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ABSTRACT

The goal of a generative model is to capture the distribution underlying the data,
typically through latent variables. After training, these variables are often used as
a new representation, more effective than the original features in a variety of learn-
ing tasks. However, the representations constructed by contemporary generative
models are usually point-wise deterministic mappings from the original feature
space. Thus, even with representations robust to class-specific transformations,
statistically driven models trained on them would not be able to generalize when
the labeled data is scarce. Inspired by the stochasticity of the synaptic connections
in the brain, we introduce Energy-based Stochastic Ensembles. These ensembles
can learn non-deterministic representations, i.e., mappings from the feature space
to a family of distributions in the latent space. These mappings are encoded in
a distribution over a (possibly infinite) collection of models. By conditionally
sampling models from the ensemble, we obtain multiple representations for every
input example and effectively augment the data. We propose an algorithm similar
to contrastive divergence for training restricted Boltzmann stochastic ensembles.
Finally, we demonstrate the concept of the stochastic representations on a syn-
thetic dataset as well as test them in the one-shot learning scenario on MNIST.

1 INTRODUCTION

Learning data representations is a powerful technique that has been widely adopted in many fields of
artificial intelligence (Bengio, 2009). Its main goal is usually to learn transformations of the data that
disentangle different classes in the new space, that are robust to the noise in the input and tolerant to
the variations along the class-specific manifolds (DiCarlo & Cox, 2007). A widely used technique
of constructing representations is based on using probabilistic generative models of the data. Latent
variables in such models can capture high-order correlations between the samples and are successful
as new representations in a variety of tasks (Bengio, 2009). However, even high quality representa-
tions do not solve the problem of generalization: statistically derived discriminative models require
a sufficient number of labeled training examples in order to exhibit good performance when tested.

The standard way of ameliorating the problem of overfitting due to the limited training data is based
on enforcing a regularization (Bishop, 2006). Maaten et al. (2013) recently demonstrated that the
artificial data augmentation via feature corruption effectively plays the role of a data-adaptive regu-
larization. Wager et al. (2013) also showed that the dropout techniques applied to generalized linear
models result into an adaptive regularization. In other words, these approaches confirm that having
more (even corrupted) training data is equivalent to regularizing the model.

∗Corresponding author: maruan.alshedivat.com.
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On the other hand, instead of corrupting features one can try perform regularization by perturbing the
learning model itself. Parameter perturbation leads to the notion of (possibly infinite) collection of
models that we call stochastic ensemble. The Dropout (Hinton et al., 2012) and DropConnect (Wan
et al., 2013) techniques are successful examples of using a particular form of stochastic ensemble
in the context of feedforward neural networks. A unified framework for a collection of perturbed
models (which also encompasses the data corruption methods) was recently introduced by Bachman
et al. (2014): An arbitrary noise process was used to perturb a parametric parent model to generate
an ensemble of child models. The training was performed by minimizing the marginalized loss
function, and yielded an effectively regularized parent model that was robust to the introduced noise.

The above mentioned approaches use fixed corruption processes to regularize the original model and
improve its generalization. Injection of arbitrary noise improves the robustness of the model to the
corruption process (Maaten et al., 2013), but it does not necessarily capture the information about the
generative process behind the actual data. In order to capture the variance of the data manifold, we
propose to learn the noise that perturbs the model. Our work is inspired by the adaptive stochasticity
of the synaptic connections in the brain. According to the experimental data, synapses between
cortical neurons are highly unreliable (Branco & Staras, 2009). Moreover, this type of stochasticity
is adaptive and adjusted by the learning (Stevens & Wang, 1994).

In this paper, we introduce energy-based stochastic ensembles (EBSEs) which can be trained in
unsupervised fashion to fit a data distribution. These ensembles result from energy-based models
(EBMs) with stochastic parameters. The EBSE learning procedure optimizes the log-likelihood of
the ensemble by tuning a parametric distribution over the models. This distribution is first arbitrarily
initialized, and then tuned by an expectation-maximization (EM) like procedure: In the E-step, we
perform sampling to estimate the necessary expectations, while in the M-step we maximize the log-
likelihood with respect to the ensemble parameters. We further develop an algorithm for learning
restricted Boltzmann stochastic ensembles (RBSE) similar to contrastive divergence.

Using a pre-trained ensemble, we further introduce the notion of non-deterministic representations:
instead of constructing point-wise mappings from the original feature space to a new latent space,
we propose using stochastic mappings (Figure 1a). The stochasticity of the representations is based
on the distribution stored in the ensemble. For every input object we can sample multiple models,
and hence perform non-deterministic transformations to obtain a set of different representations.
The ensemble is tuned to capture the variance of the data, hence the stochastic representations are
likely to better capture the data manifold. We demonstrate these concepts visually by performing
experiments on a two-dimensional synthetic dataset. Finally, we train a classifier on the representa-
tions of the MNIST hand-written digits generated by an RBSE and observe that the generalization
capability in the one-shot learning scenario improves.

2 ENERGY-BASED STOCHASTIC ENSEMBLES

The distribution of the binary data vectors vvv ∈ {0, 1}D can be encoded with the following energy-
based model (EBM) that has some binary hidden variables hhh ∈ {0, 1}K :

P (vvv,hhh; θ) =
e−E(vvv,hhh;θ)

Z(θ)
, (1)

where θ denotes the model parameters, E(vvv,hhh; θ) is a parametric scalar energy function (LeCun
et al., 2006), and Z(θ) is the normalizing coefficient (partition function). If we impose a distribution
over the model parameters (i.e., perturb θ according to some noise generation process), we obtain
an energy-based stochastic ensemble (EBSE). In order to optimize the distribution over the models
in the ensemble, we parametrize the noise generation process with α:

P (vvv,hhh, θ;α) = P (vvv,hhh | θ)P (θ;α) =
e−E(vvv,hhh,θ)

Z(θ)
P (θ;α) =

e−E(vvv,hhh,θ)−φ(θ;α)

ζ(α)
, (2)

where φ(θ;α) is an additional energy potential, and ζ(α) is a new partition function. EBSE can be
trained by maximizing the data log-likelihood logP (VVV ;α) with respect to parameters α, where VVV
denotes the entire dataset.

The introduced form of the model (2) allows to think of P (θ;α) as a prior. Hence, we can relate
the optimization of EBSE with the Bayesian inference framework for a standard EBM by taking

2
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Figure 1: (a) The difference between point-wise and stochastic representations. While both map-
pings disentangle the manifolds of different classes, stochasticity additionally captures the data man-
ifold in the representation space. (b) RBM and (c) RBSE graphical diagrams. The shaded nodes are
the visible variable, the black nodes are the latent variables, literals outside of nodes are constants
(model parameters). Plates denote variable scopes with sizes indicated at the bottom right corners.

expectation over the posterior P (θ | VVV ;α):

logP (VVV ;α) =

∫
P (θ | VVV ;α) logP (VVV | θ)dθ −DKL [P (θ | VVV ;α)‖P (θ;α)]

= E [logP (VVV | θ)]P (θ|VVV ;α)︸ ︷︷ ︸
Expected EBM log-likelihood

−DKL [P (θ | VVV ;α)‖P (θ;α)]︸ ︷︷ ︸
KL divergence of posterior and prior

. (3)

Since the KL divergence is non-negative, by optimizing the log-likelihood of EBSE, we effectively
maximize a lower bound on the EBM log-likelihood averaged over the posterior P (θ | VVV ;α). This
relates our approach to the feature corruption method (Maaten et al., 2013, Eq. 2) which optimizes
the expected loss directly, but over a simple posterior feature corruption distribution P (ṽvv | vvv).
Eventually, once we trained the stochastic ensemble of energy-based generative models, we get new
parameters α̂ that make P (θ; α̂) better tuned to capture the variance of the data.

Below, we derive the gradient of the EBSE log-likelihood (3) for the general energy case. Then, we
focus on the restricted Boltzmann stochastic ensembles (RBSE), analyze their structure, and propose
an efficient learning algorithm.

2.1 LOG-LIKELIHOOD OPTIMIZATION

The gradient of the log-likelihood function (3) can be written in the following way:

∂ logP (vvv;α)

∂α
= −∂F (vvv;α)

∂α
− 1

ζ(α)

∂ζ(α)

∂α
, (4)

where F (vvv;α) = − log
(∫
e−E(vvv,hhh,θ)−φ(θ;α)dhhhdθ

)
is called free energy. It is easy to show that the

gradients of the free energy and the partition function have the following form:

∂F (vvv;α)

∂α
=

∫
P (θ | vvv;α)

(
∂φ(θ;α)

∂α

)
dθ,

1

ζ(α)

∂ζ(α)

∂α
= −

∫
P (θ;α)

(
∂φ(θ;α)

∂α

)
dθ.

(5)
The final expression for the gradient has a contrastive divergence like form (Hinton, 2002):

∂ logP (vvv;α)

∂α
= E

[
∂φ(θ;α)

∂α

]

P (θ;α)

− E
[
∂φ(θ;α)

∂α

]

P (θ|vvv;α)
, (6)

where the expectations E[ · ]P (θ;α) and E[ · ]P (θ|vvv;α) are taken over the marginal and conditional
distributions over the models, respectively. Based on the properties of the P (θ;α) distribution, these
expectations can be either fully estimated by Monte Carlo sampling, or partly computed analytically.

3



Accepted as a workshop contribution at ICLR 2015

Algorithm 1 Expectation-maximization k-step contrastive divergence for RBSE

Input: SSS—training (mini-)batch; learning rate λ; se-RBM(vvv, hhh,WWW , bbb, ccc)
Output: gradient approximation ∆α [depends on the parametrization of φ(WWW,bbb, ccc;α)]

1: initialize ∆α = 0
2: for all the vvv ∈ SSS do
3: vvv(0) ← vvv
4: hhh(0) ← persistent state (or sample)
5: sampleWWW (0), bbb(0), ccc(0) ∼ P (WWW,bbb, ccc | vvv(0),hhh(0))
6: for t = 0, . . . , k do . CD-k for sampling from P (vvv,hhh)
7: sampleWWW (t), bbb(t), ccc(t) ∼ P (WWW,bbb, ccc | vvv(t),hhh(t))
8: sample vvv(t) ∼ P (vvv | hhh(t),WWW (t), bbb(t), ccc(t))
9: sample hhh(t) ∼ P (hhh | vvv(t),WWW (t), bbb(t), ccc(t))

10: ∆αm = E
[
∂φ
∂α | vvv(k),hhh(k)

]

11: for t = 0, . . . , k do . CD-k for sampling from P (hhh | vvv)
12: sampleWWW (t), bbb(t), ccc(t) ∼ P (WWW,bbb, ccc | vvv,hhh(t))
13: sample hhh′(t) ∼ P (hhh′ | vvv,WWW (t), bbb(t), ccc(t))

14: ∆αc = E
[
∂φ
∂α | vvv,hhh′(k)

]

15: ∆α← ∆α+ λ (∆αm −∆αc) . Estimate SGD step
16: ∆α = ∆α/ cord(SSS)

Since the expectations depend on the parameter α, EBSE training is reminiscent of expectation-
maximization (EM): After initializing α, in the E-step of the algorithm, we estimate E[ · ]P (θ;α) and
E[ · ]P (θ|vvv;α) using the current value of α. In the M-step, we maximize the log-likelihood by using
gradient-based optimization.

2.2 MODEL STRUCTURE

We further consider a specific energy-based stochastic ensemble composed of restricted Boltzmann
machines (RBM). The energy function of the RBM is linear in each of the variables vvv, hhh, and θ:

E(vvv,hhh, θ) = −(vvvTWWWhhh+ bbbTvvv + cccThhh) = −(
∑

i,j

Wijvihj +
∑

i

bivi +
∑

j

cjhj), (7)

where parameters θ are represented by a tuple (WWW,bbb, ccc), andWWW ∈ RD×K , bbb ∈ RD, ccc ∈ RK .

RBM is an undirected graphical model that can be represented by two layers of interconnected
probabilistic units (Figure 1b). These units can be seen as neurons with a probabilistic sigmoid
activation function, and the graphical model can be represented by a two-layer neural network. In
this case, the parametersWWW play the role of connection strengths between the neurons. By imposing
a noise distribution on the parameters, connection strengths become stochastic. From a graphical
model perspective, this is equivalent to introducing new latent variables (Figure 1c). Notice that the
model becomes mixed directed and undirected—an ensemble of undirected RBMs generated by a
simple Bayesian network composed of (WWW,bbb, ccc) random hidden variables.

In order to fully define the model, we need to choose a specific form of the marginal distribution
P (θ;α) that generates the ensemble. First, to make the expectations computationally feasible, we
suppose thatWWW,bbb, ccc are all marginally independent:

P (θ;α) =
∏

ij

P (Wij ;αWij
)
∏

i

P (bi;αbi)
∏

j

P (cj ;αcj ). (8)

Then, we consider two cases: (a) Bernoulli distributed parameters. In this case Wij can be either
zero with probability 1 − pij , or equal to some W̄ij with probability pij . The tunable parameters
are αij = {pij , W̄ij}. This case is similar to DropConnect (Wan et al., 2013) technique but with
adaptive distributions over the connections between visible and hidden layers in RBM. (b) In the
second case, parameters are normally distributed, i.e., Wij ∼ N (µij , σij), and αWij

= {µij , σij}.
In both cases, bbb and ccc are parametrized similarly as WWW . The number of parameters in the RBSE is
twice the original number for the RBM.

4
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This structure of the model (Figure 1c) implies the following set of independencies:
vi ⊥⊥ vj | hhh, hi ⊥⊥ hj | vvv, Wij ⊥⊥Wlk, Wij 6⊥⊥Wik | vi, Wij 6⊥⊥Wlj | hi. (9)

These expressions show the marginal independencies we purposefully incorporated into P (θ;α)
and conditional dependences between the components of WWW . Due to these dependencies between
stochastic connections though visible and hidden units, the model is able to capture the data variance
in the distribution over the stochastic parameters θ. Importantly, even though the components ofWWW
are dependent on each other given vvv and hhh, we are still able to factorize the conditional distribution
P (θ | vvv,hhh) using the renormalization procedure (see the supplementary material for details).

2.3 TRAINING

We propose the expectation-maximization k-step contrastive divergence algorithm for training
RBSE (summarized in Algorithm 1) with two different types of stochastic connections—Bernoulli
and Gaussian—between the visible and the hidden layers. To carry out the E-step, we need to
compute the expectations in (6). We use Monte Carlo estimates of these expectations:

E[ · ]P (θ;α) =

∫
dvvvdhhh P (vvv,hhh;α)

∫
dθ P (θ | vvv,hhh;α)[ · ] ≈ 1

M

∑

ṽvv,h̃hh∼P (vvv,hhh;α)

∫
dθ P (θ | ṽvv, h̃hh;α)[ · ],

E[ · ]P (θ|vvv;α) ≈
1

M

∑

ĥhh∼P (hhh|vvv;α)

∫
dθ P (θ | vvv, ĥhh;α)[ · ],

(10)
where M is the number of samples used to approximate a distribution. The states (ṽvv, h̃hh) should be
sampled from the marginal model distribution P (vvv,hhh;α), and ĥhh sampled from the marginal model
conditional distribution P (hhh | vvv;α). This can be achieved by running a Gibbs sampling procedure
as in standard contrastive divergence algorithm (see Algorithm 1).

Lastly, we need to compute the expectation over the posterior P (θ | vvv,hhh;α) given a visible and a
hidden state. In both Bernoulli and Gaussian cases, due to the structure of the ensemble distribution
P (θ;α) discussed in section 2.2, these expectations can be computed analytically. As an example,
we get the following expressions for the gradient update of the Gaussian RBSE (for the Bernoulli
case, the notation and other details see the supplementary material):
∂ logP (vvv;α)

∂W̄ij
= 〈vihi〉data − 〈vihi〉recon ,

∂ logP (vvv;α)

∂σ̄ij
=
〈
v2i h

2
jσij

〉
data
−
〈
v2i h

2
jσij

〉
recon

.

For the models where the expectations over the ensemble are not analytically tractable, we can
estimate them using Monte Carlo Markov chain sampling as well.

The main bottleneck of the algorithm is the number of samplings per gradient update. Since all the
connections between the visible and the hidden units are probabilistic, the random variables need
to be sampled a quadratic number of times compared to learning an RBM. However, due to the
independencies introduced in Eq. (9), all the variables Wij , bi, and cj can be sampled in parallel.

3 EXPERIMENTS

We introduce the concept of stochastic representations by considering a semi-supervised learning
scenario where a large amount of data is available but with only a few labeled examples per class.
RBSE is a generative model, and hence it can be trained in an unsupervised fashion on the entire
dataset. Once the ensemble distribution P (θ;α) is tuned to the data, for every labeled training
example, we can conditionally sample models θ ∼ P (θ | vvv) and then use each model to generate a
representation based on the activation of the hidden unitshhh. In other words, the generative stochastic
ensembles can be used to store the information about the entire dataset and effectively augment the
number of labeled examples by generating multiple stochastic representations. This is analogous to
the concept of corrupted features (Maaten et al., 2013; Wager et al., 2013). The main difference is
that RBSEs can learn from the unlabeled part of the dataset how to corrupt the data properly.

To test the concept, we implemented Bernoulli and a Gaussian RBSE using the Theano library
(Bergstra et al., 2010). We trained our generative models on two-dimensional synthetic datasets and
on MNIST digits. The following sections provide the details on each of the experiments.
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(a) RBM performs deterministic mapping.
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(b) RBSE captures the training data variance.
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(c) Isolated points are attracted by the training data.
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(d) RBSE captures the whole data manifold.

Figure 2: Visualization of the experiments with the synthetic two dimensional data. On all panels,
the black points represent the training data, and the red points are the testing. Best viewed in color.
(a) The classical RBM can perform only deterministic mapping. (b) RBSE maps the testing points
to multiple representations which map backwards to different points in the original space. (c) RBSE
attracts the representations of the isolated points towards the training data manifold. (d) Stochastic
representations can capture the variance of the entire manifold from a few examples.

3.1 SYNTHETIC DATA

In order to visually test how a stochastic ensemble can capture the training data manifold, we gener-
ated several simple two-dimensional datasets {x1, x2} ∈ [0, 1]2 (Figure 2). We trained an ordinary
RBM with 2 visible and 8 hidden units and an RBSE of the same structure. Using these models, we
mapped the testing points to the latent space multiple times, and then back to the original space.

For RBM, we used the mean field activations for new representations: hhhnew = P (hhh | vvv) and
vvvnew = P (vvv | hhhnew). Unsurprisingly, the two consecutive transformations, from visible to hid-
den and back to visible space, performed by a properly trained RBM always mapped the testing
points to themselves (Figure 2a). Notice that this holds not only for RBMs but for any determin-
istic model: Other point-wise deterministic representation learning techniques, e.g., autoencoders
(Bengio, 2009), exhibit the same behavior.

We performed a similar procedure multiple times for RBSE: first, we sampled a model from the con-
ditional distribution P (θ | vvv), then using P (hhh | vvv, θ̃), we transformed testing points from the visible
to the hidden space, then mapped backwards using the average model from the ensemble. Stochastic
representations of the testing data, when mapped back to the visible space, were distributed along
the training data manifold near the testing points they belonged to (Figure 2b).

The experiments also demonstrated that the representations of an isolated testing point (an outlier)
will be attracted towards the manifold captured by RBSE (Figure 2c), which cannot be done by the
RBM. Finally, an entire manifold can be captured by the generated stochastic representations for
only a small number of initial data points (Figure 2d). These experiments confirmed the capability
of RBSEs to refine its internal distribution over the models and to capture the variance of the data.

6
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(c) One-shot accuracy on 10-class classification

Figure 3: After training on MNIST for several epochs: (a) RBSE filters, i.e., the W̄ij values. (b)
RBSE connection probabilities, i.e., the pij values—the dark pixels are close to 0; the light pixels
are close to 1. (c) Performance of a logistic regression classifier trained on different representations
of the data under the one-shot constraints.

Therefore, the stochasticity of such tunable ensembles should provide better regularization than just
arbitrary noise injection and, as we show further, improve the perfomrance in one-shot learning.

3.2 ONE-SHOT LEARNING OF MNIST DIGITS

To test stochastic representations in the semi-supervised setting where only a few labeled data are
available (one example per class), we performed experiments on MNIST digits dataset. We trained
a Bernoulli RBSE model with 784 visible and 400 hidden units on 50,000 unlabeled MNIST digits
using the proposed Algorithm 1 with a number of MCMC steps k = 1. The learned filters (i.e., W̄ij)
and the Bernoulli connection probabilities (i.e., pij) arranged into tiles are presented on Figure 3.
Notice that the connection probabilities encode a lot of structure (Figure 3b). For the purpose of
comparison, we also trained an RBM of the same configuration on the same unlabeled MNIST data.

Next, we sampled 1000 objects (100 per class) from the remaining 20,000 MNIST digits: 1 train-
ing and 99 testing examples per class. For every training sample we used different approaches to
construct the representations: (a) image pixels, (b) deterministic representations constructed by a
pre-trained RBM, (c) stochastic representations constructed by an RBM with Bernoulli probabilities
0.5 for every connection (equivalent to DropConnect), and (d) RBSE-generated stochastic represen-
tations. In the (c) and (d) cases, we constructed 10 representations for every object.

Finally, we trained and tested a logistic regression classifier (with no additional regularization) on the
these representations under one-shot learning constraints. The classification experiments were done
multiple times for differently sampled objects. The results are presented on Figure 3c. About 10%
improvement in classification accuracy is due to better representations learned by RBM (disentan-
glement of the classes). When we regularize the classifier by generating stochastic representations
with DropConnect noise applied to trained RBM, the performance slightly drops. On the contrary,
when the classifier is regularized through the representations generated by RBSE, we get about
another 5% increase in accuracy on average.

4 DISCUSSION

In this paper, we introduced the concept non-deterministic representations that can be learned
by Energy-based Stochastic Ensembles tuned to the data in unsupervised fashion. The ensemble
stochasticity can capture the data variance and be used to adaptively regularize discriminative mod-
els and improve their performance in semi-supervised settings. The actual learning of a proper
model perturbation from the data is the conceptual novelty compared to previous work (Bachman
et al., 2014; Maaten et al., 2013; Wager et al., 2013). We illustrated the power of stochastic en-
sembles visually on synthetic two-dimensional data and demonstrated it quantitatively on one-shot
learning of the MNIST hand-written digits.

7
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The inspiration from synaptic stochasticity observed in biological nerve cells provides a number of
insights and hypotheses for experimental neuroscience, which we will report separately elsewhere.
From the artificial neural networks perspective, the proposed approach of using stochastic connec-
tions between neural units is interesting as well. For example, similar stochastic ensembles of feed-
forward neural networks should be able to capture complex multi-modal data manifolds (Tang &
Salakhutdinov, 2013). Also, recently proposed Generative Stochastic Networks (GSNs), which are
used to encode probabilities in their sampling behavior (Bengio & Thibodeau-Laufer, 2013; Bengio
et al., 2013), can be naturally endorsed with non-deterministic connections and might potentially
realize richer families of distributions.

Interestingly, biological inspiration also suggests that neuromorphic computers that operate in a
massively parallel fashion, while consuming a faction of the power of digital computers (Merolla
et al., 2014) can be leveraged. They often natively support Bernoulli synaptic stochasticity (Gold-
berg et al., 2001), and neuromorphic variants of RBMs can be efficiently implemented and trained
(Neftci et al., 2014). This suggests that the disadvantages associated to the computational overhead
of RBSEs can be nullified by using an appropriate computational substrate.
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SUPPLEMENTARY MATERIAL

A POSTERIOR BERNOULLI AND GAUSSIAN DISTRIBUTIONS

This section provides details on the posterior distributions for Bernoulli and Gaussian stochastic
ensembles. RBM has three sets of parameters: connection strengths between the visible and hidden
layers WWW ∈ RD×K , bias bbb ∈ RD for visible, and bias ccc ∈ RK for hidden units. We use i to index
D visible dimensions, and j for K hidden dimensions. We denote unnormalized measures by P̃ (·).
When the equations for Wij , bi, and cj have the same form, we refer to these components as θk.

For some fixed (vvv,hhh) we know that RBSE’s energy is a linear function of θ. Since the prior P (θ;α)
factorizes over all the components of θ according to our definition. Thus, we can factorize unnor-
malized P̃ (θ,vvv,hhh;α) over all θk:

P̃ (Wij , vi, hj ;αij) = P (Wij ;αij) exp(vihjWij),

P̃ (bi, vi;αi) = P (bi;αi) exp(vibi),

P̃ (cj , hj ;αj) = P (cj ;αj) exp(hjcj).

(A1)

We can further renormalize (A1) and obtain the following posterior distribution:

P (WWW,bbb, ccc | vvv,hhh;α) =

∏
ij P (Wij , vi, hj ;αij)

∏
i P (bi, vi;αi)

∏
j P (cj , hj ;αj)∫ ∏

ij P (Wij , vi, hj ;αij)dWWW
∏
i P (bi, vi;αi)dbbb

∏
j P (cj , hj ;αj)dccc

=
∏

ij

P (Wij , vi, hj ;αij)∫
P (Wij , vi, hj ;αij)dWij

∏

i

P (bi, vi;αi)∫
P (bi, vi;αi)dbi

∏

j

P (cj , hj ;αj)∫
P (cj , hj ;αj)dcj

=
∏

ij

P (Wij | vi, hj ;αij)
∏

i

P (bi | vi;αi)
∏

j

P (cj | hj ;αj).

(A2)
As we see, if the prior distribution P (θ;α) factorizes over the components of θ, the posterior distri-
bution P (θ | vvv,hhh;α) is also factorisable. Finally, we need to find the posterior distribution for each
of the components for the Bernoulli and Gaussian ensembles.

For Bernoulli case, a priori, every component θk can either take some non-zero value θ̄k with proba-
bility (1−pk), or be equal to zero with probability pk. Then, the distribution P (θ;α) is parametrized
by α = (θ̄k, pk) and has the following form:

P (θ;α) =
∏

k

P (θk;αk) =
∏

k

[
δ(θk)(1− pk) + δ(θk − θ̄k)pk

]
, (A3)

where δ(·) is the Dirac delta function. The posterior for Wij (similar for bi and cj) will be

P (Wij | vi, hj ;αij) =

(
δ(Wij)(1− pij) + δ(Wij − W̄ij)pij

)
exp(vihjWij)

1− pij + pij exp(vihjWij)
(A4)

For Gaussian case, components θk a priori have a Gaussian distribution with the mean θ̄k and vari-
ance σ2

k, i.e., αk = (θ̄k, σk). Omitting the details of integration, the posterior for Wij will have the
following form (similar expressions are easy to derive for bi and cj):

P (Wij | vi, hi;αij) =
1√

2πσij
exp


−

[
Wij − (W̄ij + vihiσ

2
ij)√

2σij

]2

 . (A5)

In both Bernoulli and Gaussian cases, due to the linear structure of the RBSE energy function and
the structure of the prior P (θ;α), we are able to get analytical expressions for the posterior of each
component of θ. Moreover, the derivations will be the same not only for Bernoulli and Gaussian
cases, but for any P (θ;α) that is completely factorisable over {θk}.
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B EXPECTATIONS OVER THE POSTERIOR

Here we provide details on the analytical computation of the expected stochastic gradient update
for the two types of stochastic ensembles: Bernoulli and Gaussian. For the sake of space, as in
Appendix A, when there is no ambiguity, we denote the components ofWWW,bbb, ccc generally as θk.

The general form of the gradient expectation is the following (see Eq. 10 in the main text):
∫

Θ

P (θ | vvv,hhh;α)
∂φ(θ;α)

∂α
dθ. (B1)

Now, we start with the Bernoulli case, where αk = (θk, pk). The prior distribution and the φ
potential have the following form:

P (θk;αk) ≡ e−φ(θk;αk) = δ(θk)(1− pk) + δ(θk − θ̄k)pk,

∂φ

∂pk
=
δ(θk)− δ(θk − θ̄k)

e−φ(θk;αk)
,

∂φ

∂θ̄k
=
δ′(θk − θ̄k)pk
e−φ(θk;αk)

,
(B2)

where δ(·) is the Dirac delta function, and δ′(·) is its derivative. When we plug (A2) and (B2) into
(B1), we obtain the following expressions for the expectation over Wij (similar for bi and ci):

E
[
∂φ

∂pij
| vi, hi

]
=

1− pij
1− pij + pij exp(vihiW̄ij)

(
1− evihiW̄ij

)
,

E
[
∂φ

∂W̄ij
| vi, hi

]
=

pij

1− pij + pijevihiW̄ij

∫
δ′(Wij − W̄ij) exp(vihiWij)dWij

= [integrating by parts] =
pije

vihiW̄ij

1− pij + pij exp(vihiW̄ij)
(−vihi).

(B3)

Eventually, we get the following expressions for the gradient components of the log-likelihood:

∂ logP (vvv;α)

∂W̄ij
= 〈P (Wij 6= 0 | vi, hi) vihi〉data − 〈P (Wij 6= 0 | vi, hi) vihi〉recon ,

∂ logP (vvv;α)

∂p̄ij
=
〈
P (Wij = 0 | vi, hi)

(
1− evihiW̄ij

)〉
data
−

〈
P (Wij = 0 | vi, hi)

(
1− evihiW̄ij

)〉
recon

.

(B4)

The gradient over W̄ij resembles the original contrastive divergence but has additional posterior
probability multipliers.

Similarly, we do the same derivations for the Gaussian case, where αk = (θ̄k, σk). The prior and
the φ derivatives have the following form:

P (θk;αk) ≡ e−φ(θk;αk) =
1√

2πσk
exp

[
−
(
θk − θ̄k√

2σk

)2
]
,

∂φ

∂θ̄k
=
θ̄k − θk
σ2
k

,
∂φ

∂σk
=

1

σk

[
1−

(
θk − θ̄k
σk

)2
]
.

(B5)

After marginalization, we obtain the following expressions for Wij (similar for bi and cj):

E
[
∂φ

∂W̄ij
| vi, hi

]
= −vihi, E

[
∂φ

∂σij
| vi, hi

]
= −v2

i h
2
iσij , (B6)

and get the following expressions for the gradient of the log-likelihood components:

∂ logP (vvv;α)

∂W̄ij
= 〈vihi〉data − 〈vihi〉recon ,

∂ logP (vvv;α)

∂σ̄ij
=
〈
v2
i h

2
jσij

〉
data
−
〈
v2
i h

2
jσij

〉
recon

.

(B7)
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Notice that when WWW , bbb, ccc are deterministic (i.e., pij = 0 and σk = 0 for Bernoulli and Gaussian
ensembles, respectively), the expected derivatives over W̄ij (the same is for b̄i and c̄j) give the same
expressions as the standard contrastive divergence. Thus, RBM is the deterministic limit of RBSE.

Another point is related to the implementation: During the optimization, the algorithm steps might
be suboptimal, hence we restrict probabilities be in the range [ε, 1 − ε] for some ε � 1. In
other words, we do not allow the model occasionally turn into classic RBM by keeping some ε-
stochasticity in the connection strengths.
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