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A Physiological Time Series Dynamics-Based
Approach to Patient Monitoring

and Outcome Prediction
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Abstract—Cardiovascular variables such as heart rate (HR) and6
blood pressure (BP) are regulated by an underlying control system,7
and therefore, the time series of these vital signs exhibit rich dynam-8
ical patterns of interaction in response to external perturbations9
(e.g., drug administration), as well as pathological states (e.g., onset10
of sepsis and hypotension). A question of interest is whether “sim-11
ilar” dynamical patterns can be identified across a heterogeneous12
patient cohort, and be used for prognosis of patients’ health and13
progress. In this paper, we used a switching vector autoregressive14
framework to systematically learn and identify a collection of vital15
sign time series dynamics, which are possibly recurrent within the16
same patient and may be shared across the entire cohort. We show17
that these dynamical behaviors can be used to characterize the18
physiological “state” of a patient. We validate our technique us-19
ing simulated time series of the cardiovascular system, and human20
recordings of HR and BP time series from an orthostatic stress21
study with known postural states. Using the HR and BP dynamics22
of an intensive care unit (ICU) cohort of over 450 patients from the23
MIMIC II database, we demonstrate that the discovered cardiovas-24
cular dynamics are significantly associated with hospital mortality25
(dynamic modes 3 and 9, p = 0.001, p = 0.006 from logistic re-26
gression after adjusting for the APACHE scores). Combining the27
dynamics of BP time series and SAPS-I or APACHE-III provided a28
more accurate assessment of patient survival/mortality in the hos-29
pital than using SAPS-I and APACHE-III alone (p = 0.005 and30
p = 0.045). Our results suggest that the discovered dynamics of31
vital sign time series may contain additional prognostic value be-

Q1

32
yond that of the baseline acuity measures, and can potentially be33
used as an independent predictor of outcomes in the ICU.34

Index Terms—Intensive care unit, physiological control systems,35
switching linear dynamical systems.36
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I. INTRODUCTION 37

MODERN clinical data acquisition systems are capable of 38

continuously monitoring and storing measurements of 39

patient vital signs, such as heart rate (HR) and blood pressure 40

(BP), over multiple days of hospitalization [1]. Despite this 41

continuous feed of data, commonly used acuity scores, such as 42

APACHE and SAPS [2]–[5], are based on snap-shot values of 43

these vital signs, typically the worst values during a 24-h period. 44

However, physiologic systems generate complex dynamics in 45

their output signals that reflect the state of the underlying control 46

systems [6]–[8]. The objective of this study is to consider an 47

approach to the analysis of critical care bedside monitoring that 48

is based on the dynamical behaviors of vital sign time series. 49

The time series of vital signs (e.g., HR, BP) are multidimen- 50

sional, high resolution (from once a second to once a minute), 51

highly coupled due to presence of physiological feedback loops 52

within the body [8], and remarkably nonstationary as a result 53

of internally and externally induced changes in the state of the 54

underlying control systems. For instance, time series of BP can 55

exhibit oscillations on the order of seconds (e.g., due to the vari- 56

ations in sympathovagal balance), to minutes (e.g., as a conse- 57

quence of fever, blood loss, or behavioral factors), to hours (e.g., 58

due to humoral variations, sleep-wake cycle, or circadian ef- 59

fects) [9], [10]. A growing body of the literature is pointing to the 60

clinical utility of vital signs time series dynamics to inform prog- 61

nosis [11]–[17], and to provide early predictors of potentially 62

life-threatening conditions in the intensive care unit (ICU) [18]. 63

Techniques for modeling and analysis of cardiovascular and 64

respiratory time series can be broadly classified into linear mech- 65

anistic models [19], [20] and nonlinear descriptive indices [6], 66

[7], [21]. The linear techniques commonly used (often based 67

on variants of autoregressive modeling) have the advantage 68

of revealing the individual relationships among the observed 69

variables (e.g., the noninvasive measures of baroreflex gain 70

describes the relationship between HR and BP, excluding the 71

possible influence of respiration). On the other hand, nonlin- 72

ear indices of complexity are capable of capturing a richer set 73

of dynamical behaviors, with less emphasis on physiological 74

interpretability in terms of specific underlying mechanisms. 75

In this paper, we assume that although the underlying dynam- 76

ical system may be nonlinear and nonstationary, and the stochas- 77

tic noise components can be non-Gaussian, the dynamics can be 78

approximated by a mixture of linear dynamical systems. Each 79

such linear “dynamic” (or mode) is a time-dependent rule that 80

describes how the future state of the system evolves from its 81

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Simulation study of the cardiovascular system. Three examples (out of the ten simulated time series) of HR and BP (after filtering) are shown in panels
a, b, and c. In each case, the actual dynamics are color coded. The horizontal red lines show the inferred segmentation. The algorithm consistently assigned modes
4 and 3 to the dynamics color coded as red and blue, respectively, across all the simulated time series. The black dynamics are represented by modes 1 and 2.
(a) Simulated subject 1, (b) Simulated subject 2, and (c) Simulated subject 3.

current state, centered around a given system equilibrium point.82

Therefore, an ideal algorithm would be able to identify time se-83

ries segments that follow a “similar” dynamic, and would switch84

to a different mode upon a change in the state of the underlying85

system.86

To formalize these objectives, we employed a switching vec-87

tor autoregressive (SVAR) framework [22], [23]. Given a collec-88

tion of time series from a cohort, the proposed SVAR framework89

allows for simultaneous learning of the underlying dynamic be-90

haviors or modes, and segmentation of the time series in terms91

of the most likely dynamic describing the time series evolution92

at any given point in time. The proposed framework enables93

characterization of patients in terms of the dynamical modes94

(e.g., the average time spent within the different modes), and95

can potentially be used to capture changes in the underlying96

cardiovascular control systems of human subjects in response97

to internal (such as onset of infection) and external perturba-98

tions (such as postural changes). Furthermore, we hypothesize99

that when applied to vital sign time series of patients in a criti-100

cal care setting, the proposed technique can be used to discover101

dynamical modes with prognostic values for predicting clinical102

outcomes of interests.103

A preliminary version of this study was presented at the 34th104

Annual International Conference of the IEEE Engineering in105

Medicine and Biology Society (EMBC ’12) [14]. Here, we ex-106

tend on our previous work to include a series of validation107

studies, and a more comprehensive assessment of the utility of108

the time series dynamics within the ICU.109

The rest of this paper is organized as follows. We validated110

the proposed technique using HR and BP time series from a111

simulation dataset, and a human laboratory study of subjects112

undergoing a tilt-table test, where the timing of the occurrence113

of the different dynamics and the sharing of the dynamics across114

multiple time series/subjects were known a priori. To test the115

prognostic value of the discovered vital sign dynamics, we ap-116

plied the proposed approach to the HR and BP dynamics of an117

ICU cohort from the MIMIC II database [1] during the first 24 h118

of their ICU stays, and tested whether cardiovascular dynamics119

during the first 24 h of ICU admission are predictive of survival120

and mortality after adjusting for the existing acuity scores, such 121

as SAPS-I and APACHE. 122

II. MATERIALS AND METHODS 123

This section describes the utilized datasets, as well as the 124

proposed technique for discovery of shared dynamics among 125

patients, and assessment of risks and outcomes. 126

A. Datasets 127

1) Cardiovascular Simulation: We simulated a cardiovas- 128

cular control system with bivariate time series of HR and BP. 129

The model is based on a delay recruitment model of HR and 130

BP regulation, as described in Fowler and McGuinness [24], 131

and McSharry et al. [25]. The model included a coupled system 132

of nonlinear delayed differential equations, controlling HR and 133

BP, with respiration as an exogenous input. We simulated ten 134

different multivariate time series of HR and mean arterial BP, 135

each including three different dynamics that become dominant 136

in a random order and last for a variable length of time. The 137

three dynamics (color-coded as red, blue, and black, respec- 138

tively, in Fig. 1) approximate aging-related autonomic changes; 139

a progressive reduction in parasympathetic gain (from 0.40 to 140

0.13 to 0.07 in normalized units; see [24]) and an increase in 141

sympathetic delay (from 3 to 5 s). To be consistent, we used the 142

same preprocessing step as the tilt-table experiment to remove 143

the steady-state baseline and any oscillation in the time series 144

slower than 100 beats/cycle (see below for details). 145

2) Tilt-Table Experiment: Time series of HR and BP were 146

acquired from ten healthy subjects (five males, five females) 147

undergoing a tilt-table test of orthostatic tolerance [26], [27]. 148

The mean age was 28.7 ± 1.2 years. The details of the pro- 149

tocol are described by Heldt in [27]. Briefly, subjects were 150

placed in a supine position. Tilting was performed from the 151

horizontal position to the vertical position and back to supine. 152

The study was approved by MIT’s Committee on the Use of 153

Humans as Experimental Subjects and the Advisory Board 154

of the MIT-MGH General Clinical Research Center [27]. 155

Volunteers gave written, informed consent prior to participation 156
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Fig. 2. Tilt-table study modeled using four dynamic modes—1 (Blue), 2 (Red), 3 (Black), and 4 (Purple). Two examples out of the ten recordings of HR and BP
from the tilt-table experiment are shown in Panels a and b. Panels c and d show a zoomed in 7-min recording of HR and BP, while the subjects transition to/from
supine to nonsupine positions after a fast tilt procedure. Actual values are in gray (Y-axis on left) and filtered values (Y-axis on right) are color coded based on the
inferred dynamical modes. Note that Subjects 1 and 2 shared the same inferred nonsupine dynamics (in red); the algorithm consistently assigns the red mode to the
nonsupine position for both subjects. The supine position for Subjects 1 and 2 are captured by the modes in blue and black, respectively. The purple mode seems
to capture the high-frequency noise components of the time series. In each case, annotations for the actual tilt procedures performed are plotted as horizontal bars
on the bottom of each figure and are color coded (green to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and down to supine; yellow: stand up
and back to supine). (a) Tilt Subject 1, (b) Tilt Subject 2, (c) Tilt Subject 1 (zoomed in), and (d) Tilt Subject 2 (zoomed in).

in the study. Since we were interested in the dynamics of in-157

teraction between HR and BP in the frequency range pertinent158

to sympathetic and parasympathetic regulation [28], time series159

of HR and BP were high-pass filtered to remove the steady-160

state baseline and any oscillation in the time series slower than161

100 beats/cycle. This filtering was done using a seventh-order162

Butterworth digital filter with a cutoff frequency of 0.01 cy-163

cles/beat. Example time series from before and after filtering164

are shown in Fig. 2.165

3) MIMIC II Dataset: The MIMIC II database [1], pub-166

licly available via PhysioNet [29], includes clinical (laboratory167

values, IV medications, etc.) and physiological data (HR,168

BP, oxygen saturation, etc.) collected from the bedside mon-169

itors (Component Monitoring System Intellivue MP-70; Philips170

Healthcare, Andover, MA, USA) in ICUs of the Beth Israel171

Deaconess Medical Center (BIDMC) in Boston. The MIMIC172

II waveform database (version 2) includes approximately 4000173

records of high-resolution physiological waveforms of adult174

ICU patients with associated minute-by-minute (averages of175

the calculated numerics during the previous minute) vital sign176

trends. Data collection for the MIMIC II database was approved177

by the Institutional Review Boards of BIDMC and the Mas-178

sachusetts Institute of Technology (Cambridge, MA, USA). In-179

dividual patient consent was waived because the study did not 180

impact clinical care and protected health information was dei- 181

dentified. 182

This study includes adult patients from the MIMIC II wave- 183

form database with at least 8 h of continuous minute-by-minute 184

HR and invasive arterial BP trends during the first 24 h in 185

the ICU. Patients with more than 15% of missing or invalid 186

samples (i.e., outside physiologically plausible bounds of 20 to 187

200 mmHg for mean pressures) were excluded from this study, 188

as were patients with missing SAPS I and APACHE scores. 189

The dataset contains over 9000 h of minute-by-minute HR and 190

invasive mean arterial BP measurements (over 20 h per patient 191

on average) from 453 adult patients collected during the first 192

24 h in the ICU. HR and BP time series were detrended. Gaus- 193

sian noise was used to fill in the missing or invalid values. The 194

median age of this cohort was 69 with an interquartile range of 195

(57, 79). 59% of the patients were male. Approximately 15% 196

(67 out of 453) of patients in this cohort died in the hospital; 197

28-day mortality of this cohort was approximately 19% (85 out 198

of 453). Distributions of the 453 patients in care units are 21% 199

coronary care unit (CCU), 42% cardiac surgery recovery unit 200

(CSRU), 26% medical intensive care unit (MICU), and 12% 201

surgical intensive care unit. 202



IE
EE

Pr
oo

f

4 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 0, 2014

B. SVAR Modeling of Cohort Time Series203

Our approach to discovery of shared dynamics among pa-204

tients is based on the SVAR model [22]. For the nth patient205

(n = 1 . . . N ), let y
(n)
t be a M × 1 vector of observed values of206

the vital signs at time t (t = 1 . . . T (n)). We assume that there207

exists a library of K possible dynamics or modes; a set of multi-208

variate autoregressive model coefficient matrices {A(k)
p }K

k=1 of209

size M × M , with maximal time lag p = 1 . . . P , and the cor-210

responding noise covariances {Q(k)}K
k=1 . Let st be a switching211

variable, indicating the active dynamic mode at time t, and212

evolving according to a Markovian dynamic with initial distri-213

bution π(n) and a K × K transition matrix Z. Following these214

definitions, an SVAR model for the nth patient is defined as215

y
(n)
t =

P∑

p=1

A
(s(n )

t )
p y

(n)
t−p + w(s(n )

t ) (1)

where the fluctuation term w(s(n )
t ) is assumed Gaussian dis-216

tributed with covariance Q(s(n )
t ) . A collection of related time se-217

ries can be modeled as switching between these dynamic behav-218

iors which describe a locally coherent linear model that persists219

over a segment of time. However, in practice, we neither know220

the set of switching variables (i.e., segmentation of the time221

series) nor the modes. In this study, we perform expectation–222

maximization (EM) to find the maximum-likelihood set of223

model parameters, as well as a factored estimate of the posterior224

distribution over the latent switching variables. A comprehen-225

sive treatment of the EM algorithm for SVAR is presented by226

Murphy (1998) [22]. Briefly, EM is a two-pass iterative algo-227

rithm: 1) in the expectation (E) step, we obtain the expected val-228

ues of the latent switching variables {s(n)
t }T

t=1 using a forward–229

backward algorithm [22], and 2) in the maximization (M) step,230

we update all the model parameters {A(k)
p }, {Q(k)}, the Markov231

dynamics Z, and the initial conditions π(n) that maximize the232

expected complete data log likelihood. In our implementation233

of the EM algorithm, we achieve shared dynamics by pooling234

together all subjects’ inferred variables in the M step. Iteration235

through several steps of the EM algorithm results in learning a236

set of K shared modes and a global transition matrix Z for all237

the patients.238

For the simulated and the tilt datasets, we modeled the beat-239

by-beat HR/BP time series as a switching AR(5) process to240

model most of the parasympathetic responses and at least some241

of the sympathetic effects, without introducing an unduly com-242

plex model. Minute-by-minute BP time series from MIMIC II243

were modeled as a switching AR(3) process to capture a real os-244

cillation and a possible trend per mode. The number of dynamic245

modes (K = 20) was determined using the Bayesian information246

criterion (BIC) [30]. Briefly, we computed the BIC scores from247

switching-VAR models using 5 to 30 modes. Results presented248

were based on the model with the minimum BIC scores (20249

modes).250

1) Parallel Computation for Scalable Learning: One of the251

advantages of the proposed technique is its scalability to hun-252

dreds or thousands of patients, due to the parallel implementa-253

tion of the inference step of the SVAR learning algorithm via254

EM [22]. This parallelization strategy is effective since the ma- 255

jority of the computational cost of the SVAR training is in run- 256

ning the forward–backward algorithm, which can be done in 257

parallel for each patient time series. We used MATLAB’s par- 258

allel computation toolbox in association with 120 nodes on our 259

computer cluster to perform a tenfold cross-validated study (12 260

cores per fold). Ten SVAR models were learned on the training 261

set of each of the folds, followed by mapping the corresponding 262

mode proportions to outcomes (e.g., hospital mortality) using 263

logistic regression. Next, mode assignments of time series in the 264

test set of each fold were inferred based on the modes learned 265

from the corresponding training set (by running only the infer- 266

ence), and the regression weights from the training fold were 267

used to predict outcomes. 268

C. Evaluation Methods and Statistical Analysis 269

Let us define a mode proportion MP(n)
k as the proportion 270

of time the nth patient spends within the kth mode. Given the 271

maximum expected log-likelihood estimates of the switching 272

variables st from the EM algorithm, we have 273

MP(n)
k =

1
T (n)

T (n )∑

t=1

Prob(s(n)
t = k). (2)

For classification and prediction purposes, we characterize each 274

time series with its corresponding mode proportion (a 1 × K 275

feature-vector), and use a logistic regression classifier to make 276

predictions about the outcome variables of interest. For illus- 277

tration of the algorithm’s segmentation performance, each time 278

series sample is assigned to the dynamic mode with the maxi- 279

mum posterior probability. 280

1) Time Series Classification and Outcome Prediction: For 281

the simulated and the tilt-table experiment, we used the mode 282

proportions within each segment (e.g., supine versus nonsupine) 283

as inputs to a logistic regression classifier, and report the clas- 284

sification performance in discriminating between 1) the three 285

different dynamics (corresponding to different aging-related au- 286

tonomic changes) in the simulated dataset, and 2) two different 287

postural positions (supine versus nonsupine) in the tilt dataset. 288

To assess the predictive power of the dynamical modes, we 289

performed a tenfold cross-validation study. Ten SVAR models 290

were learned on the training set of each of the folds, followed 291

by mapping the corresponding mode proportions to outcomes 292

(e.g., hospital mortality) using logistic regression. Next, mode 293

assignments of time series in the test set of each fold was in- 294

ferred based on the modes learned from the corresponding train- 295

ing set (by running only the inference or the E-step), and the 296

regression weights from the training fold was used to predict 297

outcomes. We compared the mortality prediction performance 298

of our approach using the mode proportion from the top ten 299

most common dynamic modes with the existing acuity metrics, 300

SAPS I [2], APACHE III [4], and APACHE IV [5]. Comparison 301

of AUCs was based on the method described in [31]. 302

2) MIMIC Association Analysis: We used univariate and 303

multivariate logistic regressions to examine the associations be- 304

tween dynamic mode proportions and hospital mortality. We 305
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TABLE I
PERFORMANCE OF MORTALITY PREDICTORS

Hosp. Mortality 28-Days Mortality
(AUC) (AUC)

HRd y n 0.59 (0.54, 0.68) 0.61 (0.51, 0.67)
BPd y n /HRd y n 0.64 (0.61, 0.71) 0.65 (0.64, 0.68)
BPd y n 0.70 (0.67, 0.77) 0.66 (0.61, 0.73)
SAPS I 0.65 (0.59, 0.71) 0.64 (0.56, 0.70)
BPd y n +SAPS I 0.77 (0.69, 0.82) 0.71 (0.69, 0.79)
APACHE III 0.80 (0.70, 0.84) 0.79 (0.65, 0.84)
BPd y n +APACHE III 0.84 (0.79, 0.88) 0.79 (0.76, 0.86)
APACHE IV 0.82 (0.77, 0.85) 0.83 (0.74, 0.86)
BPd y n +APACHE IV 0.85 (0.80, 0.87) 0.82 (0.81, 0.88)

built a separate multivariate logistic regression model for each306

of the discovered dynamic modes, with the mode proportion as307

the primary predictive variable, and APACHE IV as a covari-308

ate. For each mode, we reported its p value, odds ratio (OR,309

with 95% confidence interval), and adjusted OR (after includ-310

ing APACHE IV as a covariate). The Hosmer–Lemeshow p311

values (HL p values) were reported to assess the model fit.312

The odds ratios were per 10% increase in the mode proportion.313

Two-sided p values less than 0.05 were considered statistically314

significant. The analysis was performed to quantify the mortality315

risk associated with each dynamic mode; modes with significant316

(p < 0.05) associations with mortality were established as either317

low-risk (OR < 1), or high-risk (OR > 1) dynamics depending318

on their odds ratios. Dynamic modes without statistically signif-319

icant associations with mortality were neutral modes. The test320

of statistical significance was based on p-values after correcting321

for the false discovery rate (FDR) using the technique described322

in [32].323

III. RESULTS324

A. Simulated Study325

Fig. 1 shows two examples of simulated time series with the326

inferred segmentation. In all ten simulated cases, the algorithm327

was able to divide each time series into distinct segments corre-328

sponding to different underlying actual dynamics. The sharing329

of the dynamics is consistent across the different time series.330

Using the mode proportion from each segment for multilabel331

classification, the algorithm achieved classification accuracy of332

100%.333

B. Tilt-Table Experiment334

Fig. 2 shows the segmentation results for two subjects. Note335

that the two subjects shared the same inferred nonsupine dynam-336

ics (in red); the algorithm consistently assigns the red mode to337

the nonsupine position for both subjects. The application of lo-338

gistic regression with tenfold cross-validation yielded a median339

AUC of 1.00 with an interquartile range of (0.98, 1.00).340

C. MIMIC II Database341

1) Mortality Prediction: Table I evaluates the prognostic342

power of HR and BP dynamic features (HRdyn and BPdyn ).343

SAPS I, APACHE III, and APACHE IV are used as the base- 344

lines. Median AUCs (from tenfold cross validation) and the 345

interquartile range are shown. Note that the BP dynamics out- 346

performed both the HR and HR and BP combined dynamic 347

features. Subsequent analyses focus on the predictive power of 348

the BP dynamics in comparison to the baseline. For each base- 349

line, we show the performance from the baseline alone, and the 350

combined approach (combining BP dynamics and the baseline). 351

The application of tenfold cross-validation demonstrated that 352

dynamic features from BP alone achieved a median AUC of 353

0.70, comparable to 0.65 from SAPS I. In comparison, using 354

standard deviation of the mean arterial BP resulted in a median 355

AUC (IQR) of 0.55 (0.43, 0.63). 356

Combining dynamic BP features with SAPS I resulted in an 357

improved prediction power both in hospital mortality predic- 358

tion (p = 0.005) and 28-day mortality prediction (p = 0.002). 359

Combining dynamic features with APACHE III significantly 360

out-performed APACHE III alone (p = 0.045) with an improve- 361

ment in median AUC from 0.80 to 0.84 in hospital mortality pre- 362

diction. These results indicate that the dynamic features from 363

vital signs contain complementary information to the SAPS I 364

and APACHE III scores. 365

State-of-the-art risk score APACHE IV achieved better pre- 366

diction performance than the BP dynamic features alone (p = 367

0.008). Adding BP dynamics to APACHE IV yielded a slight 368

performance improvement from a median AUC of 0.82 to 0.85, 369

however, the performance gain was not statistically significant. 370

2) Association Analysis: Table II presents logistical regres- 371

sion analyses to test the associations between the proportion of 372

time patients spent in each of the top ten most common BP dy- 373

namics and hospital mortality. See Fig. 3 for illustrations of these 374

dynamic modes. Dynamic modes were numbered based on their 375

prevalence across the entire cohort (i.e., mode 1 is the most com- 376

mon dynamic mode). Our results indicate that six of the modes 377

had significant associations (after FDR correction) with hospi- 378

tal mortality. Specifically, two dynamic modes (modes 3 and 379

5) were significant “high-risk” modes (p < 0.001, p < 0.001) 380

in which increased proportions of time in these modes were 381

associated with higher hospital mortality with odds ratios 1.81 382

(1.41, 2.32), 1.36 (1.15, 1.61) respectively. 383

Dynamic modes 1, 9, 7, and 2 were “low-risk” modes in 384

which increasing proportions of time in these modes were sig- 385

nificantly associated with a decreased risk of hospital mortality, 386

with odds ratios less than one. Table II lists the AR coefficients 387

and covariances of the two high-risk and four low-risk dynamic 388

modes, as well as their respective associations with hospital 389

mortality. Note that the high-risk modes appear to correspond 390

to less variability in their dynamics. 391

For the multivariate analysis (see the right panel in Table II), 392

each row is a separate multivariate model, in which the mode 393

proportion for a given target mode is the primary predictive 394

variable, and APACHE IV is added as a control variable in the 395

multivariate model. Results from multivariate logistic regression 396

indicate that two of the modes (modes 3 and 9) remain signif- 397

icant predictors of patients’ outcome even after adjustment for 398

APACHE IV scores (p = 0.001, p = 0.006), indicating that the 399

proportion of time patients spent in these two dynamic modes 400
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TABLE II
ASSOCIATIONS OF BP DYNAMIC MODES AND HOSPITAL MORTALITY

Mode AR Coef Cov. P-Val OR(95%CI) Adjusted P-Val Adjusted OR(95%CI) HL PVAL

3 (0.66, 0.22, 0.12) 0.58 <0.001 1.81 (1.41, 2.32) 0.001 1.60 (1.21 2.11) 0.64
5 (1.00, 0.00, −0.00) 0.22 <0.001 1.36 (1.15, 1.61) 0.426 1.08 (0.89 1.32) 0.16
1 (0.66, 0.16, 0.17) 2.69 0.002 0.59 (0.42, 0.82) 0.489 0.88 (0.62 1.26) 0.54
9 (1.50, −0.65, 0.06) 7.26 0.002 0.25 (0.10, 0.62) 0.006 0.26 (0.10 0.68) 0.80
7 (1.00, −0.01, −0.00) 3.46 0.003 0.30 (0.13, 0.67) 0.124 0.54 (0.25 1.18) 0.58
2 (0.79, 0.05, 0.12) 8.81 0.005 0.65 (0.48, 0.88) 0.265 0.84 (0.62 1.14) 0.69
10 (1.05, −0.01, −0.02) 0.71 0.032 2.95 (1.10, 7.94) 0.791 1.18 (0.36 3.88) 0.07
8 (0.44, 0.30, 0.24) 1.27 0.373 1.18 (0.82, 1.69) 0.318 1.22 (0.82 1.82) 0.22
4 (0.96, −0.01, 0.04) 1.31 0.417 0.81 (0.48, 1.36) 0.887 0.96 (0.53 1.72) 0.02
6 (0.92, −0.10, 0.07) 46.70 0.419 0.83 (0.53, 1.30) 0.658 0.90 (0.57 1.43) 0.08

Fig. 3. Discovered dynamic modes of mean arterial BP of 453 patients during the first 24 h in the ICU. Figure shows the top ten most common dynamic modes,
simulated using the AR coefficients from each dynamic mode. High-risk dynamic modes (from left to right): 3 (Magenta), 5 (Red). Low-risk dynamic modes: 1
(Violet), 9 (Cyan), 7 (Blue), and 2 (Green). Neutral dynamic modes: 10 (Brown), 8 (Orange), 4 (Light Green), 6 (Royal Blue). All modes were simulated and
plotted with the same time duration (150 min) and amplitude scale. (a) High-risk modes, (b) Low-risk modes, and (c) Neutral modes.

during the first 24 h in the ICU are independent risk predictors401

of hospital mortality.402

3) Example Time Series of Patients With Estimated Mortality403

Risks Over Time: Fig. 3 shows examples of low-risk and high-404

risk dynamical modes learned using the SVAR technique (see405

Table II for the odds-ratio associated with each mode). BP time406

series of four patients are presented in Fig. 4 panels (a) and407

(b). Hourly risk scores (dark green lines) were computed as the408

probability of death from the logistic function using a sliding409

window of 6 h to illustrate that these risk scores could be updated410

on a continuous basis for real-time monitoring purposes.411

Panel (a) shows two of the patients with the highest risk scores412

(within the test set) at the end of the 24-h period; both patients413

died in the hospital. Panel (b) shows two patients with a decreas-414

ing trend in their risk scores during their first day in the ICU;415

both patients survived the hospital stay. All four patients were416

from the same test set, with mode assignment inferred based417

on dynamic modes learned from the corresponding training set.418

Note that as time progresses, patients in panel (a) tend to spend419

more time in the high-risk dynamic modes (mode 3 in magenta,420

mode 5 in red); their estimated mortality risks rise accordingly421

over time. In contrast, panel (b) patients show a decreasing trend422

in mortality risks as they transit to lower-risk dynamic modes423

over time.424

IV. DISCUSSION AND CONCLUSION425

We presented a SVAR framework to systematically learn and426

identify dynamic behaviors from vital sign time series within a427

patient cohort. We demonstrated that the discovered dynamics428

may contain prognostic values and can be used for prediction429

and tracking of a patient’s propensity to survive a hospital stay, 430

as well as their 28-days survival. Interestingly, the BP time 431

series dynamics alone had a comparable performance to that of 432

the SAPS I score which uses age and the most extreme values of 433

13 variables, including systolic BP, HR, temperature, respiratory 434

rate, urinary output, blood nitrogen, hematocrit, white blood cell 435

count, serum glucose, serum potassium, serum sodium, serum 436

bicarbonate, and Glasgow coma score. 437

Additionally, our results indicate that the BP dynamics may 438

contain complimentary information to existing acuity metrics, 439

which assess the health of multiple organ systems based on a va- 440

riety of physiological and lab variables. Specifically, combining 441

the dynamics of BP time series and SAPS I or APACHE III pro- 442

vided a more accurate assessment of patient survival/mortality 443

in the hospital (p = 0.005 and p = 0.045) than using SAPS I 444

and APACHE III alone. 445

Association analysis of individual dynamic mode and hospi- 446

tal mortality revealed that two of the dynamic modes (modes 447

3 and 9) remained significant predictors of patients’ outcome 448

even after adjusting for APACHE IV scores, indicating that the 449

proportion of time patients spent in these two dynamic modes 450

during the first 24 h in the ICU may contain additional, inde- 451

pendent prognostic value beyond that in the APACHE IV acuity 452

score. Future work remains to investigate the prognostic power 453

of these discovered dynamic modes using a larger cohort. 454

The dynamic features can be calculated in an online man- 455

ner without delay, and well before the end of the first 24 h of 456

the ICU stay as is required for the standard risk scores. One 457

possible online deployment strategy is to construct a library of 458

dynamic modes on archived patient data, and assign each in- 459

coming time series sample (or a sliding window of samples) 460
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Fig. 4. Mortality risk scores and mean arterial BP of four patients during the first 24 h in the ICU. Samples are color coded by their mode assignment. Mortality
risk scores, computed as the probability of death from the logistic regression, were based on mode proportions from a 6-h sliding window by stride of 1 h; estimated
risks were plotted as dark green lines with scale indicated by y-axes on the right side of each graph. BP measurements plotted in original units (before detrending).
All four patients were from the same test set, with dynamic modes and logistic regression parameters learned from the corresponding training set. (a) Patients with
the highest ending risk scores at the end of the first day ICU stay. Patients were from MICU (top) and CCU (bottom). Both patients died in the hospital and (b)
Patients with decreasing risk scores during their first day ICU stays. Patients were from CSRU (top) and CCU (bottom). Both patients survived the hospital stay.

to the most likely mode in the library (for instance, by461

using the Viterbi algorithm [16], [22]). Recent studies suggest462

that therapeutic interventions not only should aim at maintaining463

the mean BP within an acceptable range, but also should direct464

the patient’s trajectory toward healthy dynamical regimes with465

enhanced variability [10] . Thus, a real-time implementation of466

the technique presented here may provide clinicians with a tool467

for quantification of the effectiveness of such interventions in468

the ICU.469

We showed that changes in the dynamics of HR and BP, either470

as a result of an altered underlying control system (aging-related471

changes in the simulated data) or due to external perturbations472

(positional changes in the tilt-table experiment), can be captured473

in an automated fashion. Since the proposed framework is built474

on the dynamical systems framework (which includes the class475

of vector autoregressive models), the discovered modes can be476

used to reveal the oscillations that are present within the indi-477

vidual time series, and therefore can be used to extract useful478

indices of HR and BP variability (assuming beat-to-beat time 479

series). Moreover, given beat-to-beat multivariate time-series of 480

vital-signs, one may use the learned dynamics to derive the di- 481

rectional transfer functions of the system [8] (e.g., baroreflex 482

control of HR and BP). 483

Association analysis using the minute-by-minute MIMIC- 484

II BP time series revealed that the high-risk modes often 485

correspond to less variable dynamical patterns. It is interest- 486

ing to note that such low-frequency variability, observed at 487

the minute-to-minute scale, is associated with an enhanced 488

chance of survival, corresponding well to the existing HR/BP 489

variability literature using beat-by-beat vital sign time series 490

[10], [12], [13], [33]. The working hypothesis of our ongo- 491

ing research is that the observed dynamical patterns are due 492

to patients’ underlying physiology, patient-specific response 493

to clinical interventions, and measurement artifacts. Future 494

developments of machine-learning techniques should aim at 495

combining time series dynamics with contextual information 496
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pertaining to clinical intervention (administration of fluids,497

pressors, and titration of medications) to further investigate498

the clinical and physiological interpretation of the discovered499

modes.500

The SVAR framework allows for defining a notion of “sim-501

ilarity” among multivariate physiological time series based on502

their underlying shared dynamics. Therefore, one may consider503

two subjects to be similar if their underlying vital signs time se-504

ries exhibit similar dynamics in response to external (e.g., tilting505

of body) or internal perturbations (e.g., onset of blood infection).506

This approach provides an improvement over time series sim-507

ilarity measures based on trend-detection [34], wavelet-based508

symbolic representations [35], or Gaussian Mixture modeling509

[36] due to its compact representation and sharing of the model510

parameters within and across time series. Prior work using a fac-511

torial switching linear dynamical systems for patient monitoring512

[37] focused on detection of events associated with artifactual513

measurements and pathological states. Our study, in contrast,514

jointly models multiple time series across a large patient cohort515

to identify phenotypic dynamical patterns for patient outcome516

prediction.517

Although we used mortality as our target outcome, there are518

many other physiological events of significant interest, includ-519

ing timely and successful discontinuation of procedures such520

as hemodialysis [38] or mechanical ventilation [39], as well as521

prediction of potentially life-threatening clinical events such as522

onset of severe sepsis and hypotension [13]. Other short- and523

long-term outcomes such as probability of readmission to hos-524

pital and long-term cognitive impairment beyond ICU [40] also525

play an important role in closing the gap between the critical care526

medicine, primary care doctors, and other healthcare providers.527

Current and ongoing work involve combining the switching528

linear dynamical system framework with all available clinical529

data, including lab tests, medication records, and nursing notes530

[41] to devise a comprehensive risk score, capable of integrating531

clinical data of diverse modality over long temporal stretches532

(order of hours to days). This will allow us to investigate whether533

continuous patient monitoring based on vital signs dynamics,534

and other types of sequential data, can alert clinicians to dete-535

riorating patient conditions at an earlier stage than the existing536

acuity scores, and result in improved patient care and outcome537

both within ICU and after hospital discharge. Such analysis is538

likely to provide some insight into the promise of large-scale539

critical care databases for the future of medicine.540
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Abstract—Cardiovascular variables such as heart rate (HR) and6
blood pressure (BP) are regulated by an underlying control system,7
and therefore, the time series of these vital signs exhibit rich dynam-8
ical patterns of interaction in response to external perturbations9
(e.g., drug administration), as well as pathological states (e.g., onset10
of sepsis and hypotension). A question of interest is whether “sim-11
ilar” dynamical patterns can be identified across a heterogeneous12
patient cohort, and be used for prognosis of patients’ health and13
progress. In this paper, we used a switching vector autoregressive14
framework to systematically learn and identify a collection of vital15
sign time series dynamics, which are possibly recurrent within the16
same patient and may be shared across the entire cohort. We show17
that these dynamical behaviors can be used to characterize the18
physiological “state” of a patient. We validate our technique us-19
ing simulated time series of the cardiovascular system, and human20
recordings of HR and BP time series from an orthostatic stress21
study with known postural states. Using the HR and BP dynamics22
of an intensive care unit (ICU) cohort of over 450 patients from the23
MIMIC II database, we demonstrate that the discovered cardiovas-24
cular dynamics are significantly associated with hospital mortality25
(dynamic modes 3 and 9, p = 0.001, p = 0.006 from logistic re-26
gression after adjusting for the APACHE scores). Combining the27
dynamics of BP time series and SAPS-I or APACHE-III provided a28
more accurate assessment of patient survival/mortality in the hos-29
pital than using SAPS-I and APACHE-III alone (p = 0.005 and30
p = 0.045). Our results suggest that the discovered dynamics of31
vital sign time series may contain additional prognostic value be-

Q1

32
yond that of the baseline acuity measures, and can potentially be33
used as an independent predictor of outcomes in the ICU.34

Index Terms—Intensive care unit, physiological control systems,35
switching linear dynamical systems.36
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I. INTRODUCTION 37

MODERN clinical data acquisition systems are capable of 38

continuously monitoring and storing measurements of 39

patient vital signs, such as heart rate (HR) and blood pressure 40

(BP), over multiple days of hospitalization [1]. Despite this 41

continuous feed of data, commonly used acuity scores, such as 42

APACHE and SAPS [2]–[5], are based on snap-shot values of 43

these vital signs, typically the worst values during a 24-h period. 44

However, physiologic systems generate complex dynamics in 45

their output signals that reflect the state of the underlying control 46

systems [6]–[8]. The objective of this study is to consider an 47

approach to the analysis of critical care bedside monitoring that 48

is based on the dynamical behaviors of vital sign time series. 49

The time series of vital signs (e.g., HR, BP) are multidimen- 50

sional, high resolution (from once a second to once a minute), 51

highly coupled due to presence of physiological feedback loops 52

within the body [8], and remarkably nonstationary as a result 53

of internally and externally induced changes in the state of the 54

underlying control systems. For instance, time series of BP can 55

exhibit oscillations on the order of seconds (e.g., due to the vari- 56

ations in sympathovagal balance), to minutes (e.g., as a conse- 57

quence of fever, blood loss, or behavioral factors), to hours (e.g., 58

due to humoral variations, sleep-wake cycle, or circadian ef- 59

fects) [9], [10]. A growing body of the literature is pointing to the 60

clinical utility of vital signs time series dynamics to inform prog- 61

nosis [11]–[17], and to provide early predictors of potentially 62

life-threatening conditions in the intensive care unit (ICU) [18]. 63

Techniques for modeling and analysis of cardiovascular and 64

respiratory time series can be broadly classified into linear mech- 65

anistic models [19], [20] and nonlinear descriptive indices [6], 66

[7], [21]. The linear techniques commonly used (often based 67

on variants of autoregressive modeling) have the advantage 68

of revealing the individual relationships among the observed 69

variables (e.g., the noninvasive measures of baroreflex gain 70

describes the relationship between HR and BP, excluding the 71

possible influence of respiration). On the other hand, nonlin- 72

ear indices of complexity are capable of capturing a richer set 73

of dynamical behaviors, with less emphasis on physiological 74

interpretability in terms of specific underlying mechanisms. 75

In this paper, we assume that although the underlying dynam- 76

ical system may be nonlinear and nonstationary, and the stochas- 77

tic noise components can be non-Gaussian, the dynamics can be 78

approximated by a mixture of linear dynamical systems. Each 79

such linear “dynamic” (or mode) is a time-dependent rule that 80

describes how the future state of the system evolves from its 81

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Simulation study of the cardiovascular system. Three examples (out of the ten simulated time series) of HR and BP (after filtering) are shown in panels
a, b, and c. In each case, the actual dynamics are color coded. The horizontal red lines show the inferred segmentation. The algorithm consistently assigned modes
4 and 3 to the dynamics color coded as red and blue, respectively, across all the simulated time series. The black dynamics are represented by modes 1 and 2.
(a) Simulated subject 1, (b) Simulated subject 2, and (c) Simulated subject 3.

current state, centered around a given system equilibrium point.82

Therefore, an ideal algorithm would be able to identify time se-83

ries segments that follow a “similar” dynamic, and would switch84

to a different mode upon a change in the state of the underlying85

system.86

To formalize these objectives, we employed a switching vec-87

tor autoregressive (SVAR) framework [22], [23]. Given a collec-88

tion of time series from a cohort, the proposed SVAR framework89

allows for simultaneous learning of the underlying dynamic be-90

haviors or modes, and segmentation of the time series in terms91

of the most likely dynamic describing the time series evolution92

at any given point in time. The proposed framework enables93

characterization of patients in terms of the dynamical modes94

(e.g., the average time spent within the different modes), and95

can potentially be used to capture changes in the underlying96

cardiovascular control systems of human subjects in response97

to internal (such as onset of infection) and external perturba-98

tions (such as postural changes). Furthermore, we hypothesize99

that when applied to vital sign time series of patients in a criti-100

cal care setting, the proposed technique can be used to discover101

dynamical modes with prognostic values for predicting clinical102

outcomes of interests.103

A preliminary version of this study was presented at the 34th104

Annual International Conference of the IEEE Engineering in105

Medicine and Biology Society (EMBC ’12) [14]. Here, we ex-106

tend on our previous work to include a series of validation107

studies, and a more comprehensive assessment of the utility of108

the time series dynamics within the ICU.109

The rest of this paper is organized as follows. We validated110

the proposed technique using HR and BP time series from a111

simulation dataset, and a human laboratory study of subjects112

undergoing a tilt-table test, where the timing of the occurrence113

of the different dynamics and the sharing of the dynamics across114

multiple time series/subjects were known a priori. To test the115

prognostic value of the discovered vital sign dynamics, we ap-116

plied the proposed approach to the HR and BP dynamics of an117

ICU cohort from the MIMIC II database [1] during the first 24 h118

of their ICU stays, and tested whether cardiovascular dynamics119

during the first 24 h of ICU admission are predictive of survival120

and mortality after adjusting for the existing acuity scores, such 121

as SAPS-I and APACHE. 122

II. MATERIALS AND METHODS 123

This section describes the utilized datasets, as well as the 124

proposed technique for discovery of shared dynamics among 125

patients, and assessment of risks and outcomes. 126

A. Datasets 127

1) Cardiovascular Simulation: We simulated a cardiovas- 128

cular control system with bivariate time series of HR and BP. 129

The model is based on a delay recruitment model of HR and 130

BP regulation, as described in Fowler and McGuinness [24], 131

and McSharry et al. [25]. The model included a coupled system 132

of nonlinear delayed differential equations, controlling HR and 133

BP, with respiration as an exogenous input. We simulated ten 134

different multivariate time series of HR and mean arterial BP, 135

each including three different dynamics that become dominant 136

in a random order and last for a variable length of time. The 137

three dynamics (color-coded as red, blue, and black, respec- 138

tively, in Fig. 1) approximate aging-related autonomic changes; 139

a progressive reduction in parasympathetic gain (from 0.40 to 140

0.13 to 0.07 in normalized units; see [24]) and an increase in 141

sympathetic delay (from 3 to 5 s). To be consistent, we used the 142

same preprocessing step as the tilt-table experiment to remove 143

the steady-state baseline and any oscillation in the time series 144

slower than 100 beats/cycle (see below for details). 145

2) Tilt-Table Experiment: Time series of HR and BP were 146

acquired from ten healthy subjects (five males, five females) 147

undergoing a tilt-table test of orthostatic tolerance [26], [27]. 148

The mean age was 28.7 ± 1.2 years. The details of the pro- 149

tocol are described by Heldt in [27]. Briefly, subjects were 150

placed in a supine position. Tilting was performed from the 151

horizontal position to the vertical position and back to supine. 152

The study was approved by MIT’s Committee on the Use of 153

Humans as Experimental Subjects and the Advisory Board 154

of the MIT-MGH General Clinical Research Center [27]. 155

Volunteers gave written, informed consent prior to participation 156
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Fig. 2. Tilt-table study modeled using four dynamic modes—1 (Blue), 2 (Red), 3 (Black), and 4 (Purple). Two examples out of the ten recordings of HR and BP
from the tilt-table experiment are shown in Panels a and b. Panels c and d show a zoomed in 7-min recording of HR and BP, while the subjects transition to/from
supine to nonsupine positions after a fast tilt procedure. Actual values are in gray (Y-axis on left) and filtered values (Y-axis on right) are color coded based on the
inferred dynamical modes. Note that Subjects 1 and 2 shared the same inferred nonsupine dynamics (in red); the algorithm consistently assigns the red mode to the
nonsupine position for both subjects. The supine position for Subjects 1 and 2 are captured by the modes in blue and black, respectively. The purple mode seems
to capture the high-frequency noise components of the time series. In each case, annotations for the actual tilt procedures performed are plotted as horizontal bars
on the bottom of each figure and are color coded (green to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and down to supine; yellow: stand up
and back to supine). (a) Tilt Subject 1, (b) Tilt Subject 2, (c) Tilt Subject 1 (zoomed in), and (d) Tilt Subject 2 (zoomed in).

in the study. Since we were interested in the dynamics of in-157

teraction between HR and BP in the frequency range pertinent158

to sympathetic and parasympathetic regulation [28], time series159

of HR and BP were high-pass filtered to remove the steady-160

state baseline and any oscillation in the time series slower than161

100 beats/cycle. This filtering was done using a seventh-order162

Butterworth digital filter with a cutoff frequency of 0.01 cy-163

cles/beat. Example time series from before and after filtering164

are shown in Fig. 2.165

3) MIMIC II Dataset: The MIMIC II database [1], pub-166

licly available via PhysioNet [29], includes clinical (laboratory167

values, IV medications, etc.) and physiological data (HR,168

BP, oxygen saturation, etc.) collected from the bedside mon-169

itors (Component Monitoring System Intellivue MP-70; Philips170

Healthcare, Andover, MA, USA) in ICUs of the Beth Israel171

Deaconess Medical Center (BIDMC) in Boston. The MIMIC172

II waveform database (version 2) includes approximately 4000173

records of high-resolution physiological waveforms of adult174

ICU patients with associated minute-by-minute (averages of175

the calculated numerics during the previous minute) vital sign176

trends. Data collection for the MIMIC II database was approved177

by the Institutional Review Boards of BIDMC and the Mas-178

sachusetts Institute of Technology (Cambridge, MA, USA). In-179

dividual patient consent was waived because the study did not 180

impact clinical care and protected health information was dei- 181

dentified. 182

This study includes adult patients from the MIMIC II wave- 183

form database with at least 8 h of continuous minute-by-minute 184

HR and invasive arterial BP trends during the first 24 h in 185

the ICU. Patients with more than 15% of missing or invalid 186

samples (i.e., outside physiologically plausible bounds of 20 to 187

200 mmHg for mean pressures) were excluded from this study, 188

as were patients with missing SAPS I and APACHE scores. 189

The dataset contains over 9000 h of minute-by-minute HR and 190

invasive mean arterial BP measurements (over 20 h per patient 191

on average) from 453 adult patients collected during the first 192

24 h in the ICU. HR and BP time series were detrended. Gaus- 193

sian noise was used to fill in the missing or invalid values. The 194

median age of this cohort was 69 with an interquartile range of 195

(57, 79). 59% of the patients were male. Approximately 15% 196

(67 out of 453) of patients in this cohort died in the hospital; 197

28-day mortality of this cohort was approximately 19% (85 out 198

of 453). Distributions of the 453 patients in care units are 21% 199

coronary care unit (CCU), 42% cardiac surgery recovery unit 200

(CSRU), 26% medical intensive care unit (MICU), and 12% 201

surgical intensive care unit. 202
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B. SVAR Modeling of Cohort Time Series203

Our approach to discovery of shared dynamics among pa-204

tients is based on the SVAR model [22]. For the nth patient205

(n = 1 . . . N ), let y
(n)
t be a M × 1 vector of observed values of206

the vital signs at time t (t = 1 . . . T (n)). We assume that there207

exists a library of K possible dynamics or modes; a set of multi-208

variate autoregressive model coefficient matrices {A(k)
p }K

k=1 of209

size M × M , with maximal time lag p = 1 . . . P , and the cor-210

responding noise covariances {Q(k)}K
k=1 . Let st be a switching211

variable, indicating the active dynamic mode at time t, and212

evolving according to a Markovian dynamic with initial distri-213

bution π(n) and a K × K transition matrix Z. Following these214

definitions, an SVAR model for the nth patient is defined as215

y
(n)
t =

P∑

p=1

A
(s(n )

t )
p y

(n)
t−p + w(s(n )

t ) (1)

where the fluctuation term w(s(n )
t ) is assumed Gaussian dis-216

tributed with covariance Q(s(n )
t ) . A collection of related time se-217

ries can be modeled as switching between these dynamic behav-218

iors which describe a locally coherent linear model that persists219

over a segment of time. However, in practice, we neither know220

the set of switching variables (i.e., segmentation of the time221

series) nor the modes. In this study, we perform expectation–222

maximization (EM) to find the maximum-likelihood set of223

model parameters, as well as a factored estimate of the posterior224

distribution over the latent switching variables. A comprehen-225

sive treatment of the EM algorithm for SVAR is presented by226

Murphy (1998) [22]. Briefly, EM is a two-pass iterative algo-227

rithm: 1) in the expectation (E) step, we obtain the expected val-228

ues of the latent switching variables {s(n)
t }T

t=1 using a forward–229

backward algorithm [22], and 2) in the maximization (M) step,230

we update all the model parameters {A(k)
p }, {Q(k)}, the Markov231

dynamics Z, and the initial conditions π(n) that maximize the232

expected complete data log likelihood. In our implementation233

of the EM algorithm, we achieve shared dynamics by pooling234

together all subjects’ inferred variables in the M step. Iteration235

through several steps of the EM algorithm results in learning a236

set of K shared modes and a global transition matrix Z for all237

the patients.238

For the simulated and the tilt datasets, we modeled the beat-239

by-beat HR/BP time series as a switching AR(5) process to240

model most of the parasympathetic responses and at least some241

of the sympathetic effects, without introducing an unduly com-242

plex model. Minute-by-minute BP time series from MIMIC II243

were modeled as a switching AR(3) process to capture a real os-244

cillation and a possible trend per mode. The number of dynamic245

modes (K = 20) was determined using the Bayesian information246

criterion (BIC) [30]. Briefly, we computed the BIC scores from247

switching-VAR models using 5 to 30 modes. Results presented248

were based on the model with the minimum BIC scores (20249

modes).250

1) Parallel Computation for Scalable Learning: One of the251

advantages of the proposed technique is its scalability to hun-252

dreds or thousands of patients, due to the parallel implementa-253

tion of the inference step of the SVAR learning algorithm via254

EM [22]. This parallelization strategy is effective since the ma- 255

jority of the computational cost of the SVAR training is in run- 256

ning the forward–backward algorithm, which can be done in 257

parallel for each patient time series. We used MATLAB’s par- 258

allel computation toolbox in association with 120 nodes on our 259

computer cluster to perform a tenfold cross-validated study (12 260

cores per fold). Ten SVAR models were learned on the training 261

set of each of the folds, followed by mapping the corresponding 262

mode proportions to outcomes (e.g., hospital mortality) using 263

logistic regression. Next, mode assignments of time series in the 264

test set of each fold were inferred based on the modes learned 265

from the corresponding training set (by running only the infer- 266

ence), and the regression weights from the training fold were 267

used to predict outcomes. 268

C. Evaluation Methods and Statistical Analysis 269

Let us define a mode proportion MP(n)
k as the proportion 270

of time the nth patient spends within the kth mode. Given the 271

maximum expected log-likelihood estimates of the switching 272

variables st from the EM algorithm, we have 273

MP(n)
k =

1
T (n)

T (n )∑

t=1

Prob(s(n)
t = k). (2)

For classification and prediction purposes, we characterize each 274

time series with its corresponding mode proportion (a 1 × K 275

feature-vector), and use a logistic regression classifier to make 276

predictions about the outcome variables of interest. For illus- 277

tration of the algorithm’s segmentation performance, each time 278

series sample is assigned to the dynamic mode with the maxi- 279

mum posterior probability. 280

1) Time Series Classification and Outcome Prediction: For 281

the simulated and the tilt-table experiment, we used the mode 282

proportions within each segment (e.g., supine versus nonsupine) 283

as inputs to a logistic regression classifier, and report the clas- 284

sification performance in discriminating between 1) the three 285

different dynamics (corresponding to different aging-related au- 286

tonomic changes) in the simulated dataset, and 2) two different 287

postural positions (supine versus nonsupine) in the tilt dataset. 288

To assess the predictive power of the dynamical modes, we 289

performed a tenfold cross-validation study. Ten SVAR models 290

were learned on the training set of each of the folds, followed 291

by mapping the corresponding mode proportions to outcomes 292

(e.g., hospital mortality) using logistic regression. Next, mode 293

assignments of time series in the test set of each fold was in- 294

ferred based on the modes learned from the corresponding train- 295

ing set (by running only the inference or the E-step), and the 296

regression weights from the training fold was used to predict 297

outcomes. We compared the mortality prediction performance 298

of our approach using the mode proportion from the top ten 299

most common dynamic modes with the existing acuity metrics, 300

SAPS I [2], APACHE III [4], and APACHE IV [5]. Comparison 301

of AUCs was based on the method described in [31]. 302

2) MIMIC Association Analysis: We used univariate and 303

multivariate logistic regressions to examine the associations be- 304

tween dynamic mode proportions and hospital mortality. We 305



IE
EE

Pr
oo

f

LEHMAN et al.: PHYSIOLOGICAL TIME SERIES DYNAMICS-BASED APPROACH TO PATIENT MONITORING AND OUTCOME PREDICTION 5

TABLE I
PERFORMANCE OF MORTALITY PREDICTORS

Hosp. Mortality 28-Days Mortality
(AUC) (AUC)

HRd y n 0.59 (0.54, 0.68) 0.61 (0.51, 0.67)
BPd y n /HRd y n 0.64 (0.61, 0.71) 0.65 (0.64, 0.68)
BPd y n 0.70 (0.67, 0.77) 0.66 (0.61, 0.73)
SAPS I 0.65 (0.59, 0.71) 0.64 (0.56, 0.70)
BPd y n +SAPS I 0.77 (0.69, 0.82) 0.71 (0.69, 0.79)
APACHE III 0.80 (0.70, 0.84) 0.79 (0.65, 0.84)
BPd y n +APACHE III 0.84 (0.79, 0.88) 0.79 (0.76, 0.86)
APACHE IV 0.82 (0.77, 0.85) 0.83 (0.74, 0.86)
BPd y n +APACHE IV 0.85 (0.80, 0.87) 0.82 (0.81, 0.88)

built a separate multivariate logistic regression model for each306

of the discovered dynamic modes, with the mode proportion as307

the primary predictive variable, and APACHE IV as a covari-308

ate. For each mode, we reported its p value, odds ratio (OR,309

with 95% confidence interval), and adjusted OR (after includ-310

ing APACHE IV as a covariate). The Hosmer–Lemeshow p311

values (HL p values) were reported to assess the model fit.312

The odds ratios were per 10% increase in the mode proportion.313

Two-sided p values less than 0.05 were considered statistically314

significant. The analysis was performed to quantify the mortality315

risk associated with each dynamic mode; modes with significant316

(p < 0.05) associations with mortality were established as either317

low-risk (OR < 1), or high-risk (OR > 1) dynamics depending318

on their odds ratios. Dynamic modes without statistically signif-319

icant associations with mortality were neutral modes. The test320

of statistical significance was based on p-values after correcting321

for the false discovery rate (FDR) using the technique described322

in [32].323

III. RESULTS324

A. Simulated Study325

Fig. 1 shows two examples of simulated time series with the326

inferred segmentation. In all ten simulated cases, the algorithm327

was able to divide each time series into distinct segments corre-328

sponding to different underlying actual dynamics. The sharing329

of the dynamics is consistent across the different time series.330

Using the mode proportion from each segment for multilabel331

classification, the algorithm achieved classification accuracy of332

100%.333

B. Tilt-Table Experiment334

Fig. 2 shows the segmentation results for two subjects. Note335

that the two subjects shared the same inferred nonsupine dynam-336

ics (in red); the algorithm consistently assigns the red mode to337

the nonsupine position for both subjects. The application of lo-338

gistic regression with tenfold cross-validation yielded a median339

AUC of 1.00 with an interquartile range of (0.98, 1.00).340

C. MIMIC II Database341

1) Mortality Prediction: Table I evaluates the prognostic342

power of HR and BP dynamic features (HRdyn and BPdyn ).343

SAPS I, APACHE III, and APACHE IV are used as the base- 344

lines. Median AUCs (from tenfold cross validation) and the 345

interquartile range are shown. Note that the BP dynamics out- 346

performed both the HR and HR and BP combined dynamic 347

features. Subsequent analyses focus on the predictive power of 348

the BP dynamics in comparison to the baseline. For each base- 349

line, we show the performance from the baseline alone, and the 350

combined approach (combining BP dynamics and the baseline). 351

The application of tenfold cross-validation demonstrated that 352

dynamic features from BP alone achieved a median AUC of 353

0.70, comparable to 0.65 from SAPS I. In comparison, using 354

standard deviation of the mean arterial BP resulted in a median 355

AUC (IQR) of 0.55 (0.43, 0.63). 356

Combining dynamic BP features with SAPS I resulted in an 357

improved prediction power both in hospital mortality predic- 358

tion (p = 0.005) and 28-day mortality prediction (p = 0.002). 359

Combining dynamic features with APACHE III significantly 360

out-performed APACHE III alone (p = 0.045) with an improve- 361

ment in median AUC from 0.80 to 0.84 in hospital mortality pre- 362

diction. These results indicate that the dynamic features from 363

vital signs contain complementary information to the SAPS I 364

and APACHE III scores. 365

State-of-the-art risk score APACHE IV achieved better pre- 366

diction performance than the BP dynamic features alone (p = 367

0.008). Adding BP dynamics to APACHE IV yielded a slight 368

performance improvement from a median AUC of 0.82 to 0.85, 369

however, the performance gain was not statistically significant. 370

2) Association Analysis: Table II presents logistical regres- 371

sion analyses to test the associations between the proportion of 372

time patients spent in each of the top ten most common BP dy- 373

namics and hospital mortality. See Fig. 3 for illustrations of these 374

dynamic modes. Dynamic modes were numbered based on their 375

prevalence across the entire cohort (i.e., mode 1 is the most com- 376

mon dynamic mode). Our results indicate that six of the modes 377

had significant associations (after FDR correction) with hospi- 378

tal mortality. Specifically, two dynamic modes (modes 3 and 379

5) were significant “high-risk” modes (p < 0.001, p < 0.001) 380

in which increased proportions of time in these modes were 381

associated with higher hospital mortality with odds ratios 1.81 382

(1.41, 2.32), 1.36 (1.15, 1.61) respectively. 383

Dynamic modes 1, 9, 7, and 2 were “low-risk” modes in 384

which increasing proportions of time in these modes were sig- 385

nificantly associated with a decreased risk of hospital mortality, 386

with odds ratios less than one. Table II lists the AR coefficients 387

and covariances of the two high-risk and four low-risk dynamic 388

modes, as well as their respective associations with hospital 389

mortality. Note that the high-risk modes appear to correspond 390

to less variability in their dynamics. 391

For the multivariate analysis (see the right panel in Table II), 392

each row is a separate multivariate model, in which the mode 393

proportion for a given target mode is the primary predictive 394

variable, and APACHE IV is added as a control variable in the 395

multivariate model. Results from multivariate logistic regression 396

indicate that two of the modes (modes 3 and 9) remain signif- 397

icant predictors of patients’ outcome even after adjustment for 398

APACHE IV scores (p = 0.001, p = 0.006), indicating that the 399

proportion of time patients spent in these two dynamic modes 400
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TABLE II
ASSOCIATIONS OF BP DYNAMIC MODES AND HOSPITAL MORTALITY

Mode AR Coef Cov. P-Val OR(95%CI) Adjusted P-Val Adjusted OR(95%CI) HL PVAL

3 (0.66, 0.22, 0.12) 0.58 <0.001 1.81 (1.41, 2.32) 0.001 1.60 (1.21 2.11) 0.64
5 (1.00, 0.00, −0.00) 0.22 <0.001 1.36 (1.15, 1.61) 0.426 1.08 (0.89 1.32) 0.16
1 (0.66, 0.16, 0.17) 2.69 0.002 0.59 (0.42, 0.82) 0.489 0.88 (0.62 1.26) 0.54
9 (1.50, −0.65, 0.06) 7.26 0.002 0.25 (0.10, 0.62) 0.006 0.26 (0.10 0.68) 0.80
7 (1.00, −0.01, −0.00) 3.46 0.003 0.30 (0.13, 0.67) 0.124 0.54 (0.25 1.18) 0.58
2 (0.79, 0.05, 0.12) 8.81 0.005 0.65 (0.48, 0.88) 0.265 0.84 (0.62 1.14) 0.69
10 (1.05, −0.01, −0.02) 0.71 0.032 2.95 (1.10, 7.94) 0.791 1.18 (0.36 3.88) 0.07
8 (0.44, 0.30, 0.24) 1.27 0.373 1.18 (0.82, 1.69) 0.318 1.22 (0.82 1.82) 0.22
4 (0.96, −0.01, 0.04) 1.31 0.417 0.81 (0.48, 1.36) 0.887 0.96 (0.53 1.72) 0.02
6 (0.92, −0.10, 0.07) 46.70 0.419 0.83 (0.53, 1.30) 0.658 0.90 (0.57 1.43) 0.08

Fig. 3. Discovered dynamic modes of mean arterial BP of 453 patients during the first 24 h in the ICU. Figure shows the top ten most common dynamic modes,
simulated using the AR coefficients from each dynamic mode. High-risk dynamic modes (from left to right): 3 (Magenta), 5 (Red). Low-risk dynamic modes: 1
(Violet), 9 (Cyan), 7 (Blue), and 2 (Green). Neutral dynamic modes: 10 (Brown), 8 (Orange), 4 (Light Green), 6 (Royal Blue). All modes were simulated and
plotted with the same time duration (150 min) and amplitude scale. (a) High-risk modes, (b) Low-risk modes, and (c) Neutral modes.

during the first 24 h in the ICU are independent risk predictors401

of hospital mortality.402

3) Example Time Series of Patients With Estimated Mortality403

Risks Over Time: Fig. 3 shows examples of low-risk and high-404

risk dynamical modes learned using the SVAR technique (see405

Table II for the odds-ratio associated with each mode). BP time406

series of four patients are presented in Fig. 4 panels (a) and407

(b). Hourly risk scores (dark green lines) were computed as the408

probability of death from the logistic function using a sliding409

window of 6 h to illustrate that these risk scores could be updated410

on a continuous basis for real-time monitoring purposes.411

Panel (a) shows two of the patients with the highest risk scores412

(within the test set) at the end of the 24-h period; both patients413

died in the hospital. Panel (b) shows two patients with a decreas-414

ing trend in their risk scores during their first day in the ICU;415

both patients survived the hospital stay. All four patients were416

from the same test set, with mode assignment inferred based417

on dynamic modes learned from the corresponding training set.418

Note that as time progresses, patients in panel (a) tend to spend419

more time in the high-risk dynamic modes (mode 3 in magenta,420

mode 5 in red); their estimated mortality risks rise accordingly421

over time. In contrast, panel (b) patients show a decreasing trend422

in mortality risks as they transit to lower-risk dynamic modes423

over time.424

IV. DISCUSSION AND CONCLUSION425

We presented a SVAR framework to systematically learn and426

identify dynamic behaviors from vital sign time series within a427

patient cohort. We demonstrated that the discovered dynamics428

may contain prognostic values and can be used for prediction429

and tracking of a patient’s propensity to survive a hospital stay, 430

as well as their 28-days survival. Interestingly, the BP time 431

series dynamics alone had a comparable performance to that of 432

the SAPS I score which uses age and the most extreme values of 433

13 variables, including systolic BP, HR, temperature, respiratory 434

rate, urinary output, blood nitrogen, hematocrit, white blood cell 435

count, serum glucose, serum potassium, serum sodium, serum 436

bicarbonate, and Glasgow coma score. 437

Additionally, our results indicate that the BP dynamics may 438

contain complimentary information to existing acuity metrics, 439

which assess the health of multiple organ systems based on a va- 440

riety of physiological and lab variables. Specifically, combining 441

the dynamics of BP time series and SAPS I or APACHE III pro- 442

vided a more accurate assessment of patient survival/mortality 443

in the hospital (p = 0.005 and p = 0.045) than using SAPS I 444

and APACHE III alone. 445

Association analysis of individual dynamic mode and hospi- 446

tal mortality revealed that two of the dynamic modes (modes 447

3 and 9) remained significant predictors of patients’ outcome 448

even after adjusting for APACHE IV scores, indicating that the 449

proportion of time patients spent in these two dynamic modes 450

during the first 24 h in the ICU may contain additional, inde- 451

pendent prognostic value beyond that in the APACHE IV acuity 452

score. Future work remains to investigate the prognostic power 453

of these discovered dynamic modes using a larger cohort. 454

The dynamic features can be calculated in an online man- 455

ner without delay, and well before the end of the first 24 h of 456

the ICU stay as is required for the standard risk scores. One 457

possible online deployment strategy is to construct a library of 458

dynamic modes on archived patient data, and assign each in- 459

coming time series sample (or a sliding window of samples) 460
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Fig. 4. Mortality risk scores and mean arterial BP of four patients during the first 24 h in the ICU. Samples are color coded by their mode assignment. Mortality
risk scores, computed as the probability of death from the logistic regression, were based on mode proportions from a 6-h sliding window by stride of 1 h; estimated
risks were plotted as dark green lines with scale indicated by y-axes on the right side of each graph. BP measurements plotted in original units (before detrending).
All four patients were from the same test set, with dynamic modes and logistic regression parameters learned from the corresponding training set. (a) Patients with
the highest ending risk scores at the end of the first day ICU stay. Patients were from MICU (top) and CCU (bottom). Both patients died in the hospital and (b)
Patients with decreasing risk scores during their first day ICU stays. Patients were from CSRU (top) and CCU (bottom). Both patients survived the hospital stay.

to the most likely mode in the library (for instance, by461

using the Viterbi algorithm [16], [22]). Recent studies suggest462

that therapeutic interventions not only should aim at maintaining463

the mean BP within an acceptable range, but also should direct464

the patient’s trajectory toward healthy dynamical regimes with465

enhanced variability [10] . Thus, a real-time implementation of466

the technique presented here may provide clinicians with a tool467

for quantification of the effectiveness of such interventions in468

the ICU.469

We showed that changes in the dynamics of HR and BP, either470

as a result of an altered underlying control system (aging-related471

changes in the simulated data) or due to external perturbations472

(positional changes in the tilt-table experiment), can be captured473

in an automated fashion. Since the proposed framework is built474

on the dynamical systems framework (which includes the class475

of vector autoregressive models), the discovered modes can be476

used to reveal the oscillations that are present within the indi-477

vidual time series, and therefore can be used to extract useful478

indices of HR and BP variability (assuming beat-to-beat time 479

series). Moreover, given beat-to-beat multivariate time-series of 480

vital-signs, one may use the learned dynamics to derive the di- 481

rectional transfer functions of the system [8] (e.g., baroreflex 482

control of HR and BP). 483

Association analysis using the minute-by-minute MIMIC- 484

II BP time series revealed that the high-risk modes often 485

correspond to less variable dynamical patterns. It is interest- 486

ing to note that such low-frequency variability, observed at 487

the minute-to-minute scale, is associated with an enhanced 488

chance of survival, corresponding well to the existing HR/BP 489

variability literature using beat-by-beat vital sign time series 490

[10], [12], [13], [33]. The working hypothesis of our ongo- 491

ing research is that the observed dynamical patterns are due 492

to patients’ underlying physiology, patient-specific response 493

to clinical interventions, and measurement artifacts. Future 494

developments of machine-learning techniques should aim at 495

combining time series dynamics with contextual information 496
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pertaining to clinical intervention (administration of fluids,497

pressors, and titration of medications) to further investigate498

the clinical and physiological interpretation of the discovered499

modes.500

The SVAR framework allows for defining a notion of “sim-501

ilarity” among multivariate physiological time series based on502

their underlying shared dynamics. Therefore, one may consider503

two subjects to be similar if their underlying vital signs time se-504

ries exhibit similar dynamics in response to external (e.g., tilting505

of body) or internal perturbations (e.g., onset of blood infection).506

This approach provides an improvement over time series sim-507

ilarity measures based on trend-detection [34], wavelet-based508

symbolic representations [35], or Gaussian Mixture modeling509

[36] due to its compact representation and sharing of the model510

parameters within and across time series. Prior work using a fac-511

torial switching linear dynamical systems for patient monitoring512

[37] focused on detection of events associated with artifactual513

measurements and pathological states. Our study, in contrast,514

jointly models multiple time series across a large patient cohort515

to identify phenotypic dynamical patterns for patient outcome516

prediction.517

Although we used mortality as our target outcome, there are518

many other physiological events of significant interest, includ-519

ing timely and successful discontinuation of procedures such520

as hemodialysis [38] or mechanical ventilation [39], as well as521

prediction of potentially life-threatening clinical events such as522

onset of severe sepsis and hypotension [13]. Other short- and523

long-term outcomes such as probability of readmission to hos-524

pital and long-term cognitive impairment beyond ICU [40] also525

play an important role in closing the gap between the critical care526

medicine, primary care doctors, and other healthcare providers.527

Current and ongoing work involve combining the switching528

linear dynamical system framework with all available clinical529

data, including lab tests, medication records, and nursing notes530

[41] to devise a comprehensive risk score, capable of integrating531

clinical data of diverse modality over long temporal stretches532

(order of hours to days). This will allow us to investigate whether533

continuous patient monitoring based on vital signs dynamics,534

and other types of sequential data, can alert clinicians to dete-535

riorating patient conditions at an earlier stage than the existing536

acuity scores, and result in improved patient care and outcome537

both within ICU and after hospital discharge. Such analysis is538

likely to provide some insight into the promise of large-scale539

critical care databases for the future of medicine.540
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