (ν)

−
g
k−1|k−1
r
k+1|k
i

(
y
k+1|k
gi1 (ν)− hk|ki

)
jc
k|k
i − d

k|k
i + y

k+1|k
gi2 (ν)

 ,
(2.16)

21

and

y
k+1|k
gi1 (ν) =

(
ϱ
k+1|k
i

)T
λ
k+1|k
i (ν) ∈ Rk, ϱ

k+1|k
i ∈ Rk×mk+1|k

i (2.17a)

y
k+1|k
gi2 (ν) =

(
q
k+1|k
i

)T
λ
k+1|k
i (ν) ∈ R, qk+1|k

i ∈ Rm
k+1|k
i (2.17b)

λ
k+1|k
il (ν) = sgn

(〈
a
k+1|k
il , ν

〉)
, l ∈ [1, ...,m

k+1|k
i],, λ

k+1|k
i (ν) ∈ Rm

k+1|k
i (2.17c)

with an exponent of

y
k+1|k
ei (ν) = −

m
k+1|k
i∑
l=1

p
k+1|k
il

∣∣∣〈ak+1|k
il , ν

〉∣∣∣+ j
〈
b
k+1|k
i , ν

〉
∈ C. (2.17d)

Equations (2.16) to (2.17c) are similar to those of (2.5) to (2.6c), with several dif-

ferences. Note that (2.16), hk+1|k = hk|k, c
k+1|k
i = c

k|k
i and d

k+1|k
i = d

k|k
i . The terms

p
k+1|k
i , a

k+1|k
il , bk+1

i are updated by Φk in the time-propagation step and it should be men-

tioned that q
k+1|k
i will be equal to p

k+1|k
i during time-propagation (see [16] for derivation

or section 3.4 for further details). The number of terms of the characteristic function

does not increase in time-propagation and N
k+1|k
t = N

k|k
t . The number of elements in a

term, however, increases by at most r (i.e, the number of process noises of (2.1)), and

the relation is given by m
k|k
i ≤ m

k+1|k
i ≤ m

k|k
i + r. The inequality is due to the chance of

co-alignment in the a
k+1|k
il parameters during the time-propagation step. If this is seen to

occur, the co-alignment rules outlined in (2.12) for p
k|k
i can be applied here to the time

propagated p
k+1|k
i .

2.3 Shortcomings of the Backward Recursive Char-

acteristic Function

The backward recursive numerator g
k−1|k−1
r
k|k
i

(·) of (2.5) is at the center of the memory and

computational issues of the characteristic function presented in this chapter. To evaluate

the conditional mean x̂k and covariance Pk as given by (2.8) to (2.9), the backward

recursive structure of (2.5) requires the parameter set a
k|k
il , b

k|k
i , c

k|k
i , d

k|k
i , p

k|k
i , q

k|k
i , ϱ

k|k
i , h

k|k
i

22

of all terms from steps 1 to k to be held in computer memory for access. If this numerator

was replaced by an expression dependent only on parameters at k, the terms from steps 1

to k−1 could be forgotten. This would save a large amount of memory. Moreover, doing

so would allow any similar terms at step k to be reduced together. As each term creates

m
k|k−1
i new terms after a measurement update step, the computational savings could be

very large. As discovered in [25], there are indeed many terms at each step k that will

combine together.

23

Chapter 3

Compressing the Characteristic

Function of the Multivariate Cauchy

Estimator

The structure of the compressed characteristic function is now presented. Sections 3.1

to 3.3.1 examines and formulates a geometric way to view and solve for several important

parameters that comprise the backward recursive characteristic function. Section 3.4

then explicitly uses these insights and derives the compressed characteristic function of

the MCE. Section 3.6 outlines the rules for term-combination, which is now possible, as

the characteristic function is no longer backwards-recursive. Lastly, section 3.7 shows

the newly constructed parameter that compresses the characteristic function has an in-

teresting dynamic propagation property. In the linear system case, this property reveals

a large amount of computation in the characteristic function can be moved offline, prior

to processing any sensor measurements. Many of the insights given in this chapter were

first presented by the author of this dissertation in [14].

24

3.1 Insights on the Backward Recursive Character-

istic Function

The reformulation of this chapter starts by examining equation (2.6b)

y
k|k
gi2(ν) =

(
q
k|k
i

)T
λ
k|k
i (ν) ∈ R, qk|ki ∈ Rm

k|k
i

λ
k|k
il (ν) = sgn

(〈
a
k|k
il , ν

〉)
, l ∈ [1, ...,m

k|k
i], λ

k|k
i (ν) ∈ {±1}m

k|k
i ,

which is embedded in the backward-recursive function of (2.5). We see y
k|k
gi2(ν) is a

function of sign-functions, where each sign-function takes the inner-product between the

parameters a
k|k
il ∈ Rn and the spectral vector ν ∈ Rn. Alternatively, the parameter

vector a
k|k
il can be thought of as the coefficients of a hyperplane in Rn with respect to the

spectral vector ν. The set of all l =
[
1, ...,m

k|k
i

]
hyperplanes a

k|k
il could then be viewed

as an arrangement of hyperplanes, where all ν that satisfy a
k|k
il ν = 0 would lie on the

hyperplane. From this new viewpoint, λ
k|k
il (ν) is a function which indicates (with the

values ±1) whether a value of ν lies in the positive halfspace H+
il = {ν ∈ Rn | ak|kil ν > 0}

or the negative halfspace H−
il = {ν ∈ Rn | ak|kil ν < 0} of the hyperplane, respectively.

Formally, the set of vectors a
k|k
il , l ∈

[
1, . . . ,m

k|k
i

]
, grouped into a matrix A

k|k
i ∈

Rm
k|k
i ×n, defines a central arrangement of hyperplanes of dimension Rn, where m

k|k
i de-

notes the number of hyperplanes in the arrangement of the term i. The hyperplanes

are said to be in a central arrangement if all hyperplanes pass through the origin, i.e

A
k|k
i ν = 0m

k|k
i and a general arrangement otherwise. Therefore, λ

k|k
i (ν) ∈ Rm

k|k
i is the

sign-vector function of the central hyperplane arrangement A
k|k
i , which indicates the half-

space H+
il or H−

il a chosen ν ∈ Rn lies in, with respect to each of the hyperplanes in the

arrangement.

The key observation now is that an arrangement of hyperplanes only produces a finite

number of cells. A cell is formed by the intersection of the halfspaces of its hyperplane

arrangement and is uniquely defined by its sign vector. Moreover, the sign vector is

constant within the interior of a cell. Therefore, the sign-vector function λ
k|k
i (ν) can only

25

take on as many values as there are cells in the arrangement. Since y
k|k
gi2(ν) is a function of

the sign-vectors, it too can only take on as many values as there are cells in the hyperplane

arrangement. Lastly, since g
k|k
i (ν) of (2.5) is a function of the sign-vectors, it too can

only take on as many values as cells in the arrangement.

The strategy to remove the backward recursive component of (2.5) follows from these

observations. We can find the value of (2.5) for each cell by determining the set of sign-

vectors of the hyperplane arrangement, since (2.5) only takes on as many values as there

are cells. The idea is to then replace (2.5), completely, with a linear parameterization.

This can be accomplished by solving a linear system of equations using the values of

(2.5) and (a transformation of) the sign vectors. Sections 3.2 and 3.3 elaborate on this

procedure.

3.2 Hyperplane Arrangements, Cells, and Cell Enu-

meration

Figure 3.1 depicts various two-dimensional central and general arrangements and their

sign vectors. It is clear from Fig. 3.1 that each cell has a unique sign-vector, as crossing

any hyperplane will flip the respective sign-vector value. A comparison of the general

arrangements in Fig. 3.1 shows various geometrical configurations of the hyperplanes can

also vary the number of cells. This can also occur in central arrangements as well.

For a central arrangement withm hyperplanes in n dimensions, the maximum number

of cells the arrangement can have is given by

sc(m,n) = 2
n−1∑
i=0

(
m− 1

i

)
. (3.1)

Similarly, the maximum number of cells for general hyperplane arrangements can be

written as

sg(m,n) =
n∑
i=0

(
m

i

)
, (3.2)

26

Figure 3.1: Cell enumeration examples of 4 hyperplanes in 2 dimensions for general (top
right, 11 cells), central (left, 8 cells), and degenerate (bottom right, 9 cells)

arrangements, depicting the hyperplane half-spaces (+/- signs) and cell sign-vectors
(boxed vectors).

where sc(m
k|k
i , n) ≤ sg(m

k|k
i , n) always holds [20]. If an arrangement (either central

or general) is seen to have less than sc(m
k|k
i , n) or sg(m

k|k
i , n) cells, respectively, the

arrangement is said to be degenerate. Therefore, a procedure is needed to find the set

of all sign vectors of the hyperplane arrangement, as doing so will allow (2.5) to be

evaluated in all cells. Furthermore, the procedure will need to find the sign vectors for

any number of hyperplanes, in any dimension, and regardless of any potential degeneracy

in the arrangement.

Such a technique is called a cell-enumeration algorithm for hyperplane arrangements,

first proposed by [20]. Later, a more efficient ‘incremental-enumeration’ technique (coined

by the authors as Inc-Enu) of [21] was proposed. The remainder of this section focuses

on explaining how the challenging problem of cell enumeration (for central hyperplane

arrangements) can be solved using Inc-Enu, and a high-level overview is given below1. If

1The work of [14] proposes an even more computationally efficient version of the Inc-Enu algorithm,
contributed by the author of this dissertation. The proposed Inc-Enu in [14] uses a GPU to conduct
a parallel breadth-first search and a custom GPU simplex solver written in CUDA-C to solve the LPs.
Moreover, it can solve multiple cell-enumeration problems simultaneously. The scheme is outlined in
chapter 6 and relies heavily on details of this section.

27

the specifics of cell enumeration are not of interest to the reader, the remainder of this

section can be skipped up to the last paragraph. For the interested reader, see below.

See [21] for a more detailed discussion of Inc-Enu and [20] for an overview of the general

‘reverse-search’ class of methods.

For central arrangements, all sign vectors can be found by solving Phase-I feasibility

linear programs (LPs)2 (see (3.3)). Phase-I LPs are used as it is not important what

point in a cell is found; only that a point in space which satisfies the proposed sign-vector

can be found. Naively, one could attempt 2m feasibility LPs to test all permutations of

sign-vectors {±1}m, given an arrangement with m-hyperplanes. This strategy becomes

highly intractable, however, as m grows larger than 10. The Inc-Enu algorithm, instead,

solves a sequence of LPs, recursively building up (and verifying) sign vectors that belong

to the arrangement from smaller partial sign sequences. If the LP is found infeasible, the

partial sign sequence (or full sign-vector) attempted is now known to not belong to any

given cell in the arrangement.

To initialize Inc-Enc, a ‘root’ point in space is arbitrarily initialized to be the cell

located in the positive halfspace of all hyperplanes (so long as it does not fall perfectly

on any hyperplane). If the (pseudo-randomly) declared root point is found to be in a

negative halfspace of a particular hyperplane (which is common), the hyperplane coeffi-

cients are simply negated to flip which side defines the positive halfspace. At the end of

the procedure, this negation can be undone by flipping the elements of the (solved for)

sign-vectors at the indices corresponding to hyperplanes that were initially negated.

It should also be noted that for central arrangements, sign-vectors for all cells located

in the positive halfspace of any chosen hyperplane are exact opposites of all the sign-

vectors in the chosen hyperplane’s negative halfspace (see Fig. 3.1 left). This implies we

can simply choose an arbitrary hyperplane and look for all cells in its positive halfspace.

Therefore, it is only required to solve for half of the cells in a central arrangement, and

furthermore it is only required to enumerate over m−1 hyperplanes. We refer to the

hyperplane whose positive halfspace is enumerated over as the ‘symmetric generator’.

2See [26] for details on the simplex and/or the primal-dual interior point algorithms, which can be
used to solve LPs.

28

The symmetric generator can be taken to be the first hyperplane in the arrangement, for

simplicity. Once all cells located in the positive halfspace of the symmetric generator are

found, the sign-vectors can be negated and concatenated to the original set to determine

the negative halfspace.

Figure 3.2 depicts an example of the Inc-Enu scheme for hyperplanes aℓ ∈ Rn, ℓ ∈

[1, ...,m], where m = 4 and dimension n = 3. Since the symmetric generator is fixed to be

positive, the enumeration is carried out only on the other 3 hyperplanes. Therefore, a sign

sequence for example of [−1,−1,−1] in Fig. 3.2 is truly [1,−1,−1,−1] after accounting

for the symmetric generator. Also note that for the discussion below, the ‘term’ subscript

i and ‘estimation step’ superscript k|k is discarded for brevity.

Inc-Enu is a recursive, depth-first-search algorithm. At each recursion level, it solves

the Phase-I LP of the form

minimize 0 (3.3)

s.t aTℓ ν ≥ 1 if sℓ = 1

aTℓ ν ≤ −1 if sℓ = −1

ℓ ∈ J, J ⊂ {1, ...,m}

where sℓ ∈ {±1} is the sign-value being tested for hyperplane aℓ and s ∈ {±1}|J | with

|J | ≤ m the cardinality of index set J. Note |J | also equals the recursion level. At each

successive recursion level, an additional inequality constraint is added, growing the length

of the tested sign sequence s by 1. The right-hand side of the inequality constraints is

simply chosen as the partial sign sequence that is being tested for feasibility. This can

be justified since cells of central hyperplane arrangements are unbounded and convex

regions [26], which can also be seen in Fig. 3.1 (left). Therefore, if the (partial or full)

sign sequence is valid, a point in space ν can always be found that meets the constraint.

Initially, the algorithm already knows the sign-vector of the root-point (the all positive

sign vector of dimension m−1), and recursively descends along the left branch (without

any LP solve required) to the left-most leaf-node to store it. The algorithm then pops-

29

Figure 3.2: Incremental enumeration (Inc-Enu) tree for cell enumeration of a four
hyperplane, three dimentional arrangement. Boxes in gray denote an LP was solved to
validate the current sign sequence. Boxes in green denote no LP was needed to validate
the sign sequence. Boxes in red denote the LP was infeasible and the proposed sign
sequence is invalid. RL denotes the recursion level at which the sequence is formed.

up one level of recursion. At recursion level RL-2, there is nothing left to do, and the

algorithm recurs back down again and proposes the sequence [1, 1, −1]. Here, it solves

a Phase-I LP to check whether the new sequence is valid. If the solve is successful,

the solution vector ν now defines a new point in space. One can convince themselves

that regardless of the current recursion level, after an LP is solved successfully, the LP

solution ν can immediately be used to construct a new and complete sign vector simply

by checking sgn(⟨a|J |+ℓ, ν⟩), ∀ l ∈ {|J+1|, ..,m} (i.e, for all remaining indices not present

in J yet). In doing so, it recurs back down to recursion level RL-3 without the need of

further LP solves. This is shown visually by the connected sequence of green left child

boxes in Fig. 3.2. The process continues until the depth-first search recursively covers

the full enumeration tree. In cell enumeration, it is common to refer to the LP solver as

an oracle who answers queries.

If a given sign sequence is found infeasible (shown in red) by the oracle, Inc-Enu will

pop up a recursion level instead of recuring down to depth m−1 to form the new sign-

vector. We note that any sign sequences that are found infeasible by the oracle do not

have left and right children and therefore are leaves of the tree. We see that ‘left’ child

30

nodes (shown in green) of the parent are found without querying the oracle, whereas

‘right’ children (shown in red/black) denote where proposed sign sequences are assigned

to the oracle for a query. We see that the enumeration in Figure 3.2 yields 7 feasible

sign-vectors in the positive halfspace of the symmetric generator, implying there are 14

total cells in the (non-degenerate) arrangement. Note that the maximum number of cells

is 14 for a four hyperplane, three-dimensional central arrangement as is given by (3.1).

See chapter 6 for a pseduo-algorithm of Inc-Enu.

The Inc-Enu procedure, described above, can be applied to find the set of sign vec-

tors for every central hyperplane arrangement A
k|k
i , for each term i ∈ [1, ..., N

k|k
t] (see

footnote 1). The set of all sign-vectors of term i, i.e, λ
k|k
i (ν ∈ Cj) ∈ {±1}m

k|k
i , j ∈

[1, ..., cc(A
k|k
i)], stacked row-wise, can be written as B

k|k
i ∈ {±1}cc(A

k|k
i)×mk|k

i , where Cj

denotes a particular cell and cc(A
k|k
i) denotes the total number (count) of cells for the

central hyperplane arrangement of term i, found by Inc-Enu. The matrix B
k|k
i is referred

to as the enumeration matrix in the upcoming sections of this chapter.

3.3 A Basis Expansion for Sign-Vectors

Now that the set of sign-vectors λ̄
k|k
ij = λ

k|k
i (ν ∈ Cj), j ∈ [1, ..., cc(A

k|k
i)] have been found,

equation (2.5) can be evaluated using λ̄
k|k
ij for each cell Cj. Let ḡ

k|k
ij = g

k|k
i (ν ∈ Cj) =

g
k|k
i (ygi(ν ∈ Cj)) denote the value of (2.5) evaluated in cell Cj. These values can be

stored in a vector ḡ
k|k
i ∈ Ccc(A

k|k
i). The goal is now to parameterize all values in ḡ

k|k
i with

a vector α
k|k
i . The problem, is that

ḡ
k|k
i = B

k|k
i α

k|k
i (3.4)

would be an over-determined system of equations, as B
k|k
i ∈ {±1}cc(A

k|k
i)×mk|k

i and m
k|k
i <

cc(A
k|k
i). Therefore, a least squares solution vector α

k|k
i would produce non-zero residuals

ḡi −Bk|k
i α

k|k
i , which is not acceptable.

Instead, the enumeration matrix must be transformed in a way such that the resultant

matrix has a rank of cc(A
k|k
i). To do so, each sign-vector λ̄

k|k
ij stored in the enumeration

31

matrix B
k|k
i can be transformed by a basis function S(·). The basis function chosen is a

combinatorial expansion of the elements of the sign-vector. Specifically, the products of

up to n and out of the m
k|k
i elements of each sign-vector. To illustrate the basis-vector

expansion explicitly, consider a three-dimensional n = 3 three hyperplane m = 3 arrange-

ment. A sign-vector could be expressed generally as λ̄ = [σ1, σ2, σ3]
T , σk ∈ {−1, 1} with

basis-vector S(λ̄) = [1, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3, σ1σ2σ3]
T . The transformation takes

combinations of the products up to three elements, as the dimension n = 3. The result

is that S(λ̄) ∈ {±}sg(m,n), where sg(m,n) is given by (3.2).

The combinatorial expansion of all sign-vectors in B
k|k
i is then grouped into a matrix

S̄
k|k
i ∈ {±1}cc(A

k|k
i)×sg(mk|k

i ,n) (i.e, the basis matrix), where each basis-vector S(B
k|k
i,j), ∀j =

[1, ..., cc(A
k|k
i)] is stored row-wise in S̄

k|k
i . Note that S̄

k|k
i will be a square or wide matrix,

as cc(A
k|k
i) ≤ sc(m

k|k
i , n) ≤ sg(m

k|k
i , n) always holds true, and will also have a rank

of cc(A
k|k
i) for any valid enumeration matrix. For further details on constructing these

basis-vectors, see [14, 18, 23]. The system of equations

ḡ
k|k
i = S̄

k|k
i α

k|k
i (3.5)

α
k|k
i =

(
S̄
k|k
i

)†
ḡ
k|k
i (3.6)

seen in (3.5) can then be solved and α
k|k
i ∈ Csg(m

k|k
i ,n) of (3.6) is its solution. Since

cc(A
k|k
i) < sg(m

k|k
i , n) and S̄

k|k
i is a full row-rank matrix, a particular solution of the

under-determined linear problem in (3.5) can be obtained using a multitude of methods.

Specifically, in [14] the least norm solution was adopted, where
(
S̄
k|k
i

)†
in (3.6) is the

pseudo inverse of S̄
k|k
i .

3.3.1 Parameterizing the G-Function

For any value of ν ∈ Rn, equation (2.5) is now equivalent to

g
k|k
i (ν) =

1

2π

gk−1|k−1r
k|k
i

(
y
k|k
gi1(ν) + h

k|k
i

)
jc
k|k
i + d

k|k
i + y

k|k
gi2(ν)

−
g
k−1|k−1
r
k|k
i

(
y
k|k
gi1(ν)− h

k|k
i

)
jc
k|k
i − d

k|k
i + y

k|k
gi2(ν)

 = S
(
λ
k|k
i (ν)

)T
α
k|k
i

(3.7)

32

where S
(
λ
k|k
i (ν)

)
simply expands the sign-vector of hyperplane arrangement A

k|k
i at

estimation step k, for a chosen value of ν. Note that y
k|k
gi2 =

(
q
k|k
i

)T
λ
k|k
i (ν). The question

now becomes how α
k|k
i can alternatively be used at the next estimation step k+1|k+1 to

evaluate the backward-recursive numerator coefficients g
k|k
r
k+1|k+1
i

(
y
k+1|k+1
gi1 (ν)± hk+1|k+1

i

)
.

Finding this ‘compressed’ form of (2.5) would allow all similar terms to be combine

together and all past terms from steps 1 to k of the characteristic function to be forgotten

(excluding α
k|k
i). In section 3.4, the form of the compressed characteristic function is now

formulated.

3.4 Equivalence of the Backward Recursive and Com-

pressed Characteristic Functions

The general form of the compressed characteristic function can be uncovered by examining

the linage of terms that the time-propagation and measurement updates steps create from

the initial characteristic function’s parameter set A1, p1, b1 (equation (2.3)). Explicitly,

the measurement update at the estimation step 1|1, the time propagation step at 2|1,

and the measurement update step at 2|2 will be considered and studied. These insights

produce (3.19), which is the sought-after and compressed form of (2.5). The rules for

time-propagating and measurement update for all estimation steps k > 2 are identical for

the rules of steps 2|1 and 2|2, respectively. The insights presented in sections 3.1 to 3.3.1

will be considered as the transformations to the characteristic function are performed.

Lastly, a numerical example is given in section 3.5 to explicitly show the equivalence of

the forms. This example additionally serves as a good debugging tool for implementing

the proposed estimator.

3.4.1 Measurement Update at Estimation Step 1|1

Child terms are created each time a sensor measurement is processed by the measurement

update step. At initialization (k = 1), there is only one term: the parameter set A1, p1, b1,

where A1 has n hyperplanes of dimension n. This ‘parent’ term will generate n new ‘child’

33

terms after the measurement update at step 1|1 and therefore the total number of terms

will increase to n+ 1. The additional term is simply the parent term itself. The general

rules for the measurement update, derived in [16], are summarized below as

A
k|k
tl = µ

k|k−1
il − µk|k−1it ∈ R1×n, ∀ l = [1, ...,m

k|k−1
i + 1], l ̸= t, A

k|k
t ∈ Rm

k|k−1
i ×n (3.8a)

µ
k|k−1
il =


A

k|k−1
il

⟨Hk,A
k|k−1
il ⟩

∈ R1×n, if l ≤ m
k|k−1
i

0 ∈ R1×n, if l = m
k|k−1
i + 1

, A
k|k−1
il = A

k|k−1
i [l, :] ∈ R1×n (3.8b)

p
k|k
tl =


p
k|k−1
il abs(⟨Hk, A

k|k−1
il ⟩), if l ≤ m

k|k−1
i and l ̸= t

γ, if l = m
k|k−1
i + 1 and l ̸= t

, pt ∈ Rm
k|k−1
i (3.8c)

b
k|k
t = ζi

(
µ
k|k−1
it

)T
+ b

k|k−1
i if t ≤ m

k|k−1
i else b

k|k−1
i , bt ∈ Rn (3.8d)

c
k|k
t = ζi, c

k|k
t ∈ R (3.8e)

d
k|k
t = abs(⟨Hk, A

k|k−1
it ⟩)pk|k−1it if t ≤ m

k|k−1
i else γ, d

k|k
t ∈ R (3.8f)

ζi = z2 −Hkb
k|k−1
i , ζi ∈ R (3.8g)

where the index variable t ∈ [1, ...,m
k|k−1
i + 1] specifies which child term of parent i is

in question and γ ∈ R++ is the Cauchy scaling parameter for the measurement noise of

(2.1). Note, m
k|k
t = m

k|k−1
i = n for the first measurement update step.

Several properties of the measurement update step should be discussed. For the first

measurement update at k = 1, the notation of the initial parameter set {A1, p1, b1} is

relaxed and equivalently referred to as {A1|0, p1|0, b1|0}. For steps k > 1, there will be

many parent terms i ∈ [1, ..., N
k|k−1
t] generating their own respectivem

k|k−1
i +1 child terms,

where the total number of terms after a measurement update is given by (2.13). After

the measurement update, all child terms (from all parents) are re-indexed continuously

as i ∈ [1, ..., N
k|k
t]. Equation (3.8a) indicates all child terms t of parent i have m

k|k
i =

m
k|k−1
i hyperplanes in their respective arrangements, although now these hyperplanes are

different from those of the parent.

Equation (3.8a) reveals why term-coalignment is necessary, and a quick comment

should be made. If µ
k|k−1
il = µ

k|k−1
it for l ̸= t in (3.8a), the new hyperplane would be

34

singular and (3.8b) would be infinite at k+1. This is why the measurement coalignment

step of section 2.1.1 is necessary, as it prevents this from occurring. If measurement

coalignment is run, p
k|k
i ̸= q

k|k
i , otherwise they are equal. We also see that ⟨Hk, A

k|k−1
il ⟩

must not equal zero in (3.8b). Picking a suitable A1 with respect to the dynamics Φk and

measurement model Hk resolves this concern. Also note that if Hk has more than one

row, or there are multiple measurements from an array of sensors, the superscript k|k

of all generated child parameters {Ak|ki , p
k|k
i , b

k|k
i }, i ∈ [1, ..., N

k|k
t] are replaced with k|k−1

and the measurement update routine above is simply re-run.

The index of the singularity ‘t = l’ will be shown in this section to be extremely

important (i.e when t = l during forming A
k|k
t of (3.8a) and p

k|k
t). The singularity t = l

is excluded, as seen in (3.8a). It causes an indexing issue when storing the child terms,

as the index jumps from l− 1 to l+1 to avoid t. Consequently, to deal with this jump in

the index (and for continuity purposes), the parameters A
k|k
tl ∈ R1×n, p

k|k
tl ∈ R for l > t

must be shifted up by an index of 1 when stored for (3.8a) and (3.8c). For example, if

t = 2 and l = 3, since l = t = 2 was excluded, the (·)t=2,l=3 components are stored in

computer memory at the l = 2 (not l=3) vector index. Therefore, it should be stressed

that when any equation uses l ̸= t, elements of l > t are truly stored then at l − 1.

The set of ‘child’ terms {A1|1
t , b

1|1
t , c

1|1
t , d

1|1
t , p

1|1
t }, t ∈ [1, ..., n + 1] that the (parent)

initial conditions generate is now constructed. Using these parameters, (2.8) and (2.9)

can be called to evaluate the characteristic function for the conditional mean x̂1 and

covariance P1. Measurement coalignment does not affect step k = 1 and is ignored for

now, as all directions produced are independent if rank(A1) = n, which is a required

condition. The coalignment step will have important ramifications at step 2|2, however,

for the compressed form of the characteristic function.

Now we can apply the insights gained in sections 3.1 to 3.3.1 to the terms at 1|1.

For each child parameter A
1|1
t , an enumeration matrix B

1|1
t is constructed using the Inc-

Enu algorithm, which produces cc(A
1|1
t) ≤ sc(m

1|1
t , n) sign-vectors. Next, the sign-vectors

λ̄
1|1
t,j , j ∈ [1, ..., cc(A

1|1
t)] (that are stored in the rows of B

1|1
t) are used to build S̄

1|1
t through

35

the basis expansion. Similarly, ḡ
1|1
t is constructed by evaluating (2.5) using the λ̄

1|1
t,j as

ḡ
1|1
t,j (λ̄

1|1
i,j) =

1

2π

 1

jc
1|1
t + d

1|1
t +

(
q
1|1
t

)T
λ̄
1|1
t,j

− 1

jc
1|1
t − d

1|1
t +

(
q
1|1
t

)T
λ̄
1|1
t,j

 , (3.9)

where the sign-vector λ̄
1|1
t,j explicitly replaces the spectral variable ν as the function argu-

ment of (3.9). This is an obvious change, as the sign-vector that ν constructs has already

been formed. Note that since we are at step 1|1, the numerators g
0|0
r
1|1
t

(
y
1|1
gt1(ν)± h

1|1
t

)
of (2.5) are by definition equal to 1, as seen above. The parameter α

1|1
t can now be

constructed as
(
S̄
1|1
t

)†
ḡ
1|1
t (i.e, equation (3.6)) for each child t, and will be used at 2|2

to evaluate the left and right-hand side numerators g
1|1
r
2|2
t

(
y
2|2
gi1(ν)± h

2|2
t

)
of (2.5). Lastly,

(although trivial for k = 1) the set of child terms t (of all parents i) are re-indexed contin-

uously as i ∈ [1, ..., N
k|k
t] after completing the measurement update step. In general, this

keeps the indexing consistent for generated child terms at k|k during time propagation

at k + 1|k.

3.4.2 Time Propagation at Estimation Step 2|1

The time propagation step to move from any estimation step k to k + 1 is straightfor-

ward. Only the parameters {Ak|ki , p
k|k
i , b

k|k
i } generated by the measurement update step

of each term i are updated. Below, we simply plug in k=1. This subroutine updates the

parameter set {Ak|ki , b
k|k
i , p

k|k
i } as

A
k+1|k
i =

Ak|ki ΦT
k

ΓTk

 , A
k+1|k
i ∈ R(m

k|k
i +r)×n = Rm

k+1|k
i ×n, m

k+1|k
i = m

k|k
i + r (3.10a)

b
k+1|k
i = Φkb

k|k
i , b

k+1|k
i ∈ Rn (3.10b)

p
k+1|k
i =

pk|ki
β

 , p
k+1|k
i ∈ Rm

k+1|k
i β ∈ Rr (3.10c)

where Φk ∈ Rn×n is the discrete time transition matrix of the underlying dynamic system

and Γk ∈ Rn×r is the process noise matrix for the r independent Cauchy modeled process

36

noises with vector pdf scaling parameter β. Note that Γk may coalign with the newly

transformed hyperplanes A
k|k
i ΦT

k . Therefore, after running the time-propagation step as

outlined in section 2.2, the value ofm
k+1|k
i can only be given generally bym

k|k
i ≤ m

k+1|k
i ≤

m
k|k
i + r, which is the resultant hyperplane arrangement size of A

k+1|k
i and the number

of elements in p
k+1|k
i .

Technically, q
k+1|k
i is just p

k+1|k
i of (3.10c), but has zeros in its portion of β. If elements

of A
k+1|k
i are seen to coalign, p

k+1|k
i will reduce in size accordingly by the rules of (2.11)

(by absorbing elements of β in its p
k|k
i component). Therefore, if coalignment is required,

the parameter q
k+1|k
i will simply be the resultant p

k+1|k
i after coalignment, but with zeros

located at the indices of the remaining β elements.

3.4.3 Measurement Update at Estimation Step 2|2

Once the new sensor measurement z2 is acquired, the time step index is incremented

(k ← k + 1) and now reads k=2|2. Moreover, the parameter set from time-propagation

{A2|1
i ∈ Rm

2|1
i ×n, b

2|1
i ∈ Rn, p

2|1
i ∈ Rm

2|1
i } will now create its child terms. The indexing

variable ‘t’ is again used to specify the child terms, i.e, the t-th child term at 2|2 of the

parent i from 2|1. Therefore, parent i creates children t ∈ [1, ...,m
2|1
i + 1]. Using (3.8),

we can again write the set of child terms {A2|2
t , b

2|2
t , c

2|2
t , d

2|2
t , p

2|2
t } that parent i generates.

Unlike step 1|1, the left and right-hand side numerator functions of (2.5) are no longer

equal to 1. For k > 1, measurement update will also update past parent terms, as well as

generate the new child terms at 2|2 via (3.8). In [16], equation (3.35) (re-presented below)

shows how the argument to the left and right-hand side numerators of (2.5), i.e y
2|2
gt1(ν),

is a function of both the updated parent parameters of k|k−1 and the new parameters at

37

k|k, given as

y
2|2
gt1(ν) =

m
1|1
i∑
l=1
l ̸=t

ρ̂
2|1
il sgn(⟨A

2|2
tl , ν⟩), l ∈ [1, ...,m

1|1
i] (3.11a)

ρ̂
2|1
il = q

2|1
il λ̂

2|1
il , ρ̂

2|1
i ∈ Rm

1|1
i (3.11b)

λ̂
2|1
il (ν = HT

k) = sgn(⟨A2|1
il , H

T
k ⟩), l ∈ [1, ...,m

1|1
i], λ̂

2|1
i ∈ Rm

1|1
i , (3.11c)

q
2|1
i =

q1|1i
0r

 ∈ Rm
2|1
i = Rm

1|1
i +r, (3.11d)

where ρ̂
2|1
il is the updated parent parameter q

2|1
il . Careful attention to (3.11) is needed.

First, the hat symbol on ρ̂
2|1
i , λ̂

2|1
i of (3.11b) and (3.11c) indicates the additional r elements

added due to time-propagation at 2|1 are unnecessary and are truncated. We do this to

explicitly show that while y
2|2
gt1 of (3.11a) does contain parameters from 2|1 and 2|2, it

is only a summation over products between the original m
1|1
i parent elements q

1|1
i and

functions of A
2|1
il , A

2|2
tl , l ∈ [1, ...,m

1|1
i], which are the m

1|1
i transformed parent elements of

1|1 at 2|1 and 2|2 respectively. Therefore, (3.11) has been stated slightly differently than

as it appeared in [16], namely, with the modified upper summation bound of (3.11a).

Second, λ̂
2|1
i of (3.11) is to be evaluated explicitly for ν = HT

k , as was shown in [16]. Note

that (3.11d) is presented without consideration of coalignment in time propagation. If

any hyperplanes of the parent are coaligned within time propagation, the 0r of (3.11d)

would need to be modified appropriately to reflect this.

We will see next that (3.11) is the key to forming the compressed characteristic func-

tion. Since y
2|2
gt1 is passed to the backward recursive numerators as g

1|1
r
2|2
i

(y
2|2
gt1 ± h

2|2
i), we

38

see the form is

g
1|1
r
2|2
t

(
y
2|2
gt1(v) + h

2|2
t

)
=

1

2π

[
1

jc
1|1
i + d

1|1
i + h

2|2
t + y

2|2
gt1(ν)

− 1

jc
1|1
i − d

1|1
i + h

2|2
t + y

2|2
gt1(ν)

]

=
1

2π


1

jc
1|1
i + d

1|1
i + h

2|2
t +

m
1|1
i∑
l=1
l ̸=t

ρilsgn

((
A

2|2
tl

)T
ν

)

− 1

jc
1|1
i − d

1|1
i + h

2|2
t +

m
1|1
i∑
l=1
l ̸=t

ρilsgn

((
A

2|2
tl

)T
ν

)
 , (3.12)

and

g
1|1
r
2|2
t

(
y
2|2
gt1(v)− h

2|2
t

)
=

1

2π

[
1

jc
1|1
i + d

1|1
i − h

2|2
t + y

2|2
gt1

− 1

jc
1|1
i − d

1|1
i − h

2|2
t + y

2|2
gt1

]

=
1

2π


1

jc
1|1
i + d

1|1
i − h

2|2
t +

m
1|1
i∑
l=1
l ̸=t

ρilsgn

((
A

2|2
tl

)T
ν

)

− 1

jc
1|1
i − d

1|1
i − h

2|2
t +

m
1|1
i∑
l=1
l ̸=t

ρilsgn

((
A

2|2
tl

)T
ν

)
 , (3.13)

where

h
2|2
t =


ρ
2|1
it , if t ≤ m

1|1
i

0 if t > m
1|1
i .

(3.14)

Equations (3.12) and (3.13) show explicitly that the g-function of step 1|1 is evaluated

with the updated parameters at 2|2. Let us consider the case when our child term

t ≤ m
1|1
i . In (3.12) and (3.13), the effect of h

2|2
t is to simply define the term of 2|2 at 1|1

39

for the singularity index l = t ≤ m
1|1
i , for the summation (to its right). Although the

term A
2|2
t does not explicitly store the ‘singular’ hyperplane of index l = t, the ± value in

front of h
2|2
t in (3.12) and (3.13) indicates how the sign value of the singular hyperplane,

i.e, sgn(⟨0n, ν⟩) = sgn(0) is defined for the left and right-hand side numerators. This

definition of sgn(0) was presented as part of the integration formula in [16], which says

that sgn(0) is defined as 1 for (3.12), and that sgn(0) is defined as −1 for (3.13). This is

where the ± sign in front of h
2|2
t comes from. Note that for children t > m

1|1
i , h

2|2
t has no

effect on the summation (to its right) and is defined as 0. To make the observations that

follow simpler, let us restate (3.12) and (3.13) using (3.11) and (3.14) for all children as

g
1|1
r
2|2
t

(
y
2|2
gt1(v) + h

2|2
t

)
=

1

2π

 1

jc
1|1
i + d

1|1
i +

(
q
1|1
i

)T (
λ̂
2|1
i ◦ λ̂

2|2
t+ (ν)

) − 1

jc
1|1
i − d

1|1
i +

(
q
1|1
i

)T (
λ̂
2|1
i ◦ λ̂

2|2
t+ (ν)

)


(3.15a)

and

g
1|1
r
2|2
t

(
y
2|2
gt1(v)− h

2|2
t

)
=

1

2π

 1

jc
1|1
i + d

1|1
i +

(
q
1|1
i

)T (
λ̂
2|1
i ◦ λ̂

2|2
t− (ν)

) − 1

jc
1|1
i − d

1|1
i +

(
q
1|1
i

)T (
λ̂
2|1
i ◦ λ̂

2|2
t− (ν)

)


(3.15b)

where,

λ̂
2|2
t+l(ν) =



sgn

((
A

2|2
tl

)T
ν

)
if l < t

sgn

((
A

2|2
t(l−1)

)T
ν

)
if l > t

sgn(0) = 1, if l = t

, l ∈ [1, ...,m
1|1
i], λ̂

2|2
t+ (ν) ∈ {±1}m

1|1
i

(3.15c)

40

λ̂
2|2
t−l(ν) =



sgn

((
A

2|2
tl

)T
ν

)
if l < t

sgn

((
A

2|2
t(l−1)

)T
ν

)
if l > t

sgn(0) = −1, if l = t

, l ∈ [1, ...,m
1|1
i], λ̂

2|2
t− (ν) ∈ {±1}m

1|1
i

(3.15d)

and the t+ and t− subscripts on the vectors λ̂
2|2
t+ (ν), λ̂

2|2
t− (ν) indicate how sgn(0) should be

evaluated at the singularity index l = t ≤ m
1|1
i for the left and right handside numerators

(3.12) and (3.13). The symbol ◦ above is the Hadamard product, which is element-wise

vector multiplication. Note that for child t > m
1|1
i , we do not need to worry about the

singularity index t in (3.15c) and (3.15d), as terms at step 1|1 only have m
1|1
i elements.

Using (3.15a) and (3.15b), the form of the compressed characteristic function can now

be found. The restated equations of (3.15a) and (3.15b) are identical to that of (3.9), with

the exception that λ̂
2|1
i and λ̂

2|2
t± (ν) now replace λ̄i,j of (3.9). Let us first examine the effect

that λ̂
2|1
i has. If we temporarily imagine that λ̂

2|2
t (ν) took on the values of the sign-vectors

λ̄
1|1
i,j ∈ {±1}m

1|1
i , j = [1, ..., cc(A

1|1
i)] of (3.9), equations (3.15a) and (3.15b) indicate the

sign-vector λ̄i,j would be potentially flipped by values of λ̂
2|1
i . As the sign-vectors λ̄

1|1
i,j are

the enumeration matrix B
1|1
i , it can be reasoned that the grouping λ

1|1
i (ν) ◦ λ̂2|1i with the

Hadamard product would effectively update B
1|1
i as

B̂
1|1
i =



(
λ̄
1|1
i,1 ◦ λ̂

2|1
i

)T(
λ̄
1|1
i,1 ◦ λ̂

2|1
i

)T
. . .(

λ̄
1|1
i,cc(A

1|1
i)
◦ λ̂2|1i

)T


= B

1|1
i ◦ λ̂

2|1
i , (3.16)

where the Hadamard product is relaxed to elementwise matrix vector multiplication,

where the vector multiplies with each matrix row elementwise. Thus, the term λ̂
2|1
i in

41

(3.16) has really updated the parent α
1|1
i as

α
2|1
i =

(
S(B̂

1|1
i)
)†
ḡ
1|1
i =

(
S(B

1|1
i ◦ λ̂

2|1
i)
)†
ḡ
1|1
i

α
2|1
i =

(
S(B

1|1
i) ◦ S(λ̂2|1i)

)T ((
S(B

1|1
i) ◦ S(λ̂2|1i)

)(
S(B

1|1
i) ◦ S(λ̂2|1i)

)T)−1
ḡ
1|1
i

α
2|1
i = S(λ̂

2|1
i) ◦

(
S†(B

1|1
i)ḡ

1|1
i

)
= S(λ̂

2|1
i) ◦ α1|1

i (3.17)

and we refer to the updated parent alpha vector as α
2|1
i since the parameters of 2|1

cause this modification to α
1|1
i . Let us now examine the effect that λ̂

2|2
t± (ν) has. Due

to the t = l exclusion in measurement update (3.8), the elements λ̂
2|2
t+l(ν) and λ̂

2|2
t−l(ν) of

(3.15c) and (3.15d) for children t ≤ m
1|1
i at l = t contain sgn(0) and is defined to be ±1,

respectively. As these two vectors are different from one another, the basis function S(·)

can therefore be applied to each λ̂
2|2
t+l(ν) and λ̂

2|2
t−l(ν), which when multiplied by α

2|1
i yields

S
(
λ̂
2|2
t+ (ν)

)T
α
2|1
i = g

1|1
r
2|2
t

(
y
2|2
gt1(v) + h

2|2
t

)
, (3.18a)

S
(
λ̂
2|2
t− (ν)

)T
α
2|1
i = g

1|1
r
2|2
t

(
y
2|2
gt1(v)− h

2|2
t

)
, (3.18b)

where (3.18) can now be used to remove the backward recursive component of (2.5) as

g
2|2
t (ν)=

1

2π

 S
(
λ̂
2|2
t+ (ν)

)T
α
2|1
i

jc
2|2
t + d

2|2
t +

(
q
2|2
t

)T
λ
2|2
t (ν)

−
S
(
λ̂
2|2
t− (ν)

)T
α
2|1
i

jc
2|2
t − d

2|2
t +

(
q
2|2
t

)T
λ
2|2
t (ν)


=

1

2π

 S
(
λ̂
2|2
t+ (ν)

)T
α
2|1
i

jc
2|2
t + d

2|2
t + y

2|2
gt2(ν)

−
S
(
λ̂
2|2
t− (ν)

)T
α
2|1
i

jc
2|2
t − d

2|2
t + y

2|2
gt2(ν)

 . (3.19)

Equation (3.19) is the sought-after form of the compressed characteristic function.

Note that λ
2|2
t (ν) in the denominator of (3.19) is simply the sign-vector function of the

hyperplane arrangement A
2|2
t , whereas the sign-vectors λ̂

2|2
t+ (ν) and λ̂

2|2
t− (ν) require the

specific manipulations of (3.15c) and (3.15d) to be formed.

42

Remark 1. Some comments on the measurement coalignment step and equation (3.19)

should now be mentioned. If two hyperplanes A
2|2
tj , A

2|2
tl where j < l ≤ m

1|1
t coalign, the

size of the vector λ̂
2|2
t± (ν) may be smaller then that of m

1|1
i . This is problematic because α

1|1
i

is of size sg(m
1|1
i , n) and therefore S

(
λ̂
2|2
t± (ν)

)
will not match. It becomes crucial then that

before evaluating S
(
λ̂
2|2
t± (ν)

)
, the sign-values corresponding to the coaligned hyperplanes

must be reinserted into the vector λ̂
2|2
t± (ν) at the indices where they were removed from

A
k|k
t . This can be done by re-growing λ

2|2
t± (ν) by re-inserting the sign-value at indices j into

l. It should also be noted that if the two hyperplane normals that coalign (i.e, A
2|2
tj , A

2|2
tl)

point in opposite directions, the reinserted sign-value will need to be flipped. Additionally,

coalignment can happen at more than two indices and for different pairings of indices

simultaneously. Viewing the pseudo algorithms given in chapter 6 and the source code

itself can help bring more clarity to these points.

The conditional mean x̂2 and covariance P2 can now be generated at 2|2 using (2.8)

and (2.9) by substituting in the compressed form of the g-function (3.19). Forming α
2|2
t at

step 2|2 is very similar to step 1|1. Inc-Enu is first run to generate the enumeration matrix

B
2|2
t ∈ {±1}cc(A

2|2
t)×m2|2

t using A
2|2
t . Then, the basis matrix S̄

2|2
t ∈ {±1}cc(A

2|2
t)×sg(m2|2

t ,n) is

formed by using the basis function expansion on the rows of B
2|2
t . Next, ḡt

2|2 ∈ Ccc(A
2|2
t) is

formed by evaluating (3.19) using the rows of B
2|2
t . Lastly, α

2|2
t =

(
S̄
2|2
t

)†
ḡ
2|2
t ∈ Csg(m

2|2
t ,n)

is constructed by solving the resulting system of equations.

All of the parameter generation for the compressed characteristic function for step 2|2

is now outlined. The procedure to compress the characteristic function to any step k|k

follows immediately by repeating the step 2|2 procedure in its entirety. There exists one

small indexing caveat. The presented form of (3.19) uses the child indexing variable t,

making it clear that child t was generated from parent i. However, since there are many

children t ∈ [1, ...,m
k|k
i + 1] from many different parents i, the index t is not unique. To

write (3.19) generally for all children generated at any measurement update step k|k, we

43

reindex all children at step k|k as i ∈ [1, ..., N
k|k
t] and write

g
k|k
i (ν)=

1

2π

 S+
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jc
k|k
i + d

k|k
i +

(
q
k|k
i

)T
λ
k|k
i (ν)

−
S−
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jc
k|k
i − d

k|k
i +

(
q
k|k
i

)T
λ
k|k
i (ν)


=

1

2π

 S+
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jc
k|k
i + d

k|k
i + y

k|k
gi (ν)

−
S−
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jc
k|k
i − d

k|k
i + y

k|k
gi (ν)

 . (3.20)

where for the general step k,

g
k|k
i (ν) ∈ C, g

k|k
i (ν) ∈ ḡk|ki , ḡ

k|k
i ∈ Ccc(A

k|k
i),

y
k|k
gi =

(
q
k|k
i

)T
λ
k|k
i (ν) ∈ R, q

k|k
i ∈ Rm

k|k
i , c

k|k
i , d

k|k
i ∈ R. (3.21)

λ
k|k
il (ν) = sgn

(
⟨Ak|kil , ν⟩

)
, l ∈ [1, ...,m

k|k
i], λ

k|k
i (ν) ∈ {±1}m

k|k
i , (3.22a)

λ̂
k|k
i (ν) = λ

k|k
i (ν)[1 : m

k|k
i − r], λ̂

k|k
i (ν) ∈ {±1}m

k|k
i −r (3.22b)

λ̂
k|k−1
il (ν = HT

k) = λ
k|k
il (HT

k), l ∈ [1, ...,m
k|k
i − r], λ̂

k|k−1
il ∈ {±1}m

k|k
i −r (3.22c)

and

α
k|k−1
i = S

(
λ̂
k|k−1
i (ν = HT

k)
)
◦ αk−1|k−1i = diag

(
S
(
λ̂
k|k−1
i (HT

k)
))

α
k−1|k−1
i . (3.23)

Some slight syntactical sugar has been added to (3.19) on the basis function S(·), but

nevertheless, (3.19) and (3.20) are identical in meaning. Note that in this representation,

the argument to S(·) is now simply the (clipped) sign-vector λ̂
k|k
i (ν) of (3.22b), which is

the first m
k−1|k−1
i = m

k|k
i − r components of the general sign-vector function λ

k|k
i (ν) (keep

in mind remark 1 above). The variable ψi = t stores the index of the singularity of the

generated child i ∈ [1, ..., N
k|k
t], where i is used for continuous indexing of all children

now. The notation S±
ψi
(·) is a useful syntax that denotes the procedure to first form λ̂

k|k
t±

of (3.15c) and (3.15d) from the general sign-vector λ̂
k|k
i (ν) function and to then expand

44

it by the basis function S(·). The subscript (·)ψi
informs the basis function that either

a ±1 should be first inserted at the ψi-th index in the sign-vector λ̂(ν). The superscript

(·)± informs the basis function whether a ±1, respectively, should then be inserted at the

index ψi. Note that since the backward recursive numerator has been removed, y
k|k
gi1(ν)

is no longer needed, and y
k|k
gi2(ν) is written simply as y

k|k
gi (ν) in (3.20). α

k|k−1
i is still the

updated parent parameter vector of child i.

This section showed explicitly how to form the compress characteristic function, and

how its formulation was discovered. It should be mentioned that as it stands, (3.20) has

not been able to be formed directly through re-deriving the integration formula of [16].

The sign-vector basis expansion of S(·) has made re-deriving this already challenging

integral even more so. However, by examining the components of (2.5), as was done in

this section, [14] first showed the formulation of (3.20) is equivalent. Moreover, there is

an ample amount of numerical evidence to suggest this equivalence is certainly true. The

example presented in the next section shows the numerical equivalence of (2.5) and (3.20)

using a three-state example that is presented in section 8.1. The upcoming example can

be skipped if the reader does not need more convincing. The example provided, however,

does serve as a good benchmark for one’s understanding of the forms presented thus far.

3.5 Numerical Example of Equivalence

Here we walk through a numerical example of the old and new characteristic functions,

and show they are indeed equivalent. This problem is taken from section 8.1, used in both

[14, 16]. The dynamic system with scalar process and measurement noises in question is:

Φ =

 1.40 −0.60 −1.00
−0.20 1.00 0.50
0.60 −0.60 −0.20

 , Γ =

 0.10
0.30
−0.20

 , H =

1.000.50
0.20

T , β = 0.1 γ = 0.2

(3.24)

where {Φ,Γ, H, β, γ} is the transition matrix, the control matrix, the measurement ma-

trix, process noise scale parameter and measurement noise scale parameter, respectively.

The number of states is n = 3, and process noises is r = 1. The characteristic function

45

processes an initial measurement at step k = 1 using the initial conditions provided of

A1|0 =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 , p1|0 =

0.100.08
0.05

 , b1|0 =

0.00.0
0.0

 , z1 = 0.0567 (3.25)

We evaluate one of the 4 sets of (parent) terms at k = 1|1 and one of the 5 sets

of (child) terms this parent term will generate at 2|2. We use the notation set-up in

section 3.4 and choose the ‘parent’ as i = 1 at 1|1 and its ‘child’ t = 2 at 2|2 for this

example. Meaning, we evaluate the first of the four terms i = 1 at step 1|1, and then

evaluate the second of the five children that i = 1 will generate, i.e t = 2 at step 2|2.

Construction of the parameterization α
1|1
i=1 for term i = 1 at step 1|1

Using the the measurement update (3.8) with the first measurement z1 = 0.056659, the

initial conditions generate n + 1 = 4 sets of terms {A1|1
i ∈ Rm

1|1
i ×n, p

1|1
i ∈ Rm

1|1
i , q

1|1
i ∈

Rm
1|1
i , b

1|1
i ∈ Rn, c

1|1
i ∈ R, d1|1i ∈ R} where i = [1, ..., 4] indexes these sets and m

1||1
i = n =

3. For i = 1, our term set for step 1|1 is

A
1|1
i=1 =


A

1|0
2

⟨HA1|0
2 ⟩
− A

1|0
1

⟨HA1|0
1 ⟩

A
1|0
3

⟨HA1|0
3 ⟩
− A

1|0
1

⟨HA1|0
1 ⟩

− A
1|0
1

⟨HA1|0
1 ⟩

 =

−1.0 2.0 0.0
−1.0 0.0 5.0
−1.0 0.0 0.0

 , A
1|0
l = A1|0[l, :] ∈ R1×3 l ∈ [1, 2, 3]

(3.26a)

p
1|1
i=1 =

p1|02 abs(⟨H,A1|0
2 ⟩)

p
2|1
3 abs(⟨H,A1|0

3 ⟩)
γ

 =

0.040.01
0.20

 , p
1|0
l = p1|0[l] ∈ R, p

1|1
i=1 = q

1|1
i=1 (3.26b)

b
1|1
i=1 = (z1 −Hb2|1i)

(
A

1|0
1

⟨H,A1|0
1 ⟩

)T

+ b1|0 =

0.0566590.0
0.0

 (3.26c)

c
1|1
i=1 = (z1 −Hb1|0) = 0.056659 (3.26d)

d
1|1
i=1 = abs(⟨H,A1|0

1 ⟩)p
1|0
1 = 0.1 (3.26e)

46

Now we can generate α
1|1
i=1 using (3.6) by forming B

1|1
i=1, S̄

1|1
i=1, ḡ

1|1
i=1. The (evaluated) sign-

vectors λ̄1,j are found by the Inc-Enu algorithm and then grouped row-wise as

B
1|1
i=1 =



(λ̄
1|1
i=1,1)

T

(λ̄
1|1
i=1,2)

T

(λ̄
1|1
i=1,3)

T

...

(λ̄
1|1
i=1,7)

T

(λ̄
1|1
i=1,8)

T


=



1 −1 −1
−1 1 1
1 1 1
−1 −1 −1
1 −1 1
−1 1 −1
1 1 −1
−1 −1 1


(3.27)

B
1|1
i=1 ∈ {±1}sc(mi=1,n)×n = {±1}sc(3,3)×3 = {±1}8×3

where B
1|1
i=1 is the enumeration matrix. We see the hyperplane arrangement A

1|1
i=1 has

cc(A
1|1
i=1) = 8 cells Cj, j ∈ [1, ..., 8] where the sign-vectors λ

1|1
i=1(ν ∈ Cj) = λ̄

1|1
i=1,j locate all

cells of A
1|1
i=1.

Note the ordering of the rows does not matter. Now, ḡ
1|1
i=1 is evaluated using c

1|1
i=1, d

1|1
i=1, q

1|1
i=1

of (3.26b), (3.26d) and (3.26e) using each λ̄i=1,j (i.e, in every cell ν ∈ Cj) of (3.27) as

ḡi=1 =


gi=1(ν ∈ C1)
gi=1(ν ∈ C2)

...
gi=1(ν ∈ C7)
gi=1(ν ∈ C8)

 =



−0.809− j0.993
−0.809 + j0.993
−0.485 + j0.279
−0.485− j0.279
−0.560 + j0.367
−0.560− j0.367
−0.788− j1.440
−0.788 + j1.440


∈ Csc(m

1|1
i=1,n) = Csc(3,3) = C8.

The basis-matrix S(B
1|1
i=1) is constructed from the row-wise expansion of the enumeration

matrix B
1|1
i=1 and is given as

S(B
1|1
i=1) =



1 1 −1 −1 −1 −1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1
1 −1 −1 −1 1 1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1


S(B

1|1
i=1) ∈ {±1}sc(m,n)×sg(m,n) = {±1}sc(3,3)×sg(3,3) = {±1}8×8.

47

Now, we can use the relation (3.6) and find the parameterization of ḡ
1|1
i=1 for all ν ∈ R3)

as

α
1|1
i=1 = S†(B

1|1
i=1)ḡi=1 =



−0.660741 + 0.0j
0.0− 0.447094j
0.0− 0.134383j
0.0 + 0.770581j
0.023981 + 0.0j
0.137843 + 0.0j
0.013481 + 0.0j
0.0 + 0.089900j


∈ Csg(m

1|1
i=1,n) = Csg(3,3) = C8.

Now, α
1|1
i=1 will be used to construct the numerator coefficients of (2.5) at step 2|2 below.

Generating child term t = 2 at step 2|2 of parent term i = 1 at step 1|1

The time step now moves from 1|1 to 2|1 and the parameters {A1|1
i ∈ Rm

1|1
i ×n, p

1|1
i ∈

Rm
1|1
i , b

1|1
i ∈ Rn} are now updated by the time propagation routine. Using (3.10), the

paramater set for i = 1 at step 2|1 becomes

A
2|1
i=1 =

[
A

1|1
i=1Φ

T

ΓT

]
=


−2.60 2.20 −1.80
−6.40 2.70 −1.60
−1.40 0.20 −0.60
0.10 0.30 −0.20


A

2|1
i ∈ R(m

1|1
i +r)×n = Rm

2|1
i ×n, m

2|1
i = m

1|1
i + r = 3 + 1 = 4

b
2|1
i = Φb

1|1
i =

 0.079322
−0.011332
0.033995

 , b
2|1
i ∈ Rn

p
2|1
i =

[
p
1|1
i

β

]
=


0.04
0.01
0.20
0.10

 , p
2|1
i ∈ Rm

2|1
i β ∈ Rr.

Next, the time step moves from 2|1 to 2|2 and our term set of i = 1 that we have followed

will now generate m
2|1
i=1 + 1 = 5 child terms at 2|2. For our example, we will choose to

follow the second child term t = 2 (of the five) at 2|2 that (our now parent) i = 1 will
generate. The term set for child t = 2 (generated by measurement update (3.8)) given

48

the second measurement z2 = −0.14275 is

A
2|2
t=2 =



A
2|1
i=1,1

⟨H,A2|1
i=1,1⟩

− A
2|1
i=1,t=2

⟨H,A2|1
i=1,t=2⟩

A
2|1
i=1,3

⟨H,A2|1
i=1,3⟩

− A
2|1
i=1,t=2

⟨H,A2|1
i=1,t=2⟩

A
2|1
i=1,4

⟨H,A2|1
i=1,4⟩

− A
2|1
i=1,t=2

⟨H,A2|1
i=1,t=2⟩

− A
2|1
i=1,t=2

⟨H,A2|1
i=1,t=2⟩


=


0.206043 −0.680002 0.669790
−0.205891 0.361948 0.124584
−0.715616 1.931365 −1.250333
−1.191806 0.502793 −0.297952

 , (3.29a)

A
2|1
i=1,j = A

2|1
i=1[j, :] ∈ R1×n, j ∈ [1, ...,m

2|2
t], m

2|2
t=2 = m

2|1
i=1 = 4 (3.29b)

p
2|2
t=2 =


p
2|1
i=1,1abs(⟨H,A

2|1
i=1,1⟩)

p
2|1
i=1,3abs(⟨H,A

2|1
i=1,3⟩)

p
2|1
i=1,4abs(⟨H,A

2|1
i=1,4⟩)

γ

 =


0.0744
0.284
0.021
0.20

 , p
2|1
i=1,j = p

2|1
i=1[j] ∈ R j ∈ [1, ..., 4]

(3.29c)

q
2|2
t=2 = p

2|2
t=2 (3.29d)

b
2|2
t=2 =

(
z2 −Hb2|1i=1

)(A
2|1
i=1,t=2

⟨H,A2|1
i=1,t=2⟩

)T

+ b
2|1
i=1 =

−0.1867000.100896
−0.032510

 (3.29e)

c
2|2
t=2 = (z2 −Hb2|1i=1) = −0.223209 (3.29f)

d
2|2
t=2 = abs(⟨H,A2|1

i=1,t=2⟩)p
2|1
i=1,t=2 = 0.053700. (3.29g)

Note how the child hyperplane arrangement A
2|2
t=2 of (3.29a) avoids creating a singular

hyperplane at A
2|2
t=2,l=2 by shifting all l > t = 2 up as mentioned in section 3.4. Equa-

tion (3.29) gives the necessary parameters to evaluate the non-recursive G-function (3.20).
However, the recursive G-function (2.5) is also a function of updated parent terms, i.e,

y
2|2
gt1, which is affected by the measurement update step by evaluating (3.11) (and choosing

49

any arbitrary value for ν) as

ν =
[
1.0, 1.0, 1.0

]T ∈ Rn (3.30a)

y
2|2
g(t=2)1 =

m
1|1
i=1∑
l=1

l ̸=(t=2)

ρ̂
2|1
i=1,lsgn(⟨A

2|2
t=2,l, ν⟩) =

m
1|1
i=1∑
l=1

l ̸=(t=2)

ρ̂
2|1
i=1,lλ̂

2|2
t=2,l(ν) =

[
−0.04
−0.20

]T [
1
1

]
= −0.24,

(3.30b)

λ̂
2|2
t±=2(ν) =

[
sgn(⟨A2|2

t=2,1, ν⟩) sgn(0) sgn(⟨A2|2
t=2,2, ν⟩)

]T
=
[
1 sgn(0) 1

]T
(3.30c)

ρ̂
2|1
i=1 =

 q
2|1
i=1,1λ̂

2|1
i=1,1

q
2|1
i=1,2λ̂

2|1
i=1,t=2

q
2|1
i=1,3λ̂

2|1
i=1,3

 =

−0.04−0.01
−0.20

 (3.30d)

λ̂
2|1
i=1 =

 sgn(⟨H,A2|1
i=1,1⟩)

sgn(⟨H,A2|1
i=1,t=2⟩)

sgn(⟨H,A2|1
i=1,3⟩)

 =

−1−1
−1

 (3.30e)

q
2|1
i=1 =

[
q
1|1
i=1

0r

]
=
[
0.04 0.01 0.2 0

]T
(3.30f)

h
2|2
t=2 = ρ̂i=1,t=2 = −0.01 (3.30g)

where we have picked an arbitrary ν ∈ R3 and most importantly: since the l ̸= t singu-

larity of (3.30c) within A
2|2
t=2 has already been removed by (3.29a) it must be dealt with

carefully; here, by remembering that a singular hyperplane would have been created at

index l = 2 in A
2|2
t=2,l=t=2 if not first removed by (3.29a) and inserting a sgn(0) in (3.30c)

at this position. Lastly, before we show the equivalence of the G’s, let us finish here by

remembering that

λ
2|2
t=2,l(ν) = sgn(⟨A2|2

t=2,l, ν⟩), l ∈ [1, ...,m
2|2
t=2], λ

2|2
t=2(ν) ∈ Rm

2|2
t=2 (3.31)

yg(t=2)1 =
(
q
2|2
t=2

)T
λ
2|2
t=2(ν), yg(t=2)1 ∈ R (3.32)

and for our example, using our declared ν = [1.0, 1.0, 1.0]T vector, we have

λ
2|2
t=2,l(ν) =

[
1 1 −1 −1

]T
yg(t=2)1 = 0.1374

50

Equivalence of G-functions (2.5) and (3.20) for child term t = 2

Now, finally, we are ready to evaluate (2.5) and (3.20). We start with (2.5). Its left and

right hand side numerators are

g
1|1
r
2|2
t=2

(
y
2|2
g(t=2)1(ν) + h

2|2
t=2

)
=

1

2π

[
1

jc
1|1
i=1 + d

1|1
i=1 + h

2|2
t=2 + y

2|2
g(t=2)1

− 1

jc
1|1
i − d

1|1
i + h

2|2
t + y

2|2
g(t=2)1

]

g
1|1
r
2|2
t=2

(
y
2|2
g(t=2)1(ν)− h

2|2
t=2

)
=

1

2π

[
1

jc
1|1
i=1 + d

1|1
i=1 − h

2|2
t=2 + y

2|2
g(t=2)1

− 1

jc
1|1
i=1 − d

1|1
i=1 − h

2|2
t=2 + y

2|2
g(t=2)1

]

where we have,

c
1|1
i=1 = 0.056659, d

1|1
i=1 = 0.1, h

2|2
t=2 = −0.01, y

2|2
g(t=2)1 = −0.24

c
2|2
t=2 = −0.223209 d

2|2
t=2 = 0.223209, y

2|2
g(t=2)2 = 0.1374

and plugging in ν = [1.0, 1.0, 1.0]T , this yields left and right-hand side numerators of

g
1|1
r
2|2
t=2

(
y
2|2
g(t=2)1(ν) + h

2|2
t=2

)
= −0.4854337− 0.2790051j

g
1|1
r
2|2
t=2

(
y
2|2
g(t=2)1(ν)− h

2|2
t=2

)
= −0.5603585− 0.3679715j

and a g-value by (2.5) of

g
2|2
t=2(ν) = −0.1549 + 0.1385j

Now we examine (3.20). Its left and right hand side numerators are

S
(
λ̂
2|2
t+=2(ν)

)T
α
2|1
i=1, S

(
λ̂
2|2
t−=2(ν)

)T
α
2|1
i=1

where,

α
2|1
i=1 = S(λ̂

2|1
i=1) ◦ α

1|1
i

plugging in λ̂
2|1
i , i.e, equation (3.30e) we have

51

α
2|1
i=1 = S([−1− 1− 1]T) ◦ α1|1

i

α
2|1
i=1 =

[
1 −1 −1 −1 1 1 1 −1

]T
◦ α1|1

i=1

α
2|1
i=1 =



−0.66074 + 0.00000j
0.000000 + 0.44709j
0.000000 + 0.13438j
−0.00000 +−0.7705j
0.023981 + 0.00000j
0.137843 + 0.00000j
0.013481 + 0.00000j
−0.00000− 0.089900j



Now, we form S
(
λ̂
2|2
t+=2(ν)

)
and S

(
λ̂
2|2
t−=2(ν)

)
by using (3.30c) and get

S
(
λ̂
2|2
t+=2(ν)

)
= S+

([
1 sgn(0) 1

])
= S

([
1 1 1

])
=
[
1 1 1 1 1 1 1 1

]
S
(
λ̂
2|2
t−=2(ν)

)
= S−

([
1 sgn(0) 1

])
= S

([
1 −1 1

])
=
[
1 1 −1 1 −1 1 −1 −1

]

by evaluating the sgn(0) at the index ψt=2 = (t = 2) as a ±1, respectively. Equivalently

we could have evaluated S±
ψt=2

(
λ̂
2|2
t=2(ν)

)
= S

(
λ̂
2|2
t±=2(ν)

)
of (3.20) by starting with λ

2|2
t=2

of (3.31) and inserting a ±1 at index ψt=2 = t = 2 where the singularity has occurred

(as the S±
ψt
(·) symbology instructs) taking the first m

1|1
i=1 elements (as the hat symbol λ̂

instructs) and then conducting the S(·) expansion. A simple inner product now shows

that

S
(
λ̂
2|2
t+=2(ν)

)T
α
2|1
i=1 = −0.4854337− 0.2790051j

S
(
λ̂
2|2
t−=2(ν)

)T
α
2|1
i=1 = −0.5603585− 0.3679715j

and a g-value of by (3.20) of

g
2|2
t=2(ν) = −0.1549 + 0.1385j,

which numerically shows the equivalence of the backward recursive and compressed char-

acteristic functions, as well as the steps to generate the parameters of each form.

52

3.6 Term Reduction for the Compressed Character-

istic Function

Equation (3.20) is in a compressed form of the parameters at step k. Therefore, any terms

i ∈ [1, ..., N
k|k
t] that are similar to one another can now be added together. Terms that

have equal parameterizations of their exponential argument y
k|k
ei (ν̄) (for a chosen value

ν̄) can be combined by summation of the respective α
k|k
(·) vectors [14]. Specifically, if the

parameters A
k|k
(·) , b

k|k
(·) , p

k|k
(·) that parameterize y

k|k
ei (ν̄) for any terms i and j are equal within

a small numerical ϵ value, i.e.,
∣∣∣Ak|kilt − Ak|kjlt ∣∣∣ ≤ ϵ,

∣∣∣pk|kil − pk|kjl ∣∣∣ ≤ ϵ, and
∣∣∣bk|kik − bk|kjk ∣∣∣ ≤ ϵ,

for all l ∈ [1, . . . ,mi], t ∈ [1, . . . , n], i ̸= j, these two (or more) terms can be combined

through the addition of their vectors α
k|k
i and α

k|k
j . Since j adds with index i (and the

term of index j is discarded afterwards), the α
k|k
(·) combine as

α
k|k
i ← α

k|k
i + α

k|k
j ◦ S

(
λ̃
k|k
ij

)
(3.33)

λ̃
k|k
ijl = sgn

(〈
A
k|k
il ,
(
A
k|k
jl

)T〉)
, l ∈ [1, ...,m

k|k
i], λ̃

k|k
ij ∈ {±1}m

k|k
i (3.34)

where the hyperplanes A
k|k
il and A

k|k
jl are the rows (row-vectors) of the arrangement A

k|k
i

and A
k|k
j , respectively. The symbol ◦ is again used to represent the Hadamard product of

elementwise vector multiplication. Note that a requirement here is that the two hyper-

planes must have the same number of elements, i.e, m
k|k
i = m

k|k
j , to be tested for term

reduction.

To save computational effort, the comparisons above can be restricted to the i < j

condition. The characteristic function generates many similar terms at each estimation

step. The process of combining terms, although it requires additional processing, was

empirically shown to reduce the computational burden of the estimator tremendously,

as is shown in chapter 8. It was also shown in [14, 18] that using the functional form

of (3.20) leads to large computation and memory savings compared to the characteristic

function of [16] because of this new ability to combine terms.

53

3.7 Dynamic Propagation Properties of the Com-

pressed Characteristic Function

The compressed form of the characteristic function is also seen to have interesting dynamic

propagation properties. If we factor out α
k|k−1
i from (3.20), we have

g
k|k
i (ν)=

1

2π

 S+
ψi

(
λ̂
k|k
i (ν)

)T
jc
k|k
i + d

k|k
i + y

k|k
gi

−
S−
ψi

(
λ̂
k|k
i (ν)

)T
jc
k|k
i − d

k|k
i + y

k|k
gi

αk|k−1i (3.35)

where

g
k|k
i (ν) =

(
S̃
k|k
i (ν)

)T
α
k|k−1
i , ḡ

k|k
i = ¯̃S

k|k
i α

k|k−1
i ,

S̃
k|k
i (ν) ∈ Csg(m

k−1|k−1
i ,n), ¯̃S

k|k
i ∈ Ccc(A

k|k
i)×sg(mk−1|k−1

i ,n).

(3.36)

That is, S̃
k|k
i (ν)) is a coefficient vector (evaluated at a chosen ν) of all parameters exclud-

ing α
k|k−1
i in (3.35), and ¯̃S

k|k
i is a coefficient matrix where the vector S̃

k|k
i (ν)) is evaluated

in each cell ν ∈ Cj, j ∈ [1, ..., cc(A
k|k
i)] and stacked row-wise. However, we know that the

g-function can also be written as

g
k|k
i (ν) = S

(
λ
k|k
i (ν)

)T
α
k|k
i =

(
S̃
k|k
i (ν)

)T
α
k|k−1
i , (3.37)

and written for all cells as

ḡ
k|k
i = S̄

k|k
i α

k|k
i = ¯̃S

k|k
i α

k|k−1
i , (3.38)

where

α
k|k−1
i = S

(
λ̂
k|k−1
i (ν = HT

k)
)
◦ αk−1|k−1i = diag

(
S
(
λ̂
k|k−1
i (ν = HT

k)
))

α
k−1|k−1
i .

It is clear then that α
k|k
i and α

k−1|k−1
i are linearly related as

α
k|k
i =

(
S̄
k|k
i

)† (¯̃Sk|ki) diag(S (λ̂k|k−1i (ν = HT
k)
))

α
k−1|k−1
i (3.39)

54

which forms a dynamic propagation formula from step k−1 to step k for the parameter α.

A dynamic propagation property for the α parameters (3.6), (3.23) and (3.39) was seen in

[13] for the scalar Cauchy estimator, but only now has a closed-form dynamic propagation

equation been discovered for these parameters in the multivariate case. Remember that

the propagation equations of (3.23) and (3.17) rely upon computing the sign vector of

(3.22c), which sets ν = HT
k .

Furthermore, an inspection of the propagation of the parameter set {Ak|ki , p
k|k
i , q

k|k
i ,

d
k|k
i , λ

k|k
i , λ

k|k−1
i , B

k|k
i , S̄

k|k
i } indicates that if the system dynamics of (2.1) are LTI, these

parameters can be computed completely offline. This is because they are not functions

of the measurement zk. If the initial conditions {A1|0, p1|0, b1|0} are changed, however, the

generated parameter sets will not be the same unfortunately. Therefore, these param-

eters can only be calculated ‘offline’ for repeated use if and only if the provided initial

conditions are assumed never to change3. The parameters {αk|ki , c
k|k
i , b

k|k
i } are, however,

functions of the measurement zk. If the initial conditions do not change, the only (online)

computational cost of the estimator would be to solve for the parameter set {bk|ki , c
k|k
i },

evaluate ḡ
k|k
i , and solve the system of equations (3.5) for each term’s α

k|k
i . The only

remaining work is to sum the α(·) vectors for terms that are found to reduce with one

another within term reduction (the next paragraph elaborates more on this). Under these

assumptions, the run-time of the estimator would be extremely fast.

An interesting insight was made in [22], regardless of the initial conditions provided

to the MCE or the measurement realization. Based on the theory presented in [22] for

LTI systems, it is a-priori known which hyperplanes of a term will coalign with one

another. Moreover, it is a-priori known which terms at each step k will reduce with one

another. This can save a large amount of computation, particularly as the term reduction

algorithm has a quadratic run-time. If the system is LTI, it is advised to run the MCE

algorithm once offline and store the indices where hyperplanes of a term coalign as well as

the indices where terms reduce together at each estimation step. For all future runs, this

information can be loaded into memory and re-used to reduce the computational effort in

3This is seen not to be the case in chapter 5, where the proposed strategy to initialize the MCE will
change its initial set of conditions each time the algorithm is reset.

55

the coalignment sub-routine. In the term reduction sub-routine, the quadratic run-time

search to find which terms reduce together can be removed completely. Terms at these

a-priori known indices can now simply be added together. Effectively, this turns the term

reduction algorithm from quadratic to a linear one in the number of term that reduce.

This is demonstrated in section 8.1. It should be noted that for this reason, the savings

will be much larger in the term reduction sub-routine then it is in term-coalignment.

Although the term reduction algorithm tests the b
k|k
i terms for equality, which is indeed

a function of the measurement zk, it is luckily a linear function of the measurement.

Therefore, we could simply set zk to any fictitious value, i.e z(·) = 1 in the offline stage,

store the indices at which terms reduce together, and use these indices nevertheless in the

online stage. These facts hold true regardless of the measurement or the initial conditions

provided to the MCE.

3.7.1 Discarding Negligible Terms

A numerical study of the terms of the characteristic function reveals that many of the

α
k|k
i parameters approach zero as the estimation step k increases. This is significant, as

the α parameters are used to evaluate (3.20). As the conditional mean and covariance are

a function of the values of (3.20) or (2.5), this observation indicates if ||αk|ki || → 0, the

value of g
k|k
i (ν)→ 0 for (3.20), and the contribution of the term towards the conditional

mean and covariance will be negligible. Furthermore, it is observed from (3.39) that if

a parent term has its ||αk|ki || → 0, its generated child terms will have a norm close to

zero as well. This implies that removing any α
k|k
i which has this property would remove

a factorial number of terms at future estimation steps k.

Formally, the dynamic propagation matrix of (3.39), written shorthand as Si for

α
k|k
i = Siαk−1|k−1i could be decomposed by the singular value decomposition Si = UΣV T

and the singular values Σ can be examined. If all singular values of the matrix Si are

less than 1, then we can be certain that the propagated alpha-vector will have a norm

smaller than that of its parent. This type of matrix is considered a contractor, as any

vector multiplied by this matrix will reduce its norm. A numerical study reveals that,

56

in general, the singular values of this matrix are usually less than 1, however, it cannot

be guaranteed in general. Moreover, calculating the singular values of the matrix in the

online setting would be an expensive procedure, as the dimensions of the matrix Si can

be large.

Instead of computing this matrix directly, we could wait for the ||αk|ki || to fall well

below or close to the value of machine precision, which for double floating point numbers

is 1e−16. In numerical testing, the value of ϵ was set between 1e−20 and 1e−14. Since α is

a vector of complex numbers, testing whether the 1-norm over the vector is less than ϵ is

an appropriate metric. It was observed that removing the terms of the estimator whose

α
k|k
i fell within this range had negligible impact on the state estimates. The number of

terms, however, reduced significantly. This is shown in further detail in the experiments

of section 8.1. The main finding was that: 1.) computing the α-vectors have allowed

similar terms to reduce together and 2.) provided a means to identify terms of the

characteristic function that have a negligible contribution. Removing negligible terms

before they generate new (negligible) child terms at the next estimation step is seen to

increase the speed of the estimator, and in some cases, significantly.

57

Chapter 4

An Efficient Algorithm for

Compressing the G-Function

In this chapter, we show that using several insights presented in [23], it is possible to

compute the parameters α
k|k
i without the need to solve an expensive cell-enumeration

problem and furthermore without ever having to take a pseudo-inverse of a large matrix,

as done in chapter 3. The algorithm presented in this chapter was first presented by the

author of this dissertation in [18].

4.1 Preliminaries

We first address several differences between components of the characteristic function in

chapter 3 and the structure of an algorithm based on the results in [23] would require

to construct the α-vectors. First, the theory in [23] makes use of indicator functions σ

and not sign functions sgn as (3.20) does. This can be fixed by relating one to the other

as σ(·) = 1
2
(sgn(·) + 1). Next, the theory in [23] deals with hyperplane arrangements

in a general position Aν = b, A ∈ Rm×n where the offset from the origin b ̸= 0m. The

hyperplane arrangements of the characteristic function for the MCE, however, are in

central position Aν = 0. This is easily circumvented by slightly perturbing at least

m − n right-hand side elements of the zero vector to non-zero values. This is allowable

since shifting hyperplanes of a central arrangement away from the origin will preserve the

58

original (exterior) sign-vectors of the cells, only adding new (interior) cells. Moreover,

the theory in [23] also makes the assumption that no hyperplane in the arrangement

has a normal aligned with en = [0, ..., 1]T ∈ Rn. If an arrangement happens to have

such a hyperplane, a simple rotation of the arrangement will resolve this issue. Lastly,

it is possible for general and central arrangements to have less than either sg(m,n) or

sc(m,n) cells as given by (3.1) and (3.2), respectively. Specifically, a degenerate central

arrangement is one where the number of cells counted by an enumeration algorithm is

less than sc(m
k|k
i , n) and a degenerate general arrangement is one where the number of

cells counted is less than sg(m
k|k
i , n) [20]. This is due to the various geometrical patterns

that can arise in both central and general arrangements (see Fig. 3.1). This problem is

resolved in section 4.2.5.

4.2 Procedure for the Efficient Computation of α
k|k
i

For brevity, in what follows, we drop the (term) subscript i and (step) superscript k|k on

the hyperplane arrangement A
k|k
i and g

k|k
i (ν), and use i as a general indexing variable.

For a general arrangement H of m hyperplanes in n dimensions, let Hi = {ν ∈ Rn|aTi ν =

b̃i}, i ∈ [1, ...,m] represent the hyperplanes of the arrangement. Here, ai ∈ Rn is the

normal to Hi that is stored row-wise in A ∈ Rm×n and b̃i ∈ R is an element of b̃ ∈ Rm. In

the MCE context, it is a perturbation applied to shift the hyperplanes {ν ∈ Rn|aTi ν = 0}

into a general position. The hyperplanes define open halfspaces H+
i = {ν ∈ Rn|aTi ν > b̃i}

and H−
i = {ν ∈ Rn|aTi ν < b̃i}. Let σi(ν) = 1

2
(sgn(aTi ν − b̃i) + 1) be an indicator function

over the open halfspaces of Hi, which is equal to 1 for all ν ∈ H+
i and 0 otherwise. Note

that cells of A are defined by at least n halfspaces of Hi. The compressed form of the

characteristic function in the MCE presented in chapter 3 is based on the following result.

Theorem 1 (From [23]). Let A be a hyperplane arrangement of m affine hyperplanes

Hi, i ∈ 1, ...,m in Rn and σi(ν) be the indicator function of the open halfspaces of Hi.

Since g(ν) is a function that is constant in the interior of every cell, there is a linear

combination of products of n or less of the functions σi(ν) that is equal to g(ν) at any

59

point not in ∪mi=1Hi.

Theorem 1 states that, much like (3.36), we can construct the values of g(ν) by a linear

combination using products up to n out of the m indicator functions σi(ν). Specifically,

let I ⊂ Im, where Im = {1, ...,m}. Let σI(ν) = Πn
i∈Iσi(ν), which is the product of the

indicators within set I. We define σ∅ = 1 for the empty set |I| = 0. Thus, theorem 1

implies

g(ν) =
∑
|I|≤n

αIσI(ν), (4.1a)

or, equivalently,

g(ν) =
∑
|I|=n

αIσI(ν) +
∑
|I|<n

αIσI(ν). (4.1b)

Note that the maximum number of possible combinations of |I| ≤ n is given by

sg(m,n) of (3.2). Also note that writing σi or σI is shorthand for σi(ν) or σI(ν), re-

spectively. Our goal is to efficiently find the coefficients αI of (4.1) that can recreate

the values of g(ν) for any ν ∈ Rn. We wish to do so by exploiting the unique prop-

erties of functions, such as (3.20), that are constant within the cells of its hyperplane

arrangements. To develop an algorithm to do this, we first look at (4.1b) and focus on

the coefficients for |I| = n.

4.2.1 Finding the Coefficients of |I| = n

We start by finding the vertices of the arrangement H. The intersection point xI of hy-

perplanes indexed by I ⊂ Im with cardinality |I| = n are those vertices. An arrangement

in general position has
(
m
n

)
such subsets and hence vertices. The n hyperplanes that

intersect at xI partition Rn into 2n regions. Since no hyperplane has its normal aligned

with en, i.e., ⟨ai, en⟩ ≠ 0, ∀ i ∈ Im, for a particular region, xI is the lowest point in

the region w.r.t en. Moreover, the region where this occurs corresponds to a particular

cell in the arrangement. Let {C1, ..., C2n} be the set of 2n cells that encircle xI and let

CxI ∈ {C1, ..., C2n} be the cell for which xI is the lowest point. CxI is referred to as the

upper cell of xI and finding a point in it is the topic of section 4.2.2.

The efficient computation method of αI in [23] requires that σi(ν) = 1 for all ν ∈ CxI

60

and i ∈ I. If this is not the case, we define I ′ ⊂ I to be a set of all i such that if

σi(ν ∈ CxI) = 0, then σ′
i(ν) = (1− σi(ν)), and

σ′
I(ν) =

∏
i∈I′

σ′
i(ν)

∏
i∈I\I′

σi(ν). (4.2)

Note that σ′
I(ν) = 1 for ν ∈ CxI and 0 ∀ ν ∈ {C1, ..., C2n}\CxI . Using (4.2), (4.1b) is

restated as

g(ν) =
∑
|I|=n

α′
Iσ

′
I(ν) +

∑
|I|<n

α′
Iσ

′
I(ν). (4.3)

To compute the α′
I for |I| = n, we define

SI(ν) =
∏
i∈I′

(2σ′
i(ν)− 1) ·

∏
i∈I\I′

(2σi(ν)− 1). (4.4)

It is easy to verify that SI(ν) ∈ {−1, 1} for all ν and equals 1 for ν ∈ CxI . Moreover, it

has opposing signs when evaluated at ν in neighboring cells, i.e., two cells that share a

hyperplane. Then, for all |I| = n [23]

α′
I =

2n∑
i=1

g(ν)SI(ν)
∣∣∣
ν∈Ci

. (4.5)

Equation (4.5) states that to find the coefficient α′
I for a set of hyperplanes I, we need

to evaluate g(ν) on the 2n cells that encircle its vertex xI . We can find the value of g

in these cells by determining the sign-vectors λ with respect to the entire arrangement

H (see (3.20)) as follows. First, for {Hi, i ∈ Im\I}, i.e., hyperplanes that do not include

the vertex xI , we compute sgn(aTi xI − b̃). Second, the sign-vector for the upper cell CxI

is formed by conjoining values of 1 for i ∈ I to the sign sequences computed above. The

sign vectors of the remaining 2n − 1 cells are obtained by permuting the signs of the

indexes i ∈ I.

The time-complexity of the operations presented is O(n3) to find each vertex point

xI and O(2nmn) to construct the sign-vectors for the 2n cells encircling xI . The only

expense left is the 2n evaluations of g(ν) in (3.20), i.e O(2ng(ν)). The aforementioned

61

steps are repeated over the
(
m
n

)
total vertices. The coefficients α′

I for |I| = n are now

constructed. See section 4.2.4 for the procedure to transform the coefficients α′
I back to

αI .

4.2.2 Finding a Point in the Upper Cell of a Vertex

Here we present an algorithm that can find a point in the upper cell of a vertex for

any dimension d ≤ n. Section 4.2.3 clarifies why this algorithm needs to work for any

d ≤ n, but for now we can think of d = n. We define the upper cell for a vertex xI

(and |I| = d) as the cell for which vertex xI is the lowest point, with respect to the

coordinate direction ed. The algorithm presented below is used within the procedures of

sections 4.2.1 and 4.2.3.

Given a set I of d-dimensional hyperplanes, with |I| = d ≤ n, a generalized cross

product can be used to construct a point in the upper cell of the hyperplanes in I. This

will find the directions that are parallel to each edge formed by the intersection of d−1

hyperplanes in I. That is, for all Id−1 ⊂ I and |Id−1| = d−1, we compute the generalized

cross product direction pi, i ∈ {1, ..., d}. These directions are checked to make sure they

point upwards (w.r.t ed), i.e., that their last component is positive, and are flipped if not.

A point in the upper cell of xI is thus pxI = xI +
∑d

i=1 pi.

The general time-complexity is O(d5). This is because a determinant of matrix size

(d−1× d−1) takes time-complexity of order O(d3), which is repeated d times for a single

edge, and for all d directions (edges) of a vertex I.

4.2.3 Finding the Coefficients of |I| < n

In this subsection, we first show how the coefficients for d = |I| = n−1 are found, followed

by comments to generalize the procedure to d = |I| < n−1.

To compute the coefficients of |I| = n−1, we start by finding the vertex xI computed

for all |I| = n that has a minimum value in the direction en. Let us refer to this vertex

as xmI . Next we construct a hyperplane HL = {ν ∈ Rn|⟨en, ν⟩ = bL}, with bL = eTnx
m
I − ϵ

and ϵ ∈ R > 0, i.e., HL is a horizontal hyperplane that is below xmI . Therefore, HL is also

62

below all upper cells CxI for all I ⊂ Im and |I| = n, and hence σ′
I(ν) = 0 for all ν ∈ HL.

Consequently, when evaluated for ν ∈ HL, g(ν) =
∑

|I|<n σ
′
I(ν)α

′
I , or alternatively

g(ν) =
∑

|I|=n−1

α′
Iσ

′
I(ν) +

∑
|I|<n−1

α′
Iσ

′
I(ν). (4.6)

Projecting the hyperplanes H1, ..., Hm onto HL will result in new hyperplanes H̄i =

{ν̄ ∈ Rn−1|āiT ν̄ = b̄i = b̃i − ai[n]bL}, i ∈ [1, ...,m] where āi ∈ Rn−1 = ai[1 : n−1] and

ai[n] = eTnai. This projection yields a Rn−1 dimensional subspace of ν ∈ Rn and the

coefficients α′
I for |I| = n − 1 can be computed using the procedure detailed in the

previous subsection. This process can be similarly applied for lower dimensions d < n−1.

The time-complexities for the lower dimensions d ≤ n would follow very closely to that

of sections 4.2.1 and 4.2.2 by replacing n with d. The additional work here includes the(
m
d

)
comparisons required to find the minimum vertex, which does not require any floating

point operations. Moreover, projecting the arrangement down a dimension requires only

O(m) operations to update the affine offsets. Note that, to leading order for O(·), the

operations at d = n will dominate those of d ≤ n−1.

4.2.4 Unpriming the Coefficients of |I| ≤ n

After computing all α′
I using the basis of σ′

I , we are ready to discuss the procedure to

recover the coefficients αI for |I| ≤ n in the original basis σI used in (4.1). For all

σi(pxI) ̸= 1 and i ∈ I, the parenthesis of (1 − σi) that are the result of any i ∈ I ′ ⊂ I

in (4.2) must now be opened to transform the coefficients α′
I of (4.3) back to the αI of

(4.1). This is necessary to keep the indicator directions σi consistent across all projection

steps of section 4.2.3. This is also necessary to keep the indicator directions consistent

with the orientation of the basis vectors in (3.20).

We call this process of opening the parenthesis and transforming the coefficients α′
I

of (4.3) to αI of (4.1a) unpriming. A simple example can help illustrate the unpriming

procedure to transform α′
I back to αI . For an arrangement of m = 2 hyperplanes of

63

dimension n = 2, using (4.3), the coefficient g is expressed as

g = α′
∅σ∅ + α′

1σ
′
1 + α′

2σ
′
2 + α′

12σ
′
12, (4.7)

where α′
12 and σ′

12 are shorthand for α′
I={1,2} and σ′

I={1,2}, respectively. Suppose that

when constructing α′
12 for I = {1, 2}, σ12(px12) = 0 due to σ1. Hence, to use (4.5), we

formed σ′
12 = (1− σ1)σ2 and thus I ′ = {1} ⊂ I for (4.2). Similarly, when computing α′

2

for I = {2} it was found that σ2(px2) = 0 and thus was replace by σ′
2 = (1− σ2) with the

related I ′ = {2} ⊂ I. Moreover, σ1 was not changed computing α′
1. Consequently, (4.7)

is manipulated as follows:

g = α′
∅σ∅ + α′

1σ1 + α′
2(1− σ2) + α′

12(1− σ1)σ2

= (α′
∅ + α′

2)σ∅ + α′
1σ1 + (α′

12 − α′
2)σ2 + (−α′

12)σ12. (4.8)

It is clear that, in the original basis of σI , α∅ = (α′
∅ + α′

2), α1 = α′
1, α2 = (α′

12 − α′
2) and

α12 = −α′
12. In general, the above reveals that unpriming the coefficients of σ′

I-s with

non-empty I ′ will add or subtract α′
I from coefficients of σJ with |J | < |I|.

The worst-case time complexity is when all max{
(
m
d

)
, d = [1, ..n]} coefficients α′

I at

dimension |I| = d have an |I ′| = d and therefore need to add their α′
I to the

∑d−1
i=0

(
m
i

)
coefficients αI ∈ α where |I| ≤ d−1. This results in (worst case) O(

(
m
d

)
) additions needed

for a particular α′
I and where d is chosen using the criteria above. For the whole vector

α, the unpriming step would add O(
(
m
d

)2
) additional operations.

4.2.5 Finding the Coefficients of Arrangements with Degenera-

cies

As mentioned in section 4.1, due to various geometrical patterns, both general and cen-

tral hyperplane arrangements can have fewer cells than (3.1) and (3.2) suggest. The

procedures given in sections 4.2.1 to 4.2.4 assume that these degeneracies are not present

and that the arrangement A, b̃ contains the number of cells given by (3.2). However,

64

degeneracies are seen to occur in the arrangements generated by the MCE.

An arrangement is degenerate if there are (one or more) sets {I ∈ Im
∣∣ |I| = n} of

hyperplanes with normal vectors that are linearly dependant, i.e., rank(AI)<n. Conse-

quently, there is no vertex xI defined by those n hyperplanes, as xI = A−1I b̃I does not

exist. This, however, is not an issue. For any set of hyperplanes I seen to be rank deficient

(or a condition number deemed too large), the corresponding coefficient αI can simply be

set to zero. This implies that since there exists no vertex, the coefficient corresponding

to this vertex is not required. This holds true for any dimension, see [23].

There is no added expense in the routine due to degeneracy, except drawing m ran-

dom (small) floating point numbers to declare a b̃. Solving for each vertex is an O(n3)

procedure. Therefore, the complexity for evaluating a single combination I, is still O(n3).

4.2.6 Time-Complexity of the Proposed Algorithm

We have now described all parts of the proposed algorithm to compute the vectors α

for (3.20). The total time-complexity of the procedure for a single coefficient αI is the

sum of the complexities presented in sections 4.2.1 to 4.2.5. Computing a coefficient

with a dimension d = n sums to O(2ng(v) + n3 + 2nmn) +O(n5) +O(m) +O(
(
m
n

)
). To

obtain the complexity of evaluating the function g(ν) of (3.20), note that g(ν) has two

dot products between vectors of length sg(m− r, n) in the numerator, with sg(m− r, n)

given by (3.2), as well as three additions, two subtractions, and two divisions. To leading

order, an evaluation of g(ν) will take O(
(
m
n

)
) operations. Therefore, to the leading order,

O(2ng(ν)) = O(2n
(
m
n

)
). Each α-vector that is constructed contains sg(m,n) =

∑d
i=0

(
m
n

)
coefficients and to leading order,

(
m
n

)
. Furthermore,

(
m
n

)
can be bounded above by mn.

Putting this all together we see the time-complexity to construct the vector α will consist

of repeatingO(2nmn) operationsO(mn) times. Thus, our final result is that the procedure

takes on the order of O(2nm2n) operations to construct the α-vector.

Let us compare this result to the procedure proposed in [14] to compute α. As noted

in chapter 3, the procedure of [14] involves solving both a cell enumeration problem as

well as the large linear system in (3.36). For a (non-degenerate) cell enumeration problem

65

of m central hyperplanes of dimension n, 2m−1−1 linear programs are solved. The time-

complexity of a linear program depends on the underlying method used to reach the

optimum. For example, the simplex method developed by Dantzig [27] was shown to have

worst-case complexity of O(n22n) in [28]. For interior-point algorithms, methods have

been proposed with the complexity of O(n3.5L) [29] and O(((m+ n)n2 + (m+ n)n1.5)L)

[30] where O(L) is the number of bits of precision required. These bounds are presented

for completeness but are quite theoretical. Still, they are used to show concretely the

advantage of the method proposed in the current study. The pseudo-inverse in (3.6)

requires O(sc(m,n)2sg(m,n)) = O((2
∑n−1

i=0

(
m−1
i

)
)2(
∑n

i=0

(
m
i

)
)) operations. Substituting

mn to bound
(
m
n

)
, the method in [14] has the computational complexity of O(m3n).

Compared to the newly proposed algorithm we conclude that O(2nm2n) ≤ O(m3n) for

m ≥ 2. Regardless of the LP technique chosen in the scheme of [14], the proposed

procedure here is superior (and can even be several magnitudes faster), as either m or n

are increased.

4.2.7 Converting Between the Indicator and Sign Basis

The vector α is constructed for indicator basis functions. To use α in (3.20), one must

convert α to the sign basis. Let us temporarily denote the indicator basis vector as

αI ∈ Csg(m,n) and the indicator basis matrix as SI ∈ {0, 1}sg(m,n)×sg(m,n). These can

be related to the sign basis vector αS ∈ Csg(m,n) and matrix SS ∈ {±1}sg(m,n)×sg(m,n)

through (3.36) as ḡ = SIαI = SSαS, where αS is the desired vector within the sign-basis.

Therefore,

αS = XS
I α

I , (4.9)

where XS
I = (SS)−1SI .

A simple example illustrates how to construct SI and SS. For m = n = 3, place all

combinations of up to n and out of the m elements of the general vector λ = [σ1, σ2, σ3]

row-wise in the matrix Λ ∈ Rsg(m,n)×n. Now, SI and SS are formed by the row-wise

expansion of Λ using the S(·) basis expansion function and by setting all σ(·) = 1 below

66

as

Λ =



0 0 0

σ1 0 0

0 σ2 0

0 0 σ3

σ1 σ2 0

σ1 0 σ3

0 σ2 σ3

σ1 σ2 σ3



, SI = S(Λ), SS = S(2Λ− 1). (4.10)

Although the basis matrices SI , SS are integer-valued, XS
I = (SS)−1SI is not. The

added time-complexity associated with (4.9), which is on the order ofO(m2n), is negligible

compared to the other components of the proposed algorithm. Moreover, note that the

matrix XS
I is not a function of the measurements. Therefore it can be precomputed

for any desired m offline and stored before the online execution of the MCE to further

enhance its real-time implementation.

4.2.8 Comments on the Proposed Implementation

To conclude this section, we remark that a large amount of computation when forming the

coefficients αI (using (4.5)) can be saved by utilizing an efficient caching data structure.

Note that coefficients αI that have been formed by (4.5) will share common g(ν) values

with other coefficients αJ , J ̸= I. Specifically, for a vector α of length sg(m,n), a total

of Neval =
(
m
n

)
2n +

(
m
n−1

)
2n−1 + ... +

(
m
1

)
21 evaluations of g(ν) are required. However,

there are only sg(m,n)≪ Neval values of g(ν) - one per cell - after perturbing the central

arrangement into a general position. If a caching data structure is used to store the

sg(m,n) values of g(ν), Neval − sg(m,n) evaluations of g(ν) can be avoided by instead

looking up the value in the cache. Since each cell, C has a unique sign-vector, and since

g(ν) is constant in a cell, a specific value of g(ν) value can be retrieved from the cache

by its respective sign-vector. Therefore, an associative data structure between the sign-

vector and g(ν) value can be employed as the caching mechanism, such as a dictionary.

67

When computing (4.5), the run-time performance will benefit greatly if the time required

to hash the sign-vector and retrieve its cached g-value is less than the time required to

re-compute the g-value from scratch.

68

Chapter 5

The Sliding Window Approximation

5.1 Derivation of the Sliding Window Approxima-

tion

Although the compressed structure of the characteristic function reduces memory con-

sumption and allows for similar terms to be combined, the number of terms after a

measurement update will still grow, albeit now more slowly. A method termed the slid-

ing window approximation, was proposed in [31] for two-state linear systems to cap the

growth rate and run the estimation structure continuously with a fixed computation

load per estimation step. The method is explained in this section and generalized to

multivariate systems.

To run the MCE continuously and for arbitrarily long simulations, a bank of W esti-

mators processing data over sliding windows (i.e., MCEs) is instantiated. Each estimator

has a processing capacity of W sensor measurements. Clearly, W dictates the compu-

tational load of the filter bank and is set a-priori to account for the computing power

at hand. The data windows are staggered by one estimation step. Only the estimator

that processedW sensor measurements at a specific time step k will report its estimation

result, following which it will be restarted using the procedure detailed below. Subse-

quently, the neighboring estimator that has processedW measurements at time step k+1

will report its mean and covariance at that instant. Figure 5.1 illustrates the proposed

69

schematic for an example of six estimators and thus six sliding windows.

In [31], a formula was derived to initialize the characteristic function of two-state linear

systems to generate a desired mean and covariance, given the measurement value, over

one estimation step. This formula was useful for the MCE for a two-state system using

the sliding window approximation. It allowed the “restarted” window to reconstruct the

estimate found by the “full” MCE window of W measurements at each estimation step.

In this way, each restarted window would be initialized about the current estimate that

is computed using the previous W measurements. The initialization formula, however,

was not generalizable to the multivariate case. This issue is resolved next.

Figure 5.1: Schematic of the sliding window bank for six estimators (windows) each a
function of six sensor measurements.

5.1.1 Sliding Window Initialization for Multivariate Systems

The procedure for initializing the MCE using the sliding window approximation is now

developed explicitly. Let the window length beW and therefore there are alsoW windows.

After processing W measurements in window w ∈ W at time step k, the associated MCE

computes the resulting conditional mean and error variance. Now, this MCE has to be

initialized before it processes the next measurement at k + 1. It is suggested that this

70

initialization is constructed such that after processing the measurement at k + 1, the

resulting conditional mean and error variance are the same as those computed by the

neighboring MCE that has processed W measurements at this time instance. We start

with the form of the characteristic function, before the initial measurement update, given

as

ϕ̄X1 = exp

[(
−

n∑
ℓ=1

p1ℓ
∣∣⟨a1ℓ , ν⟩∣∣

)
+ j⟨b1, ν⟩

]
(5.1)

with initialization parameters a1ℓ ∈ Rn, p1ℓ ∈ R, b1 ∈ Rn. The initial set of hyperplanes

A = [a11, a
1
2, ..., a

1
n]
T should be chosen as orthonormal vectors, where A−1 = AT , AAT =

I, det(A) = 1, but not necessarily as unit vectors as in [16]. Given the constraints on

A, the key idea is that the parameter set {A, p1, b1} is now chosen such that updating

the characteristic function of (5.1) with a single measurement z ∈ R (via a measurement

update) will generate a conditional mean x̂ and covariance P equal to that of the neigh-

boring MCE of W measurement updates. The transformation A is used on the spectral

vector as ν = Aν̄ ⇒ ν̄ = ATν. Then, the characteristic function of (5.1) reduces to a

form similar to that used in section 5.3 in [16] as

ϕX1 = exp

[(
−

n∑
i=1

pi |⟨ei, ν̄⟩|

)
+ j⟨AT b11, ν̄⟩

]
, (5.2)

where we denote AT b11 = b̄11 ⇒ b11 = Ab̄11. Let the measurement for the one-measurement

update be

z1 = Hx1 + v = HAATx1 + v = H̄x̄1 + v. (5.3)

Using the coordinate rotation from the outputted conditional mean and error variance,

the above characteristic function (5.2) generalizes the results of section 5.3 in [16], where

αi = pi and z1 is replaced by ς1 = z1− H̄b̄11 = z1−Hb11. Therefore, the measurement pdf

that generalizes (5.35) in [16] is

fZ1 =
1

π

∑n
ℓ=1 pℓ|h̄ℓ|+ γ

ς21 +
(∑n

ℓ=1 pℓ|h̄ℓ|+ γ
)2 , (5.4)

whereHA = H̄ = [h̄1, . . . , h̄n] from h̄i = H̄ei and by using (5.19e) and (5.19f)
∑n

ℓ=1 p̄ℓh̄ℓ+

71

γ = H̄p̄+ γ. The conditional mean generalizing (5.38) in [16] is

ˆ̄x1 =
ς1

H̄p̄+ γ
p̄+ b̄11 ⇒ x̂1 = Aˆ̄x1. (5.5)

Similarly, the rotated conditional variance, where the estimation error is ˜̄x1 = x̄1 − ˆ̄x1

and P̄ = E[˜̄x1 ˜̄x
T
1 |z1], is

P̄ =

[
1 +

ς21
(
∑n

ℓ=1 pℓ|h̄ℓ|+ γ)2

]
×


p1
|h̄1|

(∑n
ℓ=2 pℓ|h̄ℓ|+ γ

)
. . . −p1pn sgn h̄1 sgn h̄n

...
...

...

−p1pn sgn h̄1 sgn h̄n . . . pn
|h̄n|

(∑n−1
ℓ=1 pℓ|h̄ℓ|+ γ

)
 .
(5.6)

Note that the estimate offset b̄11 does not enter into the rotated conditional variance

except in ς1. To convert back to the original coordinate frame the conditional variance

generalizing (5.42) in [16] is

E[x̃1x̃
T
1 |z1] = AE[˜̄x1 ˜̄x

T
1 |z1]AT = AP̄AT . (5.7)

Using the definition of p̄ in (5.19e) and (5.19f), noting that∑n
ℓ=1 p̄ℓh̄ℓ+γ = H̄p̄+γ, and by adding and subtracting p̄ip̄

T
i from the diagonal ii elements

in (5.6), the rotated variance (5.6) is rewritten using (5.19b), (5.19c), (5.19e) and (5.19f)

as

P̄ =

[
1 +

ς21
(H̄p̄+ γ)2

]{(
H̄p̄+ γ

)
Λ− p̄p̄T

}
. (5.8)

Similarly, the rotated conditional mean from (5.5) is

ˆ̄x1 =
ς1p̄

H̄p̄+ γ
+ b̄11, p̄ =


p̄1
...

p̄n

 . (5.9)

72

Multiply (5.9) on the left by H̄ and some manipulations to produce

H̄ ˆ̄x1 =
ς1H̄p̄

H̄p̄+ γ
+ H̄b̄11 ⇒ H̄p̄ =

γH̄(ˆ̄x1 − b̄11)
(z1 − H̄ ˆ̄x1)

⇒ H̄p̄+ γ =
γ(z1 − H̄b̄11
(z1 − H̄ ˆ̄x1)

=
γς1

(z1 − H̄ ˆ̄x1)
. (5.10)

Turning our attention to reducing the variance equation (5.8) by using (5.10), P̄ becomes

P̄ = ς1

[
γ2 + (z1 − H̄ ˆ̄x1)

2

γ(z1 − H̄ ˆ̄x1)

]
Λ−

(
1 +

(z1 − H̄ ˆ̄x1)
2

γ2

)
p̄p̄T . (5.11)

Determining b̄11 and p̄

Important simplifications occur if the P̄ of (5.8) is premultiplied by H̄ and with some

manipulations we obtain

H̄P̄ = ς1

[
γ2 + (z1 − H̄ ˆ̄x1)

2

γ(z1 − H̄ ˆ̄x1)

]
H̄Λ−

(
1 +

(z1 − H̄ ˆ̄x1)
2

γ2

)
H̄p̄p̄T =

{
γ +

(z1 − H̄ ˆ̄x1)
2

γ

}
p̄T ,

(5.12)

and hence

p̄T =
γH̄P̄

γ2 + (z1 − H̄ ˆ̄x1)2
. (5.13)

Using (5.10) and (5.13) in (5.9), ˆ̄x1 becomes

ˆ̄x1 =
γ(H̄P̄)T

(γ2 + (z1 − H̄ ˆ̄x1)2)

ς1
(H̄p̄+ γ)

+ b̄11

=
(H̄P̄)T (z1 − H̄ ˆ̄x1)

γ2 + (z1 − H̄ ˆ̄x1)2
+ b̄11

⇒ b̄11 = ˆ̄x1 −
(H̄P̄)T (z1 − H̄ ˆ̄x1)

γ2 + (z1 − H̄ ˆ̄x1)2
. (5.14)

However, from (5.14), b11 can be written independent of A in terms of the mean x̂1 and

the variance P = E[x̃1x̃
T
1 |z1] from (5.7) as

AT b11 = b̄11 = AT x̂1 −
(z1 −HAAT x̂1)ATPAATHT

γ2 + (z1 −HAAT x̂1)2

⇒ b11 = x̂1 −
(z1 −Hx̂1)PHT

γ2 + (z1 −Hx̂1)2
. (5.15)

73

We can now write ς1 as

ς1 = z1 − H̄b̄11 = z1 −Hb11

= z1 −Hx̂1 −
(z1 −Hx̂1)HPHT

γ2 + (z1 −Hx̂1)2

= (z1 −Hx̂1)
(
γ2 + (z1 −Hx̂1)2 +HPHT

γ2 + (z1 −Hx̂1)2

)
, (5.16)

which is independent of A.

Determining A

Substitution of (5.13) into (5.11) and using (5.19b) and (5.19c) gives

ATPA = θΛ− ATPHTHPA

γ2 + (z1 −Hx̂1)2
, (5.17)

which implies (5.18).

Summary

Based on the results above, these conditions are met if the matrix A satisfies

ATΨA = Λ, (5.18)

74

where

Ψ = P +
PHTHP

γ2 + (z −Hx̂)2
∈ Rn×n, (5.19a)

Λ = ψ



p̄1
h̄1

0 . . . 0

0 p̄2
h̄2

. . 0

...
...

. . .
...

0 . . . 0 p̄n
h̄n


∈ Rn×n, p̄ℓ, h̄ℓ ∈ R, (5.19b)

ψ =
γ2 + (z −Hx̂)2 +HPHT

γ
∈ R, (5.19c)

p̄ =
γHPA

γ2 + (z −Hx̂)2
∈ Rn, (5.19d)

H̄ = HA ∈ R1×n (5.19e)

p1ℓ = p̄ℓ/sgn(h̄ℓ) ∈ R++, ℓ ∈ {1, ..., n}, (5.19f)

b1 = x̂− (z − H̄x̂)PHT

γ2 + (z −Hx̂)2
∈ Rn, (5.19g)

and γ is the Cauchy pdf modeling parameter for the measurement noise of (2.1). Above,

Ψ is a positive definite matrix, which is a function of the conditional mean and covariance

of the (full) neighboring MCE. The important observation is that the left side of (5.18)

must be equal to a diagonal matrix. Note that p̄ℓ
h̄ℓ

= pℓ
|h̄ℓ|
, ℓ ∈ {1, · · · , n} of (5.19f) are to

be strictly positive. Since the left-hand side of (5.18) is a positive definite matrix Ψ and

Λ a positive diagonal matrix, the rotation needed is simply the eigenvectors of Ψ, which

for this positive definite matrix are real and orthogonal. Thus, Λ contains the eigenvalues

of Ψ in diagonal matrix form. To satisfy the constraint of AAT = I these eigenvectors

are normalized. Note that above H ∈ R1×n and when the measurement matrix of (2.1)

has more than one row only the most recent measurement (row) is needed for (5.18)

and (5.19).

Effectively, (5.18) and (5.19) state that given a desired mean x̂ and covariance P (at

the step k+1), the one-step characteristic function can generate this estimate x̂k+1, Pk+1

in one step using the measurement zk+1 and measurement noise scaling parameter γk+1 if

initialized with the parameters A, p1, b1 as formulated above. Note that although the one-

75

step characteristic function can recreate an estimate of a W -step characteristic function,

the two characteristic functions will be different.

The construction of the parameter set A, p1, b1 described in this section was chosen

since the Cauchy conditional covariance is hypothesized to be a tight upper bound to the

actual minimum error variance. Numerical evidence in chapter 8 is shown to justify this

claim.

5.1.2 Software Architecture of the Sliding Window

The MCE algorithm using the sliding window approximation has been implemented in

CUDA-C/C++ for distributed evaluation of the characteristic function on GPUs. This

is possible since all terms of the MCE are independent and can be computed efficiently

in parallel. The sliding window has been implemented as a host-side (CPU) C/C++

process that manages a single device-side (GPU) MCE instance. Each MCE is re-

sponsible for synchronizing with all other MCE-s as the sensor measurements become

available. All MCEs can either share the same underlying GPU or use their respective

GPUs, depending upon GPU availability. The data of the windows can furthermore

reside on the same compute node or be dispersed across multiple compute nodes and

coordinate via socket communication over a local area network. This heterogeneous

(CPU/GPU) application design allows for the MCE to be highly extensible to high-

performance computing (HPC) clusters, where an application can be dispersed across

multiple compute nodes with multiple CPU hosts managing multiple GPU devices. This

is useful for the large Monte Carlo experiments of section 8.2. The code is made available

at https://github.com/natsnyder1/KingCauchy for academic use. See Fig. 5.1 and source

code for further details.

76

Chapter 6

Distributed Computation of the

Multivariate Cauchy Estimator

This chapter gives pseudo-codes for the subroutines of the MCE, with attention to their

GPU implementations. The mathematical structure of the MCE allows for all its sub-

routines to be admissible to parallelization; some, albeit, to a larger extent than others.

A light overview of GPU terminology is first given to understand the basic nomenclature

used under NVIDIA’s GPU programming abstraction [24]. In the following sections, the

subroutines of the estimator are given in (serial) pseudo-code, followed by comments on

how these were parallelized for distributed computation.

6.1 The CUDA-C Programming Paradigm

There are two levels of abstraction that comprise a GPU: its hardware level abstraction

and its software level abstraction. An overview of the GPU’s hardware level abstraction

is first given, followed by the software level abstraction with regards to the nomenclature

used by NVIDIA’s CUDA-C/C++ already programmed interface (API).

77

(a) Hardware abstraction of a GPU device.
Highlighted in red is a single streaming

multiprocessor (SM).

(b) Hardware
abstraction of a

single SM. Each SM
has multiple arrays
of 32 compute cores

(bright green).

Figure 6.1: Hardware abstraction of a GPU

6.1.1 Hardware Level Abstraction

GPUs are external ‘devices’ that a computer program can make use of to execute a

task (or portion of a task) in parallel. While GPU device architectures vary, they all

contain the same common components arranged into various configurations. Figure 6.1

depicts a general hardware abstraction of a GPU. Each GPU has multiple graphical

processing clusters (GPC), each assigned a memory controller. Within each GPC, there

are multiple ‘streaming multiprocessors’ (SM). The SM is the key computational unit of

a GPU. Each SM contains arrays of cuda-cores (cores) that are then grouped into arrays

of 32. The grouping of 32 cores is called a ‘warp’ (typically, there are around 4 warps of

cores per SM). All cuda cores in a warp simultaneously execute a single instruction per

clock cycle, giving the GPU its classification as a ‘Single Instruction, Multiple Thread’

(SIMT) processor. It is the job of the SM’s warp scheduler(s) to manage/schedule the

simultaneous execution of its warps (of 32 cores).

Just as a CPU utilizes registers to store local program variables, each SM also contains

registers, and divides them amongst its cores to store local program variables. Registers

can be thought of as the local program memory available to a core. No other core can view

78

the data held in the registers of another cuda core. All warps of an SM, however, have

access to a valuable but small amount of ‘shared memory’, which the cuda cores can all

read and write to. This allows the cores to talk to one another, so to speak. Additionally,

all SM’s have read/write access to the ‘dynamic random access memory’ (DRAM) made

available on the GPU device via the GPC’s memory controller, and is typically referred to

as ‘global memory’ storage. While the amount of local/shared memory is small (kilobytes)

and very fast to access, global memory is much more ubiquitous (multiple gigabytes) but

slow to access. Accessing data in local memory (registers) takes 1 instruction cycle, data

in shared memory several instruction cycles, and data in global memory multiple hundred

instruction cycles. The number of cycles varies according to GPU architecture.

Each cuda core is much like a single thread of a CPU. It is able to take an instruction,

execute it, and move to the next instruction, abiding by the branching and conditional

statements a program may have. The difference between a CPU and a warp of cuda

cores is that the warp controller executes a single instruction per warp (32 cores) each

clock cycle. For example, if branching logic in a program is hit (say an if-else statement),

the warp controller will put to sleep all cores which take the ‘else’ branch while the if

branch executes, and then sleep all cores which take the ‘if’ branch while the ‘else’ branch

executes. The behavior described is called ‘warp divergence’ and should be mitigated at

all costs. There is no impact, however, if all cores in a warp take the same conditional

path. The goal then, is to write GPU programs where all members of a warp execute

instructions of the same conditional path.

It should be noted that the GPU (like the CPU) also has both level 1 and level 2

(L1/L2) caches, which aim to minimize memory read times. It may happen that memory

access is required from global memory repeatedly, but utilizing shared memory is not

optimal for the task. Unlike shared memory, the L1/L2 cache is not controlled by the

program but is automatically managed by the device. The L1 cache is faster than L2,

but more precious, and uses the leftover shared memory not requested by the cuda cores.

This implies memory reads first search the L1 cache, followed by the L2. If neither query

is successful, the true global memory read will commence. This is known as a ‘cache

79

miss’.

An extremely important concept is that of coalesced memory accesses versus non-

coalesced memory access. Warps read memory in coalesced chunks (cache line), meaning,

a chunk of memory (usually 128 or 256 bytes) is accessed by the warp simultaneously.

Although global memory reads take many instruction cycles, it is ameliorated somewhat

by the fact that if all cores of the warp request data lie within in a coalesced 128-byte

chunk, there is no additional overhead to read the memory requested per core. If, however,

each core of a warp requests global memory that spans a range of memory addresses

larger than 128 bytes, only memory reads within a 128-byte range occur simultaneously.

Additional clock cycles are then needed to access the data outside of this region. If all

cores request global memory spaced greater than 128 bytes from each other, the time to

fulfill the memory read request could be scaled up to a factor of 32. The only saving

grace would be L1/L2 cache hits. It becomes imperative then that when accessing global

memory, all cores of a warp access coalesced chunks of global memory unless L1/L2

cache hits are highly probable (such as with repeated accesses to memory in a hash table

located in global memory). Shared memory does not suffer from the non-coalesced access

problem nearly as much, and should be used if non-contiguous memory accesses cannot

be avoided (or cache hits are scarce). These concepts explained here can be found in

great detail in [24].

6.1.2 Software Level Abstraction

On a software level, programs are constructed and mapped onto device hardware through

the thread, block, and grid abstraction. Figure 6.2 depicts this hierarchy. A thread is the

most basic of these members. A block is a grouping of threads that holds anywhere from

1 to maximum 1024 threads. A block of threads maps directly to an SM on the GPU,

whereas a thread within the block maps to one of the SM’s cuda cores. Each thread

in a block is given a unique index (0 up to 1023) and sequential groups of 32 threads

are designated to be run within the same warp (i.e, thread indices 0-31, 32-63, etc, will

be placed in the same warp together). A grid of blocks all contain the same number of

80

Figure 6.2: Thread block and grid abstraction for mapping compute onto device
hardware

threads, and will be evenly distributed amongst the SMs of the GPU. A function written

for a GPU is called a kernel, and is ‘launched’ with a specified number of threads per

block (block size) and blocks per grid (grid size).

When a kernel is written for the GPU, it is written such that the thread will carry

out the instructions of that kernel. At the software level, it does not matter which thread

or block maps to which individual cuda core or SM. The only software-level control is

that thread indexes 0-31, 32-63, etc (of the same block) will be placed in the same warp.

Defining how many threads are contained within a block allows the SM to partition its

resources (such as registers and shared memory) amongst the (many) blocks that have

been assigned to it. This is important because threads of the same block are given fast-

access shared memory, through which they can talk/share information/collaboratively

use, while threads belonging to different blocks can only ‘talk’ through global memory.

Defining how many blocks you will need for a particular task (i.e., the grid size) allows

the device to know how to effectively use its SMs to complete the launched kernel.

It should be noted that while a block can be assigned anywhere from 1 to a maximum

of 1024 threads, an individual SM will have less than 1024 cuda cores, typically only 128

(i.e., 4 warps of cuda cores). More to the point, the SM will have more than one block

assigned to it as well. This is not a flaw but in fact a design strategy of the SM. The

warp scheduler is a master of latency hiding, and achieves this by quickly switching focus

from one warp to another the moment an actively running warp needs to write out data

81

to memory, read data from memory, or any operation which involves more than a few

cycles of non-compute operation (i.e, latency). The goal of the scheduler is to keep its

cuda cores as busy as possible. Typically, the SM wishes to queue up 64 warps (2048

threads) to switch between to best hide latency. However, this is architecture dependent.

Suppose an SM had 128 cuda cores and therefore has 4 warps capable of carrying out

compute. Suppose the GPU has 4 SM and a program requests to use 16 blocks, each

block consisting of 512 threads. To keep the SM fully busy, each SM will be assigned 4

blocks. This implies that the states of 64 warps (16 warps belonging to each block) will

all be given SM resources (shared memory, registers, etc) and actively switched between

to minimize overall latency. The 64 warps (2048 threads) that have been assigned device

resources are called ‘active’, as they are actively swapped onto and off the cuda cores with

the goal of minimizing latency. The 64 active warps can be at completely different stages

of the kernel program, with respect to the others. If the kernel was launched instead

using 32 of these blocks, the other 16 blocks would be called ‘inactive’. These blocks

would be put in a queue, waiting for active warps to complete, until their block is given

compute resources and their warps can be designated as ‘active’.

Having 64 ‘active warps’ per SM is said to be achieving 100% occupancy of the SM.

There are many reasons why 100% occupancy cannot always be achieved. If each thread

for a kernel requires more registers than the number of registers (divided by 2048) an

SM has, then less than 100% occupancy will be achieved. If several blocks (2048 /

block size) assigned to an SM require more shared memory than the SM has to offer,

occupancy will also be limited. The goal of the programmer is to write GPU kernels with

resource constraints, occupancy, and warp divergence in mind simultaneously, making

the programming task much more difficult than programming for a CPU.

82

6.2 An Algorithmic Cookbook for the Distributed

Multivariate Cauchy Estimator

6.2.1 Overview

The sub-routines of the MCE are now presented in serial pseudo code. After, comments

are made on how a GPU kernel was devised to distribute the computation, with respect to

both minimizing latency and warp divergence while maximizing occupancy and through-

put. The variables of the subroutines follow from the nomenclature given in chapters 2

to 4. For further details on the parallelization, see the source code.

The terms of the MCE are noted with subscript i ∈ [1, ..., N
k|k
t] at each time step k, and

m
k|k
i denotes the number of hyperplanes in the arrangement of term i. It should be noted

that for distributed computation on the GPU, it is crucial that a structure of arrays and

not an array of structures data format is used to hold the elements {A, p, q, b, c, d, B, α} of

all terms. This means all (respective) elements are stored in the same contiguous memory

buffer. This enables memory coalescing when warps must access multiple terms.

6.2.2 Time-Propagation

Input: Ak|k, bk|k,Φk;
Set: m to number of hyperplanes in arrangement i;

for i = 1 to N
k|k
t do

// Update hyperplane A
k|k
i ∈ Rm

k|k
i ×d;

A
k+1|k
i ← A

k|k
i ΦT

k ;

// Update offset b
k|k
i ∈ R1×d;

b
k+1|k
i ← b

k|k
i ΦT

k ;

end

Return: A
k+1|k
i , bk+1|k;

Algorithm 1: Time Propagation Algorithm

Note that the time propagation routine here does not append ΓTk and βk to the A
k|k
i

and p
k|k
i terms, respectively. This is because it would corrupt the memory storage of all

terms > i, which are stored contiguously with term i in the memory buffer. Furthermore,

appending these elements would then require an expensive global memory write operation

to a new (and non-L1/L2-cached) global memory buffer. Instead, these elements are dealt

83

with next in time-propagation coalignment, pending the rows of ΓTk are not coalign with

any rows of A
k|k
i . Therefore, the GPU program simply needs to do two large matrix

multiplies: Ak+1|k = Ak|kΦT
k and bk+1|k = bk|kΦT

k where Ak|k ∈ RN
k|k
e ×d is the full memory

buffer of shape, N
k|k
e =

∑N
k|k
t

i=1 m
k|k
i , and bk|k ∈ RN

k|k
t ×d, which is ideal GPU work.

6.2.3 Time-Propagation Co-alignment

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k|k
t];

Input: A
k+1|k
i , p

k|k
i , Γk, βk // Using A

k+1|k
i of algorithm 1;

Set: ϵ ∈ R+ with epsilon a small positive number;
Set: F ∈ Br to all True, where r = cols(Γk);

Set: p
k+1|k
i ← p

k|k
i ◦ norm(A

k+1|k
i , axis=1) // row wise L2 norm;

Normalize: A
k+1|k
i // row wise L2 normalization;

Set: βk ← βk ◦ norm(Γk, axis=0) // column wise L2 norm;
Normalize: Γk // column wise L2 normalization;
for j = 1 to r do

// Testing for coalignment with Γk[:, j]. 1 is a one vector.;
γj = Γk[:, j] // γj ∈ Rd ;

indx = argwhere
((

1− |Ak+1|k
i γj|

)
< ϵ
)
// row indices of coalignment;

assert(len(indx) ≤ 1) // Only one HP can coalign, else there is a bug;
if len(indx) ̸= 0 then

// Combine corresponding elements of p
k|k
i and βk;

p
k+1|k
i [indx]← p

k+1|k
i [indx] + βk[j];

F [j] = False;

else
// hyperplane j does not coalign, it is unique, no action

end

end

Append: ΓTk to A
k+1|k
i for indices of F [j] == True;

Append: βk to p
k+1|k
i for indices of F [j] == True;

Return: A
k+1|k
i , p

k+1|k
i ;

Algorithm 2: Time Propagation Coalignment Algorithm

Here the time propagation coalignment (TPC) algorithm constructs the ‘final’ A
k+1|k
i

and p
k+1|k
i , taking into account any coalignment which may occur between rows of ΓTk and

rows of A
k+1|k
i . The TPC algorithm for the GPU allocates a 2-D array of (d×max(m

k|k
i , i ∈

[1, ..., N
k|k
t]) threads per block, using each row of threads per block to check whether a row

of the hyperplane arrangement coaligns with a column of Γk, simultaneously. Each block

allocates shared memory space for A
k+1|k
i , p

k+1|k
i ,Γk, and βk, first reading these values in

from global memory and conducting all operations locally (and fast) on the SM itself.

84

The trouble now, is that the number of hyperplanes a term has after coaligning is

not a priori known (as well as the execution order of the blocks on SMs). Since the

blocks must return the terms to their respective (contiguous) memory buffers, they will

need to coordinate with one another to avoid overwriting each other’s data when writing

results back out to global memory. This problem is solved by using a set of global integer

counters, where each block uses an ‘atomic add’ 1 operation on a counter to find its offset

in the global memory buffers. The number of counters spans the possible number of

hyperplanes, i.e., one counter per possible arrangement size after coalignment, with each

counter initially set to zero. Only one thread per block will access a respective counter,

while the other threads in the block carry out no work until the counter is incremented2.

The result, is the blocks can return the terms into coalesced memory buffers. Specifically,

all terms with the same hyperplane shape are placed contiguously in one memory buffer,

and all terms of another hyperplane shape are in their own contiguous memory buffer.

Therefore, the TPC algorithm returns a coalesced array of arrays for all terms, where

the final counts of the counter variables indicate the number of terms (size of the array)

with arrangements of a certain size. This strategy is used as well in measurement update

coalignment.

1An atomic operation makes certain only one thread (of all threads in all allocated blocks) conducts
read/write operations on a memory address at a time. This ‘serializes’ read/write operations to the
memory address in question, preventing race conditions between multiple threads.

2This is not as bad as it appears, as the counters are accessed so often, they will be placed into L1 or
L2 cache.

85

6.2.4 Measurement Update (Child-Term Generation)

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k+1|k
t] (Note

N
k+1|k
t = N

k|k
t);

// Note: m
k|k
i is the size of the i−th hyperplane arrangement before time-prop

(algorithm 1);

Input: A
k+1|k
i , p

k+1|k
i , b

k+1|k
i , Hk+1, γk+1,m

k|k
i , α

k−1|k−1
i ;

Set: k ← k + 1;

Set: λ̂
k|k−1
i = sgn

(
A
k|k−1
i [1 : m

k−1|k−1
i , :]HT

k

)
∈ {±1}m

k−1|k−1
i ;

// Equation (3.8) returns children ;

//{Ak|kt , p
k|k
t , b

k|k
t , c

k|k
t , d

k|k
t }, t ∈ [1, ...,m

k|k−1
i + 1];

Call: Equation (3.8), Inputs: zk, A
k|k−1
t , p

k|k−1
t , b

k|k−1
t // Note m

k|k
i = m

k|k−1
i ;

// All child terms t hold a pointer to the updated parent vector α
k|k−1
i ;

Set: α
k|k−1
i ← α

k−1|k−1
i ◦ S

(
λ̂
k|k−1
i

)
;

Return: A
k|k
t , p

k|k
t , b

k|k
t , c

k|k
t , d

k|k
t , for t ∈ [1, ...,m

k|k−1
i + 1] and α

k|k−1
i ;

Algorithm 3: Measurement Update Algorithm

Equation (3.8) is the main driver of the child generation process, which is why al-

gorithm 3 simply calls it. As the terms are now stored in an ‘array of arrays’ from

algorithm 2, the GPU MU kernel is launched on each array of different-sized arrange-

ments sequentially. The terms of all children of a particular (parent term’s) arrangement

size are generated per kernel launch. Let Nt(m
k|k−1) be the number of terms with m hy-

perplanes in its arrangement at k|k−1 (which is the value stored in the counters used by

algorithm 2. Each kernel launch for the MU algorithm uses a grid of Nt(m
k|k−1) blocks,

each allocated with a 2-D thread array of size (mk|k−1 + 1 × mk|k−1 + 1). Each row of

threads then simultaneously constructs one child term, and therefore the block generates

the parent’s m
k|k−1
i + 1 child terms. Note that not all threads in a block are used to

construct elements p
k|k
t , b

k|k
t , c

k|k
t , d

k|k
t , however, these elements can be generated quickly

and few compute cycles are wasted.

The child terms generated by each block are placed back into a contiguous structure

of arrays memory buffer, one array per element A, p, b, c, d. This is so the measurement

update coalignment algorithm that follows can re-place these terms back into the ‘ar-

ray of arrays’ data structure after coalignment has been checked. Therefore, we see the

coalignment routines algorithms 2 and 5 take as input a ‘structure of arrays’ data struc-

ture, and output a ‘structure of array of arrays’ data structure, with each array holding

86

the elements of all terms of a given hyperplane size, post-coalignment.

Regardless of the α-generation technique chosen, the parent alpha vector α
k−1|k−1
i must

be updated. Since the operation is a Hadamard product, all threads can loop over the

coefficients of α
k−1|k−1
il until all coefficients have been updated with the corresponding el-

ement of S
(
λ̂
k|k−1
i

)
l
, l ∈ [1, ..., sg(m

k−1|k−1
i , d)]. Each child term must maintain a pointer

to the updated vector, in order to evaluate its g-value next. The children, lastly, are con-

tinuously re-indexed as i ∈ [1, 2, ..., N
k|k
t], however, the index t of each child term must

be remembered, as it is needed in algorithms 4 and 8 to evaluate the g-function (3.20).

6.2.5 G Evaluation

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k|k
t];

// Note: t is the child’s index from algorithm 3;

// Note: m
k−1|k−1
i is the size of the child’s parent hyperplane arrangement before

algorithm 1;

Input: A
k|k
i , p

k|k
i , b

k|k
i , c

k|k
i , d

k|k
i , ν̄, t,m

k−1|k−1
i , α

k|k−1
i ;

Set: λ
k|k
i = sgn

(
A
k|k
i ν̄
)
∈ {±1}m

k|k
i ;

Set: λ+ =
[
λ
k|k
i [1 : t−1], 1, λk|ki [t : m

k−1|k−1
i]

]T
∈ {±1}m

k−1|k−1
i ;

Set: λ− =
[
λ
k|k
i [1 : t−1], −1, λk|ki [t : m

k−1|k−1
i]

]T
∈ {±1}m

k−1|k−1
i ;

Set: y
k|k
gi =

(
p
k|k
i

)T
λ
k|k
i ;

Evaluate: g
k|k
i (ν̄) = 1

2π

[
S(λ+)

T
α
k|k−1
i

jc
k|k
i +d

k|k
i +y

k|k
gi

− S(λ−)
T
α
k|k−1
i

jc
k|k
i −dk|ki +y

k|k
gi

]
;

// Calling (2.6d) returns ȳ
k|k
ei = y

k|k
ei (ν̄);

Call: (2.6d), Inputs: A
k|k
i , p

k|k
i , b

k|k
i , ν̄;

Return: g
k|k
i (ν̄), ȳ

k|k
ei ;

Algorithm 4: G-Evaluation Algorithm

Here, a point in space ν̄ ∈ Rd is chosen, and used to evaluate each child term’s

g
k|k
i (ν), y

k|k
ei (ν) functions (i.e, (2.6d) and (3.20)), which are then used to compute the

moments by (2.8) and (2.9). As (3.20) is a complicated expression, it has been spelled

out above. The GPU uses a single warp (32-threads) per block, with a grid size of

N
k|k
t . Each block evaluates (2.6d) and (3.20) for a single term. Evaluating λ± does cause

slight warp divergence (and many threads in the warp are unused), but the main expense

per kernel call is evaluating the (complex-typed) inner product required to compute the

numerators of g
k|k
i (ν). Because the data type of α

k|k−1
i is a double complex-typed array,

87

each element is size 16 bytes. Therefore, reading 32 elements of α
k|k−1
i does not fit in the

warp’s cache line when reading from global memory.

To get around this, 8 elements of the α
k|k−1
i vector are read at a time. The first 8

threads sum the real part of the left-hand numerator, the next 8 threads sum the complex

part of the left-hand numerator, the next 8 threads sum the real part of the right-hand

numerator, and the last 8 threads sum the complex part of the right-hand numerator.

Doing so, the entire warp is kept busy and all global memory reads are now cache aligned,

as 16 ∗ 8 = 128 bytes. Next, d threads are used to compute ȳ
k|k
ei , while only one thread

can finish the evaluation of g
k|k
i (ν̄), while the other threads wait. Lastly, all g

k|k
i (ν̄), ȳ

k|k
ei

are written out to a contiguous memory buffer, which is used to compute the moments

by evaluating (2.8) and (2.9) via a parallel summation operation (see source code). Note

that it is not necessary to coalign before evaluating the moments and the g-values.

88

6.2.6 Measurement Update Co-alignment

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k|k
t];

Input: A
k|k
i , p

k|k
i ;

Set: ϵ ∈ R+ // with epsilon a small positive number;

Set: p
k|k
i ← p

k|k
i ◦ norm(A

k|k
i , axis=1) // row wise L2 normalization;

Normalize: A
k|k
i // row wise L2 normalization;

Set: q
k|k
i ← p

k|k
i // copy operation;

Set: F ∈ Bm
k|k
i to all True, and variable ℓ = 1;

Declare: map
k|k
i = 0m

k|k
i , sign map

k|k
i = 0m

k|k
i // m

k|k
i length vectors;

for j = 1 to m
k|k
i − 1 do

if F [j] then
// Test hyperplane j for coalignment;

ar = A
k|k
i [j, :] // ar ∈ Rd ;

Ac = A
k|k
i [j + 1 : m

k|k
i , :] // Ac ∈ R

(
(m

k|k
i −j)×d

)
;

indxs = argwhere((1− |Acar|) < ϵ) // array of indexes ∈ [1, ...,m
k|k
i − j];

map
k|k
i [j] = ℓ;

sign map
k|k
i [j] = 1;

if len(indxs) ̸= 0 then
for indx in indxs do

F [indx+ j] = False;

map
k|k
i [indx+ j] = j;

pi[j] = pi[j] + pi[indx+ j];
// Find sign difference between hyperplane’s j and indx;
s = sign difference(ar, Ac[indx, :]) // either (+1/-1);
qi[j] = qi[j] + s ∗ qi[indx+ j];

sign map
k|k
i [indx+ j] = s;

end

else
// hyperplane j does not coalign, it is unique, no action

end
ℓ← ℓ+ 1

else
// hyperplane j has already been coaligned, no action

end

end

Return: A
k|k
i , p

k|k
i , q

k|k
i , for True indexes of F , and map

k|k
i , sign map

k|k
i ;

Algorithm 5: Measurement Update Coalignment Algorithm
The measurement update coalignment algorithm is similar to algorithm 2, with the

exception that now all hyperplanes are tested for coalignment with respect to each other

(and not just with Γk). The key difference here is that the arrays ‘map’ and ‘sign map’

are vitally important, and need to be constructed. These will be used to construct the

89

sign vectors λ± in algorithms 8 and 11 ‘post coalignment’.

Therefore, to properly construct these arrays, the top-level for loop in algorithm 5

cannot be unrolled in the GPU implementation, unfortunately. N
k|k
t blocks are launched

each with one warp. The warp can evaluate the ‘argwhere’ statement in parallel but is

only able to utilize a few threads to carry out the instructions following it. Luckily, the

inputs of algorithm 5 are first read into shared memory, mitigating the latency of read

operations and making the low warp utilization a small issue. Similar to algorithm 2,

global counters are used to write out the sorted ‘array of arrays’ data structure of all

terms after coalignment is complete. This GPU algorithm, overall, is still exceptionally

quick.

6.2.7 Alpha Parameterization using Incremental Enumeration

There are two strategies presented to evaluate the parameters α
k|k
i , one using cell enu-

meration, and the other using Pinchasi’s method. In this section, the pseudo-code is

given to properly evaluate the (complicated) expression α
k|k
i = S(B

k|k
i)†ḡ

k|k
i . The first

step is determining the enumeration matrices B
k|k
i for all terms. Next, ḡ

k|k
i of (3.36) must

be constructed. The enumeration matrix must then be row-wise expanded as S(B
k|k
i),

followed by a routine to solve the system of equations to recover α
k|k
i .

Incremental Enumeration

The calling function for Inc-Enu can be given as

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k|k
t];

Input: A
k|k
i , ν̄;

Flip: A
k|k
il ← −A

k|k
il if A

k|k
il ν̄ < 0, ∀ l ∈ [1, ...,m

k|k
i] // Store these flips;

Set: B
k|k
i = {} // Set that will hold sign vectors of the cells of A

k|k
i ;

Set: s = {1} // Sign-sequence to be tested (validated/invalidated);

Call: inc enu(A
k|k
i , ν̄, B

k|k
i , s) // Fills B

k|k
i with a sign-vector to identify each

cell of A
k|k
i ;

Set: B
k|k
i ← B

k|k
i

⋃
−Bk|k

i // Append the negative of B
k|k
i to the set;

Flip: Sign-elements of B
k|k
i corresponding to the flipped hyperplanes A

k|k
il ;

Unflip: A
k|k
i // Corresponding to the flipped hyperplanes A

k|k
il ;

Return: B
k|k
i ;

Algorithm 6: Incremental Enumeration Calling Algorithm

90

The calling function uses a recursive depth first search (driver function) that can be

written as
Input: A, x,B, s // x is an interior cell point. To begin, it is ν̄;
Set: l = len(s);
Set: m = rows(A);
if l == m then

B ← B
⋃
s;

Return: ∅;
end
// is cell function tests if s is valid by solving an LP. Updates x with LP solution
if s is valid;
if ⟨A[l + 1, :], x⟩ > 0 then

s← s
⋃

1;
inc enu(A, x,B, s) // s is restored to length l+1 after returning from the call;
s[l + 1] = −1 // Now validate/invalidate the opposite;
if is cell(s, A[1 : l + 1, :], x) then

inc enu(A, x,B, s) // same applies here;
end

else
s← s

⋃
−1;

inc enu(A, x,B, s) // s is restored to length l+1 after returning from the call;
s[l + 1] = 1 // Now validate/invalidate the opposite;
if is cell(s, A[1 : l + 1, :], x) then

inc enu(A, x,B, s) // same applies here;
end

end
Return: ∅;

Algorithm 7: inc enu (driver function)

The (serial) Inc-Enu algorithm uses a straightforward recursive implementation. See

section 3.2 for details on the Phase-I LP solved within the ‘is cell’ routine, and further de-

tails on Inc-Enu. The GPU implementation, while less memory efficient, takes advantage

of the massive parallelization possible by recasting the depth-first search to a breadth-first

search. As the proposed strategy uses a combination of sequential and parallel computing

operations, the method is coined ‘Hybrid Inc-Enu’ (HIE).

While Inc-Enu conducts a depth-first search, HIE is a parallel breadth-first search

reformulation that operates on a forest (many trees) of enumeration tasks, solving a grid

of computation at each sequential step. Figure 6.3 illustrates this parallel enumeration

process. To begin, HIE is given all N arrangements of m-hyperplanes to be enumerated.

HIE takes the results of the first grid at step 1 (denoted S1) as input to solve the next

grid, S2. Note that all enumeration tasks located within a given step (or depth) of the

91

forest are independent of one another and can be solved in parallel. We see that at every

step of parallel computation, CUDA blocks are assigned to the active enumeration tasks

of each tree. Each block of threads solves an LP to validate/invalidate the proposed sign-

sequence using the simplex method [27] with tableau size ((SX + 2)× (2d+ 2)), at each

step S‘X’. See [27] and section 3.2 for reassurance that the block size is indeed the size

of the resulting simplex tableau for the LP. Each block produces a left and right child

(also CUDA blocks), if and only if the block’s proposed sign-sequence is found valid.

The left child (seen in green) is provided with both the sign-sequence and computed

feasible point of its parent, and simply needs to append which halfspace the known

feasible point lies in with respect to the next hyperplane to be enumerated. Left children

are computationally cheap, as these blocks do not need to solve an LP. Each right-child

block (seen in gray/red) is given the validated parent sign sequence concatenated to the

opposite of the sign computed by the left child, as input. The right child is responsible

then for solving a feasibility LP to validate this proposed sign sequence.

Figure 6.3: Hybrid Inc-Enu example forest, with N arrangements of m-hyperplanes in
dimention d. Blocks (thread blocks) within the grid at each step are solved in parallel.
Red/Black boxes indicate a CUDA block solved an LP. Green boxes indicate no LP was

needed to validate the sign sequence.

Programmatically, this translates to developing a parallel Phase-I simplex method

[26], where each CUDA block is responsible for computing a simplex tableau (LP) of a

92

single, proposed sign sequence. Previous works on GPU linear programming [32] focus

their attention on using the GPU-compute resources to parallelize tableau operations

for individual large and/or sparse LPs. Instead, we focus the GPU-compute resources

on efficiently parallelizing many small Phase-I LPs for throughput. The authors in [33]

propose a Phase I and Phase II simplex method for simultaneously solving small batched

LPs. Here, we develop HIE to streamline the inputs and outputs of the batched Phase-I

simplex algorithm proposed in [33] explicitly for solving batched cell enumerations.

We note that HIE sequentially runs m−1 parallel grid computations (GPU kernel

launches) to fully enumerate the cells of all N arrangements. As seen in Figure 6.3,

the number of needed enumerations grows at each parallel computation step. As HIE

descends further down into levels of the forest, note that for arrangements larger than

4 hyperplanes (e.g., 20, 30), the forest becomes immensely sparse in relation to the

possible number of permutations {±1}m. See source code for details on simplex tableau

parallelization.

G-Evaluation Per Cell

After HIE completes, the sign vectors (rows) of B
k|k
i are used to construct ḡ

k|k
i , which

is (3.20) evaluated for each cell of a term’s arrangement A
k|k
i . The challenge here is to

correctly construct the λ± vectors after the coalignment step, which are used to evaluate

the numerators of (3.20) for each cell.

93

// We complete the following algorithm over all i ∈ [1, 2, ..., N
k|k
t];

Input: B
k|k
i , q

k|k
i , c

k|k
i , d

k|k
i ,map

k|k
i , sign map

k|k
i , α

k|k−1
i , t,m

k−1|k−1
i . ;

Set: cc(A
k|k
i) = rows(B

k|k
i)// Number of cells in arrangement A

k|k
i ;

Set: ḡ
k|k
i = 0cc(A

k|k
i);

// Iterate over all sign-vectors λ̄ ∈ Bk|k
i ;

for b = 1 to cc(A
k|k
i) do

λ̄ = B
k|k
i [b, :] // λ̄ ∈ {±1}m

k|k
i ;

y
k|k
gi =

(
q
k|k
i

)T
λ̄;

Set: λ+ = 0m
k|k
i , λ− = 0m

k|k
i , ℓ = 1;

// t is the child index, and m
k−1|k−1
i is the size of the parent arrangement (see

algorithm 3);

for j = 1 to m
k−1|k−1
i do

if j ̸= t then

s = sign map
k|k
i [ℓ];

idx = map
k|k
i [ℓ];

λ+[j] = s ∗ λ̄[idx] ;
λ−[j] = s ∗ λ̄[idx] ;
ℓ← ℓ+ 1;

else
λ+[j] = 1 ;
λ−[j] = −1 ;

end

end

Evaluate: ḡ
k|k
i [b] = 1

2π

[
S(λ+)

T
α
k|k−1
i

jc
k|k
i +d

k|k
i +y

k|k
gi

− S(λ−)
T
α
k|k−1
i

jc
k|k
i −dk|ki +y

k|k
gi

]
;

end

Return: ḡ
k|k
i ;

Algorithm 8: G-Evaluation Per Cell Algorithm

Similar to algorithm 4, the main computational expense is evaluating (3.20) in each

cell of a hyperplane arrangement of term i. Here, however, both for loops of algorithm 8

can be unrolled. Each block is composed of a 16 × 16 grid of threads. Kernel launches

are of Nt(m
k|k) blocks (see algorithm 3), computing the gs for all terms of a given ar-

rangement size in each kernel launch. Each row of the thread block works on evaluating

(3.20) in a particular cell, allowing 16 cells to be evaluated simultaneously, before loop-

ing over another 16 (and so on). Warp divergence is encountered when building λ± in

shared memory, however latency is low as map
k|k
i and sign map

k|k
i are read into shared

memory before building λ± (also in shared memory). The GPU strategy for evaluating

the numerators of (3.20) is similar to algorithm 4, except now 4/16 threads are used for

94

the real and complex parts of the left and right-hand side numerators, respectively.

Basis Matrix and Solving for Alpha

Creating the basis matrix S(B
k|k
i) relies on a special data structure that provides the

indices of products of the sign vectors (see section 3.3) to construct its combinatorial

sequence. The algorithm is not given, as this part is considered straight forwards, given an

appropriate data structure for the task is first created. However, it should be noted that

constructing each element of S(B
k|k
i) is independent of constructing the other elements.

This allows 1 thread to work on this element without coordination of the other elements.

Therefore, no warp divergence is encountered. Furthermore, each row of B
k|k
i is expanded

in parallel, allowing full warp utilization at each instruction cycle. A block size of 16×16

or 16×32 is appropriate for the task of constructing the basis matrix from the enumeration

matrix.

Solving the system S(B
k|k
i)α

k|k
i = ḡ

k|k
i can use any one of the numerous solvers for

large linear systems of equations. In a CPU implementation, a LAPACK [34] routine such

as ‘dgels’ could be considered, which relies on QR matrix-factorization. For the GPU,

batched versions of dgels or PLU decomposition can alternatively be considered from

the ‘CUBLAS’ [35] library. However, these (factor-then-solve) methods were seen to be

sub-optimal in this application. The time-savings of factorization methods like PLU or

QR stem from their ability to solve multiple right-hand sides using a single factorization.

Here, we only have one right-hand side (i.e., ḡ
k|k
i) per factorization. Moreover, due to cell

degeneracy in B
k|k
i , the number of rows in S(B

k|k
i) are not the same amongst different

terms i. Furthermore, the typing between S(B
k|k
i) and ḡ

k|k
i is real and complex, respec-

tively. These caveats make finding an off-the-shelf implementation of (already limited)

GPU solvers difficult.

A home-brewed GPU Gaussian Elimination solver was seen to have an impressive

computation time and sufficient accuracy when solving batches of these systems on the

GPU, greatly outperforming the other methods enumerated above. See [36] for a CPU

implementation of Gaussian Elimination. This algorithm is not a part of the CUBLAS

95

library, currently, and could be considered a contribution to the software deck. Much

of the computation of GPU Gaussian Elimination is susceptible to parallelization. For

example, when a pivot is chosen, all rows (or columns) beneath (right of) the pivot can

be updated simultaneously. Choosing a pivot, however, can take many instruction cycles

(as well as row/column swap operations that follow), during which all but one thread will

have to be put asleep. See the source code for the GPU implementation.

6.2.8 Alpha Parameterization using Pinchasi’s Method

Chapter 4 gives a high-level explanation of the steps required to construct an algorithm

based on Pinchasi’s insights [23]. For completeness, select pseudo algorithms of sec-

tions 4.2.1 to 4.2.7 are given in this section, as well as the full pseudo code to carry

out the routine. The intent of including these pseudo codes is twofold. First, it is the

hope that these pseudo algorithms help unveil some of the subtler steps required from

sections 4.2.1 to 4.2.7. Second, it is the hope that when newer and more powerful parallel

processors become a mature technology, such as the intelligent processing unit, or IPU

[37], this section would be of use to programmers looking to implement this method of

parameterization for (likely to be, orders of magnitude) faster implementations of the

MCE. The following pseudo algorithms drop the superscript k|k and term index i, for

brevity. These routines, however, are called for all terms i of the MCE and at each step

k|k.

96

Upper Cell of a Vertex

Input: Indices I with |I| = d, Vertex xI , Hyperplanes AI ;
Set: Upper region of vertex point pxI ←− xI ;
for i = 1 to d do

Form new Id−1 ⊂ I and |Id−1| = d−1;
Form AI

d−1 ∈ Rd−1×d ⊂ AI with Id−1;
// Constructing the d-dimensional cross product below;
Declare memory for pi ∈ Rd;
Id−1 ←− sort(Id−1) // Ascending Order;
for j = 1 to d do

Form I ′
d−1 = Id−1\Id−1[j];

// Forming the matrix minor A′
I
d−1 ∈ Rd−1×d−1;

A′
I
d−1 ←− Take columns I ′

d−1 out of AI
d−1 ;

pi[j] = (−1)j+1det(A′
I
d−1);

end
if pi[d] < 0 then

pxI = pxI − pi
else

pxI = pxI + pi
end

end
Return: pxI ;

Algorithm 9: Upper Cell of a Vertex (see section 4.2.2)

Unpriming the Coefficients

Input: Sets I, I ′, α′
I and α ∈ Rsg(m,n);

Set: Ī = I\I ′;
for I ′′ ⊂ I ′ do

Form Ip = Ī
⋃
I ′′;

αIp = αIp + (−1)|I′′|α′
I ;

end
Return: α ;

Algorithm 10: Unpriming the Coefficient for α′
I(see section 4.2.4)

97

Full Algorithm

Using algorithms 9 and 10, the full routine can be written as

Input: A ∈ Rm×n, α ∈ Rsg(m,n) ;

Declare and Perturb: b̃ ∈ Rm // Small random affine offset;
Rotate: A, s.t no hyperplane is coaligned with a unit direction ei, i ∈ [1, ..., d];

Set: α = 0sg(m,n), xF ∈ Rn = 0n, Im = {1, ..,m};
for d = n to 1 do

// Solving for vertex points xI , below (See sections 4.2.1 and 4.2.5);
V = {};
V ←− V

⋃
xI , ∀ xI = A−1

I b̃I , I ⊂ Im, |I| = d // for combinations of rank(AI)
= d;
for xI ∈ V do

// Constructing upper cell point pxI , below (See section 4.2.2);
Form I ⊂ Im and AI ∈ Rd×d for current xI ;
Run Subroutine: pxI ←− algorithm 9(I, xI , AI);
// Forming and unpriming α′

I , below (See sections 4.2.1 and 4.2.4);
Form I ′ ←− ∀ i ∈ I s.t σi(pxI) ̸= 1;
α′
I = 0;

for i = 1 to 2d do
α′
I = α′

I + g(ν ∈ Ci)SI(ν ∈ Ci); // Equation (4.5)
end
Run Subroutine: α←− algorithm 10(I, I ′, α′

I , α) // Updates
coefficients of α;

end
// Projecting arrangement down to d− 1, below (See section 4.2.3);
Find xmI ∈ V ; // Minimum vertex w.r.t direction ed;
xF [d] = xmI [d] // fixed coordinate value;

b̃←− b̃− A[:, d]xF [d]; // A[:, d] ∈ Rm×1;
A←− A[:, 1 : d−1];

end

α∅ = α∅ + g(AxF − b̃); // Equation (4.5) for constant term I = ∅;
Return: α ;

Algorithm 11: Efficient Computation of an α-vector

The GPU implementation is written at a warp level to solve 32 coefficients of an

α-vector simultaneously. Each block uses shared memory to load A, b̃ in from global

memory, at which point 32 threads evaluate 32 α′
I . This means that each thread requires

shared memory space for an AI , as well as space required to thread-wise take the inverses

of the AI , find the upper cell, and compute the g-values. These requirements make shared

memory precious. As AI are small, the warp uses Gaussian Elimination at the thread

level, solving 32 ‘inverses’ simultaneously.

98

The key to the efficient GPU implementation of algorithm 11 is the use of (GPU device

side) hash tables to cache g-values across warps and blocks that are constructing elements

of the same α
k|k
i . Evaluating the inner-most for loop (of 2d g-evaluations) is by far the

most expensive step of algorithm 11, and requires evaluating the left and right-hand side

numerators of (3.20) as algorithm 8 does to compute g(ν ∈ Ci). This computation is

ameliorated tremendously by the hash table.

To emphasize this point, a vector α requires sg(m, d) ∗ 2d g-evaluations, however,

there are only maximum sc(m, d) g-values. For example, a 10 hyperplane arrangement in

3 dimensions would require sg(10, 3) ∗ 23 = 1408 g-evaluations. However, there are only

92 (max) g-values. Using the hash table strategy saves 1316 g-computations. Further

savings could be had if all children belonging to the same parent α
k|k−1
i cached their left

and right-hand side numerators of (3.20) in the hash table. To be exact, the savings

would be an exorbitant 2 ∗ (m + 1) ∗ sg(m, d) ∗ 2d − sc(m, d) g-evaluations. This was

not endeavored, however, due to the tremendous programming complexity required to

track and load all children of a parent (after the coalignment step) in the same kernel

launch. Once the α′
I coefficients have been evaluated (and unpriming is complete), the

block moves onto another grouping of 32 coefficients, utilizing the same hash table for

g-lookups, until the entire α−vector has been computed.

6.2.9 Term Reduction

Only arrangements with the same number of hyperplanes are compatible for term reduc-

tion. Let Am be the set of all arrangements of terms with m hyperplanes, with N(m)

being the number of arrangements in this set. Let bm, ȳm, αm be the accompanying set

of parameters to these arrangements. For convenience, the superscript k|k is dropped.

Then, the term reduction routine can be given as

99

// We complete the following algorithm over all m ∈M ;
Input: Am, bm, ȳm, αm;
Set: ϵ ∈ R+, to a small positive number;

Set: F ∈ BN(m) to all True;
for i = 1 to N(m)− 1 do

if Fi then
// Step 1: Store indices j which meet criterion below in index set Ji;
for j = i+ 1 to N(m) do

Assert |bmi − bmj | < ϵ, else remove j from Ji // Only check j’s where

Fj = True;
Assert |ȳmi − ȳmj | < ϵ, else remove j from Ji // Only check j’s where

Fj = True;

end
// Step 2: Check arrangements in Ji;

Declare σ ∈ {±1}len(Ji)×m;
for q = 1 to len(Ji) do

j = Ji[q];
for k = 1 to m do

if |Amik − Amjk| < ϵ then
σ[q, k] = 1;

else if |Amik + Amjk| < ϵ then
σ[q, k] = -1;

else
// Check Failed (CF), terms i, j don’t reduce;
remove j from Ji (after Step 2 for loop) ;
remove row q from σ (after Step 2 for loop);

end

end

end
// Step 3: Term combinations;
// σ and Ji are updated for CF above;
for q = 1 to len(Ji) do

j = Ji[q];
α̂ = S(σ[q, :]) // S expansion of opposing normals of Ai and Aj;
αi = αi + αj ◦ α̂;

end
FJi = False // Step 4: Set Flags of terms which reduced with i to False;

else
// Term i has been reduced, no action needed;

end

end
Return: Am, bm, ym, gm, αm for True indexes of F ;

Algorithm 12: Term Reduction Algorithm

The runtime of algorithm 12, to leading order, is O(N(m)2), which is quadratic in

the number of terms of a particular arrangement size. Here, blocks of 8× 32 threads are

declared. Each block is allocated to check chunks of 128 terms. The first block will check

100

terms 0-127 against 0-127. The second block will check terms 0-127 against 128-255, and

so on. Similar to algorithm 12, the blocks of the GPU kernel use the bm, ȳm to weed out

which Am elements in the chunk to check for reduction, since all three conditions must

be met to reduce the terms. For all candidates, a row (warp) of threads checks one Ai

against one candidate Aj, and updates the αi if the arrangements are ϵ-close. This allows

for 8 comparisons of arrangements to run simultaneously within each thread block.

101

Chapter 7

Extended Multivariate Cauchy

Estimator for Nonlinear Dynamical

Systems

Since the MCE is formulated for linear systems with additive Cauchy noise, the extension

to nonlinear systems follows the methodology of the extended Kalman filter. Consider

the discrete-time nonlinear dynamic system as:

xk+1 = f(xk, uk) + Γkwk (7.1)

zk = h(xk) + vk, (7.2)

where the state xk ∈ Rn, the elements of the initial state x1 are independent and Cauchy

distributed, uk ∈ Rq is a deterministic control, f, h are nonlinear functions, Γk ∈ Rn×r

is a weighting matrix on the independent vector of process noise wk ∈ Rr and zk ∈ Rp

is the measurement model with an independent Cauchy noise vector vk ∈ Rp. Note that

(7.1) is the nonlinear version of (2.1) without the added control input.

To derive the extended form of the Cauchy estimator, we assume that an estimate

x̂k ≈ E[xk|yk] at step k given the measurement history yk as defined in chapter 2 has

been obtained and the estimate at k + 1 is to be determined. Projecting the posterior

102

state estimate x̂k to k + 1, using the system dynamics of (7.1), is the a priori state

E[xk+1|yk] ≈ x̄k+1 = f(x̂k, uk). (7.3)

The state variation can be formed by comparing the system dynamics (7.1) with the

propagation of the conditional mean (7.3), to yield

δxk+1|k = xk+1 − x̄k+1 = f(xk, uk)− f(x̂k, uk) + Γkwk

≈ ∇fx(xk, uk)
∣∣∣
x̂k,ūk

δxk|k +∇fu(xk, uk)
∣∣∣
x̂k,ūk

δuk|k + Γkwk

= Φkδxx|k + Γkwk, (7.4)

with δxk|k = xk − x̂k and δuk|k = uk − ūk for a known control input ūk. Equa-

tion (7.4) is equivalent to a first-order Taylor series expansion of (7.1) about the es-

timate x̂k and a control ūk. Since uk is assumed to be known, we set uk = ūk and

thus ∇fu(xk, uk)
∣∣∣
x̂k,uk

δuk|k = 0. Consequently, the control input uk will affect only the

deterministic term of the estimator, x̄k+1 = f(x̂k, uk).

At k + 1, the perturbed measurement is constructed as

δzk+1 = zk+1 − z̄k+1 = h(xk+1)− h(x̄k+1) + vk+1

≈ ∇hx(xk+1)
∣∣∣
xk+1=x̄k+1

δxk+1|k + vk+1

= Hk+1δxk+1|k + vk+1. (7.5)

Using (7.4) as the dynamics and processing δzk+1 of (7.5) as the measurement, the MCE

is to estimate E[δxk+1|k|yk+1] = E[xk+1 − x̄k+1|yk+1]. The posterior state estimate is

103

obtained by adding x̄k+1 and E[xk+1 − x̄k+1|yk+1] as

x̂k+1 ≈ E[xk+1|yk+1] = x̄k+1 + E[xk+1 − x̄k+1|yk+1]

= E[xk+1|yk] + E[xk+1|yk+1]− E[x̄k+1|yk+1]

= E[xk+1|yk] + E[xk+1|yk+1]− E[E[xk+1|yk]|yk+1]

= E[xk+1|yk] + E[xk+1|yk+1]− E[xk+1|yk]

= E[xk+1|yk+1]. (7.6)

The additional computation to extend the MCE to nonlinear systems is in constructing

the Jacobian matrices Φk ∈ Rn×n and Hk+1 ∈ Rp×n at each time-step k.

The parameters of the characteristic function in the MCE must now be updated to

account for adding E[δxk+1|k|yk+1] to the a-priori estimate x̄k+1 to form x̂k+1 as given in

(7.6). It can be easily shown that the characteristic functions of random variables x ∈ Rn

and y = x+ c, where c ∈ Rn is a known constant vector, are related as [38]

ΦY (ν) = ejν
T cΦX(ν). (7.7)

An inspection of (2.6d) and (7.7) reveals that to properly account for E[δxk+1|k|yk+1]

when constructing the characteristic function (of the prior) at k + 1, the term c =

−E[δxk+1|k|yk+1] will need to be added to the parameters b
k+1|k+1
i ∈ Rn for all i ∈

[1, ..., N
k+1|k+1
t]. Algorithm 13 below shows how to deal with the case when more than

one measurement is used, i.e., z ∈ Rp for p > 1. It is usually advantageous to re-

linearize the measurement model h(·) around the updated state estimate x̂k. That

is, after processing measurement zk[j], j ∈ [1, ..., p − 1] and forming the estimate x̂
(j)
k

using H
(j)
k = ∇xh(x̂

(j−1)
k)[j, :] (and where x̂

(0)
k = x̄k), re-linearize h(·) about x̂

(j)
k as

H
(j+1)
k = ∇xh(x̂

(j)
k)[j + 1, :] for processing the measurement zk[j + 1]. If one is less

certain that the updated state x̂
(j)
k will lead to a better gradient calculation for H

(j+1)
k ,

the previous gradient can be used instead. Also, note that for multiple measurements,

the time propagation step is only run for the first measurement (to take the system from

104

k to k + 1). The results are summarized for a single time step below.

// EMCE for Estimation Step k → k + 1;
Input: State estimate x̂k, control uk, new measurement (vector) zk+1 ∈ Rp;
Note: Measurement history is yk+1 = {z1, ...zk+1};
Set: Φk = ∇fx(xk, uk)

∣∣∣
x̂k,ūk

, Γk = ∇fu(xk, uk)
∣∣∣
x̂k,ūk

;

Propagate: x̄k+1 = f(x̂k, uk);

Set: k ← k + 1, x̂
(0)
k = x̄k ;

for j = 1 to p do

Set: δz
(j)
k = zk[j]− h(x̂(j−1)

k),

H
(j)
k = Hk[j, :] ∈ R1×n, Hk = ∇hx(xk)

∣∣∣
x̂
(j−1)
k

∈ Rp×n;

if j == 1 then
//Full Step: Time Propagation and Measurement Update;

Run:
(
E[δxk|k−1|yk], P

(j)
k

)
= MCE(Φk−1,Γk−1, H

(j)
k , δz

(j)
k);

else
//Measurement Update Step Only;

Run:
(
E[δxk|k−1|yk], P

(j)
k

)
= MCE MU(H

(j)
k , δz

(j)
k);

end
// Update the Characteristic Function of the MCE (ΦY (ν));

Update: ΦY (ν) = ejν
T cΦX(ν), c = −E[δxk|k−1|yk];

// Refine the State Estimate;

Update: x̂
(j)
k ← x̂

(j−1)
k + E[δxk|k−1|yk];

end

Return: x̂
(j)
k , P

(j)
k ;

Algorithm 13: Extended Cauchy Estimator for Nonlinear Systems and Multiple
Measurements

105

Chapter 8

Experiments

This chapter discusses the performance and execution speeds of the MCE and EMCE

for several experiments in Cauchy, Gaussian, and S−α−S noise. A simple three-state

linear simulation in Cauchy noise is first provided to illustrate the advantages of the

proposed estimator within impulsive noise environments. Execution speeds are then

benchmarked for the methods proposed in chapters 3 and 4 for both the serial and

distributed implementations of the MCE. Next, a nonlinear three-state homing missile

simulation is given, using simulated S−α−S measurement radar noises suggested by [9].

Monte Carlo simulations demonstrate the robustness the proposed estimator has for the

α ∈ [1, 2] family of densities. Lastly, a five-state low earth orbit satellite simulation is

given, showing the application of this estimator to challenging real-world scenarios.

Experiments were conducted on an Asus Strix laptop computer with an Intel i7-

6700HQ CPU clocked at 2.60GHz and an NVIDIA 1060 Geforce GTX GPU. In addition,

the National Science Foundation XSEDE Expanse GPU cluster was also used to test the

application on the more powerful NVIDIA V100 SMX2 GPU.

106

8.1 A Linear Three-State Simulation in Cauchy Noise

8.1.1 Formulation

The performance of the MCE against the Kalman filter for the three-state linear dynamic

system (previewed in section 3.5) in both a Cauchy and Gaussian noise simulation is given.

The dynamic system is

Φ =

 1.40 −0.60 −1.00
−0.20 1.00 0.50
0.60 −0.60 −0.20

 , Γ =

 0.10
0.30
−0.20

 , H =

1.000.50
0.20

T , β = 0.1, γ = 0.2 (8.1)

where β is the scaling parameter of the Cauchy pdf of the process noise, and γ is the

scaling parameter of the Cauchy pdf of the measurement noise. For the Kalman filter,

the corresponding noise terms are simply 1.3898β and 1.3898γ using the least squares

fitting result of section 1.4. We compare the performance of the two estimators in both

a Cauchy and Gaussian noise simulation.

The dynamic system of (8.1) was first used to showcase the MCE algorithm in [16],

which used the backward recursive characteristic function presented in chapter 2. Until

now, the sliding window approximation had not been discovered for three-state problems.

Therefore, applications involving three states or more could not be pursued. Moreover,

propagating the backward recursive characteristic function as in chapter 2 was simply too

expensive, as will be shown. The sliding window approximation was, however, applicable

to the special case of two state problems [15, 31], but was exceptionally slow due to

the method of chapter 2. By using either the method of chapter 3 or chapter 4 to

compress the characteristic function, the compressed MCE can now use the sliding window

approximation like in [15, 31], but now for multivariate systems and with a remarkably

reduced number of terms encompassing the characteristic function at each step k, when

compared to [16]. Furthermore, parallel programming is seen to be highly advantageous

for the compressed MCE. The estimation algorithm can now run at execution speeds

which, for many applications, would be considered real-time appropriate.

107

8.1.2 Numerical Results

Figure 8.1: Comparison of the MCE to a Kalman filter in a Gaussian and Cauchy noise
simulation. Cauchy errors are primarily bounded by their one-sigma confidence bound
in Cauchy noise, whereas both estimators are bounded by their one-sigma values in

Gaussian noise.

Figure 8.1 (left column) illustrates the interesting properties of the MCE in a Cauchy

noise simulation. As given in (2.9), the variance of a Cauchy estimator is explicitly a

function of the measurement, and therefore the conditional variance dynamically adjusts

to the measurement history. This is not the case in the Kalman filter, where the filter’s

posterior covariance is a-priori known. At k = 3, a pulse occurs in the process noise.

We see that the Cauchy Estimator tracks this jump in all three states with ease, while

the Kalman filter mostly ignores this pulse in states one and three, producing large state

errors. At k = 4, a pulse occurs in the measurement noise. We see the MCE ignores this

pulse while sharp jumps are seen in the Kalman filter.

This behavior observed in Fig. 8.1 is the result of the MCE’s ability to hypothesize

multi-modal beliefs of the conditional state estimate, as was depicted in Fig. 1.1. De-

pending on the magnitudes of the process and measurement scaling parameters β, γ, the

estimator can quickly hedge between whether outliers are more likely to be the result

of process or measurement noises. Above, the process noise impulse was smaller than

108

the measurement noise impulse, to an appropriate level. The MCE correctly tracked the

process noise outlier and ignored the measurement noise outlier. If the realization of the

process outlier happened to be much larger, the MCE would not track the jump in the

process (as γ > β), momentarily concluding that the sensor measurement outlier must

be due to the measurement noise. However, it would also hedge this bet by allotting

a non-negligible amount of probability to the chance the outlier was in fact due to the

process. If the next sensor measurement is consistent with that of the prior estimation

step, the estimator will quickly track the jump and revert its hedge. This behavior is

consistent with what is seen in particle filtering methods, however, these methods require

large particle sets to produce this exact behavior [7].

Figure 8.1 (right column) shows the performance of both estimators in Gaussian noise

simulation. We see clearly, in Gaussian noise, the Kalman filter is the superior estimation

scheme. It is interesting to note how the one-sigma values of the MCE upper-bound those

of the Kalman filter and that in Gaussian noise, both of the estimator’s one-sigma values

bound the estimation error at each step.

Reducing terms is seen to have a tremendous computational advantage over not re-

ducing terms at the end of each estimation step k. Table 8.1 illustrates the savings. At

step k = 8, the new estimation scheme encompasses only 1% of the former number of

terms required. This is a core advantage of the compressed MCE algorithm over the

method of chapter 2.

Table 8.1: Number of terms eliminated by the term reduction algorithm at each
estimation step. Depicted are the results of reducing terms for the three-state example.

Time Step (k) k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
No Term Reduction 4 20 120 792 5,440 37,936 216,066 1.69M

With Term Reduction 4 14 48 161 542 1,762 5,709 18594

Execution Speeds

The three-state problem of (8.1) is now used to demonstrate the computational improve-

ments of the MCE since its inception in [16]. Execution times for arbitrary three-state

dynamic systems follow very closely to the execution speeds presented here. The exe-

109

cution times presented are significant because they are identical to the execution times

of the sliding window approximation of chapter 5 for a respective window length. Put

another way, the execution speed of the sliding window method for W sliding windows is

solely dependent upon how quickly the W −th step of the estimator can be run (provided

sufficient computational resource is available for all windows). The ’Hz-Rate’ columns in

the following tables are provided for this reason.

To showcase the (remarkable) improvement in execution time the MCE has undergone,

Table 8.2 first presents the original implementation of the MCE used in [16], which

implements the backward recursive characteristic function of chapter 2. Table 8.2 also

shows the Python implementation of the MCE, which originally tested the method of

chapter 3 and allowed for similar terms to reduce together. The impact that reducing

terms had was clear, lowering the time required to run 8 estimation steps by 108 times.

Table 8.2: The original ‘backward-recursive’ Matlab MCE and the prototype Python
implementation of the MCE using the method of chapter 3.

Language Estimation Step Step Time (sec) Hz-Rate
Matlab 6 23.20 0.0431
Matlab 7 317.46 0.00315
Matlab 8 8762.37 0.000114
Python 6 5.01 0.1996
Python 7 18.92 0.0528
Python 8 80.94 0.0123

Next, a C/C++ implementation of the MCE was pursued to test the performance of

both chapters 3 and 4 methods without (Python) interpreter overhead. Table 8.3 depicts

the results of the serial C implementation. The C-code was designed to be a single-

threaded application, executing on a single CPU. The LAPACK linear algebra library

was used to solve the least squares problem of (3.6), while the GNU linear programming

kit (GLPK) was used to solve the small phase-I feasible linear programs required by Inc-

Enu. The C code was seen to reduce the interpreter overhead at step 8 by 20 times. The

method of chapter 4 halved the overall run-time when compared to that of chapter 3.

Listed in Table 8.4 is the amount of time required by using either the chapter 3 or

chapter 4 method to parameterize the α−vectors, for the terms at step 8. The advantage

110

Table 8.3: The C/C++ implementation of the MCE using the methods of chapters 3
and 4. Times are reported for a single thread running on a single processor.

Method Estimation Step Step Time (sec) Hz-Rate
Chapter 3 6 0.201 4.975
Chapter 3 7 0.847 1.181
Chapter 3 8 4.199 0.238
Chapter 4 6 0.117 8.547
Chapter 4 7 0.500 2.00
Chapter 4 8 2.023 0.493

of this method is clear as the number of hyperplanes in the arrangement becomes larger.

Results are similar for the CUDA-C implementation. See section 6.2.8 for comments on

how this speed-up could be significantly improved.

Table 8.4: Comparing the C/C++ execution speeds to parameterize α using the
methods of chapters 3 and 4. Note ms is shorthand for milliseconds.

Number of
Hyperplanes

Terms Chap. 3 Time (ms) Chap. 4 Time (ms) Speed-Up Factor

4 6223 318 248 1.28
5 2685 312 189 1.65
6 1453 302 174 1.74
7 994 337 192 1.76
8 780 408 210 1.94
9 2484 2330 965 2.41

A CUCA-C implementation of the MCE was then devised to test the true computa-

tional performance of both chapters 3 and 4 methods by using GPU parallel compute.

The CUDA-C implementation conducts all subroutines enumerated in chapter 6 on the

GPU, maximizing the computational throughput of the full MCE algorithm. Optimizing

this performance required significant development time. Shown in Table 8.5 are the re-

sults of the GPU parallelization. For the method of chapter 3, the GPU implementation

on the modest 1060 GeForce GTX is able to execute step 8 now in 179 milliseconds, a

speed-up over the CPU version of 23.5 times. For the same GPU, the MCE is now able to

execute step 8 now in 85 milliseconds using the technique of chapter 4, gaining a speed-up

of 23.8 times over that of its CPU implementation. Compared to running 8 steps using

the original MCE Matlab implementation, the GPU code is now ∼50,000 times faster

with the chapter 3 method and ∼ 100, 000 times faster using the chapter 4 method.

111

Table 8.5: The CUDA-C implementation of the MCE using the methods of chapters 3
and 4

Method Step
Step Time (ms)
on GPU 1060

Hz-Rate
GPU 1060

Step Time (ms)
on GPU V100

Hz-Rate
GPU V100

Number
of terms

Chapter 3 6 10.13 98.71 3.16 315.6 1762
Chapter 3 7 38.90 25.70 7.50 132.83 5709
Chapter 3 8 179.8 5.56 24.16 41.378 18594
Chapter 4 6 5.88 169.98 2.36 423.01 1762
Chapter 4 7 18.09 55.27 3.96 252.20 5709
Chapter 4 8 85.25 11.73 10.2 98.52 18594
Chapter 4 9 - - 42.6 23.45 80288
Chapter 4 10 - - 275.4 3.63 326497

The results are even more impressive when utilizing a top-of-the-line GPU, such as

the V100. For the method of chapter 3 executes step 8 now in 24 milliseconds, a speed-up

over the CPU version of 173.8 times. For the same GPU, the MCE is now able to execute

step 8 now in 10 milliseconds using the technique of chapter 4, gaining a speed-up of

200 times over that of its CPU implementation. Compared to running 8 steps using the

original MCE Matlab implementation, the GPU code is now ∼ 365, 000 times faster using

the chapter 3 method and ∼ 860, 000 times faster using the chapter 4 method. Execution

times for steps 9 and 10 are also provided for the chapter 3 method, showing the V100

can still run sub-second for hundreds of thousands of terms. Note that execution speeds

for window sizes 9 and 10 require close to six gigabytes of device memory to achieve

real-time performance and therefore are not given for the 1060 GPU due to its memory

limitation. It should also be mentioned that because the software has been optimized

for larger window sizes (i.e., seven through ten), program launch parameters for smaller

window sizes could truly be optimized further.

Execution Speed for LTI Systems

Discussed in section 3.7 was the special case when a system is linear time-invariant.

The theory presented in [22] shows that the indices at which hyperplanes coalign (term-

coalignment) and the indices at which terms reduce with one another (term-reduction)

are a-priori known, regardless of the initial conditions provided. The majority of the

compute within the term-coalignment and term-reduction sub-routines can be removed

112

for this special case. Specifically in term-coalignment (for each term), hyperplanes at

the known indices of coalignment are discarded. In term reduction, the α
k|k
i vectors of

terms at the known indices of reduction must simply be added together. The bulk of

the computation savings is within the term-reduction sub-routine, where the quadratic

run-time is now effectively linear in the number of (a-priori known) α
k|k
i vector additions.

Table 8.6 shows the execution speeds of the CUDA-C implementation for the LTI

example given, using this a-priori information. We see a 40% increase in execution speed

for the method of chapter 4 at step 8. This is because the method of chapter 4 for

computing the α−vectors is much quicker than that of chapter 3, and therefore removing

the majority of compute from term-reduction has greatly improved the overall run-time.

The results of step 7 indicate large savings are not observed until the characteristic

function of the MCE is made up of greater than 10000 terms (i.e, step ≥ 8). We see

that for steps 9 and 10, the V100 GPU yields approximately a 2 or 3 time speed increase

over those in Table 8.5, respectively. Note that the number of terms is the same as in

Table 8.5.

Table 8.6: The CUDA-C MCE using the methods of chapters 3 and 4 with a-priori
term-coalignment and term-reduction

Method
Estimation

Step
Step Time (ms)
on GPU 1060

Hz-Rate
on GPU 1060

Step Time (ms)
on GPU V100

Hz-Rate
on GPU V100

Chapter 3 7 38.90 27.78 7.4 144.38
Chapter 3 8 142.8 7.00 19.3 51.73
Chapter 4 7 15.75 63.75 3.448 290.03
Chapter 4 8 50.52 19.41 6.04 165.43
Chapter 4 9 - - 20.87 47.906
Chapter 4 10 - - 107.4 9.31

Discarding Terms

As discussed in section 3.7.1, a numerical study of the terms of the characteristic function

reveals that for many terms, the norm of its α
k|k
i parameter vector approaches zero. If

a small value of ϵ is chosen, terms of the MCE with ||αk|ki || ≤ ϵ could be discarded, at

the loss of slight numerical precision in the mean/variance calculation. Here, the 1-norm

is used. Shown in Table 8.7 are the number of terms removed by this approximation

113

at step 8. The maximum deviation from the conditional mean/variance when compared

with the estimate without the approximation is given next. The maximum complex error

associated with (2.8) and (2.9)1 are then given, followed by the computation time taken.

Table 8.7: Discarding terms of the MCE at step 8, given ||αk|ki || ≤ ϵ.

Epsilon
Terms
removed
(of 18594)

Mean
Deviation

Max Mean
Imaginary Part

Variance
Deviation

Variance
Imaginary Part

Time (ms)
GPU 1060

0 0 - 8e-15 - 6e-12 85.25
1e-19 1317 1e-16 2e-13 2e-12 1e-11 80.63
1e-18 1958 2e-13 3e-12 7e-11 3e-11 77.76
1e-17 2562 3e-12 1e-11 2e-10 5e-10 75.31
1e-16 3551 7e-10 4e-10 3e-9 8e-9 74.48
1e-15 4370 7e-10 4e-10 2e-9 7e-9 72.71
1e-14 5609 1e-9 1e-9 2e-8 6e-8 68.87

The alpha approximation presented in Table 8.7 could be used in conjunction the

a-priori knowledge of LTI systems, however this was not attempted. Doing so, would

likely increase the execution speeds in Table 8.6 slightly, possibly up to 10-15%. It is

also interesting to note that if the initial condition p1|0 for the MCE was made equal to

a zero vector, indicating that the initial state is a-priori known, a massive 17192/18594

terms are removed by step 8, using just ϵ = 1e−19. Error statistics for this case are very

similar to those of row two in Table 8.7. Unfortunately, this is not pursued since the

initialization method of chapter 5 will not create p1|0 equal to zero when constructing

the initialization parameters {A1|0, b1|0, p1|0}. It should be noted however, that if the

initialization method proposed in chapter 5 was removed, and a window size of ∼ 8 was

chosen, the performance of the estimator does not degrade very much, and the execution

speed of 8-steps is approximately twice the Hz-rate reported in Table 8.5 for step 6 (i.e,

850Hz on the V100 and 330Hz on the 1060). These experiments indicate that there

is likely further work that can be explored regarding the ||αk|ki || ≤ ϵ approximation, its

empirical performance, and its numerical stability.

1The mean and variance are calculated as complex numbers, but should have only real value and a
zero imaginary part. Due to numerical imprecision in the computation of (2.8) and (2.9), this is not the
case, but should be near zero.

114

Windowing Example

Compared in Fig. 8.2 is the state error and one-sigma confidence bounds of the Kalman

filter and the MCE. The simulation uses the Cauchy noise simulation realization depicted

in Fig. 8.3 and the dynamic system of (8.1). The MCE uses the sliding window approx-

imation of chapter 5. The experiment was repeated for each window size 4 through 8,

using this same process and measurement noise realization of Fig. 8.3 to test the impact

of window size on estimation performance. Note that Figure 8.4 (presented later) gives

a zoomed-in view of the state errors and one-sigma confidence bounds in Figure 8.2.

Figure 8.2: State error plot of the MCE for window sizes of four through eight,
compared to the Kalman filter, in a Cauchy noise simulation. Solid lines depict the

state estimation error of the MCE, while dashed lines depict the one-sigma confidence
bound of the estimators.

The MCE’s ability to quickly track large jumps in the state is clear in Fig. 8.2. The

process noise realization (blue) that is depicted in Fig. 8.3 shows where these jumps

occur. Although β < γ, it is seen in Fig. 8.3 that the process noise realizations at steps

27 and 55 are very large. We see in Fig. 8.2 that the MCE ignores these process jumps

at 27 and 55, concluding (momentarily) that these outliers are most likely due to a large

measurement noise entering the system (as β < γ). At the next estimation step, however,

the sensor measurement is consistent with the prior measurement, and the MCE makes

115

Figure 8.3: Simulated measurement realization, along with the process and
measurement Cauchy noise realizations.

a large update to its conditional state estimate and immediately tracks the jump. This

result indicates that the MCE has now jumped to its second belief: the outlier was due to

large process noise. This behaviour is clear by comparing the MCE to the Kalman filter.

We see the Kalman filter takes many additional steps to correct for the large jumps at 27

and 55. This is the power of an estimator which does not simply use a linear gain that

operates on measurement residuals, as the Kalman filter does.

Figure 8.4 zooms in on the state-error plot of Fig. 8.2. It is easier to see here that

the MCE tracks the jumps quickly at steps 28 and 56. It is also interesting to note that

at each time step where a large spike occurs in either the process or the measurement

noise realization, the estimator adjusts its covariance (and thus, the one-sigma confidence

bounds) dramatically. This variance information can be useful for two reasons. First,

it shows exactly where the estimator is less certain of its belief, which could be useful

for event-detection applications. Second, this information can be especially useful for

applications which make use of a pdf or second moment statistics when forming a control

law [39, 40]. Without even viewing Fig. 8.3, it is easy to tell exactly where either a

volatile process or measurement noise realization has entered the system; by viewing

116

the one-sigma confidence bound of the MCE. This is in contrast to the Kalman filter in

Figs. 8.2 and 8.4, whose covariance estimate is not a function of the measurement.

Figure 8.4: Close-up of the state-error plot depicted in Fig. 8.2. All windows are seen to
perform very similarly to one another.

Lastly, Fig. 8.4 shows how similar the conditional mean and variance estimates are

using the sliding window approximation for window sizes 4 to 8. The state errors are seen

to be practically indistinguishable for all windows. Moreover, the one-sigma confidence

bounds appear to be almost identical. This implies that estimation accuracy and speed

can be traded-off, to a degree, by using the sliding window approximation. With only a

very slight loss in estimation accuracy, the window size of four is seen to be appropriate

for this system. Running the sliding window approximation with multiple window sizes is

a good way to trade-off estimation accuracy and execution speed, for a given application.

For example, a sliding window approximation with six windows can achieve over 400 Hz

on the V100 (see Table 8.5) and for four windows, can achieve over 1000 Hz (not listed,

see [18]).

Two, Three, Four and Five State Problems

Table 8.8 gives a summary of the execution rates for dynamic systems of 2, 3, 4 and 5

dimensions, for the listed number of process and measurement noises. These times are

117

given for the 1060 GPU. For the V100, the rates would be in the range of 8-10 times those

presented here. The execution rates is found by taking the reciprocal of the execution

time, i.e, the time required to run the n-th step. This rates indicates the speed at which

the slide window approximation of n-windows could continuously run a time-varying or

nonlinear system of dimension 2, 3, 4, 5, respectively. Listed additionally is the execution

rate if a-priori term-coalignment and term-reduction is used, i.e, if the system is indeed

LTI. Note that 2, 3, etc. measurement noises implies that 2, 3, etc. measurements would

be processed at each estimation step. Note that the times are given for the method of

chapter 4, and are roughly half if the method of chapter 3 is used instead.

Table 8.8: Execution rates for systems of various dimensions on the 1060 GPU. Rates
are given assuming the system is LTI, or not LTI. Note CF stands for characteristic

function.

Dimension
Process
Noises

Measurement
Noises

Step
Number

Rate (Hz) for
Non-LTI System

Rate (Hz) for
LTI System

2 1 1 8 150.0 222.2
2 2 1 7 70.2 161.2
2 2 2 6 1.5 26.8
2 2 2 5 31.1 122.0
3 1 1 8 11.7 19.4
3 2 1 6 23.4 25.8
3 1 2 5 14.3 33.7
3 2 2 4 17.1 28.6
3 3 1 5 34.8 46.8
3 3 2 4 2.8 5.8
3 3 3 3 2.62 4.4
4 1 1 6 20.7 33.3
4 2 1 5 15.5 16.5
4 1 2 5 14.9 20.8
4 2 2 4 1.0 1.3
5 1 1 6 24.0 26.8
5 2 1 4 33.3 35.8
5 1 2 4 1.45 1.6
5 2 2 3 4.3 4.5

An obvious result from Table 8.8 is the effect of using multiple measurement noises

and process noises at each time step. The net effect is that the window size will need

to decrease for such systems, as the computational and memory load can become large.

Systems with n process noises (columns of Γ) add n hyperplanes to each term’s hyperplane

118

arrangement per step. This in effect adds more computational effort to construct a term’s

α-vector, as the dimension of α will become larger as given by (3.2). Systems with n

measurements will add many terms per estimation step, despite term reduction reducing

many of them together. This is due to the factorial growth rate of the estimator when

it generates child terms. The issue with child generation is that when there are many

terms, the quadratic run-time of term reduction becomes large. This is clearly seen in the

2 dimension, 2 process noise, 2 measurement noise example. Many terms are created after

processing 12 measurements (2 measurements/step × 6 steps), and the term reduction

algorithm consume almost all of the time required. We see in the last column of this

example that when the system is LTI, much of this work is removed, as we know a-priori

which terms reduce, and therefore, term-reduction is effectively linear in the number

of known reductions. In some of these larger systems, the window size of 4 or 3 is

recommended to stay real-time. From the results of Fig. 8.4, we see that smaller window

sizes (those about 4) do not really impact the performance of the estimator very much.

This insight is additionally observed in the following experiment.

8.2 A Three-State Nonlinear Homing Missile Simu-

lation in Heavy-Tailed Noise

8.2.1 Formulation

A nonlinear target-pursuer homing missile problem is now considered, modelled as sug-

gested in [41] and depicted in Fig. 8.5. The pursuer’s estimation objective is to use an

onboard radar sensor to estimate the relative lateral position and velocity between itself

and its target. The lateral acceleration of the target is estimated as well. The onboard

radar provides a noisy line-of-sight bearing measurement between itself and the relative

lateral and longitudinal distance to its target. These measurements are provided to the

pursuer as it longitudinally closes in on the target and until the time-to-intercept reaches

zero. The noise distribution associated with the radar sensor is modelled as a S−α−S

119

pdf with stability parameter α = 1.7 as suggested in [9], and with a time-varying fading,

scintillation and glint noise model that is inversely proportional to the time-to-intercept

[41]. The noises are generated using the method proposed in [19]. The target is modelled

with non-Gaussian forcing evasive maneuvers. This is done by simulating the acceleration

profile of the target as a telegraph wave with Poisson-distributed switching times. The

telegraph (forcing) wave, although non-Gaussian, admits finite first and second moments.

The telegraph forcing is modelled to have two modes: a long primary mode of ±3G am-

plitude and a shortly sustained secondary mode of ±9G amplitude, where G stands for

the acceleration due to gravity.

Figure 8.5: Schematic of the three-state target-pursuer homing missile problem.

The lateral interception dynamics are modelled in continuous time as


ẏ

v̇

ȧT

︸ ︷︷ ︸
˙⃗x(t)

=


0 1 0

0 0 −1

0 0 − 1
τ


︸ ︷︷ ︸

F


y

v

aT

︸ ︷︷ ︸
x⃗(t)

+


0

1

0


︸︷︷︸
B

ap +


0

0

1


︸︷︷︸
G

waT , (8.2)

where y, v ∈ R are the relative lateral position and velocity between the pursuer and its

target, respectively, aT ∈ R is the lateral acceleration of the target with a modeled first

order lag coefficient τ > 0, ap ∈ R is the lateral acceleration of the pursuer, and waT ∈ R

is additive white noise. The initial conditions on the lateral relative position and velocity

120

are

E[y(t0)] = 0, E[v(t0)] = 0,

E[y2(t0)] = 0, E[v2(t0)] = Pv(0), E[y(t0)v(t0)] = 0.

(8.3)

The initial lateral velocity v(t0) is random and is the result of launch error, whereas the

initial lateral position y(t0) is assumed to be known and zero. The controller for the

pursuer ap is set to be a guidance law that is a function of the true underlying simulation

state instead of a function of the state estimates. This is done to limit the focus on state

estimation performance and to avoid statements regarding state-estimate-based feedback

control laws. This task is left to future work.

To be more realistic, the pursuer wishes to equate the statistics for its first-order

target acceleration model in (8.2) to that of a telegraph wave with Poisson distributed

switching times. In appendix A.2, it is shown that if the statistics of aT in (8.2) are

assumed Gauss-Markov with mean and auto-correlation given as

E[aT (t)] = 0, RaT aT (t, s) = E[a2T]Φ(t−s) = E[a2T]e−
|t−s|

τ , (8.4)

where Φ(t − s) is the transition matrix, then the Gauss-Markov model can be set equal

to the second-order statistics of the telegraph wave, which are

E[hT (t)] = 0, RhT hT (t, s) = h2T e
−2λ|t−s|. (8.5)

This is done by setting E[a2T] = h2T and τ = 1
2λ

above, where λ is the Poisson rate

parameter and hT is the height of the telegraph. For simplicity, it is assumed the pursuer

has a-priori knowledge of hT and λ to equate the statistics of (8.4) and (8.5)

Let ∆ = tk+1− tk be the discrete-time increment with k the time index. The discrete-

121

time system of (8.2) is given by

x⃗k+1 = Φkx⃗k +Bkapk + Γkwk, (8.6a)

zk = θk + nk, θk = arctan

(
yk

Vc(tf − tk)

)
, (8.6b)

where

Φk =


1 ∆ τ 2(1− e−∆

τ)− τ∆

0 1 τ(e−
∆
τ − 1)

0 0 e−
∆
τ

 , (8.6c)

Γk =


τ2∆+ τ3(e

−∆
τ − 1)− 1

2τ∆
2

−τ2(e−
∆
τ − 1)− τ∆

−τ(e−
∆
τ − 1)

, (8.6d)

Bk =


1
2∆

2

∆

0

. (8.6e)

The process noise wk, approximating the telegraph wave maneuver of the target using a

Gaussian model as derived in appendix A.2, is characterized by

wk ∼ N
(
0,

2

τ

h2T
∆
δkl

)
, (8.7)

where δkl is the Kronecker-delta function. The radar measurement zk of (8.6b) is the

line-of-sight bearing θk between the pursuer and its target, where Vc is the longitudinal

closing speed of the pursuer onto the target and is assumed for simplicity to be constant,

and tf−tk is the time-to-interception. The measurement noise nk, as suggested by [41], is

an additive, time-varying Gaussian with power spectral density components R1, R2 that

model fading, scintillation, and glint for the radar sensor. Its statistics are approximated

by

E[nknl] = Vkδkl =

[
R1

∆
+

R2

(tf − tk)2∆

]
δkl. (8.8)

122

A linear guidance law (for small angles θk) is adopted for the pursuer from [41] as

apk = −KeVcθ̇k = −Ke

[
(tf − tk)vk + yk

(tf − tk)2

]
, (8.9)

whereKe is a proportional navigation constant set to 5. The simulation uses the simulated

states to construct the control apk . This allows the same state realization to be used for

feedback by both estimators.

The homing missile simulation statistics stated in (8.7) and (8.8) are formulated as

Gaussian (i.e. α = 2.0). However, we would like to simulate the radar measurement

statistics of (8.8) as non-Gaussian with α = 1.7 [9]. To do so, we fit the underlying

measurement statistics for α = 1.7 to the presented Gaussian form in (8.8). The statistics

for the EKF follow those presented in (8.7) and (8.8). The process and measurement

statistics for the EMCE (α = 1.0), however, must be fit to the Gaussians of (8.7) and (8.8)

as well. Therefore, a least square fit for a pdf of α = 1.7 to a Gaussian (α = 2.0) pdf as well

as a Cauchy (α = 1.0) pdf to the same Gaussian is performed by numerically minimizing

(1.6). With the target pdf set Gaussian (αT = 2.0) and the proposal distribution set to

αP = 1.7 yields the scale ratio σP
σT
≈ 0.7096. Repeating the minimization for the Cauchy

distribution (αP = 1.0) fit to the Gaussian, we find a scale ratio of σP
σT
≈ 0.7195, which is

also confirmed analytically in [13, 16] by minimizing (1.5) for Cauchy and Gaussian pdfs.

Note that the scale parameter for the Gaussian characteristic function is by definition

σ√
2
. Also note that the minimization yields a ratio that relates the scale parameters of

the two distributions, and thus we set σT = 1.0 for the minimizations above.

8.2.2 Experimental Simulations and Results

The simulation was conducted using ∆ = 0.1sec, E[h2T] = 1002ft2, λ = 0.75Hz, Pv =

2002 ft2

sec2
, Vc = 300 ft

sec
, tf = 10sec, R1 = 15 × 10−6rad2sec and R2 = 1.67 × 10−3rad2sec3.

The interesting properties of the EMCE for nonlinear dynamics within a heavy-tailed

environment is first discussed. For this experiment, the 1060 GPU was used. Next, the

exciting robustness properties of the EMCE are illustrated through several Monte Carlo

123

experiments. For the numerically intensive Monte Carlo simulations, the V100 GPU

cluster provided by XSEDE was used.

Sliding Window Simulation

For this experiment, we show the relative performance between an EKF and an EMCE

for a single realization of the missile interception problem when an impulse in the mea-

surement sequence is observed close to the intercept time at tf = 10 sec. Here, the

pursuers guidance law apk is set to zero. Doing so allows the measurement function to

become more nonlinear towards the time-to-intercept. This enables a clear visualization

of the advantage the EMCE holds over the EKF. The performance for EMCE window

banks of size four to eight is compared against that of the EKF, within environmental

noise with α = 1.7, as discussed in section 8.2.1.

Figure 8.6 presents the simulation input data for the experiment. The top subplot

of Fig. 8.6, shows the simulated line-of-sight bearing angle measurement provided to the

pursuer by its on-board radar sensor. The middle subplot shows the S−α−S radar noise

with α = 1.7. The bottom subplot is the acceleration profile of the target, simulated as

a telegraph wave.

The performance of the EMCE and EKF for this sample run are presented in Fig. 8.7.

Depicted are the state-estimation errors for the relative lateral position (top) and relative

lateral velocity (middle) between the target and its pursuer. The lateral estimation error

for the telegraph acceleration profile of the target is depicted in the bottom subplot. The

dashed green line depicts the EKF’s predicted one standard deviation confidence bound

of its estimate, whereas the other dashed lines are the one standard deviation confidence

bounds for the EMCE window banks. The horizontal axis for both Figs. 8.6 and 8.7 is

the time-step, where at t = 10sec the pursuer catches up longitudinally with its target.

Figure 8.7 shows that both estimators appear to estimate the relative position and

velocity similarly for the first 80 time-steps, while both struggle to determine the telegraph

acceleration. As the pursuer closes in longitudinally, the nonlinearity of the measurement

model will become more pronounced because longitudinal deviations at close distances

124

Figure 8.6: Simulated measurement, measurement noise, and process noise used in the
target-pursuer experiment.

affect the bearing angle measurement more severely. Figure 8.6 shows that at time-

step 84 when the pursuer is longitudinally close to its target, an impulse in the radar

measurement noise is observed. The EKF reacts strongly to this impulse, while all EMCE

window banks are seen to ignore the impulse. Due to the nonlinearity in the measurement

model, the EKF is not able to recover from the outlier and its estimate of relative lateral

position continues to diverge severely until the end of the experiment. This is caused by

the fact that the linearization of the measurement model in the EKF is taken about the

state estimate, which continues to worsen.

From time step 84 and on, all of the EMCE window banks remain within their pre-

dicted one standard deviation confidence bounds, while the EKF state-estimate error

diverges far outside of its predicted confidence bound in both relative lateral position and

velocity. Moreover, the confidence bound of all EMCE window banks for relative lateral

position crosses inside that of the EKF confidence bound. This is possible because the

EMCE covariance is a function of the measurement itself, and can adjust dynamically to

its measurement history.

Figure 8.8 shows a magnified illustration of the state error in the relative position

125

Figure 8.7: EKF and EMCE estimation errors (solid) and one-sigma standard deviation
bounds (dashed).

given in Fig. 8.7. The performance of the EKF and EMCE is similar when the noise

is close to Gaussian, as seen in Figs. 8.6 and 8.8 for the first 80 time-steps. Moreover,

there does not seem to be a large performance increase from using a sliding window-bank

of the last four measurements to a sliding window bank of the last eight measurements.

All window bank sizes perform competitively to the EKF in the first 80 time-steps,

and all window banks are seen to greatly outperform the EKF once any heavy-tailed

noise is observed. This implies that, with only a very slight loss of estimation accuracy,

one could trade-off larger window bank sizes for faster execution speeds. We see that

the practical advantage of the EMCE for nonlinear systems is that the estimator stays

robust to heavy-tailed noises and outliers in the measurement (or the process), which

could otherwise cause large divergences or even failures to an EKF, as demonstrated by

Fig. 8.7.

The execution time for the EMCE window banks are simply those presented in Ta-

ble 8.5, as this problem is also three-state. The results showed clearly that the sliding

window approximation is real-time capable for three state estimation problems. For pow-

erful GPUs such as the NVIDIA V100, the estimator is able to achieve well over 90 hertz

126

Figure 8.8: Close-up of the top subplot in Fig. 8.7 : relative lateral position estimation
error.

for window sizes of eight or less. For estimates conditioned upon nine or ten measure-

ments, respectively, the execution time suffers due to the large number of terms required

to evaluate the characteristic function. However, we see that within the scope of the

problem presented, the estimation performance is perfectly sufficient for window banks

of size four or greater. On a more reasonably priced GPU, such as a Geforce GTX 1060,

the estimator can still achieve admirable execution rates for windows of size seven or less.

Using a window of 4 would yield a Hz-rate of over 1000 on the V100 GPU.

Monte Carlo Simulation

The performance of the EMCE against the EKF is now presented for five Monte Carlo

simulations, each of 9000 trials. For all experiments here, the homing missile guidance

law apk of (8.9) is used. For proper comparison between the estimators and to keep the

focus on estimation performance, the guidance law is implemented as a function of the

underlying simulation state and not the state estimates. Consequently, the guidance law

helps mitigate the nonlinearity in the measurement model by keeping the line-of-sight

bearing angle θk near zero and in effect, keeps the EKF from diverging dramatically, as

was discussed in section 8.2.2.

Due to the heavy-tailed measurement noise, ensemble averages of the state variances

will diverge as the number of trials tends toward infinity. Instead, the criterion used

is the geometric mean of the state error, which is known to exist when the noises are

heavy-tailed [7]. For the five Monte Carlo experiments, measurement noise was generated

for each experiment using the underlying S−α−S noise generator parameterized by α =

{2.0, 1.7, 1.5, 1.3, 1.0}, respectively. The measurement noise statistics of the EMCE and

127

EKF, however, were kept equal to those of section 8.2.2 for α = 1.7. Effectively, by

keeping the EKF and EMCE statistics constant across each experiment (but varying the

measurement noise severity), we evaluate the robustness of the estimators to uncertainty

in the model of the noise statistics. The range of α values chosen is motivated by the

fact that radar in environmental clutter has been observed to follow S−α−S distributions

with α values as low as 1.1.

Figure 8.9: Monte-Carlo simulations of 9000 trials for α = {2.0, 1.7, 1.5, 1.3, 1.0}. The
performance criterion is the geometric mean error. EMCE window bank of seven is in

blue, against the EKF (green).

Figure 8.9 illustrates the performance of the EKF against the EMCE for a modest

window bank size of seven. We see that, remarkably, there is almost no change observed

in the performance index for the EMCE in the relative position and velocity as α is

lowered from 2.0 to 1.0, while the EKF degrades dramatically. Unsurprisingly, the EKF

is the superior estimator in the pure Gaussian noise environment, whereas the EMCE

is superior for all heavy-tailed noise levels tested in relative position and velocity. We

conclude that the Cauchy estimator appears to either be or close to a minimum variance

estimator over the class α ∈ [1, 2]. In this sense, the EMCE is considered to be robust.

Both estimators struggle to estimate the acceleration state of the target, for which

the Monte Carlo trials do not produce convergent results for heavy-tailed noise α < 2.0

128

as they do for the relative position and velocity. We suspect that tens of thousands more

trials would be necessary to produce convergent results for target acceleration in Fig. 8.9,

which is estimated poorly, regardless.

Figures 8.7 and 8.9 suggest that the net benefits of the EMCE for heavy-tailed noise

environments are: 1) near identical performance relative to the EKF is expected during

periods of time when the noise is effectively Gaussian, 2) superior performance is expected

when the noise becomes more volatile than the Gaussian distribution suggests, and 3)

the EMCE is expected to stay robust and help safeguard against modes of failure that

can otherwise occur during nonlinear system estimation, as demonstrated by step 84 of

Fig. 8.7. Moreover, unlike the Kalman filter, Fig. 8.9 implies that regardless of how

heavy-tailed the noise characteristics can become, the mathematical structure of the

Cauchy estimator allows it to remain resilient to outliers of varying magnitudes and with

negligible impact on its performance index.

8.3 A Five-State Low Earth Orbit Satellite Simula-

tion in Heavy-Tailed Noise

8.3.1 Formulation

A simulation of a low earth orbit (LEO) satellite following a circular orbit around the

Earth is now presented. The example here follows closely to the simulation dynamics

presented in [12], however, the proposed experiment is different. The simulation dynamics

can be written as

d2

dt2
r⃗ = − µ

r3
r⃗− 1

2
CD

A

m
ρ

(
1 +

δρ

ρ

)
vrv⃗r (8.10)

d

dt

(
δρ

ρ

)
= −1

τ

(
δρ

ρ

)
+ wp (8.11)

where r⃗ is the position of the center of gravity of the satellite, expressed in a geocentric

and celestially referenced system of coordinates, v⃗r is the velocity of the satellite in a

129

terrestrially fixed geocentric system of coordinates that is aligned with Earth’s rotational

axis, and r = ||⃗r||, vr = ||v⃗r|| are the euclidean norm of these quantities, respectively

[12]. In (8.10), µ is the universal gravitation constant, CD is the coefficient of drag for

the satellite, A is the area of the satellite in the plane normal to v⃗r, m is the mass of the

satellite, ρ is the nominal atmospheric density of the satellite at its orbital height, and δρ

represents a change to the nominal density. In (8.11), the state δρ
ρ
is taken to be the change

in the atmospheric density over the nominal value and τ is a first-order time constant. In

(8.11), wp is an additive random noise, which was shown in [12] from experimental data

to be non-Gaussian and best modelled by an S−α−S distribution with α = 1.3. Hence,

it is seen that changes in dynamic pressure occur suddenly and impulsively during low

earth orbit.

In [12], an EKF and a scalar Cauchy estimator work in unison, where the scalar

Cauchy estimator is given the discretized dynamics of (8.11) and the EKF is given the

discretized dynamics of (8.10). GPS range measurements are provided to the EKF, using

the simplified measurement model of

zik = ||⃗r− r⃗i||+ vk, i ∈ [1, ..,m] (8.12)

where zik is the range from the LEO satellite to another satellite i at time step k and out

of m satellites that provide range measurements. Above, vk is the measurement noise

of the GPS, which is assumed Gaussian. In [12], the scalar Cauchy estimator uses a

virtual drag acceleration sensor measurement that is computed using the EKF’s velocity

estimate of the satellite as

d =
1

2
CD

A

m
v2rρ

(
1 +

δρ

ρ

)
(8.13)

where vr is the (norm of the) conditional mean of the EKF’s velocity estimate. The

scalar Cauchy estimator then supplies its estimate of the conditional mean and variance

of δρ
ρ

to the EKF to discipline its mean and covariance estimates for (8.10) using the

Kalman-Schmidt recursion (see [12]). Hence, each estimator bootstraps off the other.

It was seen that disciplining the EKF with estimates from the scalar Cauchy estimator

130

aided in estimating the atmospheric density of the satellite during its orbit. At the time

[12] was published, only the scalar cauchy estimator had a form that was computationally

tractable.

Now that the MCE is capable of estimation over long horizons, non-linear dynam-

ics and non-linear measurement models, the simulation conducted in [12] can be done

without bootstrapping one estimator off of the other and solely through the GPS mea-

surements, without (8.13). By conducting the full state estimation problem using the

EMCE, the estimator’s performance when processing both nonlinear dynamics and mea-

surement models can now be shown. It is expected that all states should be estimated

well during volatile changes in atmospheric density.

As the orbit is assumed circular, we pose this problem using five states, with two po-

sition states, two velocity states, and atmospheric density. Both the EMCE and the EKF

are formulated through discretizing the nonlinear transition model of (8.10) and (8.11)

into the structure of (3.24). Specifically, the EKF and EMCE form the linear dynamics

Φk =
L∑
i=0

(∇xf(x̂k))
i ∆

i

i!
(8.14)

Γk =

∫ ∆

0

Φk(τ)Γdτ, Γ = [0, 0, 0, 0, 1]T (8.15)

=

∫ ∆

0

L∑
i=0

(∇xf(x̂k))
i τ

i

i!
Γdτ

=
L∑
i=0

(∇xf(x̂k))
i ∆

i+1

i+ 1!
Γ

Hk+1 = ∇xh(x̄k+1), x̄k+1 = f(x̂k) (8.16)

where in (8.14), a power series is used to form the discrete time transition dynamics. The

power series uses L = 2, and ∆ = 60 seconds, as was specified in [12]. The superscript

i on the gradient of f(x̂k) denotes the matrix power of the gradient of (8.10) and (8.11)

with respect to the state estimate x̂k ∈ R5. The discrete time control matrix Γk of (8.15)

is formed by integrating the power series of (8.14) and multiplying by the continuous

time control matrix Γ. Equation (8.16) is the linearized measurement model about the

131

propagated state x̄k+1 by passing the state estimate x̂k through the nonlinear dynamics.

As ∆ = 60 seconds is a large quantity of time, a runge-kutta integration scheme is used

to propagate the state through the nonlinear dynamics using half second sub-intervals

until 60 seconds has passed. The EKF uses Φk,Γk, Hk to propagate and update the

covariance estimates in its traditional fashion, while the EMCE uses these matrices as

given by algorithm 13. Both estimators use (8.12) as their measurement model, with two

range measurements given per time-step.

8.3.2 Numerical Results

The LEO simulation sets the nominal orbital height to r = 200km, A = 64m, CD = 2.0,

τ = 21600, m = 5000kg, ρ = 2.541e−10, and the time between measurements is ∆ = 60.

The process noise parameter β was set to 0.0013 for ∆ = 60, based on the observed

S−1.3−S fitting of atmospheric density in [12]. The discrete-time process noise for the

EMCE follows this quantity and the EKF fits to this noise using (1.6). The GPS noise is

assumed Gaussian with 2.0m standard deviation, and two GPS range measurements were

used per time step. The EKF follows this quantity, while the EMCE fits its measurement

noise parameter to this quantity via (1.6). The period of the orbit is 88 minutes, and the

simulation is run over roughly 3.5 orbits, i.e., 300 time steps. For the EMCE, the sliding

window approximation with a bank of five windows is used, each window processing both

GPS range measurements per time step.

Depicted in Fig. 8.10 are the measurement and noise realizations used in the simula-

tion. The range measurements (top) are given to both estimators as the LEO satellite

makes its orbit. The Gaussian measurement noise realization (middle) corrupts these

range measurements. The process noise realization (bottom) is drawn from the S−α−S

distribution with α = 1.3 and a scaling parameter that uses (1.6) to convert β from α = 1

to 1.3, in the least squares sense. Three large jumps in atmospheric density occur in the

first 100 time steps. The first and largest jump is around k = 20, which will change the

atmospheric density from its nominal value by 150% (i.e., δρ
ρ
≈ 1.5). At around k = 60,

another jump appears and the density is reduced, and again around k = 100. After which,

132

there are no large changes in density. In [12], changes up to 600% for the nominal density

value were seen to occur, and therefore the realization here is not considered extreme, by

any accounting.

Figure 8.10: Top: simulated measurement ranges provided to the estimators. Middle:
realization of additive measurement noises. Bottom: realization of additive process

noise forcing atmospheric density.

Figure 8.11 shows the state errors of the EKF and EMCE for this realization. Al-

though the GPS measurements have a standard deviation of 2m, the effect of underes-

timating density is apparent by observing the EKF’s large state errors in position and

velocity when jumps occur. The EKF very slowly integrates these volatile changes in

atmospheric density. During the jumps, the EKF suffers from ‘filter smugness’, mean-

ing, the Kalman gain of the EKF is tailored to trust the process dynamics much more

than its sensor measurements. Therefore, large (and unexpected) changes in density are

133

Figure 8.11: EKF estimation errors (dashed green) and one-sigma standard deviation
bounds (dashed magenta). EMCE estimation errors (blue) and one-sigma standard

deviation bounds (red).

Figure 8.12: EKF and EMCE state estimates (green, blue), respectively, and true state
history of change in atmospheric density (red).

dismissed, leading to large errors during the EKF’s time propagation step (using the

runge-kutta integrated (8.10) and (8.11)) as well as in the EKF’s covariance calculations

(using the linearized system matrices (8.14) to (8.16)). This makes sense, as noises that

are hundreds of deviations away from the mean are infinitely rare under the Gaussian

assumption, but do occur when sampling from a heavy-tailed α = 1.3 distribution.

Shown in Fig. 8.12 are the state estimates of atmospheric density for the EKF and

the EMCE, as well as the true simulated state realization of δρ
ρ
. We see in Fig. 8.12 and

Fig. 8.11 (bottom) that after a half orbital period (i.e., k = 20 to k = 60), the EKF

has still not converged to the true density state. Large errors are produced at k = 60

once more in position and velocity after atmospheric density jumps again. It is clear the

one-sigma confidence bound of the EKF greatly underestimates its state error in all five

134

of the states throughout the entire simulation.

Compared to the EKF, Fig. 8.11 shows that no large errors in position and velocity are

accrued for the EMCE. It is clear that the EMCE is far superior in estimating position

and velocity during impulsive jumps in atmospheric density. Just as important is the

fact that the EMCE’s one-sigma confidence bound reflects the observed state errors of all

states, whereas the EKF does not. Moreover, the EMCE does not suffer from the same

‘smugness’ the EKF experiences. To summarize, the EMCE accurately estimates the

position and velocity of the satellite over the entire duration of the simulation, and with

covariance estimates that bound the state errors appropriately. As was discussed in [12],

the predictive task of estimating the probability of collision with other LEO satellites

is an important extension to the presented estimation problem, and consequently, when

orbital adjustments of the LEO satellite should take place. Because the EMCE’s one-

sigma confidence bound of Fig. 8.11 appropriately hypothesizes the state error, the state

and covariance estimates of the EMCE could prove to be useful for this task.

It is seen from Fig. 8.12 and the bottom subplot of Fig. 8.11 that atmospheric density

(blue) is estimated somewhat more appropriately by the EMCE during jumps in density,

although, the estimates are bouncy and non-smooth. We suspect that this is a result of

the sliding window approximation using only a window size of 5. Although not depicted, it

was seen from experiments that the smoothness of all estimates of the EMCE increased

dramatically when the window size was expanded from three to five. As atmospheric

density is a difficult quantity to observe, we suspect that recovering the atmospheric

density estimate using GPS measurements of 2m standard deviation is challenging when

using only a window size of 5. Future work should consider window sizes of up to 8.

Although the EMCE’s estimates in density are somewhat sub-optimal, the EMCE is seen

to track the changes in atmospheric density. From time steps k = 150 to k = 300,

the estimates in atmospheric density using the EKF are superior, as the process noise

realization is much closer to Gaussian.

Furthermore, it should be noted that the EMCE’s position and velocity error also

experience slightly non-smooth behavior. This is induced by the non-smooth atmospheric

135

density estimates, although less pronounced. Determining how to smooth out the density

estimates of the EMCE is left to future work. It is clear, however, that position and

velocity estimates are far superior to that of the EKF even with the observed ‘chattering’

in the state estimates. If the density estimates could be smoothed, it is suspected the

state estimates for position and velocity would improve further. Regardless, it appears as

though the position and velocity estimates remain resilient to both the underlying jumps

in density and the sub-optimal density estimates. Even if the aforementioned setbacks

were to remain unresolved, it is suspected the EMCE would be a good estimator for

predictive tasks such as the probability of collision, nevertheless.

Estimation of density in a lower measurement noise

Here, the (slightly unrealistic) scenario is considered where the GPS sensor measurements

now have centimeter-level accuracy. This is done to illustrate that the EMCE using

the sliding window approximation is perfectly capable of smoothly estimating density,

if given a sensor measurement that improves the observability of atmospheric density.

For simplicity, this is done here by scaling down the measurement noise. The simulation

realization presented in Fig. 8.10 is unchanged, with the exception that the standard

deviation of the measurement noise is lowered from 2.0m to 0.02m. Both estimators

are re-calibrated for this new measurement noise level. Figure 8.13 illustrates the state

estimates of the change in atmospheric density δρ
ρ
for the EKF and EMCE for this new

scenario. Shown in red is the true simulation state history, which is identical to that

presented in Fig. 8.12. It is clear that the EMCE now estimates the density smoothly

and detects the density jumps immediately. Even in this low-noise setting, the EKF takes

many steps to re-converge after the density is seen to jump. For reference, at k ≈ 20, the

EKF still takes about 30 time-steps for the density estimates to reconverge (at k ≈ 50)

after the first jump, while the EMCE needs only several.

Figure 8.14 illustrates the state errors of the atmospheric density for both the EKF

and EMCE. State errors for position and velocity are not given as they follow very closely

to those in Fig. 8.11, with the EMCE greatly outperforming the EKF in position and

136

Figure 8.13: EKF and EMCE state estimates (green, blue), respectively, and true state
history (red) of change in atmospheric density for low noise simulation.

velocity. Not only does the EMCE estimate density well, but the predicted one-sigma

confidence bound of the EMCE does well at encapsulating the state error of the density

estimates. The EKF’s one-sigma confidence bound, however, is nearly useless.

Figure 8.14: EKF estimation errors (green dashed) and one-sigma standard deviation
bounds (magenta dashed). EMCE estimation errors (blue) and one-sigma standard

deviation bounds (red).

The results here indicate that the EMCE is perfectly capable of estimating atmo-

spheric density using a higher fidelity measurement and a window of 5. Based on these

insights, several possible directions for future work could be explored. First, the re-

sults above indicate the five-state simulation could benefit from adding another sensor

measurement, such as one derived from a high-fidelity accelerometer. Adding another

measurement that increases the observability of density could prevent extending the win-

dow size. The second direction is to increase the window size and allow the EMCE to

condition its estimates on a larger measurement history. This was not done here due to

memory limitations (>8GB), however, a CPU (or multiple GPU) computer with 64GB

to 128GB of (device) RAM can easily handle window sizes of up to 8.

137

Chapter 9

Conclusions and Future Work

This dissertation proposes methods to replace the computationally intractable and backward-

recursive characteristic function of the original MCE algorithm with a non-backward

recursive (compressed) and computationally streamlined form. In addition to the theo-

retical contributions made by this dissertation, the sub-routines that comprise the newly

compressed characteristic function were analyzed for the purpose of distributing their

computation onto GPU devices. The net sum of these contributions leads to an esti-

mator that is capable of real-time performance and real-world engineering applications.

Furthermore, the MCE is seen to be very robust within heavy-tailed noise environments.

The contributions that were presented in this dissertation, as well the future work re-

maining for these contributions are formally enumerated below.

1. The compressed characteristic function of the MCE presented reduced the memory

burden of the estimator by allowing terms of previous estimation steps to be dis-

carded. By compressing the backwards recursive component of the characteristic

function, all similar terms can now be combined together at each estimation step.

This was seen to remove over 99% of terms after several estimation steps, when com-

pared to the original formulation. The technique presented in chapter 3 was reliant

on a cell-enumeration algorithm to determine the sign vectors of central hyperplane

arrangements. The cell enumeration algorithm (Inc-Enu) was then refactored into

a GPU driven one, allowing for faster construction of these sign-vectors. Cell enu-

138

meration is an expensive procedure, nevertheless. It is interesting to note that the

hyperplane arrangements of the MCE are generated in a deterministic way by the

system dynamics {Φ,Γ, H}. There is likely a more elegant way of determining the

sign-vectors. Future work should explore how to enhance Inc-Enu, or all together

replace this sub-routine. Such a method should explicitly consider how the child

arrangements generated by (3.8a) geometrically change their parent arrangement.

Furthermore, insights similar to those made in [22] regarding a-priori knowledge

of term coalignment and term reduction would be very useful for the time-varying

and nonlinear system cases, if they can be made. Lastly, approximations of the

characteristic function, such as those in section 3.7.1 should be further studied.

It is likely that there are more clever ways to discard terms and approximate the

characteristic function.

2. An efficient method was proposed to construct the parameter vectors used to com-

press the characteristic function, without the need of a cell enumeration and system

of equations solver. This method, proposed in chapter 4, was seen to be over twice

as fast as the method of chapter 3. However, this method could be much faster if a

more careful approach to using the hash-tables was taken. Instead of using a single

hash table to store the child g-values (i.e, (3.20)), if all children (of the same par-

ent) shared an additional hash table to cache the left and right hand numerators of

(3.20), many more cache hits would be seen. The speed up over the current imple-

mentation of chapter 3 could be as large as twice the number of children-per-parent.

This was not attempted, however, as the programming complexity to keep track of

these children after measurement coalignment was difficult. This is because after

measurement coalignment, some child terms coalign several hyperplanes, some a

single, and others none. Therefore, they sit within different memory locations in

the array of array data structure used to group terms of the same arrangement size.

Future work should certainly consider this enhancement.

3. The sliding window approximation was extended to multivariate systems in chap-

ter 5. This allows a window that was reset to recreate the estimate of the window

139

conditioned on the most (i.e, the window size) measurements over a single estima-

tion step. As the number of terms grow each estimation step, the sliding window

is used to fix the computational burden of the estimator so that it can be used for

arbitrarily long estimation horizons. Due to the insights given in chapter 5, it is

now possible to run the estimator for arbitrarily long horizons in the multivariate

case, while also initializing each window with the best information available. Fu-

ture work should consider how this windowing technique can be better applied to

compute clusters that are distributed over multiple machines. A prototype for this

case was built using socket communication, however, this prototype is likely far

from optimal. In the case of very large system dynamics, the estimator will require

a large amount of (GPU) memory. This may not be available on a single machine,

even if the machine has multiple GPUs. In these cases, coordination between the

windows and communication delay may significantly hinder the possible run-time

performance of the estimator.

4. GPU programming was seen to significantly increase the run-time performance of

the estimator. The MCE distributes its computation over the compute cores of

the GPU, for each sub-routine of the compressed characteristic function, as was

seen in chapter 6. Several optimizations to the current GPU-driven MCE could

be made. First, each MCE used by the sliding window approximation is run on a

single GPU. Hence, one GPU is used per characteristic function. This is usually

sufficient, however, if each MCE utilized multiple GPUs for estimation steps in-

volving large numbers of terms, the execution time could be increased further. It is

seen by profiling the application that the term-reduction and α-vector generation

sub-routines require the majority of the compute time, while the others make up

very little. If further optimizations are made to the GPU-based application, at-

tention should be focused to these sub-routines. The current GPU code is made

available for academic use at https://github.com/natsnyder1/KingCauchy. Matlab

and Python wrappers for the C/CUDA-C programs are under development.

5. The MCE was extended to handle non-linear system dynamics in chapter 7, similar

140

to the formulation used in the EKF. Three simulations were provided in chapter 8

to showcase the performance of the MCE in a range of noise environments and

state dimension. By far the most interesting result is that depicted in section 8.2,

where the MCE performance across a range of (unmodeled) S−α−S noises is seen

not to degrade. In this sense, the estimator is robust. The provided experiments

indicate that the MCE is likely a good candidate for any application whose process

or measurement noise density is within the range of α ∈ [1, 2). Above all other rec-

ommended future work, efforts should focus on finding exciting applications where

the environmental noise is identified to be heavy-tailed. Such applications would

benefit greatly from the MCE. It is likely that many of these applications exist in

the defense sector, in space applications, and in the field of quantitative finance.

141

Appendix A

Appendix

A.1 Least Squares fit of Symmetric-α-Stable Char-

acteristic Functions

This appendix gives the derivation to fit the Cauchy pdf to that of a Gaussian pdf in

the least squares sense. The derivation can be done using either pdfs of characteristic

functions. Both yield the same result. The solution presented here uses characteristic

functions. Only for Gaussian and Cauchy pdfs can an analytic solution be found. When

fitting a pdf that is not Gaussian or Cauchy, a numerical approach must be taken instead.

Plancherel’s theorum states that for any two scalar and real-valued functions f(x)

and g(x),

∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f̂(ζ)ĝ(ζ)dζ (A.1)

f̂(ζ) =

∫ ∞

−∞
f(x)e−i2πζxdζ (A.2)

ĝ(ζ) =

∫ ∞

−∞
g(x)e−i2πζxdζ (A.3)

which is to say that the integral of their product is equal to the integral of the product

of their frequency spectrums. Above, ζ is the spectral variable and i is the imaginary

142

number. Letting η = 2πζ and j = −i, we can restate either (A.2) and (A.3) as

Φf
x(η) = f̂

(
−η
2π

)
=

∫ ∞

−∞
f(x)ejηxdx (A.4)

where Φf
x(η) is the characteristic function representation of f(x). Plugging in the trans-

form dη = ζ
2π

to (A.1) we arrive at the required starting form

∫ ∞

−∞
f(x)g(x)dx =

1

2π

∫ ∞

−∞
Φf
x(η)Φ

g
x(η)dη. (A.5)

To fit a Gaussian pdf g(x) to a Cauchy pdf f(x), or a Cauchy to a Gaussian pdf in the

least squares sense, the expression

∫ ∞

−∞
(g(x)− f(x))2 dx =

∫ ∞

−∞

(
g(x)2 − 2f(x)g(x)dx+ f(x)2

)
dx (A.6)

is first re-expressed in its characteristic function form as

1

2π

∫ ∞

−∞

(
(Φg

x(η))
2 − 2Φf

x(η)Φ
g
x(η) +

(
Φf
x(η)

)2)
dη, (A.7)

The characteristic function of the (zero mean) Gaussian is Φg
x(η) = e

−σ2
gη

2

2 and the char-

acteristic function of the (zero median) Cauchy is Φf
x(η) = e−σc|η|. Minimizing (A.7) w.r.t

σg yields our desired least squares expression to fit a Gaussian to a Cauchy pdf, given by

argmin
σg

1

2π

∫ ∞

−∞

(
e−σ2

gη
2 − 2e

−σ2
gη

2

2
−σc|η| + e−2σc|η|

)
dη. (A.8)

Taking the derivative of (A.8) and setting it equal to zero yields

0 =
1

2π

∫ ∞

−∞

(
2η2σge

−σ2
gη

2

2
−σc|η| − 2η2σge

−2σ2
gη

2

)
dη

=

∫ 0

−∞
η2e

−
(

σ2
gη

2

2
−σcη

)
dη +

∫ ∞

0

η2e
−σ2

gη
2

2
−σcηdη −

∫ ∞

−∞
η2e−σ2

gη
2

dη. (A.9)

143

Let us deal with the three integral expressions of (A.9) separately. For the first

integral, completing the square of the exponent yields

(
σ2
gη

2

2
− σcη

)
=
σ2
g

2

(
η − σc

σ2
g

)2

− σ2
c

2σ2
g

.

Substituting u = η− σc
σ2
g
and θ = σ2

2
, the integral can be written, evaluated and simplified

as

∫ 0

−∞
η2e

−
(

σ2
gη

2

2
−σcη

)
dη =

∫ 0

−∞
η2e

−
(

σ2
g
2

(
η− σc

σ2
g

)2

− σ2
c

2σ2
g

)
dη (A.10)

= e
σ2
c

2σ2
g

∫ −σc
σ2
g

−∞
u2e−θu2du+ 2σc

σ2
g

∫ −σc
σ2
g

−∞
ue−θu2du+ σ2

c

σ4
g

∫ −σc
σ2
g

−∞
e−θu2du

 (A.11)

= e
σ2
c

2σ2
g

[
1

4

√
8π

σ6

(
1− erf

(
σc√
2σg

))
− σc
σ4
g

e
−σ2

c
2σ2

g +
σ2
c

σ4
g

[
1

2

√
2π

σ2
g

(
1− erf

(
σc√
2σg

))]]
.

(A.12)

Fortunately, the middle integral of (A.9) evaluates to the same quantity as (A.12). The

right integral of (A.9) simply evaluates to

∫ ∞

−∞
−η2e−σ2

gη
2

dη = −2
∫ ∞

0

η2e−σ
2
gη

2

dη =
−
√
π

2σ3
c

. (A.13)

Adding the evaluated integrals of (A.9) together, letting θ = σc√
2σg

, and fully simpli-

fying, the resultant expression is

0 = eθ
2 (

1 + 2θ2
)
(1− erf(θ))− 2√

π
θ − 1

2
√
2

(A.14)

Although (A.14) is a closed-form solution to (A.9), θ must be recovered through a

numerical search. The value of θ which sets (A.14) equal to zero is 0.508783. Now, we

see that the ratio σg
σc

= 1.3898, which minimizes (A.8) in the least squares sense, w.r.t σg.

If the analysis is repeated by minimizing σc instead, the result will be σc
σg

= 1
1.3898

.

144

A.2 Equating Gauss-Markov to Poisson Telegraph

Statistics

Here we equate the second order statistics of the Gauss-Markov process for the target

acceleration model of (8.2) to that of a telegraph wave which has Poisson distributed

switching times. The target acceleration is given by

ȧT = −1

τ
aT + waT (A.15)

with first order lag parameter τ > 0, waT is white noise with E[waT] = 0, E[waT (σ)waT (ν)] =

Wδ(σ− ν) where δ(σ− ν) is the Dirac delta function and W is the spectral density. The

steady state autocorrelation RaT aT (t, s) = E[aT (t)aT (s)] and discrete time process noise

statistics easily follow as

RaT aT (t, s) = E[a2T]Φ(t− s) = E[a2T]e−
1
τ
|t−s|

=
τ

2
We−

1
τ
|t−s|, (A.16)

wk ∼ N
(
0,

2
τ
E[a2T]δkl
∆

)
, (A.17)

where wk is the discrete process noise where division by ∆ approximates the Dirac delta

function and δkl is the Kronecker delta function.

Now we turn our attention to the second-order statistics of the telegraph wave. Let

hT be the height of the telegraph and in this model the value hT changes sign at random

times given by a Poisson probability. We assume that hT (t0) = ±hT with probability .5

and hT (t) changes polarity at Poisson times. The probability of k sign changes in a time

interval of length T , P (k(T)), is P (k(T)) = (λT)ke−λT

k!
where λ is the rate. The probability

of an even number of sign changes in T , P (even# inT), is

P (even# inT) =
∞∑
k=0
k even

(λT)ke−λT

k!
= e−λT

∞∑
k=0

(1 + (−1)k)(λT)k

2k!
. (A.18)

145

Since eλT =
∑∞

k=0
(λT)k

k!
, then

P (even# inT) = e−λT

[
∞∑
k=0

(λT)k

2k!
+

∞∑
k=0

(−λT)k

2k!

]
=

1

2
e−λT

[
eλT + e−λT

]
=

1

2

[
1 + e−2λT

]
.

(A.19)

By a similar process, P (odd# inT) = 1
2

[
1− e−2λT

]
. Then the probability that hT (t) is

positive is

P (aT (t) = hT) = P (hT (t) = hT |hT (0) = hT)P (hT (0) = hT)

+ P (hT (t) = hT |hT (0) = −hT)P (hT (0) = −hT)

=
1

2
P (even# inT = [0, t]) +

1

2
P (odd# inT = [0, t])

=
1

2

{
1

2

[
1 + e−2λt

]
+

1

2

[
1− e−2λt

]}
=

1

2
. (A.20)

Then, the mean acceleration, h̄T is

h̄T = hTP (hT (t) = hT)− hTP (hT (t) = −hT) = 0. (A.21)

The autocorrelation, RhT hT (t1, t2) = E[hT (t1)hT (t2)] is

RhT hT (t1, t2) = h2TP (hT (t2) = hT (t1))− h2TP (hT (t2) ̸= hT (t1)) (A.22)

= h2T
1

2

[
1 + e−2λ|t2−t1|

]
− h2T

1

2

[
1− e−2λ|t2−t1|

]
= h2T e

−2λ|t2−t1|. (A.23)

If τ = 1
2λ

and E[a2t] = h2T , then the autocorrelation of the Gauss-Markov process is the

same as the random telegraph signal and the means of both are zero. Substituting these

quantities into (8.6) yields the intended result.

146

Bibliography

[1] N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, 1st ed. London:

Random House, 2008.

[2] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, “Robust and trend-following student’s

t kalman smoothers,” SIAM Journal on Control and Optimization, vol. 52, no. 5,

pp. 2891–2916, 2014.

[3] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans-

actions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45,

1960.

[4] J. Speyer, C.-H. Fan, and R. Banavar, “Optimal stochastic estimation with expo-

nential cost criteria,” in [1992] Proceedings of the 31st IEEE Conference on Decision

and Control, 1992, pp. 2293–2299 vol.2.

[5] D. Crisan and B. Rozovskii, Eds., The Oxford Handbook of Nonlinear Filtering.

Oxford University Press, 2011.

[6] B. Ristic, S. Arulampalam, and N. J. Gordon, Beyond the Kalman Filter: Particle

Filters for Tracking Applications. Artech House Publishers, 2004.

[7] R. Fonod, M. Idan, and J. L. Speyer, “Approximate estimators for linear systems

with additive cauchy noises,” Journal of Guidance, Control, and Dynamics, vol. 40,

no. 11, pp. 2820–2827, 2017.

[8] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance: Stochastic Modeling. Routledge, 1994.

147

[9] P. Tsakalides and C. L. Nikias, “Deviation from normality in statistical signal pro-

cessing: Parameter estimation,” A practical guide to heavy tails: statistical tech-

niques and applications, p. 379, 1998.

[10] S. Naga Divya, G.and Koteswara Rao, “Stochastic analysis approach of extended

h-infinity filter for state estimation in uncertain sea environment,” International

Journal of System Assurance Engineering and Management, 2022. [Online].

Available: https://doi.org/10.1007/s13198-022-01682-6

[11] P. M. Reeves, A non-Gaussian turbulence simulation. Air Force Flight Dynamics

Laboratory, Air Force Systems Command, United . . . , 1969, vol. 69, no. 67.

[12] J. R. Carpenter and A. K. Mashiku, “Cauchy drag estimation for low earth orbiters,”

in AAS/AIAA Space Flight Mechanics Meeting, no. GSFC-E-DAA-TN19723, 2015.

[13] M. Idan and J. L. Speyer, “Cauchy estimation for linear scalar systems,” IEEE

transactions on automatic control, vol. 55, no. 6, pp. 1329–1342, 2010.

[14] N. Snyder, M. Idan, and J. L. Speyer, “Distributed computation of a robust estimator

based on cauchy noises,” in 2021 60th IEEE Conference on Decision and Control

(CDC), 2021, pp. 6584–6590.

[15] J. L. Speyer, M. Idan, and J. Fernández, “The two-state estimator for linear systems

with additive measurement and process cauchy noise,” in 51st IEEE Conference on

Decision and Control (CDC), 2012, pp. 4107–4114.

[16] M. Idan and J. L. Speyer, “Multivariate Cauchy estimator with scalar measurement

and process noises,” SIAM Journal on Control and Optimization, vol. 52, no. 2, pp.

1108–1141, 2014.

[17] B. Mandelbrot, “The pareto-lévy law and the distribution of income,” International

Economic Review, vol. 1, no. 2, pp. 79–106, 1960. [Online]. Available:

http://www.jstor.org/stable/2525289

148

https://doi.org/10.1007/s13198-022-01682-6
http://www.jstor.org/stable/2525289

[18] N. Snyder, M. Idan, and J. Speyer, “Real-time robust multivariate estimator for

dynamic systems with heavy-tailed additive uncertainties (under review),” in IEEE

Journal on Transactions on Automatic Control, 2023.

[19] J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A method for

simulating stable random variables,” Journal of the American Statistical

Association, vol. 71, no. 354, pp. 340–344, 1976. [Online]. Available: https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480344

[20] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete Applied Math-

ematics, vol. 65, no. 1, pp. 21–46, 1996, First International Colloquium on Graphs

and Optimization.

[21] M. Rada and M. Černý, “A new algorithm for enumeration of cells of hyperplane ar-

rangements and a comparison with Avis and Fukuda’s reverse search,” SIAM Journal

on Discrete Mathematics, vol. 32, no. 1, pp. 455–473, 2018.

[22] Y. Bai, “Properties of the multivariate cauchy estimator,” 2016.

[23] N. Duong, M. Idan, R. Pinchasi, and J. Speyer, “A note on hyper-plane arrangements

in Rd,” Discrete Mathematics Letters, vol. 7, pp. 79–85, July 2021.

[24] J. Sanders and E. Edward Kandrot, Eds., CUDA by example: an introduction to

general-purpose GPU programming. NVIDIA Corporation, 2011.

[25] Y. Bai, J. L. Speyer, and M. Idan, “Efficient cauchy estimation via a pre-

computational technique,” in 2016 IEEE 55th Conference on Decision and Control

(CDC), 2016, pp. 1171–1178.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge University

Press, 2004.

[27] G. Dantzig, “Linear programming and extensions,” in Linear programming and ex-

tensions. Princeton university press, 2016.

149

https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480344

[28] V. Klee and G. J. Minty, “How good is the simplex algorithm,” Inequalities, vol. 3,

no. 3, pp. 159–175, 1972.

[29] N. Karmarkar, “A new polynomial-time algorithm for linear programming-ii,” Com-

binatorica, vol. 4, pp. 373–395, 12 1984.

[30] P. M. Vaidya, “An algorithm for linear programming which requires

o(((m+n)n2+(m+n)1.5n)l) arithmetic operations,” Mathematical Programming,

vol. 47, pp. 175–201, 1990.

[31] J. Fernández, J. L. Speyer, and M. Idan, “Stochastic estimation for two-state linear

dynamic systems with additive Cauchy noises,” IEEE Transactions on Automatic

Control, vol. 60, no. 12, 2015.

[32] N. Ploskas and N. Samaras, “Efficient GPU-based implementations of simplex type

algorithms,” Applied Mathematics and Computation, vol. 250, pp. 552–570, 2015.

[33] A. Gurung and R. Ray, “Simultaneous solving of batched linear programs on a

GPU,” in ICPE ’19: Proceedings of the 2019 ACM/SPEC International Conference

on Performance Engineering. Association for Computing Machinery, 2019.

[34] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’

Guide, 3rd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics,

1999.

[35] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020. [Online].

Available: https://developer.nvidia.com/cuda-toolkit

[36] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The Johns Hopkins

University Press, 1996.

[37] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the graphcore ipu

architecture via microbenchmarking,” arXiv preprint arXiv:1912.03413, 2019.

150

https://developer.nvidia.com/cuda-toolkit

[38] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control.

Society for Industrial and Applied Mathematics, 2008. [Online]. Available:

https://epubs.siam.org/doi/abs/10.1137/1.9780898718591

[39] N. Twito, M. Idan, and J. L. Speyer, “Maximum conditional probability stochastic

controller for scalar linear systems with additive cauchy noises,” in 2018 European

Control Conference (ECC), 2018, pp. 2708–2713.

[40] D. E. Gustafson and J. L. Speyer, “Design of linear regulators for nonlinear

stochastic systems,” Journal of Spacecraft and Rockets, vol. 12, no. 6, pp. 351–358,

1975. [Online]. Available: https://doi.org/10.2514/3.56987

[41] A. Bryson and Y. Ho, Applied optimal control: optimization, estimation, and

control. Blaisdell Pub. Co., 1969. [Online]. Available: http://books.google.ch/

books?id=k FQAAAAMAAJ

151

https://epubs.siam.org/doi/abs/10.1137/1.9780898718591
https://doi.org/10.2514/3.56987
http://books.google.ch/books?id=k_FQAAAAMAAJ
http://books.google.ch/books?id=k_FQAAAAMAAJ

	Introduction
	Motivation
	Symmetric-Lg-Stable Probability Density Functions
	Least Squares Fitting of Probability Density Functions
	Least Squares Fitting of Characteristic Functions
	Contributions

	Background on the Characteristic Function of the Multivariate Cauchy Estimator
	Estimator Formulation
	Measurement Update Co-alignment

	Time-Propagation of the Characteristic Function
	Shortcomings of the Backward Recursive Characteristic Function

	Compressing the Characteristic Function of the Multivariate Cauchy Estimator
	Insights on the Backward Recursive Characteristic Function
	Hyperplane Arrangements, Cells, and Cell Enumeration
	A Basis Expansion for Sign-Vectors
	Parameterizing the G-Function

	Equivalence of the Backward Recursive and Compressed Characteristic Functions
	Measurement Update at Estimation Step Lg
	Time Propagation at Estimation Step Lg
	Measurement Update at Estimation Step Lg

	Numerical Example of Equivalence
	Term Reduction for the Compressed Characteristic Function
	Dynamic Propagation Properties of the Compressed Characteristic Function
	Discarding Negligible Terms

	An Efficient Algorithm for Compressing the G-Function
	Preliminaries
	Procedure for the Efficient Computation of Lg
	Finding the Coefficients of Lg
	Finding a Point in the Upper Cell of a Vertex
	Finding the Coefficients of Lg
	Unpriming the Coefficients of Lg
	Finding the Coefficients of Arrangements with Degeneracies
	Time-Complexity of the Proposed Algorithm
	Converting Between the Indicator and Sign Basis
	Comments on the Proposed Implementation

	The Sliding Window Approximation
	Derivation of the Sliding Window Approximation
	Sliding Window Initialization for Multivariate Systems
	Software Architecture of the Sliding Window

	Distributed Computation of the Multivariate Cauchy Estimator
	The CUDA-C Programming Paradigm
	Hardware Level Abstraction
	Software Level Abstraction

	An Algorithmic Cookbook for the Distributed Multivariate Cauchy Estimator
	Overview
	Time-Propagation
	Time-Propagation Co-alignment
	Measurement Update (Child-Term Generation)
	G Evaluation
	Measurement Update Co-alignment
	Alpha Parameterization using Incremental Enumeration
	Alpha Parameterization using Pinchasi's Method
	Term Reduction

	Extended Multivariate Cauchy Estimator for Nonlinear Dynamical Systems
	Experiments
	A Linear Three-State Simulation in Cauchy Noise
	Formulation
	Numerical Results

	A Three-State Nonlinear Homing Missile Simulation in Heavy-Tailed Noise
	Formulation
	Experimental Simulations and Results

	A Five-State Low Earth Orbit Satellite Simulation in Heavy-Tailed Noise
	Formulation
	Numerical Results

	Conclusions and Future Work
	Appendix
	Least Squares fit of Symmetric-Lg-Stable Characteristic Functions
	Equating Gauss-Markov to Poisson Telegraph Statistics

