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Chapter 1

Introduction

1.1 Overview

This report describes the simulation model and software for freeway corridors with High-Occupancy

Vehicle (HOV) and High-Occupancy or Tolled (HOT) lanes, and the model calibration methodology.

It is organized as follows.

• Chapter 2 covers the project methodology.

– Section 2.1 sets up a context by a high-level description of the simulation framework.

– Section 2.2 introduces the underlying traffic model.

– Section 2.3 shows how the proposed traffic model accommodates different HOV lane

configurations.

– Section 2.4 explains how this model is extended to incorporate an HOT facility.

– Section 2.5 describes the input data required by the simulation framework.

– Section 2.6 describes the simulation output data performance measures computed from

it, and the way they are reported.

– Section 2.7 discusses how different model elements are put together and calibrated.
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• Chapter 3 presents simulation case studies.

– Section 3.1 presents the model of I-680 North freeway in Contra Costa County with full

access HOV lane.

– Section 3.2 presents the model of I-210 East freeway in Los Angeles County with limited

access HOV lane.

– Section 3.3 presents the model of the HOT controller calibrated based on the FasTrak

transponder data on I-10 West in Los Angeles County and the simulation of I-10 West

segment with an HOT gate and dynamic pricing.

• Chapter 4 concludes the report.

1.2 Problem

Inefficient traffic management and/or vehicle demand exceeding road network capacity are the most

common causes of recurrent congestion [11]. High-occupancy-vehicle (HOV) lanes were proposed

and adopted throughout the U.S. as an attempt at demand management: by allowing vehicles

with multiple occupants exclusive access to a separate lane, civic authorities aimed to incentivize

carpooling and reduce the number of cars on the road. HOV lanes can be “2+”, admitting cars with

two or more occupants, or “3+”, which admit cars with at least three occupants. It is theorized

that an HOV lane would have fewer cars and faster speed than the adjacent general-purpose (GP)

lane, rewarding people traveling in carpools. In reality, however, this is not always the case. As it

is evident from the case study of I-210 East in Los Angeles, presented in Section 3.2, the congestion

patterns in both GP and HOV lanes are similar: HOV 2+ demand is so high that this HOV facility

practically becomes another GP lane. One way to reduce the HOV demand in this case would be to

convert the HOV 2+ lane into HOV 3+. A potential flaw of this approach, however, could be the

underutilization of the HOV 3+ lane due to the exclusion of all two-person HOVs, and even larger

congestion in the GP lane. Underutilization is what HOV lanes are being criticized for since their

inception, with some saying they did not deliver on their promised demand reduction and did not

substantially mitigate congestion in the GP lanes [9, 6]. This criticism led to the concept of high-
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occupancy or tolled (HOT) lanes. Available to high-occupancy vehicles without charge, an HOT

lane admits other vehicles if they pay a fee, which can be fixed or adjustable based on demand. The

idea is that acceptance of more than just high-occupancy vehicles would lead to higher utilization

of HOT lanes compared to their HOV counterparts. A dynamic pricing mechanism should control

the HOT demand, making it possible to not let the speed in the HOT lane drop below 45 mph.

Thus, the solution for I-210 managed lane could be to make it HOV 3+ or tolled facility. The

proper operation of HOV/T lanes requires the combination of both, effective supply and demand

management. There is a need for methods and tools that enable quick quantitative assessment

of scenarios and operational strategies in terms of benefits they provide for freeway operation and

revenue.

The research described in the current report builds upon the work conducted in 2006-14 in the

Caltrans-sponsored UC Berkeley projects, Tools for Operational Planning (TOPL) [16] and Con-

nected Corridors [2]. Our proposed HOV/T model is a modification of the Link-Node Cell Trans-

mission Model [10] developed by TOPL. Our simulation framework [4] is constructed around the

Berkeley Advanced Traffic Simulator (BeATS) [1] developed by Connected Corridors.

1.3 Objective

The aim of the current project was to develop a macroscopic freeway simulation model with an

HOV/T lane, which could be calibrated based on measured vehicle counts and speeds and used for

efficient evaluation of operational scenarios on freeways with HOV/T lanes.

Working toward this goal, we delivered:

1. the simulation model for HOV/T lanes implemented in BeATS;

2. calibration methodology for the proposed model;

3. analysis of pricing and traffic flow data from an HOT lane;

4. simulation framework for setting up operational scenarios and evaluating results;
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5. case studies for HOV/T lanes with different configurations — full access HOV lane on I-680

North in Contra Costa County; limited access HOV lane on I-210 East in Los Angeles; and

limited access HOT lane on I-10 West in Los Angeles.

1.4 Scope

Current list of HOT lane facilities in California is given in Table 1.1, spanning over 180 miles.

HOT facilities are becoming popular in the U.S. For example, in the San Francisco Bay Area alone,

the Metropolitan Transportation Commission (MTC) promises the implementation of a 550-mile

express lane network by 2035, and all of it will be managed with dynamic pricing strategies.

Facility Description
I-10 14 miles in each direction
I-15 20 miles in each direction
I-110 11 miles in each direction
I-580 14 miles in each direction
I-680 Milpitas - Sunol 14 miles South Bound
I-880 / SR-237 4 miles in each direction
SR-91 10 miles in each direction
I-680 San Ramon - Walnut Creek 12 miles in each direction expected to open in spring 2017

Table 1.1: List of HOT facilities in California.

Proper deployment and management of HOV/T facilities relies on the continuous process of:

1. obtaining and analyzing traffic measurement data;

2. operations planning — simulating various scenarios and operational strategies; and

3. implementing the most promising operational strategies in the field.

This process requires a fast and trusted traffic simulator for the rapid quantitative assessment of a

large number of operational strategies for the road network under various scenarios. The research

presented hereby is a necessary step toward achieving this goal.
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Chapter 2

Methodology

2.1 Simulation Framework

The simulation framework that we developed in the course of the project is presented in Figure 2.1.

The centerpiece of the workflow is the Berkeley Advanced Traffic Simulator (BeATS), an open

source macroscopic traffic simulation package written in Java. It takes an XML configuration file

describing the structure of the road network, model parameters, controllers, incoming and outgoing

flows, as input; runs the simulation; and generates output consisting of traffic densities, flows and

speeds in the links of the road network evolving in time. This simulation output can then be used

to compute performance measures, such as:

• Vehicle Miles Traveled (VMT);

• Vehicle Hours Traveled (VHT);

• Delay in vehicle-hours computed for the portion of traffic traveling below free flow speed;

• On-ramp queues.
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Figure 2.1: Simulation framework — workflow diagram.

The user interacts with the simulation model through the Excel spreadsheet that is used to enter

all the necessary input data and then, after the simulation, inspect the simulation results, which

are recorded there. The connections between the spreadsheet and BeATS, that is: generation of

the XML configuration file from spreadsheet; simulation start and stop; computation of perfor-

mance measures; and sending the simulation results back to the spreadsheet is taken care of by the

toolbox [4] that is presently implemented in MATLAB.

Next, we shall describe how the traffic model of BeATS works.

2.2 Traffic Model

We model traffic flow in a road network consisting of links L and nodes N , where links represent

stretches of roads, and nodes represent junctions that connect links. A node always has at least one

input and at least one output link. A link is called ordinary if it has both begin and end nodes. A

link with no begin node is called origin, and a link with no end node is called destination. Origins

14



are links through which vehicles enter the system, and destinations are links that let vehicles out.

The traffic state at each moment of time is defined by the number of vehicles of different classes

in every link. Different vehicle classes are needed to distinguish between low-occupancy vehicles

(LOVs) and high-occupancy vehicles (HOVs). For HOT lanes the additional class is needed —

LOVs ready to pay.

To describe the model, we will use the following notation:

• l — identifier of a link in the road network.

• ν — identifier of a node in the road network.

• C — number of traffic classes (LOV, HOV, etc.).

• c — index of a traffic class (c = 1, . . . , C).

• vfl — free flow speed in link l.

• wfl — congestion wave speed in link l.

• nJl — maximum number of vehicles in link l, also referred to as jam density.

• Fl — capacity of link l.

• n−l =
wln

J
l

vfl +wl
and n+

l = Fl
vfl

— low and high critical densities of link l.

• ncl (t) — number of vehicles of class c in link l at time t.

• nl(t) =
∑C

c=1 n
c
l (t) — total number of vehicles in link l at time t.

• f c,inl (t) — flow of class c entering link l at time t.

• f c,outl (t) — flow of class c leaving link l at time t.

• Mν — number of input links of node ν.

• Nν — number of output links of node ν.

• i — index of an input link (i = 1, . . . ,Mν) of node ν.
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• j — index of an output link (j = 1, . . . , Nν) of node ν.

• pν,i — input link priority at node ν.

• βcν,ij ∈ [0, 1] — split ratios that distribute traffic of a given commodity c coming from input

link i between output links at node ν,
∑N

j=1 β
c
ν,ij = 1.

• ηiν,j′j = [y, z] ⊆ [0, 1] — mutual restriction intervals that should be interpreted as follows:

– ην,j′j = [0, 1] — congestion in the output link j′ of node ν affects flow directed from the

input link i to the output link j in full. Obviously, ηiν,jj ≡ [0, 1] for all i.

– ηiν,j′j = [0, 0] (or any other interval of zero length) — traffic state in the output link j′

does not influence the flow from the input link i to the output link j at node ν.

– ηiν,j′j = [y, z] ⊂ [0, 1] — traffic state in the output link j′ affects a |ηiν,j′j | = z− y portion

of the flow directed from the input link i to the output link j of node ν. We specify

this influence as an interval, not just a scalar, to capture the summary effect of multiple

output links that may restrict flow to the output link j.

• f cν,ij(t) — flow of class c directed from input link i to the output link j of node ν at time t.

Detailed explanation of the meaning of all these terms can be found in [17].

Each link l ∈ L is characterized by its length and the fundamental diagram, a flow-density relation-

ship presented in Figure 2.2. A fundamental diagram is defined by four values: capacity Fl, free

flow speed vfl , congestion wave speed wl and the jam density nJl .
1

In this report we assume that densities, flows and speeds are normalized by link lengths and the

simulation time step; 2 and that free flow speed vfl and congestion wave speed wl satisfy the Courant-

Friedrichs-Lewy (CFL) condition [7]: 0 ≤ vfl , wl ≤ 1. 3 The values n−l =
wln

J
l

vfl +wl
and n+

l = Fl
vfl

are

called low and high critical density respectively. Unless n−l = n+
l , when it assumes triangular shape,

1For the sake of notation, in this report we assume these values to be fixed, but in general the may be time-varyinng.
2Given original (not normalized) capacity F̃l specified in vehicles per hour (vph), free flow speed ṽfl and congestion

wave speed w̃l specified in miles per hour (mph), and jam density ñJl specified in vehicles per mile (vpm), as well as
link length ∆xl and simulation time step ∆t, normalized values are Fl = F̃l∆t specified in vehicles per time period
∆t, vfl = ṽfl

∆t
∆xl

and wl = w̃l
∆t

∆xl
, both unitless, and nJl = ñJl ∆xl specified in vehicles.

3The CFL condition is the necessary condition for convergence while solving hyperbolic PDEs numerically.
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Figure 2.2: Fundamental diagram.

the fundamental diagram is not a function of density: nl(t) ∈
(
n−l , n

+
l

]
admits two possible flow

values.

Each node ν ∈ N with Mν input and Nν output links is characterized by time dependent mutual

restriction intervals {ηijj′(t)}, input link priorities {pi(t)} and partially defined split ratios {βcij(t)},
4 where C is the number of vehicle types; i = 1, . . . ,Mν , j, j′ = 1, . . . , Nν and c = 1, . . . , C.

The state of the system at time t is described by the number of vehicles per traffic class in each

link: ~nl(t) =
[
n1
l (t), . . . , n

C
l (t)

]T , where ncl (t) represents the number of vehicles of type c in link l

at time t. In our notation, nl(t) =
∑C

c=1 n
c
l (t). The state update equation for link l ∈ L is:

~nl(t+ 1) = ~nl(t) +
(
~f inl (t)− ~foutl (t)

)
, (2.2.1)

where ~f inl (t) =
[
f1,in
l (t), . . . , fC,inl (t)

]T
is the vector of commodity flows coming into link l during

this time step, and ~foutl (t) =
[
f1,out
l (t), . . . , fC,outl (t)

]T
is the vector of commodity flows leaving link

l during this time step.

For ordinary and destination links, ~f inl (t) is obtained from the begin node: given a begin node ν

with Mν input links,

f c,inl (t) =

Mν∑
i=1

f cil(t), c = 1, . . . , C. (2.2.2)

4Split ratios may also be fully defined or fully undefined.
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For origin links,

f c,inl (t) = dcl (t), (2.2.3)

where dcl (t) denotes demand of class c at time t, which is an exogenous input to the model, specified

in vehicles per simulation step ∆t.

For ordinary and origin links, ~foutl (t) is obtained from the end node: given an end node ν with Nν

output links,

f c,outl (t) =

Nν∑
j=1

f clj(t), c = 1, . . . , C. (2.2.4)

For destination links,

f c,outl (t) = vfl n
c
l (t) min

{
1,

Fl∑C
c′=1 v

f
l n

c′
l (t)

}
, c = 1, . . . , C. (2.2.5)

For each link l ∈ L we will also define a congestion metastate:

θl(t) =


0 nl(t) ≤ n−l ,

1 nl(t) > n+
l ,

θl(t− 1) n−l < nl(t) ≤ n+
l .

(2.2.6)

This metastate helps determining which constraint of the fundamental diagram is activated when

we compute the receive function for a link.

Now we can formally describe the simulation model that runs for T time steps.

1. Initialize:

ncl (0) := ncl,0;

θl(0) := θl,0;

t := 0
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for all l ∈ L and c = 1, . . . , C, where ncl,0 and θl,0 are the initial conditions.

2. Apply all the control functions that modify system parameters (fundamental diagrams, input

priorities) and/or system state. A control function may represent ramp metering, variable

speed limit, managed lane policy, etc. Control functions may be open-loop (if they depend

only on time) and closed-loop (if they depend on time and system state). This step is optional.

3. For each link l ∈ L and commodity c = 1, . . . , C define the send function (demand):

Scl (t) =


vfl n

c
l (t) min

{
1, Fl

vfl
∑C
c=1 n

c
l (t)

}
, l is an ordinary link or a destination,

dcl (t) min

{
1, Fl∑C

c=1 d
c
l (t)

}
, l is an origin.

(2.2.7)

4. For each link l ∈ L define the receive function (supply):

Rl(t) =

 (1− θl(t))Fl + θl(t)wl

(
nJl −

∑C
c=1 n

c
l (t)
)
, l is an ordinary link or a destination,

∞, l is an origin.

(2.2.8)

5. For each node ν ∈ N with input links i = 1, . . . ,Mν , and output links j = 1, . . . , Nν , that has

undefined split ratios,5 given its input link priorities {pi(t)}, send functions Sci (t) and receive

functions Rj(t), compute the undefined split ratios {βcν,ij(t)} with the objective:

min

{
max
j

max
i

(∑C
c=1 β

c
ν,ijS

c
i

pijRj

Mν∑
i=1

pij

)
−min

j
min
i

(∑C
c=1 β

c
ν,ijS

c
i

pijRj

Mν∑
i=1

pij

)}
, (2.2.9)

where:

• the optimization problem is solved at every time step t, and argument (t) is implied, but

omitted to make the notation easier;

• pij =
∑C
c=1 β

c
ν,ijS

c
ij∑C

c=1 S
c
i

pν,i.

The algorithm for solving this optimization problem is described in [17].
5Not all split ratios may be difined a priori: e.g. HOVs may decided between the HOV and the GP lanes based

on the current traffic condition, but not ahead of time.
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6. For each node ν ∈ N with input links i = 1, . . . ,Mν , and output links j = 1, . . . , Nν , given its

mutual restriction intervals {ηiν,jj′(t)}, input link priorities {pν,i(t)} and split ratios {βcν,ij(t)},

send functions Sci (t) and receive functions Rj(t), compute input-output flows f cν,ij(t) by solving

the following optimization problem:

max

 M∑
i=1

N∑
j=1

C∑
c=1

f cij

 , (2.2.10)

subject to:

f cij ≥ 0, i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — non-negativity

constraint; (2.2.11)

f cij ≤ Scij , i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — demand constraint; (2.2.12)
M∑
i=1

fij ≤ Rj , j = 1, . . . , N — supply constraint; (2.2.13)

f cij
fij

=
Scij
Sij

, i = 1, . . . ,M, j = 1, . . . , N, c = 1, . . . , C — proportionality

constraint for commodity flows; (2.2.14)

(a) For each input link i, such that∑N
j=1 fij < Si, Wi 6= ∅;

(b) For each input link i, such that Wi 6= ∅,

fij ≥ pij∑M
i′=1 pi′j

Rj , ∀j ∈Wi.


— priority constraint; (2.2.15)

fij ≤ Sij −A

 ⋃
j′∈Wi\{j}

Qij′j

 , i = 1, . . . ,M, j = 1, . . . , N — relaxed

first-in-first-out constraint; (2.2.16)

where:

• in all the terms, the subindex ν is implied, but omitted to make the notation easier;

• the optimization problem is solved at every time step t, and argument (t) is implied, but

omitted to make the notation easier;

• Scij = βcijS
c
i ;
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• Sij =
∑C

c=1 S
c
ij ;

• fij =
∑C

c=1 f
c
ij ;

• pij =
∑C
c=1 S

c
ij∑C

c=1 S
c
i

pi;

• Wi =
{
j∗ : Sij∗ > 0; pi′j∗fij∗ ≥ pij∗fi′j∗ , ∀i′ 6= i

}
;

• Qij′j = ηj′j ×
[
fij′
Sij′

Sij , Sij

]
, with ‘×’ denoting a Cartesian product; and

• A(·) denotes the area of a two-dimensional shape.

The algorithm for solving this optimization problem is described in [17].

7. For each link l ∈ L, compute ~f inl (t) using expressions (2.2.2)-(2.2.3) and ~foutl (t) using expres-

sions (2.2.4)-(2.2.5).

8. For each link l ∈ L, update the state ~nl(t+ 1) according to the conservation equation (2.2.1),

and the metastate θl(t+ 1) according to its definition (2.2.6).

9. If t = T , then stop, otherwise set t := t+ 1 and return to step 2.

Traffic speed for link l is computed as a ratio of total flow leaving this link to the total number of

vehicles in this link:

vl(t) =


∑C
c=1 f

c,out
l (t)∑C

c=1 n
c
l (t)

, if
∑C

c=1 n
c
l (t) > 0,

vfl , otherwise.
(2.2.17)

Defined this way, vl(t) ∈ [0, vfl ].

Next, we shall describe how HOV facilities are implemented within this traffic model.

2.3 HOV Model

We will consider two types of HOV configurations: full access and separated with limited access.

Full access is the configuration where the HOV lane is just another freeway lane, to (from) which

eligible vehicles may switch from (to) the general purpose (GP) lane anywhere. Typically, a full
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access lane is designated an HOV lane only during certain periods of the day, and at other times

it serves as a GP lane. On the other hand, a separated HOV lane allows traffic from and to the

GP lane only at certain locations, called gates, and it admits only HOV traffic at all times. The

implemented HOV access scheme depends on jurisdiction; for example, full access lanes are common

in Northern California, and separated HOV lanes are common in Southern California. Modeling of

these two configurations is described next.

2.3.1 Full Access HOV Lane

A full access HOV lane configuration is presented in Figure 2.3: GP and HOV links are parallel with

the same geometry and share the same begin and end node pairs; traffic flow exchange between GP

and HOV lanes can happen at every node. Links that are too long may be broken up into smaller

ones by creating more nodes, such as nodes 2 and 3 in Figure 2.3. Generally, fundamental diagrams

for parallel GP and HOV links are different.

Figure 2.3: Freeway with full access HOV lane.

We introduce two traffic commodities (C = 2): c = 1 corresponds to the low occupancy vehicle

(LOV) traffic, and c = 2 corresponds to the HOV traffic. When HOV lane is active, c = 1-traffic is

confined to the GP lane, whereas c = 2-traffic can use both GP and HOV lanes. E.g., for node 1 in
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Figure 2.3 this policy translates to:

β1
1,2 = 1− β1

1,222 β1
1,22 = 0 β1

1,222;

β1
11,2 = 1− β1

11,222 β1
11,22 = 0 β1

11,222;

β1
111,2 = 1− β1

111,222 β1
111,22 = 0 β1

111,222;

β2
1,2 = ? β2

1,22 = ? β2
1,222 β

2
1 = 1− β2

1,222;

β2
11,2 = ? β2

11,22 = ? β2
11,222 β

2
11 = 1− β2

11,222;

β2
111,2 = ? β2

111,22 = ? β2
111,222 β

2
111 = 1− β2

111,222,

(2.3.1)

where βci,222, are given (for example, computed from off-ramp detector measurements), and β2
ij are to

be determined using the split ratio assignment from step 5 of the simulation algorithm, i = 1, 11, 111,

j = 2, 22. Similarly, for node 2:

β1
2,3 = 1 β1

2,33 = 0;

β1
22,3 = 1 β1

22,33 = 0;

β2
2,3 = ? β2

2,33 = ? β
2
2 = 1;

β2
22,3 = ? β2

22,33 = ? β
2
22 = 1.

(2.3.2)

When the HOV lane is deactivated and becomes available for LOV traffic, split ratios for GP and

HOV output links are to be determined for both vehicle types. So, for node 1 we have:

βci,j = ? βci,222 β
c
i = 1− βci,222;

i = 1, 11, 111; j = 2, 22; c = 1, 2;
(2.3.3)

and for node 2:

βci,j = ? β
c
i = 1;

i = 2, 22; j = 3, 33; c = 1, 2.
(2.3.4)

In this report we do not insist on any particular way of setting link priorities. One common-sense

approach inspired by Tampére et al. [15] would be to make priorities proportional to link capacities,
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which for node 1 in Figure 2.3, will produce:

pi =
Fi

F1 + F11 + F111
, i = 1, 11, 111.

In some cases it makes sense to assign higher priorities to on-ramps. For example, if link 5 in

Figure 2.3 has an auxiliary lane starting from node 4, which allows all (or almost all) traffic to enter

freeway from on-ramp 444 even when link 5 is congested. In this situation we would set priority p444

proportional to 2F444. Thus, it is reasonable to set priorities of GP and HOV links proportional

to their capacities, whereas on-ramp priorities depend on the configuration of the on-ramp and the

freeway merging section.

Other parameters that largely depend on the freeway configuration are the mutual restriction inter-

vals. Denote the number of sublanes6 in links 1, 2 and 22 of Figure 2.3 L1, L2 and L22 respectively,

and let L1,222 < L1 be the number of sublanes in link 1, from which traffic can exit to the off-ramp

222. Then, one possible way of setting mutual restriction intervals would be:

ηi2,2 = [0, 1] ηi2,22 =
[
1− 1

L22
, 1
]
ηi2,222 = [0, 1];

ηi22,2 =
[
0, 1

L2

]
ηi22,22 = [0, 1] ηi22,222 = [0, 0];

ηi222,2 =
[
1− L1,222

L1
, 1
]
ηi222,22 = [0, 0] ηi222,222 = [0, 1],

(2.3.5)

for all input links of node 1: i = 1, 11, 111. With such mutual restriction intervals we suggest that

shortage of supply in GP link 2 affects the whole flow to the off-ramp 222 (ηi2,222 = [0, 1]) and affects

flow in one of the lanes of HOV link 22 (ηi2,22 =
[
1− 1

L22
, 1
]
; shortage of supply in HOV link 22

affects flow in one of the lanes of GP link 2 (ηi22,2 =
[
0, 1

L2

]
) and does not affect the off-ramp flow

(ηi22,222 = [0, 0]); shortage of supply in the off-ramp 222 affects flow in GP link 2 proportionally to

the ratio of the number of lanes that send traffic to the off-ramp in link 1 to the total number of lanes

in that link (ηi222,2 =
[
1− L1,222

L1
, 1
]
) and does not affect the flow in HOV link 22 (ηi222,22 = [0, 0]).

A conservative alternative to this approach would be to set all mutual restriction intervals to 1.

The case study with the full access HOV lane is presented in Section 3.1.
6We use the term “sublane” here to avoid confusion with the term “lane”, which throughout this report is synony-

mous to “facility”. So, when we say that an HOV lane has 2 sublanes and a GP lane has 4 sublanes, we actually mean
that the freeway has 2 HOV and 4 GP lanes.
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2.3.2 Separated HOV Lane with Limited Access

The configuration of the separated HOV lane with limited access is presented in Figure 2.4: GP

and HOV lanes are treated as two separate freeways that have some common nodes that allow flow

exchange between these two freeways. These nodes are gates. In the freeway with a full access HOV

lane discussed previously, every node is a gate. We can disable flow exchange at a given node by

fixing split ratios so that they keep traffic in its lane. For example, to disable the gate (the flow

exchange between the two lanes) at node 2 in Figure 2.3, we set βc2,3 = 1 and βc22,33 = 1 (βc2,33 = 0

and βc22,3 = 0), c = 1, 2. Thus, the full access HOV lane can be easily converted into the separated

HOV lane by fixing split ratios everywhere but designated gate-nodes. In practice, a gate is stretch

of freeway about 0.5 miles long, and, potentially, we can designate two or three nodes in a row as

gates. However, we assume that a gate is a single node.

Figure 2.4: Freeway with separated HOV lane and gates.

For the separated HOV configuration, we suggest setting mutual restriction coefficients just as in

the case of full access HOV lane, according to formula (2.3.5).

Directing Traffic from the HOV Lane to Off-Ramps

In the full access HOV model, we could direct traffic from the HOV lane to off-ramps by setting

corresponding split ratios, e.g. βc11,222, c = 1, 2, for node 1 in configuration from Figure 2.3. The

challenge of the separated HOV lane modeling is that generally gates do not coincide with off-ramp

locations. Typically, there are between 2 and 5 off-ramps in the freeway segment from one gate to

the next. Off-ramps in the GP road segment connecting two gates in Figure 2.4 are identified as

exits e1, e2, . . . , eK , and they cannot be accessed directly from the HOV lane. Vehicles traveling in

the HOV lane that intend to take one of the exits e1, . . . , eK , must switch from the HOV lane to

the GP lane at gate-node 1 and then be directed to the correct off-ramp.
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To resolve this challenge, we introduce new traffic commodities in addition to already existing c = 1

(LOVs) and c = 2 (HOVs) that were introduced in the full access HOV lane model, Section 2.3.1.

These additional commodities will be used to distinguish traffic by its destination off-ramp. Assum-

ing that K is the largest number of off-ramps in the GP lane between two adjacent gates, altogether

we have C = K + 2 traffic commodities: c = 1, 2, e1, . . . , eK , where ek indicates the destination

off-ramp in reference to Figure 2.4. By definition, traffic of type c = ek may exist in the GP lane

segment between gate 1 and off-ramp ek, but there is no traffic of this type either in the GP lane

segment between off-ramp ek and gate 2 or in the HOV lane. To ensure this, we set constant split

ratios:

βeki,x1
= 1, i = 1, 11, 111, direct all ek-type traffic to the GP lane at gate 1;

βekxk,ek = 1, direct all ek-type traffic to off-ramp ek;

βekxk′ ,ek′ = 0, k′ 6= k, do not send any ek-type traffic to other off-ramps,

(2.3.6)

where k = 1, . . . ,K, and xk denotes the input GP link for the node that has the output link ek (see

Figure 2.4).

Now we explain how ek-type traffic appears in the system. The original demand dcl (·) is specified

at origin links l for commodities c = 1, 2, and dekl (·) ≡ 0, k = 1, . . . ,K. Destination specific

traffic appears in the HOV links that end at gate-nodes by assigning destinations to portions of the

type-1 (LOV) and type-2 (HOV) traffic in those links. We propose incorporating this destination

assignment into the step 2 of the simulation algorithm, applying control (Section 2.2) and using

off-ramp split ratios βcxk,ek , c = 1, 2, k = 1, . . . ,K, to determine portions of HOV lane traffic to

be assigned particular destinations. The destination assignment algorithm at a given time t, for a

given HOV link ending with a gate-node, is described next. Without the loss of generality, we will

refer to Figure 2.4 and the HOV link 11 ending at the gate-node 1 in this description.

1. Given are vehicle counts per commodity nc11, c = 1, 2, e1, . . . , eK ; free flow speed v11; and

off-ramp split ratios β1
xk,ek

and β2
xk,ek

, k = 1, . . . ,K.7

7If a given GP segment connecting two adjacent gates has K′ off-ramps, where K′ < K, then assume β1
xk,ek =

β2
xk,ek = 0 for k ∈ (K′,K].
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2. Initialize:

ñc11(0) := nc11, c = 1, 2, e1, . . . eK ;

k := 1.

3. Assign ek-type traffic:

ñek11(k) = ñek11(k − 1) + β1
xk,ek

v11ñ
1
11(k − 1) + β2

xk,ek
v11ñ

2
11(k − 1); (2.3.7)

ñ1
11(k) = ñ1

11(k − 1)− β1
xk,ek

v11ñ
1
11(k − 1); (2.3.8)

ñ2
11(k) = ñ2

11(k − 1)− β2
xk,ek

v11ñ
2
11(k − 1). (2.3.9)

4. If k < K, then set k := k + 1 and return to step 3.

5. Update the state:

nc11 = ñc11(K), c = 1, 2, e1, . . . , eK .

The case study with the separated HOV lane is presented in Section 3.2.

The model of HOT facility builds on that of the HOV facility, and we shall describe it next.

2.4 HOT Model

To extend the proposed full access and gated HOV lane models to HOT, we introduce new vehicle

class — LOVs that are ready to pay — following the notation of Section 2.3.1, c = 3. Just as

c = 2-traffic, c = 3-traffic can use both GP and HOT lanes. E.g., for node 1 in Figure 2.5 this
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Figure 2.5: A node with 3 input and 3 output links representing a decision point.

policy translates to:

β1
1,2 = 1− β1

1,222 β1
1,22 = 0 β1

1,222;

β1
11,2 = 1− β1

11,222 β1
11,22 = 0 β1

11,222;

β1
111,2 = 1− β1

111,222 β1
111,22 = 0 β1

111,222;

β2
1,2 = ? β2

1,22 = ? β2
1,222 β

2
1 = 1− β2

1,222;

β2
11,2 = ? β2

11,22 = ? β2
11,222 β

2
11 = 1− β2

11,222;

β2
111,2 = ? β2

111,22 = ? β2
111,222 β

2
111 = 1− β2

111,222,

β3
1,2 = ? β3

1,22 = ? β3
1,222 β

3
1 = 1− β3

1,222;

β3
11,2 = ? β3

11,22 = ? β3
11,222 β

3
11 = 1− β3

11,222;

β3
111,2 = ? β3

111,22 = ? β3
111,222 β

3
111 = 1− β3

111,222,

(2.4.1)

where βci,222, are given (for example, computed from off-ramp detector measurements), and βcij are to

be determined using the split ratio assignment from step 5 of the simulation algorithm (Section 2.2),

i = 1, 11, 111, j = 2, 22, c = 2, 3. Thus, we will deal with C = 3, in the case of full access HOT

lane, and with C = K + 3, in the case of gated HOT lane, traffic commodities.

The other component of the HOT model is the HOT controller consisting of two parts:

1. Calculation of the toll based on the vehicle flow in the HOT lane; and

2. Calculation of the portion of LOVs ready to pay given toll and reassigning vehicles between

classes c = 1 and c = 3 accordingly.

Toll π(·) varies between its minimal and maximal values, πmin and πmax, and is computed from the

flow-price curve, depicted in Figure 2.6, where f in22 denotes total flow entering link 22 in Figure 2.5.

The flow-price curve is defined by the HOT lane operator in the form of lookup table.
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Figure 2.6: Flow-price curve: toll depends on the total flow entering the HOT link (link 22, as in
Figure 2.5). Shown are linear (L), polynomial (P) and sigmoid (S) dependencies.

In the second part of the HOT controller we should determine the portion of LOVs ready to pay

given price for using HOT lane. The readiess to pay may depend on multiple factors, most obvious

of which are:

1. Toll value;

2. Difference in traffic density between GP and HOT lanes;

3. The estimated gain in travel time of the HOT lane over the GP lane; and

4. Travel time reliability.

In this project, we coonsidered readiness to pay depending on items 1 and 2 — toll value and the

difference between the GP and the HOT traffic densities.8

Using the link numeration from Figure 2.5, the portion ρ(t) of LOVs ready to pay toll π
(
f in22(t)

)
in

link 1 at time t is:

ρ(t) =
1

1 + e−z(t)
, where z(t) = α0 + α1

C∑
c=1

(
nc2(t)

L2
− nc22(t)

L22

)
+ α2π

(
f in22(t)

)
. (2.4.2)

8We did not include travel time and travel time reliability, because the analysis of I-10 East and West HOT lane
data showed that there are always paying LOVs in the HOT lane, even during time periods when GP lane is always
in free flow.
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Here, nc2(t), nc22(t) are the vehicle counts in links 2 and 22 from Figure 2.5, respectivly; L2, L22 are

lane counts in those links; and α0, α1, α2 are known coefficients determined through calibration of

the HOT controller (see Section 2.7.4).

Given the vehicle counts per commodity nc1(t) and nc111(t), c = 1 . . . , C, and the portion of LOVs

ready to pay ρ(t), the HOT controller adjusts commodity counts as follows:

ñ1
1(t) = (1− ρ(t))

(
n1

1(t) + n3
1(t)
)
, ñ3

1(t) = ρ(t)
(
n1

1(t) + n3
1(t)
)

; (2.4.3)

ñ1
111(t) = (1− ρ(t))

(
n1

111(t) + n3
111(t)

)
, ñ3

111(t) = ρ(t)
(
n1

111(t) + n3
111(t)

)
. (2.4.4)

Here, the link IDs refer to the configuration in Figure 2.5. We do not adjust commodities in the

HOT link 11, because only ready to pay LOVs may be there.9

Now we can summarize the action of the HOT controller:

1. Determine toll π from the flow-price curve in Figure 2.6.

2. Compute ρ(t) using formula (2.4.2).

3. Adjust commodity counts using formulae (2.4.3)-(2.4.4).

The HOT controller works on all GP links and on-ramps whose end node is a gate (in full access

configuration, every node is a gate). This controller is activated in the step 2 of the simulation

algorithm (see Section 2.2). Not all ready to pay vehicles end up in the HOT lane, but only those

assigned to it in step 5 (split ratio assignment) of the simulation algorithm.

The case study with the HOT lane is presented in Section 3.3.
9Existing HOT policies are such that once a vehicle enters the HOT lane, its toll is set, and it is guaranteed that

the driver would not be charged more than that. Thus, we can assume that those LOVs that were ready to pay and
ended up in the HOT lane will stay ready to pay.
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2.5 Input Data

The simulation input consists of:

• Road network description;

• Model parameters, i.e. link capacities, free flow speed and congestion wave speed values;

• Controllers defined by their parameters, e.g. HOT controllers;

• On- and off-ramp flows.

The first sheet of the Excel spreadsheet mentioned in Section 2.1 is called Configuration. It contains

the descripttion of the road network and the model parameters, and its snapshot is presented in

Figure 2.7.

In this particular case, in row 7 the node with ID 914827184 is a gate, where traffic can switch

between the GP and the HOV/T lane. It has one incoming GP link 908310427 and two outgoing

links: the GP link 908310428 and HOV/T link -908310428. As indicated by the corresponding

parameter Gate/Off-Ramps in position D7, there are 4 off-ramps between this node and the next

gate. In the case of the full access HOV/T lane, every node is a gate, and all instances of parameter

Gate/Off-Ramps are set to 1. Postmile corresponds to the beginning of the link, and Length (miles

shows link length.

Columns Metered Lanes, Min Rate, Max Rate and OR Queue Limit refer to a ramp metering policy,

if such is present, and indicate, respectively, the number of metered lanes, the minimal metering

rate per lane, the maximal metering rate per lane, and the number of vehicles the ramp can store

before the spillback into the city streets occurs.

Parameter OR Priority indicates, whether traffic entering the freeway from the on-ramp has a merge

priority over the mainline traffic. We shall discuss merge priorities in greater detail in Section 2.7.3.

HOT controllers are specified in the HOT Control sheet, shown in Figure 2.8. Figure 2.8. For

each node that is a gate, we specify four time-varying parameters: coefficients α0, α2, α3 (rows 2-4
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Figure 2.7: Snapshot of the Configuration sheet.

in Figure 2.8) needed for equation (2.4.2); and the pointer to the pricing plan in the form of the

spreadsheet cell identifier (row 5 in Figure 2.8). On the same sheet we specify pricing plans (see

the bottom part of Figure 2.8). In our example, we have two pricing plans. Plan 1 (addressed as

A140) is fixed: the price is constant — 25 cents per mile. Several fixed plans can be used to model

time of day pricing. Plan 2 (addressed as C140) is dynamic: price is set based on the flow in the

HOT lane, e.g. if the flow reaches 1, 966 vehicles per hour, the price per mile is set to 100 cents.

Plan 1 is active during non-peak hours: from 0 to 5 am; from 9 am to 4 pm; and from 7 pm to 0

am. Plan 2 is activated during peak hours: from 5 to 9 am; and from 4 to 7 pm. In Figure 2.8, in

row 5, one can see how the pricing plan changes at 9 am: at 8:55 the plan is ‘C140’ (dynamic), and

32



Figure 2.8: Snapshot of the HOT Control sheet — parameters for readiness to pay curve and
references to pricing plans (top); fixed and dynamic pricing plans (bottom).

from 9:00 on, it is ‘A140’ (fixed).

The sheets Collected On-Ramp Flows and Collected Off-Ramp Flows, whose snapshots are presented

in Figure 2.9, are used to enter the vehicle flows entering the freeway through on-ramps and exiting

through off-ramps. These flows should be specified in vehicles-per-hour in 5-minute intervals. Thus,

for a 24-hour period ramp would have 288 values specifying its flow. If the indicated flow exceeds

ramp capacity, it will be capped at capacity.

Alternatively, off-ramp traffic can be specified through split ratios that specify portion of freeway

traffic that must exist through off-ramps. These split ratios can be entered in the Off-Ramp Split

Ratios sheet, whose snapshot is presented in the bottom of Figure 2.9. The simulation model

described in Section 2.2 was originally designed to work with off-ramp split ratios, not flows. The

main reason for that is that with split ratios traffic flow consistency is guaranteed, whereas the

requested off-ramp flows may be larger than the mainline flow, and thus cannot be achieved. On
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Figure 2.9: Snapshots of the Collected On-Ramp Flows sheet (top), Collected Off-Ramp Flows
sheet (middle) and Off-Ramp Split Ratios sheet (bottom).

the other hand, off-ramp vehicle flows can be measured directly, whereas split ratios can only

be estimated. The methodology for estimating off-ramp split ratios is discussed in Sections 2.7.6

and 2.7.7.

Lastly, we need to specify the portion of the HOV traffic in on-ramp flows that enter the system.

This is done in the HOV Portion sheet, shown in Figure 2.10. For each on-ramp, the HOV traffic

portion is specified by the nonnegative number between 0 and 1 in 5-minute intervals, which makes

it 288 values for a 24-hour simulation.
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Figure 2.10: Snapshot of the HOV Portion sheet.

2.6 Simulation Output and Reporting

The simulation produces the following output:

• Vehicle density in GP and HOV/T links, averaged over 5-minute intervals and reported

in vehicles per mile. Figure 2.11 presents the snapshots of GP Density and HOV/T Den-

sity sheets containing the density values. All othersimulation mentioned in this Section are

presented in a similar way.

• Flow entering GP and HOV/T links aggregated in 5-minute intervals and reported in GP

Flow and HOV/T Flow sheets in vehicles per hour.

• Speed in GP and HOV/T links averaged over 5-minute intervals and reported in GP Speed

and HOV/T Speed sheets in miles per hour.

From these data the following performance measures are computed:

• On-ramp queues. An on-ramp accumulates a queue when its demand exceeds the flow this

on-ramp actually sends to the freeway. There are 3 cases, when this may happen:

(1) demand exceeds on-ramp capacity;

(2) not all the vehicles desiring to enter freeway can be satisfied due to congestion in the

mainlines; and

(3) ramp metering is on, and vehicles accumulate at the on-ramp.
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Figure 2.11: Snapshots of the GP Density sheet (top) and HOV/T Density sheet (bottom).

If the on-ramp queue is non-empty, the on-ramp tries sending all the vehicles in the queue,

plus the demand to the freeway. Thus, the on-ramp out-flow can exceed demand, in which

case the queue decreases. The average queue dynamics follows the formula:

ql(t+ ∆t) = max
{

0, ql(t) +
(
dl(t)− foutl (t)

)
∆t
}

(2.6.1)

where ql(t) represents the queue size in the on-ramp link l, dl(t) is the demand — the flow

desiring to enter the freeway, foutl (t) is the actual flow leaving the on-ramp, and ∆t is the size

of the aggregation time interval. On-ramp queues averaged over 5-minute intervals (∆t = 5

minutes) are reported in the On-Ramp Queue sheet.

• Vehicle Miles Traveled (VMT) in each GP and HOV/T link l:

VMTl(t) = foutl (t)∆xl∆t, (2.6.2)

where foutl (t) is the total flow leaving link l at time t, and ∆xl is the length of link l. For

on-ramp links, VMTl(t) = 0. VMT values, aggregated in 5-minute intervals, are reported in

in the GP VMT sheet for GP links and in the HOV/T VMT sheet for HOV/T links.
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• Vehicle Hours Traveled (VHT) in each link l. For ordinary GP and HOV/T links,

VHTl(t) = n(t)∆xl∆t, (2.6.3)

where n(t) is the total vehicle density in l at time t, given in vehicles per mile. For each

on-ramps,

OR-VHTl(t) = ql(t)∆t, (2.6.4)

where ql(t) is the size of queue at the on-ramp l at time t. GP and HOV/T VHT values,

aggregated in 5-minute intervals, are reported in in the GP VHT sheet for GP links and in

the HOV/T VHT sheet for HOV/T links. Total VHT, composed of GP, HOV/T and on-ramp

VHT, aggregated in 5-minute intervals, is reported in the Total VHT sheet.

• Delay in each link l. For ordinary GP and HOV/T links,

Delayl(t) = VHTl(t)−
VMTl(t)

vl
, (2.6.5)

where vl is the free flow speed in link l.10 For on-ramps,

OR-Delayl(t) = OR-VHTl(t). (2.6.6)

GP and HOV/T delay values, aggregated in 5-minute intervals, are reported in in the GP

Delay sheet for GP links and in the HOV/T Delay sheet for HOV/T links. Total delay,

composed of GP, HOV/T and on-ramp delay, aggregated in 5-minute intervals, is reported in

the Total Delay sheet.

2.7 Model Calibration

When it comes to the simulation of real world traffic networks, in our case freeways with HOV/T

lanes, the quality of the simulation results is assessed by comparing them with detector measure-
10Instead of vl, we could use other reference speed values, e.g. 45 or 60 mph.
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ments. We expect to have flow and speed measurements at the freeway mainline (from both GP and

HOV/T lanes), as well as flow measurements at on- and off-ramps. To better match the detector

measurements the simulation model needs to be tuned. Tunable parameters of our model are:

• Fundamental diagram for each link;

• Percentage of HOVs in the traffic flow entering the system;

• Input link priorities in nodes with multiple inputs;

• HOT controller;

• On- and off-ramp flows;

• Off-ramp split ratios that are computed differently for the full access and separated HOV/T

facilities.

Next, we discuss calibration of each of these items in more detail.

2.7.1 Fundamental Diagrams

Traffic flow parameters governing the simulation model are defined by:

• free flow speed, vfl ;

• congestion wave speed, wl;

• capacity or maximum flow, Fl; and

• jam density, nJl .

These parameters are referred to as the fundamental diagram and are assigned to each link. Here,

capacity is the most significant parameter, as it ultimately determines the location of bottlenecks

in space and time. The model is very sensitive to capacity variations. The second significant

parameter is the free flow speed, which affects the intensity of uncongested traffic. The model is
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quite sensitive to free flow speed variations. The least significant parameter is the congestion wave

speed. If a given link gets congested, the congestion wave speed determines how fast congestion

would propagate upstream of this link. The model is not very sensitive to congestion wave speed

variations. Finally, under the assumption that when traffic is queued up and standing still, each

vehicle takes up 26 feet, the jam density can be set to nJl = 200 vpml. Alternatively, one may

assume the fundamental diagram is of triangular shape. Then,

nJl =
Fl

vfl
+
Fl
wl
.

For those links with healthy loop detection and where traffic flow reaches maximum at some point

during the day, fundamental diagrams can be inferred from loop data. Figure 2.12 presents an

estimation of the fundamental diagram from loop data. Two cases are shown:

(a) good data that allow estimating all three parameters, free flow speed, capacity and congestion

wave speed; and

(b) data sufficient only for the free flow speed estimation.

Figure 2.12: Estimation of the fundamental diagram from measurement data — (a) good data; (b)
bad data.
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Calibration of the fundamental diagram is typically model-agnostic, and there exists an abundant

research on this topic, including from some of the authors of this report, e.g. [8]. Fundamental

diagrams obtained from measurement data must go through a sanity check:

1. Capacity values should be in the range from 1,800 to 2,200 vphl for GP lanes and in the range

from 1,600 to 1,800 vphl for HOV/T lanes;

2. Free flow speed values should be in the range from 55 to 70 mph;

3. Congestion wave speed values should be in the range from 10 to 20 mph.

Generally, PeMS [5] is used as a rich source of freeway traffic data: it provides occupancy, flow and

speed at detector locations and identifies bottlenecks. From there we can learn whether a particular

detector is always in free flow, near a bottleneck, or in the middle of a bottleneck queue.

Links without loop detection can either borrow fundamental diagrams from their upstream or down-

stream neighbors, if those neighbors have data, or use the default values.

If traffic measurements are not available for the fundamental diagram estimation, or the sanity

check failed, default values from Table 2.1 are used.

GP Lane Auxiliary Lane HOV/T Lane
Free Flow Speed 65 mph 65 mph 65 mph
Congestion Wave Speed 15 mph 15 mph 15 mph
Capacity 1,900 vphl 900 vphl 1600 vphl
Jam Density 200 vpml 200 vpml 200 vpml

Table 2.1: Default values for the fundamental diagram.

2.7.2 Portion of HOVs in On-Ramp Demand

This parameter generally depends on the time of day and location as well as on the type of HOV/T

lane.11 Presently, we do not have a rigorous methodology for accurate estimation of the HOV

portion of traffic entering the freeway.
11Typical minimum vehicle occupancy level for HOV lanes in the U.S. is 2 (2+HOV) or sometimes 3 (3+HOV).
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The simple approach would be to assign the ratio of the HOV lane vehicle count to the total freeway

vehicle count during periods of congestion at any given location as the HOV portion of traffic.

2.7.3 Input Link Priorities

To illustrate the role of priorities, let us discuss how flows are computed at a merge node, where an

on-ramp enters the freeway. Consider the example, shown in Figure 2.13: flows from links 1 and 2,

S1 and S2, with priorities p1 and p2, merge into link 3, which can accept flow R3.

Figure 2.13: Merge node example.

The case when S1 + S2 ≤ R3 is trivial: both flows can be accepted by link 3 without modification.

However, if S1 +S2 > R3 (as in Figure 2.13), the actual flows coming out of links 1 and 2, fout1 and

fout2 , are scaled down versions of S1 and S2:

fout1 = min

{
S1, max

{
p1

p1 + p2
R3, R3 − S2

}}
;

fout2 = min

{
S2, max

{
p2

p1 + p2
R3, R3 − S1

}}
.

Choice of priorities defines the upstream direction of congestion propagation. If p1 = S1
S1+S2

= 4
5

and p2 = S2
S1+S2

= 1
5 , then f

out
1 = 6, 400 vph and fout2 = 1, 600 vph. On the other hand, if p1 = 0

and p2 = 1, then fout1 = 6, 000 vph and fout2 = 2, 000 vph.

We recommend making link priorities proportional to link capacities.
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2.7.4 HOT Controller

To compute coefficients α0, α1, α2 for the formula (2.4.2), we make the following assumptions:

1. We can count vehicles in the GP lane, n̂tGP , and in the HOT lane, n̂tHOT at any given time t.

2. We have data to estimate the LOV traffic portion ready to pay at time t, ρ̂t:

ρ̂t =
Number of LOVs in the HOT link at time t

Total number of LOVs in both HOT and GP links at time t
. (2.7.1)

The nominator in the right hand side of this formula comes from FasTrak data collected in the

HOT lane — if the vehicle pays, it is LOV, otherwise it is HOV. The denominator in the right

hand side of this formula is computed as a sum of vehicle count in the GP lane, which can be

obtained from PeMS [5], and the number of LOVs in the HOT lane. Obviously, ρ̂ ∈ [0, 1].

3. We know HOT price per mile at time t, πt, which comes from the FasTrak toll logs.

4. If traffic density per lane in the GP and the HOT lanes were the same and no tolls were

collected, we assume the readiness to pay ρ = LHOT
LGP+LHOT

, where LGP and LHOT denote

lane counts in GP and HOT links (links 2 and 22 from Figure 2.5 respectively). According

to (2.4.2),

ρ =
1

1 + e−α0
=

eα0

1 + eα0
=

LHOT
LGP + LHOT

. (2.7.2)

Hence,

α0 = ln

(
ρ

1− ρ

)
= ln

(
LHOT
LGP

)
. (2.7.3)

Thus, it remains to determine coefficients α1 and α2.

We will estimate α1, α2 from equations:

ln

(
ρ̂t

1− ρ̂t

)
= ln

(
LHOT
LGP

)
+ α1

(
n̂tGP
LGP

−
n̂tHOT
LHOT

)
+ α2π

t, t = 1, . . . ,Θ. (2.7.4)
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Denote:

X =


n̂1
GP
LGP
− n̂1

HOT
LHOT

π1

. . . . . .

n̂Θ
GP
LGP
− n̂Θ

HOT
LHOT

πΘ

 , and Y =


ln
(

ρ̂1

1−ρ̂1

)
− ln

(
LHOT
LGP

)
...

ln
(

ρ̂Θ

1−ρ̂Θ

)
− ln

(
LHOT
LGP

)
 . (2.7.5)

Equations (2.7.4) can be rewritten as:

Y = X

 α1

α2

 . (2.7.6)

Thus, α1, α2 can be estimated using the least squares method:

 α1

α2

 =
(
XTX

)−1
XTY . (2.7.7)

2.7.5 Ramp Flows

Vehicle counts for the first freeway link (mainline entry), on-ramps and off-ramps must be obtained.

Possible sources of these data are: PeMS, Census counts and manual counts collected for the given,

previous or related freeway corridor studies. Data sets for the mainline entry point and each of the

ramps should be processed as follows:

1. Use only weekday counts, excluding Fridays and holidays, to find the average flow profile;

2. Use 5-minute flow profile if readily available; otherwise produce 5-minute flow profile from the

hourly profile by interpolating, as shown in Figure 2.14.

Recall from Section 2.5 that the model input are 5-minute demand values, but our initial data are

collected 5-minute ramp flows. To retain the knowledge of the original ramp flows and to keep track

of the tuning process — that is, to be able to see how significantly do we change the original ramp
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Figure 2.14: Generating 5-minute flow profile from hourly vehicle counts.

flow — we introduce knobs. Knobs are coefficients, by which we multiply original flows to obtain

demand values that go into the model as input data. So, for the mainline, on- or off-ramp demand

at time t is:

dl(t) = Knobl(t)× CollectedFlowl(t).

Obviously, the first freeway link, every on- and off-ramp, each has its own set of 288 knobs — one

knob per 5-minute interval. Knobs can be found in the On-Ramp Knobs and Off-Ramp Knobs

sheets of the spreadsheet. As their names suggest, the first is used with on-ramp and the second

one — with off-ramp flows.
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Initially, all knobs are set to 1 — that is, collected flows are fed to the model unchanged. Then,

we start tweaking the knobs. For example, knobl = 1.1 increases the original flow of ramp link l by

10%, whereas knobl = 0.9 decreases the original flow of ramp link l by 10%.

Note: It may be a requirement for the calibrated model input to be as close to the collected flows

as possible, e.g. to be within ±15%. Then, the admissible interval for knob values is from 0.85 to

1.15. Typically, the variation of off-ramp knobs is less restrictive than that of on-ramp knobs.

The knob tuning process is a repetition of three actions until the simulation produces the expected

congestion pattern:

1. change knob values;

2. run simulation;

3. inspect the resulting congestion pattern.

The general approach to model calibration through demand adjustment can be described as follows:

1. Tune off-ramp knobs so that the simulation produces free flow traffic pattern — that is, if there

is any congestion, remove it by increasing knobs for off-ramps upstream of any bottleneck;

2. Sort the bottlenecks from the expected congestion pattern by time of activation, then by

location from upstream to downstream;

3. For each bottleneck in the list, find the relevant ramps that control this bottleneck — these

are ramps between the current bottleneck and the nearest active upstream bottleneck, or if

such does not exist, the beginning of the freeway corridor;

4. For each bottleneck, first decrease the relevant off-ramp knobs, then, if necessary, increase the

relevant on-ramp knobs, to achieve the expected bottleneck behavior in terms of its activation

time, duration and resulting queue;

5. Once the simulation produces the result close enough to the expected congestion pattern,

save the off-ramp split ratios — in scenario modeling, the split ratios will define the off-ramp

demand.

45



Knobs can be tweaked in chunks of arbitrary size (between 1 and 288). Intelligent knob tuning

requires some calculations on the part of the modeler. For instance, to activate a bottleneck the

sum of all incoming flows minus all outgoing flows upstream of the bottleneck should exceed freeway

capacity at the bottleneck location. On the other hand, if one wishes to avoid bottleneck activation

at a given location at a given time, one must ensure that the total net flow leading to this location

at this time is below the freeway capacity at this location.

2.7.6 Split Ratios for the Full Access HOV/T Lane

Consider a node, one of whose output links is an off-ramp, depicted in Figure 2.5. We shall make

the following assumptions.

1. Total flow entering the off-ramp, f̂ in222, at any given time is known (from measurements) and

is not restricted by the off-ramp supply: f̂ in222 < R222.

2. Portions of traffic sent to the off-ramp from the HOV/T lane and from the GP lane at any

given time are equal: βc1,222 = βc11,222 = β, c = 1, . . . , C.

3. None of the flow coming from the on-ramp (link 111), if such flow exists, is directed toward

the off-ramp. In other words, βc111,222 = 0, c = 1, . . . , C.

4. Distribution of flow portions not directed to the off-ramp between the HOV/T and the GP

output links is known. This can be written as: βcij = (1− β)δcij , where δ
c
ij ∈ [0, 1], as well as

β111,j , i = 1, 11, j = 2, 22, c = 1, . . . , C, are known.

5. Demand Sci , i = 1, 11, 111, c = 1, . . . , C, and supply Rj , j = 2, 22, are given.

At any given time, β is unknown and is to be found.

If β were known, the node model, described in step 6 of the simulation model (Section 2.2, would

compute the input-output flows, in particular, fi,222 =
∑C

c=1 f
c
i,222, i = 1, 11. Define

ψ(β) = f1,222 + f11,222 − f̂ in222. (2.7.8)
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Our goal is to find β from the equation:

ψ(β) = 0, (2.7.9)

such that β ∈
[

f̂ in222
S1+S11

, 1
]
, where Si =

∑C
c=1 S

c
i . Obviously, if S1 +S11 < f̂ in222, the solution does not

exist, and the best we can do in this case, is to set β = 1 directing all traffic from links 1 and 11 to

the off-ramp.

Suppose now that S1 +S11 >= f̂ in222. For any given f̂ in222, ψ(β) is a monotonically increasing function

of β. Moreover, ψ
(

f̂ in222
S1+S11

)
≤ 0, while ψ(1) ≥ 0. Thus, the solution of (2.7.9) within given interval

exists and can be obtained using the bisection method.

The algorithm for finding β follows.

1. Initialize:

b(0) :=
f̂ in222

S1 + S11
;

b(0) := 1;

k := 0.

2. If S1 + S11 ≤ f̂ in222, then set β = 1 and stop.

3. Run the node model from step 6 of the simulation model (Section 2.2) with β = b(0) and

evaluate ψ(β). If ψ(b(0)) ≥ 0, then set β = b(0) and stop.

4. Run the node model from step 6 of the simulation model (Section 2.2) with β = b(k)+b(k)
2 and

evaluate ψ(β). If ψ
(
b(k)+b(k)

2

)
= 0, then set β = b(k)+b(k)

2 and stop.

5. If ψ
(
b(k)+b(k)

2

)
< 0, then update:

b(k + 1) =
b(k) + b(k)

2
;

b(k + 1) = b(k).
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Else, update:

b(k + 1) = b(k);

b(k + 1) =
b(k) + b(k)

2
.

6. Set k := k + 1 and return to step 4.

2.7.7 Split Ratios for the Limited Access HOV/T Lane

The configuration of a node with an off-ramp as one of the output links is simpler in the case of

a limited access HOV/T lane, as shown in Figure 2.15. Here, traffic cannot directly go from the

HOV/T lane to link 222, and, thus, we have to deal only with the 2-input-2-output node. There

is a caveat, however. Recall from Section 2.3.2 that in the separate HOV/T lane case we have

destination-based traffic commodities, and split ratios for destination-based traffic are fixed.

Figure 2.15: A node with a GP link and an on-ramp as inputs, and a GP link and an off-ramp as
outputs.

We shall make the following assumptions:

1. Total flow entering the off-ramp, f̂ in222, at any given time is known (from measurements) and

is not restricted by the off-ramp supply: f̂ in222 < R222.

2. All the flow coming from the on-ramp (link 111), if such flow exists, is directed toward the

GP link 2. In other words, βc111,2 = 1 and βc111,222 = 0, c = 1, . . . , C.

3. Demand Sci , i = 1, 111, c = 1, . . . , C, and supply R2 are given.

4. Denote the set of destination-based commodities as D. Split ratios βc1j for c ∈ D are known.

Split ratios βc1j = β for c ∈ D, where β is to be determined.
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The first three assumptions here reproduce assumptions 1, 3 and 5 made for the full access HOV/T

lane case. Assumption 4 is a reminder that there is a portion of traffic flow that we cannot direct

to or away from the off-ramp, but we have to account for it.

Similarly to the full access HOV/T case, define function ψ(β):

ψ(β) =
∑
c∈D

f c1,222 +
∑
c∈D

f c1,222 − f̂ in222, (2.7.10)

where f c1,222, c = 1, . . . , C are determined by the node model from step 6 of the simulation model

(Section 2.2). The first term of the right-hand sight of (2.7.10) depends on β. As before, ψ(β) is

a monotonically increasing function. We look for the solution of equation (2.7.9) on the interval

[0, 1]. This solution exists iff ψ(0) ≤ 0 and ψ(1) ≥ 0. The algorithm for finding β is the same as

the one presented in the previous section, except that b(0) should be initialized to 0, and S11 is to

be assumed 0.

2.7.8 Summary of the Calibration Process

The model calibration follows the workflow diagram shown in Figure 2.16.

1. We start by assembling the available measurement data. Fundamental diagrams are assumed

to be given. Mainline and on-ramp demand is specified per 5-minute periods together with

the HOV portion parameter indicating the fraction of the input demand that is HOV. Initially

we do not know off-ramp split ratios as they cannot be measured directly. So we use some

arbitrary values to represent them and call it “initially guessed off-ramp split ratios”. What

can be measured instead of off-ramp split ratios, are the flows directed to off-ramps, to which

we refer to as off-ramp demand. Finally, if we model the HOT lane, we need the readiness to

pay coefficients α0, α1, α2 for equation (2.4.2), obtained as descibed in Section 2.7.

2. We run the simulation model as described in Section 2.2, where in step 5 the a priori unde-

fined split ratios between traffic in the GP and in the HOV/T lanes (see expressions (2.3.1)

and (2.4.1)) will be assigned.
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Figure 2.16: Calibration workflow.

3. Using these newly assigned split ratios we run the simulation model again, only this time,

instead of using given off-ramp split ratios, we compute them from the given off-ramp demand

as described in Sections 2.7.6 and 2.7.7. As a result of this step, we obtain new off-ramp split

ratios.

4. Now we run the simulation model as we did originally, in step 2, only this time with new

off-ramp split ratios, and record the simulation results — density, flow, speed, as well as

performance measures such as vehicle miles traveled (VMT) and vehicle hours traveled (VHT).

5. Check if the resulting off-ramp flows match the off-ramp demand. If yes, proceed to step 6,

otherwise, repeat steps 2-5. Usually, it takes the process described in steps 2-5 no more than

two iterations to converge.

6. Evaluate the simulation results:
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• correctness of bottleneck locations and activation times;

• correctness of flows coming out of bottlenecks;

• correctness of congestion extension at each bottleneck;

• correctness of VMT and VHT.

If the simulation results are satisfactory, stop. Otherwise, proceed to step 7.

7. Tune input data in the order shown in block 7 of Figure 2.16.
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Chapter 3

Case Studies

In this chapter we shall present three case studies:

• I-680 North in Contra Costa County — freeway segment with full access HOV lane;

• I-210 East in Los Angeles — freeway segment with limited access HOV lane; and

• I-10 West — freeway segment with limited access HOT lane.

Simulation data presented in this chapter are stored in the corresponding spreadsheets that can be

accessed at [3].

3.1 Full Access HOV Lane: I-680 North

We consider a 26.8-mile stretch of I-680 North freeway in Contra Costa County from postmile 30 to

postmile 56.8, shown in Figure 3.1, as a test case for the full access HOV lane configuration. This

freeway stretch contains two HOV lane segments whose begin and end points are marked on the

map. The first HOV segment is 12.3 miles long and will be converted to HOT in spring 2017 [13],

and the second HOV segment is 4.5 miles long. There are 26 on-ramps and 24 off-ramps. The HOV
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Figure 3.1: Map of I-680 North in Contra Costa County.

lane is active from 5 to 9 am and from 3 to 7 pm. The rest of the time the HOV lane behaves as a

GP lane.

To build the model, we used data collected for the I-680 Corridor System Management Plan (CSMP)

study [14]. The bottleneck locations as well as their activation times and congestion extension were

identified in that study using video monitoring and tachometer vehicle runs. On- and off-ramp flows

were given in 5-minute increments. Here we assume that HOV portion of the input demand is 15%.

The model was calibrated to a typical weekday, as suggested in the I-680 CSMP study. One of the

assumptions during the model calibration was that the HOV lane always stays in free flow.

Fundamental diagrams were assigned as follows:

• Capacity of the ordinary GP lane is 1,900 vphl;

• Capacity of the auxiliary GP lane is 900 vphl;

• Capacity of HOV lane is 1,800 vphl while active and 1,900 vphl when it behaves as a GP lane;

• Free flow speed varies between 63 and 70 mph — its measurements came partially from

PeMS [5] and partially from tachometer vehicle runs.
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Figure 3.2: I-680 North speed contours for GP and HOV lanes produced by simulation. Speed
values are given in miles per hour. White boxes on the GP lane speed contour indicate congested
areas as identified by the I-680 CSMP study.
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Figure 3.3: I-680 North density contours for GP and HOV lanes produced by simulation. Density
values are given in vehicles per mile per lane. Black boxes on the GP lane speed contour indicate
congested areas as identified by the I-680 CSMP study.
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Figure 3.4: I-680 North flow contours for GP and HOV lanes produced by simulation. Flow values
are give in vehicles per hour per lane. White boxes on the GP lane speed contour indicate congested
areas as identified by the I-680 CSMP study.
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Figure 3.5: I-680 North bottlenecks identified in the CSMP study. Source: [14].
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Figure 3.6: Flow at the Crow Canyon Road off-ramp over 24 hours — collected (off-ramp demand)
vs. computed by simulation (off-ramp flow).

• Congestion wave speed for each link was taken as 1/5 of the free flow speed.

The modeling results are presented in Figures 3.2, 3.3 and 3.4 showing speed, density and flow

contours for the time between 2 and 7 pm in the GP and the HOV lanes respectively.1 Each of

these plots consists of the left, corresponding to the GP lane, and right, corresponding to the HOV

lane, parts. In all the plots traffic moves from top to bottom along the “Absolute Postmile” axis,

while the horizontal axis represents time. Bottleneck locations and congestion areas identified by

the I-680 CSMP study are marked by white and black boxes in GP lane contours. HOV lane does

not get congested.

Figure 3.5 shows the snapshot of the three major bottlenecks extracted from the I-680 CSMP
1These 5 hours were chosen out of the 24-hour simulation period.
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study [14]. Empirical data documented in that study was used as a benchmark for our simulation.

Figure 3.6 shows the example of how well the off-ramp flow computed by the simulation matches

the target, referred to as off-ramp demand, taken from the off-ramp at Crow Canyon Road. We

can see that in the beginning and in the end of the day the computed flow falls below the target

(corresponding areas are marked with red circles). Why is this happening? Recall that off-ramp

demand is the vehicle count collected at the off-ramp. In the I-680 CSMP study on- and off-ramp

counts came mainly from Census tube measurements. Taken on different days, these counts may

be inconsistent: fewer vehicles enter the freeway than the number of vehicle that must exit. If the

mainline has fewer vehicles than the off-ramp requests, then the off-ramp flow falls below the target.

That is the reason why Crow Canyon Road off-ramp is “underfed”.

Finally, Table 3.1 summarizes the performance measurements — vehicle miles traveled (VMT),

vehicle hours traveled (VHT) and delay in vehicle-hours — computed by simulation versus collected

in the course of the I-680 CSMP study. Delay is computed for vehicles with speed below 45 mph.

Simulation result Collected data
GP Lane VMT 1,687,618 -
HOV Lane VMT 206,532 -
Total VMT 1,894,150 1,888,885
GP Lane VHT 27,732 -
HOV Lane VHT 3,051 -
Total VHT 30,783 31,008
GP Lane Delay 2,785 -
HOV Lane Delay 6 -
Total Delay 2,791 2,904

Table 3.1: Performance measures for I-680 North.
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Figure 3.7: Map of SR-134 East/ I-210 East freeway in Los Angeles County.

3.2 Limited Access HOV Lane: I-210 East

We consider a 20.6-mile stretch of SR-134 East/ I-210 East in Los Angeles County shown in Fig-

ure 3.7, as a test case for the separated HOV lane configuration. This freeway stretch consists of

3.9 miles of SR-134 East from postmile 9.46 to postmile 13.36 and 16.7 miles of I-210 East from

postmile 25 to postmile 41.7. Gate locations, where traffic can switch between the GP and the

HOV lanes are marked on the map. The HOV lane is always active. There are 28 on-ramps and 25

off-ramps. The largest number of off-ramps between two gates is 5. Thus, our freeway model has 7

vehicle classes - LOV, HOV and 5 destination-based.

To build the model, we used PeMS data for the corresponding segments of the SR-134 East and

I-210 East for Monday, October 13, 2014 [5]. This was one of the days when most vehicle detectors

on the GP and the HOV lanes, on-ramps and off-ramps of SR-134 East and I-210 East were intact,

and hence the PeMS data are reliable. Fundamental diagrams were calibrated using PeMS data

following the methodology [8]. As in the I680 North example, we assume that HOV portion of the

input demand is 15% in the off-peak 20% in the peak hours.

The modeling results are presented in Figures 3.8, 3.9 and 3.10 showing speed, density and flow

contours for the period between 2 and 7 pm in the GP and the HOV lanes respectively. Each

of these plots consists of the left, corresponding to the GP lane, and right, corresponding to the

HOV lane, parts. As before, in all the plots traffic moves from top to bottom along the “Absolute

Postmile” axis, while the horizontal axis represents time. HOV lane is as congested as the GP lane

indicating the fact that the 2+HOV demand is to high for this facility. Dashed white lines on the

contour plots indicate HOV gate locations.
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Figure 3.8: SR-134 East/ I-210 East speed contours for GP and HOV lanes produced by simulation.
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Figure 3.9: SR-134 East/ I-210 East density contours for GP and HOV lanes produced by simulation.
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Figure 3.10: SR-134 East/ I-210 East flow contours for GP and HOV lanes produced by simulation.
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Figure 3.11: SR-134 East/ I-210 East speed contours for GP and HOV lanes obtained from PeMS [5]
for Monday, October 13, 2014. Horizontal axis represents time in hours and vertical axis represents
absolute postmile.
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Figure 3.12: Flow at the North Hill Avenue off-ramp over 24 hours — PeMS data (off-ramp demand)
vs. computed by simulation (off-ramp flow).
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Figure 3.11 shows the PeMS speed contours for the SR-134 East/ I-210 East GP and HOV lanes

that were used as a target for our simulation model. In these plots, traffic also travels from top to

bottom, with the verticalal axis representing postmiles, while the horizontal axis represents time.

The period shown here is between 2 and 7 pm. All four speed contours share the same color scale.

Figure 3.12 shows an example of how well the off-ramp flow computed by the simulation matches

the target, referred to as off-ramp demand, taken from the off-ramp at North Hill Avenue. The

simulated off-ramp flow matches the off-ramp demand not perfectly, but closely enough. So is the

case for all the other off-ramps.

Finally, Table 3.2 summarizes the performance measurements — VMT, VHT and delay — computed

by simulation versus obtained from PeMS. PeMS data come from both SR-134 East and I-210 East,

and VMT, VHT and delay values are computed as sums of the corresponding values from these two

freeway sections. Delay values are computed in vehicle-hours for those vehicles travelling slower

than 45 mph.

Simulation result PeMS data
GP Lane VMT 2,017,322 -
HOV Lane VMT 378,485 -
Total VMT 2,395,807 414,941 + 2,006,457 = 2,421,398
GP Lane VHT 33,533 -
HOV Lane VHT 6,064 -
Total VHT 39,597 6,416 + 36,773 = 43,189
GP Lane Delay 3,078 -
HOV Lane Delay 584 -
Total Delay 3,662 1 + 3,802 = 3,803

Table 3.2: Performance measures for SR-134 East/ I-210 East.
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3.3 HOT Lane: I-10 West

To evaluate the proposed model of the HOT controller, we use data from the HOT lane on I-10

West freeway in Los Angeles County [12], a 14-mile freeway with 2 ingress-only, 2 egress-only and

2 ingress/egress gates.2 In our example we focus on one ingress/egress gate located immediately

upstream of South Fremont Avenue exit, shown in Figure 3.13.

Figure 3.13: Map of the I-10 West freeway section in Los Angeles County near the studied
ingress/egress HOT gate.

Here, the GP lane has 4 and the HOT lane has 2 sublanes. The HOT lane is always active, but it

has two regimes corresponding to peak hours — from 5 to 9 am and from 4 to 7 pm on weekdays;

and to off-peak hours — the rest of the time. During off-peak hours HOVs with two passengers or

more can use the HOT lane free of charge, and single-occupancy vehicles (SOVs) can use the HOT

lane at the fixed price of 25 cents per mile. During peak hours HOVs with three passengers or more

can use the HOT lane free of charge. The others are considered LOVs and to use the HOT lane

have to pay the toll that varies between 35 and 140 cents per mile depending on the demand for the

HOT lane. During the calibration, our focus is on the HOT controller behavior during peak hours

when the HOT lane is dynamically priced between 35 and 140 cents per mile.

We used I-10 West toll data for the year 2014 obtained from LA Metro [12] to calibrate and test the

HOT controller. These vehicle counts are collected through FasTrak readers that label each vehicle

based on its transponder setting as HOV-3 (3 passengers or more), HOV-2 (2 passengers or more)
2Ingress-only gate allows vehicles only to enter the HOT lane. Typically, ingess-only gates are at on-ramps that

are directly connected to the HOT lane. Egress-only gate allows vehicles only to exit the HOT lane. Typically, egress-
only gates are at off-ramps, to which the HOT lane is connected directly. Ingress/egress gate is a stretch of freeway,
where traffic can switch between the GP and HOT lane. In the I-210 East example we dealt with ingress/egress
gates.
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Figure 3.14: Estimation of the toll value based on the flow in the HOT lane.

or SOV. Thus, we know not only the vehicle flow near the FasTrak reader, but how this flow breaks

down into HOV and LOV portions.

Remark. Sometimes drivers cheat: a certain number of vehicles with the FasTrak transponder

set to HOV-3 are, in fact, SOVs. Our model does not identify cheaters. It should be used for

assessment of freeway operation provided that there is a given number of self-declared SOVs, HOV-

2s and HOV-3s.

We start by building the dependency of the toll value on the vehicle flow in the HOT lane. Figure 3.14

shows this dependency. As we can see, HOT flow varies between 0 and 3,750 vehicles per hour,

while the toll value changes in 5-cent increments between 35 and 140 cents per mile. Polynomial

curve fitting to the data results in the toll lookup table — Table 3.3. Recall from Section 2.4 that

the toll lookup table is the first part of the HOT controller model. as was mentioned there, this
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lookup table is typically put together by the operator of the HOT facility. For the purpose of this

example, however, we estimated it from the I-10 West toll data.

HOT lane flow in vehicles per hour Toll value in cents per mile
585 35
651 40
724 45
804 50
890 55
983 60
1,082 65
1,188 70
1,301 75
1,421 80
1,547 85
1,680 90
1,820 95
1,966 100
2,119 105
2,279 110
2,446 115
2,619 120
2,799 125
2,985 130
3,178 135
3,378 140

Table 3.3: Toll lookup table.

The second part of the HOT controller, according to Section 2.4, is the calculation of the portion

of LOV traffic ready to pay for using the HOT lane. We obtain the measurement of readiness to

pay ρ̂t from relation (2.7.1) using the I-10 West toll data that allow us to extract the LOV portion

of the vehicle counts in the HOT lane for the nominator, and PeMS data for the Vehicle Detector

Station (VDS) 716101 [5] for the denominator of the right-hand side of (2.7.1). 3

Figure 3.15 shows the dependency of ρ̂t on the difference of vehicle densities in the GP and the

HOT lanes obtained from the PeMS VDS 716101 (left), and on the toll value (right). We estimate

the portion of LOV traffic ready to pay, ρ, according to the expression (2.4.2), as a function of

both the GP-HOT density difference and the toll value. Since we have 4 GP and 2 HOT lanes,
3We used data for weekdays of October 2014.
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following (2.7.3),

α0 = ln (2/4) = −0.6931.

From the least squares fit (2.7.5)-(2.7.6), we get

α1 = 0.0115, α2 = −0.0053.

Figure 3.16 shows the surface fitting to the data. The resulting readiness to pay ρ as a function of

GP-HOT density difference and toll is shown as a 2-dimensional contour in Figure 3.17.

Remark. We should note that for different peak periods and off-peak hours, the readiness to pay

function should be estimated on different datasets. For example, in the case of I-10 West, the

freeway gets congested only during the morning peak, but in the afternoon peak generally stays in

free flow. Nevertheless, the dynamic pricing is still active in the afternoon. Obviously, in periods

when freeway is in free flow, the readiness to pay should depend more on the toll value than on

the density difference between GP and HOT lanes. In other words, the magnitude of α2 should be

significantly larger than that of α1. In the HOT controller used for I-10 West simulation described

below, we set α2 = −0.0626 for non-peak periods.

Figure 3.15: Dependency of rediness to pay on difference of traffic density in the GP and the HOT
lanes (left); and on the toll value (right).
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Figure 3.16: Estimation of readiness to pay as a function of density difference between the GP and
the HOT lanes and the toll.

Once the HOT controller is calibrated, we test it in three scenarios.

Scenario 1. Consider the road network configuration as shown in Figure 3.13, where link capacities

are:

F1 = 8, 000 vph, F2 = 8, 000 vph, F3 = 1, 600 vph;

F11 = 3, 600 vph, F22 = 3, 600 vph;

F111 = 2, 000 vph.
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Figure 3.17: Readiness to pay as a function of density difference between the GP and the HOT
lanes and the toll.

Input demand for links 1 and 11 is constant:

d1
1 = 6, 700 vph, d2

1 = 0 vph, d3
1 = 0 vph;

d1
11 = 0 vph, d2

11 = 385 vph, d3
11 = 0;

d1
111 = 85 vph, d2

111 = 15 vph, d3
111 = 0 vph.

As we can see, GP link 3 with its low capacity creates a bottleneck for traffic that stays in the GP

lane.

Figure 3.18 presents the results of the simulation: LOV and HOV input demand (top-left); flows

entering the GP link 2 and the HOT link 22 (bottom-left); toll value (top-right); and the portion

of LOV traffic ready to pay the corresponding toll. The system reaches the equilibrium at 80 cents
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Figure 3.18: Scenario 1 — constant LOV and HOV demand.

per mile with 37% of LOVs ready to pay.

Scenario 2. This scenario differs from the scenario 1 only in the HOV demand coming into the

HOT lane:

d2
11 = 2, 585 vph.

As shown in Figure 3.19, more vehicles enter now the HOT link 22 (bottom-left); the toll value goes

up accordingly, to 135 cents per mile; and the readiness to pay drops to 27%.

Scenario 3. In this scenario, we set capacity of the GP link 3:

F3 = 7, 600 vph.
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Figure 3.19: Scenario 2 — the same as scenario 1, but has higher HOV demand.

74



Time step 

Fl
o

w
s 

in
 G

P
 a

n
d

 H
O

T 
la

n
es

 in
 v

e
h

ic
le

s 
p

er
 h

o
u

r 
LO

V
 a

n
d

 H
O

V
 d

e
m

an
d

 in
 v

e
h

ic
le

s 
p

e
r 

h
o

u
r 

Time step 

To
ll 

va
lu

e 
in

 c
e

n
ts

 p
er

 m
ile

 
P

e
rc

e
n

t 
o

f 
LO

V
s 

re
ad

y 
to

 p
ay

 

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

GP flow

HOT flow

0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

LOV demand

HOV demand

Figure 3.20: Scenario 3 — varying LOV and HOV demand.

The simulation is divided into 4 time periods. The LOV and the HOV demand in links 1 and 11

changes from period to period as specified in Table 3.4.

Time period 1 Time period 2 Time period 3 Time period 4
d1

1 (vph) 7,000 7,600 4,000 6,000
d2

11 (vph) 2,940 940 1,940 2,440

Table 3.4: Varying demand.

On-ramp demand is constant:

d1
111 = 340 vph, d2

111 = 60 vph.

The results of the simulation are shown in Figure 3.20.
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Figure 3.21: I-10 West speed contours for GP and HOT lanes produced by simulation.

Figure 3.22: I-10 West density contours for GP and HOT lanes produced by simulation.

Now we consider a 1-mile stretch of I-10 West in Los Angeles County shown in Figure 3.13, as a

test case for the HOT lane configuration with limited access. This freeway stretchs from postmile

v21.79 to postmile 20.79 Gate location, where traffic can switch between the GP and the HOT lanes

is marked on the map. The HOT lane is always active. There are 2 on-ramps and 2 off-ramps. The

largest number of off-ramps between two gates is 1. Thus, our freeway model has 7 vehicle classes

- LOV, HOV, LOV ready to pay and 1 destination-based.

To build the model, we used PeMS data for the corresponding segment of I-10 West for Tuesday,

October 14, 2014 [5]. This was one of the days when most vehicle detectors on the GP and the HOT

lanes, on-ramps and off-ramps of I-10 West were intact, and hence the PeMS data are reliable. Fun-

damental diagram parameters were assigned using the default guideline discussed in Section 2.7.1.

We assume the HOV portion4 of the input demand is 20% in the off-peak 25% in the peak hours.
4When we discuss HOV traffic on the weekday in the context of I-10, we mean HOV 3+. HOVs 2+ as well as

SOVs are considered low occupancy.
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Figure 3.23: I-10 West flow contours for GP and HOT lanes produced by simulation.

Figure 3.24: I-10 West speed contours for GP and HOT lanes obtained from PeMS [5] for Tuesday,
October 14, 2014. Horizontal axis represents time in hours and vertical axis represents absolute
postmile.
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Figure 3.25: 5-minute flows at the I-10 West off-ramps over 24 hours — PeMS data (measured flow)
vs. computed by simulation.
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The reason for so high numbers is that empirical evidence suggests that there are a lot of violators

— SOVs declaring themselves as HOVs 3+ — at the I10 HOT lane during peak hours.

The modeling results are presented in Figures 3.21, 3.22 and 3.23 showing speed, density and flow

contours for the period between 5 and 10 am in the GP and the HOT lanes respectively. Each

of these plots consists of the left, corresponding to the GP lane, and right, corresponding to the

HOT lane, parts. As before, in all the plots traffic moves from top to bottom along the “Absolute

Postmile” axis, while the horizontal axis represents time. Black lines o the contour plots indicate

HOT gate location.

Figure 3.24 shows the PeMS speed contours for the I-10 West GP and HOT lanes that were used as

a target for our simulation model. In these plots, traffic also travels from top to bottom, with the

verticalal axis representing postmiles, while the horizontal axis represents time. The period shown

here is between 5 and 10 am. Both speed contours share the same color scale.

Figure 3.25 shows how well the off-ramp flows computed by the simulation match the measurements

taken at the South Fremont Ave. and I-710 off-ramps.

Table 3.5 summarizes the performance measurements for the modeled segment of I-10 West —

VMT, VHT and delay — computed by simulation versus obtained from PeMS. Delay values are

computed in vehicle-hours for those vehicles travelling slower than 45 mph.

Simulation result PeMS data
GP Lane VMT 76,287 -
HOT Lane VMT 28,466 -
Total VMT 104,753 115,076
GP Lane VHT 1,484 -
HOT Lane VHT 459 -
Total VHT 1,943 2,252
GP Lane Delay 280 -
HOT Lane Delay 29 -
Total Delay 309 326

Table 3.5: Performance measures for I-10 West.

Figure 3.26 shows plots of how toll per mile was changing during the 24 hours of simulated time

(top) and how the percent of LOVs ready to pay was changing during the same period (bottom).
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Figure 3.26: Change in toll value (top) and the percent of LOVs ready to pay (bottom) averaged
over 5-minute intervals.

These data are averaged over 288 5-minute periods and reported in the HOT Pricing and HOT

Ready to Pay sheets of the spreadsheet, whose snapshots are presented in Figure 3.27.
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Figure 3.27: Snap shots of HOT Pricing (top) and HOT Ready to Pay (bottom) sheets.
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Chapter 4

Conclusion

In the course of this project a simulation framework ffor freeways with managed lanes [4] was

developed around the Berkeley Advanced Traffic Simulator (BeATS) [1]. It was tested with freeway

segments of I-680 North (full access HOV lane), I-210 East (limited access HOV lane) and I-10 West

(limited access HOT lane). As test examples show, the smulation can adquately reproduce traffic

behavior in the presence of multiple vehicle classes and managed lane facilities. Model calibration

guidelines are provided.

This project is an important step in the development of the open source software package for

operations planning in multimodal transportation networks. The implemented framework enables

the following analyses:

• estimate impact of different freeway traffic modes on system performance;

• optimize ramp metering plans;

• determine the cause of congestion — excessive demand or poor operational strategy.

Historical toll data, together with vehicle counts, enable the estimation of willingness to pay for

LOVs, making HOT revenue analysis possible:

• given a traffic pattern, estimate HOT revenue projections;
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• optimize dynamic toll strategy.

The developed simulation framework has some limitations that require further research to be over-

come. Some of these limitations are just the absence of certain nice-to-have features, such as:

• connection to the 4-step travel demand model, which would allow seemless development of

future year projections;

• inclusion of arterial signals adjacent to freeway on- and off-ramps.

More important is the ability to assess impact of violators on HOV/T facility’s operational and

fiscal performance. The implemented HOT controller has no knowledge about cheaters, SOVs that

declare themselves HOVs to avoid the toll, and uses data collected from FasTrak transponders as

is. The other type of violations, specific to limited access facilities, is the crossing between GP and

HOV/T lanes through the barrier (solid white line). Empirical data suggest that such violations

are common, and it is important to quantify their impact. It is possible to extend the existing

simulation model to include violator vehicle class with its behavior model.

The most significant limitation of the current simulation framework is that currently it is built in

MATLAB. An incremental step is required to make it usable for Caltrans engineers. There are two

possible approaches:

1. build a downloadable, self-installable distribution that can automatically check for updates,

similar offline version of MS Office;

2. establish online interface, by means of which spreadsheets with simulation input and data can

be exchanged between the user and the server running the computational tasks.

In both cases, the software will remain open source and free. We recommend the second approach

as more efficient of the two. Moreover, it will allow to connect simulation data with online maps,

such as Google Maps or Bing.
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