
UNIVERSITY OF CALIFORNIA,
IRVINE

Rare Events in Spatial Stochastic Simulations of T Cell Receptor Triggering

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Physics

by

Robert Taylor

Dissertation Committee:
Professor Jun Allard, Chair

Professor Elizabeth Read
Professor Jin Yu

Professor Steve Gross

2022



© 2022 Robert Taylor



DEDICATION

To my family, who helped me stay grounded.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1

1.1 T Cell Receptor Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Spatial Stochastic Processes and How to Computationally Study Them . . . . . . . 3

1.3 Introduction to Weighted Ensemble Sampling . . . . . . . . . . . . . . . . . . . . 6

1.4 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Surface Dynamics of CD45 Evacuation 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 A Rare-Event Reaction-Diffusion Simulation . . . . . . . . . . . . . . . . 11

2.2.2 Oligomerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Close Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Model and Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Weighted Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.5 Method validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Supplemental material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Quantifying Uncertainty in Weighted Ensemble Simulations and Optimizing Weighted-
Ensemble Specific Parameters 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Error Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Investigating quantitative differences between Weighted Ensemble meta-
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Measuring and Understanding Uncertainty in WE . . . . . . . . . . . . . . . . . . 46

3.2.1 The Search for Key Metrics in Weighted Ensemble . . . . . . . . . . . . . 47

3.2.2 The Sawtooth Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Metaparameter Dependence . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Discussion 58

4.0.1 Impact of oligomerization and close contacts on receptor triggering . . . . 59

4.0.2 Uncertainty quantification and metaparameter selection in Weighted En-
semble rare event simulation . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 64

Appendix A Analytic derivation of pentry = 0 FPT distribution 72

iv



LIST OF FIGURES

Page

1.1 Artistic depiction of large surface molecule evacuation . . . . . . . . . . . . . . . 4

2.1 Features of surface dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Weighted Ensemble Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Diffusion-Only Evacuation and Computation Times . . . . . . . . . . . . . . . . . 35

2.4 Impact of Dimerization on TCR Evacuation . . . . . . . . . . . . . . . . . . . . . 36

2.5 Higher-order Oligomers Impact on Evacuation Times . . . . . . . . . . . . . . . . 37

2.6 Surface Dynamics of Close Contacts . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Weighted Ensemble Re-weighting Algorithms . . . . . . . . . . . . . . . . . . . . 39

2.8 Domain Impact on Cell-Surface Evacuation . . . . . . . . . . . . . . . . . . . . . 40

2.9 2D Reaction-Diffusion and Rate Constants . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Methods of measuring output and uncertainty from WE simulations. . . . . . . . . 48

3.2 Creation of a modified Kolmogorov-Smirnov statistic . . . . . . . . . . . . . . . . 49

3.3 Candidate measures of flux measurement of WE simulations and simulation accuracy 50

3.4 Emergent properties of WE bin weights . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Impact of mtarg on WE traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Influence of mtarg on MFPT estimates . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 WE Metaparameter Accuracy Heatmap . . . . . . . . . . . . . . . . . . . . . . . 56

v



LIST OF TABLES

Page

2.1 Surface Dynamics Variables, Parameters, and Hyperparameters . . . . . . . . . . . 42

vi



ACKNOWLEDGMENTS

I would like to thank thank Omer Dushek (Oxford), Jay Newby (U Alberta), Brian Chu (UC
Irvine), and Dhiman Ray (UC Irvine) for valuable discussion. This work was supported by: NSF
grant DMS 1715455 to ELR; NSF CAREER grant DMS 1454739 to JA; NSF grant DMS 1763272;
and a grant from the Simons Foundation (594598, QN).

vii



VITA

Robert Taylor

EDUCATION

Doctor of Philosophy in Physics 2022
University of California, Irvine Irvine, CA

Master of Science in Physics 2015
Case Western Reserve University Cleveland, OH

Bachelor of Science in Mathematics and Physics 2015
Case Western Reserve University Cleveland, OH

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2017, 2021
University of California, Irvine Irvine, California

ARTICLES

Simulation of receptor triggering by kinetic segregation shows
role of oligomers and close-contacts

2021

https://doi.org/10.1101/2021.09.29.462451

Locally-correlated kinetics of post-replication DNA methylation
reveals processivity and region-specificity in DNA methylation
maintenance

2021

https://doi.org/10.1101/2021.09.28.462223

viii



CONFERENCE PUBLICATIONS

Weighted Ensemble Simulation of Kinetic Segregation Shows
Role of Oligomers and Close Contacts

Feb 2022

Biophysical Society Annual Meeting (Talk)

Immune Cell Triggering by Spatial Segregation Studied using
Stochastic Rare Event Simulation

Feb 2020

Biophysical Society Annual Meeting (Poster)

Immune Cell Triggering by Spatial Segregation Studied using
Stochastic Rare Event Simulation

Oct 2019

2nd Annual Symposium on Multiscale Cell Fate Research

Weighted Ensemble Methods Applied to Cell Surface Evacua-
tion

Oct 2018

Inaugural Symposium on Multiscale Cell Fate (Poster)

SOFTWARE

LibsmolWE http://https://github.com/dydtaylor/LibsmolWE
C code combining biochemical simulator Smoldyn with rare event sampling method Weighted
Ensemble

ix

http://https://github.com/dydtaylor/LibsmolWE


ABSTRACT OF THE DISSERTATION

Rare Events in Spatial Stochastic Simulations of T Cell Receptor Triggering

By

Robert Taylor

Doctor of Philosophy in Physics

University of California, Irvine, 2022

Professor Jun Allard, Chair

On the surface of T Cells, large transmembrane molecules such as CD45 are distributed across the

surface. However, during engagement with antigen-presenting cells, these proteins are noticeably

absent from the region surrounding the T-Cell receptors (TCR) involved. Computer simulations

can aid in studying these processes. However, simulations of spatiotemporal dynamics of protein

reorganizations on cell surfaces can be computationally expensive when they involve rare events

– that is, when processes of interest are slow relative to other relevant timescales in the system.

To better understand the process of TCR triggering, we build a biochemical simulator that imple-

ments the rare event sampling method Weighted Ensemble together with particle-based reaction

diffusion simulation. We investigate how two simple processes, oligomerization and formation of

close-contacts, can impact these otherwise rare events. While working with Weighted Ensemble,

we further investigated the properties of the outputs from rare event simulations. We invetigated

how best to quantify error from Weighted Ensemble simulations, developed metrics toward pre-

diction of accuracy, and tested Weighted Ensemble specific metaparameters’ impact on simulation

output. This work finds that the processes of oligomerization and close-contact formation can both

have drastic impacts on molecular evacuation rates, but even the reduced evacuation times are still

unrealistically long, suggesting that a yet-to-be-described mechanism drives evacuation. Further-

more, we reveal key characteristics of Weighted Ensemble simulation traces and suggest future

methods of exploring these characteristics.

x



Chapter 1

Introduction

The world of cell biology is a noisy, crowded, chaotic place. Typical cel lsurface densities of

membrane-bound proteins on the surface of the cell can range from 500-3000 molecules / µm2

[65]. In such crowded environments, however, some of the most interesting phenomena involve

instances of “uncrowding”, or rapid depletion of certain protein species from specific regions. For

instance, when T Cell receptors (TCRs) are triggered in the process of receptor-antigen binding,

large surface molecules such as CD45 rapidly deplete the region surrounding the TCR. While

many specific details of the triggering are not known, it is known that this evacuation of CD45 is

necessary for the triggering to occur. A basic model for this process involves measuring evacuation

times, or the mean first passage time (MFPT), for a large number of freely-diffusing molecules,

but this lowest order model shows discrepancies between the likelihood of seeing an evacuation

event and the time-scales observed for TCR triggering. For instance, if one assumes there are n

independent molecules uniformly distributed in the region of interest (ROI) surrounding the TCR,

the probability of simply observing an evacuated region of interest surrounding the TCR can be

approximated p = (1−AROI/Adomain)
n ∼ 10−10 for some of the lower density estimates for CD45,

with AROI, Adomain giving the area of the ROI and area of the 2D diffusion domain, respectively

(see Model parameters for specifics regarding the quantities AROI and the density). While the
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mean time to reach an evacuated state does not have a relationship to this probability that can

be immediately stated, the exponential decay of this probability with the number of evacuating

molecules reveals how in this very basic model, evacuation is a rare event. Indeed, preliminary

estimations for this MFPT yielded values on the order of ∼ 1010 s [74], drastically longer than the

actual timescales physiologically observed for this triggering, ∼ 1 s. Creating a theoretical solution

for these MFPTs including only diffusion is complicated as-is, and extending these theoretical

solutions to a wider array of physiological scenarios and interactions that CD45 might undergo on

the cell surface is a gargantuan task.

Rather than developing a new model for cell-surface based evacuations, it became evident that

much progress could be made by instead combining biochemical simulators with rare event sam-

pling methods, using them to better understand what sort of impact various biochemical and me-

chanical properties might have on this evacuation time. Thus, to bridge the gap between these

theoretical diffusion-only based values and the observed physiological values, we chose to com-

bine biochemical simulation with rare-event sampling methods.

T Cell Receptor Triggering

In the immune system, a key step involved in T cells sensing pathogens is a process called T cell

receptor triggering. In this process, a T Cell receptor (TCR) binds to an antigen presenting cell

(APC) and initiates an immunological response. While many specific details of the triggering

are not known, there are three prevailing models used to describe it: aggregation, conformational

changes, and segregation. Aggregation and conformational changes both describe changes in the

TCR complex after binding to the APC, and both remain outside the scope of this work. Kinetic

segregation, the focus of this study, describes molecular movement prior to TCR triggering [93].

The cell surface is a dynamic environment, and TCR triggering is associated with reorganization
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of cell surface proteins. Kinetic segregation refers to a model where large transmembrane proteins

(e.g. CD45) that are too close to the TCR block receptor-antigen binding. In this model, only

after all of these large molecules move outside (evacuate) a contact region surrounding the TCR

can binding occur (see Fig 1.1A). CD45 has been shown to have an inhibitory effect on TCR

triggering[29, 80]. CD45 is found in high density close to TCRs before a TCR is triggered as well

as much in lower concentrations close to triggered TCRs[20, 29]. This behavior is consistent with

the kinetic segregation model, as well as with the known geometry of the rigid extracellular domain

of CD45 (∼21 nm) [21, 20] and the proximity of triggered T cells to APCs, (∼13nm) [25, 20].

Simple, passive diffusion, i.e. Brownian motion, of these large surface molecules is not sufficient

to explain these evacuations. 2D diffusion-only simulations find complete evacuation timescales

to be many orders of magnitude larger than the second-long timescale of TCR triggering [74].

However, CD45 diffusion across the membrane is not simple Brownian motion, as it might interact

chemically with other surface molecules, dimerize[92], and experiences diffusional barriers such

as actin filaments[10, 41]. Thus, we pose the question: what role do these more complicated

reaction-diffusion features have on evacuation times, and are they sufficient to explain the gap in

timescales?

Spatial Stochastic Processes and How to Computationally Study

Them

Cells are highly organized and complex objects with millions of molecules. A complete description

of the cell, while desirable, is computationally expensive and not feasible at present. Relevant

length scales can vary from 10−10 to 10−5 m[59], and time scales as low as 10−12 s [59] up to

several hours or longer. Depending on the cellular process of interest and their relevant length and

timescales, there are multiple modeling methods to select between. On an atomic and molecular

3



Target cell’s surface
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Figure 1.1: (A) Artistic rendition of kinetic segregation on the T Cell surface. When in the orange region
of the membrane surrounding the TCR (circular sector on lower membrane), large surface molecules block
receptor antigen binding. Once they leave this region, the antigen can get close enough for receptor-antigen
binding to occur. Rendition taken from [74]. (B) 2D representation of CD45 evacuation used for the base
model. The TCR is presumed to be at the center of a square domain, side length L. The circular region of
radius R is the region of the domain that must be completely devoid of any CD45 molecules (black hep-
tagons) before binding can occur. In the simplest model, these CD45 molecules are independent Brownian
particles that only interact with the domain boundaries.
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level, dynamics can be investigated in detail with molecular dynamics simulations. On larger

length and timescales, deterministic reaction kinetics can describe species evolution without spatial

dynamics, but that is valid when both the number of particles is large and chemical species are

well-mixed. To bridge the gap between these levels, many simulations function on a mesoscale

level: molecules are treated as individual particles with motion described by Langevin dynamics,

or Brownian dynamics if inertia can be neglected [59]. Reactions are taken to occur when the

appropriate species come into physical contact, based on a framework developed by Smoluchowski

[95] to relate how macroscopic chemical rate constants translate into a binding radius for diffusing

spherical molecules.

For a kinetic segregation model involving complete evacuation, detailed spatial organization of

individual molecules is desired, which lends itself towards choosing a particle based stochastic

simulator that operates on the mesoscale. One such simulator is Smoldyn, initially published by

Steve Andrews and Dennis Bray in 2004 [14]. It is a particle-based reaction-diffusion simulator

that has a long track record of use in published research [35, 67, 23].

Smoldyn as a biochemcial simulator treats space as a continuous medium and uses discrete time

steps in its calculations [14]. While using a finite time step for calculating evacuation times causes

well known inaccuracies in the specific measurement of evacuation times, trends upon changing

parameters such as number of evacuating particles and chemical reactions persist as long as the

time step remains the same between subsequent simulations. Additionally Smoldyn is written with

much flexibility in the user’s ability to define chemical species, chemical reactions, and spatial

features such as barriers. As a continuous space, discrete time simulator, Smoldyn’s accuracy

is comparable to the enhanced Green’s Function Reaction Dynamics [90], but scales much more

efficiently with an increase in particles. I selected Smoldyn over other simulation methods for its

relative computational efficiency as well as the flexibility required to implement more complicated

reaction-diffusion features.
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Introduction to Weighted Ensemble Sampling

Previous studies done on the evacuation of Brownian molecules in a 2D domain have found this

evacuation to be a relatively rare event many orders of magnitude larger than typical time scales of

the system [74]. A useful computational tool for studying rare events is the Weighted Ensemble

sampling algorithm. This method, originally proposed by Huber and Kim [51], has been shown

to be statistically exact for many stochastic processes [103]. Weighted Ensemble has been applied

to studying rare events in a variety of situations, most notably in molecular dynamics simulations

[104]. Weighted Ensemble obtains information of long timescale processes through multiple short

timescale trajectories, hereafter denoted as replicas (figure 2.2). A group of simulation replicas

are initialized and attributed a probabilistic weight. These replicas are allowed to evolve into a

steady state distribution based of the ensemble space, which is then organized into “bins” based

on location inside the state space. After the definition of these bins, the simulations are allowed to

evolve for a fixed amount of time with periodic duplications and deletions of certain simulations.

These duplications and deletions, dubbed splitting and merging, respectively, are done in such

a way that preserves the total probabilistic weight of the system: splitting involves separating a

simulation into 2 identical simulations each with half as much weight, and merging involves giving

the weight from a deleted simulation to a simulation inside the same bin as the deleted simulation.

While the total weight and its distribution between bins might change as the simulation evolves,

the number of simulations inside each bin is manipulated so that computation power is evenly split

between bins.

Finding the first time of evacuation requires fine temporal resolution as well as fine spatial resolu-

tion, but the timescales of evacuation make these events extremely rare. It is instead more useful to

consider an equivalent problem: given a steady state ensemble of system states, what is the average

probability flux into evacuated states per unit time? The equivalence of these two problems, com-

monly referred to as the Hill relation [49, 12], relates the mean first passage time T to the average
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probability flux Φ as follows

T =
1

Φ
. (1.1)

While Weighted Ensemble is statistically exact, the measurements of any one Weighted Ensemble

simulation have a highly correlated nature. Because of this, convergence and error analysis for any

single Weighted Ensemble simulation, is not straightforward. Furthermore, key metaparameters of

Weighted Ensemble simulations are typically chosen ad-hoc. As stated by Bogetti et al., ”choosing

WE parameters is something of an art” [13]. In the proposal presented, we lay foundations for

better analysis and WE metaparameter selection.

Summary of Research

The work for my PhD thesis is thus split into three parts. First, I developed freely available soft-

ware combining Weighted Ensemble sampling with the biochemical simulator Smoldyn. Next, I

used this tool to investigate CD45 evacuation times for a variety of physical scenarios including

dimerization and limited reentry. Finally, I analyzed two key metaparameters for Weighted En-

semble, the frequency at which re-weighting occurs and the number of replicas maintained in each

bin, investigated their impact on simulation convergence and error, and investigated the impact of

various methods of measuring error.
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Chapter 2

Surface Dynamics of CD45 Evacuation

Introduction

The physical and biochemical mechanisms of T cell receptor triggering are not fully understood,

though a number of different models have been proposed, reviewed in [93, 87]. These models

synthesize a variety of experimental observations and help further understanding of how T cells

can achieve exquisite sensitivity to small amounts of antigen, while also discriminating antigen

from self.

As previously stated, T cell receptor triggering is associated with reorganization of cell surface pro-

teins, shown schematically in Fig. 2.1A. Local depletion of surface proteins with large ectodomains,

such as the phosphatases CD45 and CD148, in the receptor’s vicinity has been demonstrated to be

an important step [64, 94]. The kinetic segregation model is supported by various lines of evidence

[29, 80, 20, 56, 25]. However, the kinetic segregation model cannot by itself fully explain T cell

receptor triggering: other mechanisms likely contribute (e.g., see [93]) and CD45 plays somewhat

contradictory roles [29].
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How and when the local evacuation of large ectodomain phosphatases from the receptor vicin-

ity occurs remains unclear. It could happen pre-contact-formation (e.g., does local evacuation of

CD45 clear the way for receptor-antigen binding?) or post-close-contact formation (e.g., a sce-

nario where receptor-antigen binding is first enabled by close-contact due to a microvillus [57],

or active membrane protrusion). The question of what drives this evacuation can be cast in three

different lights: In the absence of receptor ligation, what mechanisms ensure evacuation does not

happen accidentally? In the presence of ligation, what ensures evacuation happens in sub-second

timescales necessary to initiate and sustain a signal? And, finally, if the process of evacuation tips

the balance from inhibitory to stimulatory signaling in T cells, could modulating the evacuation

process itself be an avenue accessible to engineered therapeutics?

Various mechanisms for this evacuation process have been proposed. These include: simple

Brownian motion of CD45 in the plasma membrane [74]; oligomerization reactions between the

molecules [91, 98] shown schematically in Fig. 2.1B; and mechanical compression by a nearby

surface, such as that of the cell presenting the antigen. The compression region can be conceptu-

ally categorized as either a close-contact of ∼100nm [40, 22], shown schematically in Fig. 2.1C,

where there is no net lateral pressure on the molecules within the close contact, or something more

similar to the wedge or tent shape resulting from a force on a single receptor pulling the membrane

at a point [3]. The latter case has been studied theoretically [3, 76]. Beyond the scope explored in

this work, there are many more possible mechanisms, including: spatial heterogeneity due to lipid

composition or interaction with the cytoskeleton [42, 86, 77]; modulation of the configurational

state of the individual molecules themselves can modulate their organization, e.g., by electrostatic

interaction with the lipid membrane [27, 26]; or crowding out by CD3 [66].

Computer simulations of the spatiotemporal events involved in receptor triggering and immune

synapse formation can provide a means to investigate phenomena that lie beyond the spatiotem-

poral resolution of measurement techniques [63]. In this paper, we investigate the evacuation

process through computer simulations tracking reaction-diffusion dynamics of protein molecules

9



Signal

A

B C

TCR CD45

Spatial depletionT Cell

Antigen
presenting

cell

Close contactOligomerization

No signal

Figure 2.1: Surface dynamics for a large, membrane-
bound surface molecule like CD45. (A) T Cell Recep-
tor (TCR) binding to an antigen presented by another
cell. (Left) If CD45 is uniformly distributed around
the receptor, signaling is inhibited. (Right) The local
depletion of CD45 from the region of interest (ROI)
near the receptor, approximated here as a circle with
radius RROI, is a key step in T Cell receptor signal-
ing [93, 87]. (B) Intermolecular interactions between
CD45, e.g., oligomerization of CD45 into dimers. Dif-
fusion coefficients for monomers and dimers are D1 and
D2, respectively [91, 98]. (C) Close contacts created
by, e.g., microvilli, could lead to biased movement of
CD45 due to compressional resistance of the molecule
[40]. We represent these close contacts by probabilisti-
cally limiting entry into the ROI.

on the cell surface. To simulate wide ranges of parameters, including different molecular phenom-

ena, with a physiological and near-physiological numbers of molecules, we made recourse to the

Weighted Ensemble algorithm [51], an enhanced sampling simulation method.

We confirm mathematical estimates that, at physiological concentrations, spontaneous evacuation

is extremely rare [74]. We find that dimerization decreases the timescale of evacuation for even

weak bi-molecular interaction by several orders of magnitude. The formation of higher-order

oligomers reduces evacuation to a sub-second process, opening the possibility that an engineered

10



oligomer of CD45 could significantly modulate receptor triggering. We find that formation of close

contacts also decreases the timescale of evacuation. However, for large regions of close-contact,

such as those induced by large microvilli, our model predicts evacuation times that are still too long

by several orders of magnitude, using current estimates for the molecular size and compressibility

of CD45. This suggests that the change in molecular motion driven by close contact alone is not

sufficient to drive receptor triggering.

Results

A Rare-Event Reaction-Diffusion Simulation

Molecules in our model are represented as individual particles moving on a two-dimensional sur-

face. Their mean density is ρ, and we assume there is a region of interest (ROI), for example near

a single T cell receptor, that we approximate as a disk with radius RROI. We make the simplifying

assumption that the receptor motion is negligible relative to the motion of the individual CD45

molecules. The ROI lies in the center of a 2D square domain with edge length L. The quantity

we wish to compute is the mean time until the ROI is empty—which we refer to as the evacuation

time or mean first-passage time (MFPT)—under various assumptions about the dynamics of the

molecules. In the base case, we assume motion is purely diffusive with coefficient D (which could

be thermal or include active, random forces [44]). Note that previous work [74] has shown that dif-

fusion alone is too slow to be consistent with experimental data, giving MFPTs of ∼ 1010 s whereas

triggering can occur in reality within seconds [54, 50]. That is, the simultaneous evacuation of all

molecules from the ROI by simple diffusion, given physiological surface density and ROI size, is

a rare event. We are interested in the rare event limit because, first, its quantification helps reject

this null hypothesis, and, second, it provides a necessary starting point for hypothesizing what may

accelerate the biological process of T cell activation out of the rare event limit.
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Summary of key parameters in the base model

We parameterize our model based on experiment-derived estimates. The key parameters of the

base model are the size of the evacuation region, the diffusion coefficient of CD45, and the surface

density of CD45. The size of the evacuation region (that is, the radius of the ROI) provides a

characteristic lengthscale for the model system. Assuming RROI = 100 nm ([17, 40, 3]), and

assuming the diffusion coefficient to be D = 0.01µm2/s ([18]), these provide a characteristic

timescale for the system of R2
ROI/D ≈ 1s. We define scaled units for molecule density, ρ, as

molecules per R2
ROI. In these scaled units, we estimate the physiological surface density of CD45

to be ρ ≈ 9 molecules per R2
ROI[3]. Parameters are listed in Table 2.1; further details of parameter

values are discussed in Methods.

Combining Weighted Ensemble and Smoldyn allows simulation of long-timescale stochastic

spatial phenomena

To simulate evacuation in the rare-event limit, we combine the particle-based reaction-diffusion

simulator Smoldyn [7] with a Weighted Ensemble algorithm [51, 12, 103, 32]. The algorithm

has been shown to be statistically exact for many stochastic processes [103] and has been applied

to many systems, especially in molecular dynamics [104]. In this algorithm, shown schemati-

cally in Fig. 2.2, many Smoldyn simulations are run in parallel, each assigned a weight wi, with∑
i wi = 1. An order parameter is used (here, number of particles in the ROI, nin) to bin the

state space (Fig. 2.2A). Periodic redistribution of weights and trajectories among the bins occurs

after each time interval τ . More simulations are run in probabilistically less-likely regions of state

space, but assigned a smaller weight. This focuses computational power on rare events while still

maintaining an algorithmically exact statistical ensemble [103, 104]. Every τ time units, we record

the probability flux into the evacuated state (i.e., the summed weights of trajectories that reached

the bin with nin = 0 during that time interval), as shown schematically by red arrow and circle in

12



Fig. 2.2B, and actual evacuated weights shown in Fig. 2.2C. Trajectories that reach evacuation are

killed, and their weights are redistributed into the system. Once the system reaches steady state,

the mean flux gives the reciprocal of the MFPT [12]. In practice, an estimate of the MFPT is ob-

tained based on multiple independent simulations, as indicated by different color lines in Fig. 2.2C.

For full details see Methods and Supplemental Fig. 2.7. We name this algorithm and combination

WE-Smoldyn.

A summary of Weighted Ensemble and simulation hyperparameters is in Table 2.1.

WE-Smoldyn agrees with brute force stochastic simulation at low densities and approaches

asymptotic calculation for high densities.

We first simulate evacuation for a density of particles ρ undergoing diffusion only, and compute

the mean time to evacuation. In Fig. 2.3A, we demonstrate the computational ability to simulate

evacuation and compute MFPTs for a range of surface density values, reaching ρ = 10, which is

consistent with experimental estimates [3, 40] and which corresponds to a mean number inside the

ROI of nin = πρ = 31. The MFPT grows superexponentially with ρ, reaching T ≈ 1012 seconds

at the highest simulated density. The MFPT has an uncertainty of less than one order of magnitude

(error bars are standard error of the mean).

To validate our method, we compare with a brute-force simulation using Smoldyn, at low ρ (red).

At high ρ, we compare to the asymptotic approximation from [74] (black dashed), which gives the

following value for the MFPT

T =
κ2DR

2
ROIe

nin

Dnin
2 , nin ≫ 1. (2.1)

Here, κ2D ≈ 0.7 is a constant independent of all parameters, see [74]. In the rare event limit,

agreement to the asymptotics is within two orders of magnitude, and we hypothesized that the dis-
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agreement is due to a finite domain size in our simulation (whereas the asymptotic approximation

is in the limit of infinite domain). We confirm that the MFPT, estimated from our simulations as a

function of increasing domain size, approaches the value in Eq. 2.1 (see Supplemental Fig. 2.8).

The domain-size effect can be intuitively understood to result from the difference in particle dis-

tributions for a small domain versus a large domain during an evacuation event. For evacuation

to occur, the density of particles outside the ROI must increase, while the density of particles in-

side the ROI must decrease (to zero). Also, the ROI area makes up a greater fraction of the total

system area for a small domain, as compared to a large domain. Therefore, more particles must

be “squeezed” into a smaller area (that is, the density of particles outside the ROI must increase

further from the equilibrium value), in order for evacuation to occur in the small domain case, as

compared to the large domain.

The computational scaling in Fig. 2.3B suggests that simple timestepping would take 4×105 years

of CPU time for 1000 evacuation events, whereas the Weighted Ensemble method took approxi-

mately 25 days per MFPT measurement (2.5 days per measurement, then repeated 10 times) on

a single CPU core. Thus, the simulations we present throughout this paper would be unfeasible

without recourse to an enhanced sampling algorithm like Weighted Ensemble.

The definition of evacuation time we use here and in [74] is instantaneous, in other words until the

last molecule reaches the boundary of the ROI. This raises two notes: First, this is an approxima-

tion, since in the T Cell it is likely that a T cell receptor in an almost-evacuated ROI could still

become triggered, just at a lower rate. Second, the timestepping algorithm we use here could lead

to overestimates of the MFPT. To control for this second approximation, we confirm in Supple-

mental Fig. 2.8 that MFPTs are independent of simulation timestep ∆t.

14



Oligomerization

Model for intermolecular interactions

There is some evidence that CD45 dimerizes [98, 91]. In this section, we explore the impact

this would have on the evacuation process. To include dimerization, we add a reversible binding

reaction to the model, with unbinding rate koff , and binding occurring whenever two particles are

within a distance rbind = 10−2, which corresponds to a physical distance of 1 nm. Binding distance

roughly corresponds to a binding rate. See Supplemental Fig. 2.9 and Methods for details on

simulation of reversible dimerization of surface molecules. We further assume that dimers diffuse

more slowly by two-fold [30]. We explore the effect of varying koff , i.e., of varying the equilibrium

constant for the dimerization reaction.

Dimerization decreases the timescale of evacuation by orders of magnitude even for weak

bi-molecular interaction strengths

At low koff , evacuation times are decreased by over 5 orders of magnitude, as shown in Fig. 2.4A

(towards left of horizontal axis). Order of magnitude changes in MFPT appear to track closely with

corresponding steady-state monomer fraction, as a function of koff (Fig. 2.4B). We can understand

this heuristically as follows, making use of the asymptotic approximation (for monomer evacua-

tion) in Eqn. 2.1 [74]. At low koff , most molecules are in dimer form. Evacuation is nominally

slowed by the reduction in diffusion coefficient, since the evacuation time scales as T ∝ D−1 in

the asymptotic (infinite domain) limit. However, this effect is outweighed by the reduction in the

number of independent particles, since T ∝ eN/N2, which leads to an almost exponentially-lower

MFPT [74]. Thus, the linear reduction in diffusion coefficient is dominated by the near-exponential

dependence on the (linear) reduction in number of particles. Indeed when we compute MFPT as

a function of the fraction of monomers in Fig. 2.4C, we observe an approximately exponential
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relationship.

More surprisingly, this dramatic reduction in evacuation time occurs even for weak dimerization.

When monomer fraction is as high as 80%, meaning only 20% of CD45 subunits are in dimers, the

MFPT is already reduced by ten-fold.

These relatively high unbinding rates correspond to weak homodimerization affinities. We can

compute an effective 2D dissociation constant, defined as the concentration of reactants at which

half the reactants are in the product (dimer). We find that a reaction with K2D
D = 0.0058nm−2

would yield a ten-fold reduction in evacuation time. A reaction with K2D
D = 0.0009nm−2 would

yield a 1000-fold reduction. Conversion of 2D chemical properties to the equivalent 3D properties

is nontrivial [97, 56], but a lower-bound estimate can be obtained by dividing the 2D density by the

confinement height of the reaction [97, 99, 11]. In this case, the upper bound for the confinement

height is the height of CD45 [21]. Using this, we can compute a lower-bound affinity for 10-

fold reduction of MFPT, K3D
D = 460µM, which corresponds to a standard binding free energy of

∆Gbind = kBT lnK3D
D = −19kJ/mol. These binding strengths are an order of magnitude weaker

than those measured for agonist TCR-peptide-MHC [53]. Note that these over-estimate the needed

strength, since the confinement length we assumed to convert to a 3D affinity is an over-estimate.

Effects of higher-order oligomers on evacuation

This led us to wonder how evacuation times would be affected by the formation of higher-order

complex molecular assemblies, for example as could be engineered using extracellular molecular

linkers.

Full simulation of higher-order oligomerization was beyond our limits due to combinatorial com-

plexity of number of molecular species and reactions between these. (This is algorithmically feasi-

ble, especially with rule-based modeling tools [5, 6] but would be difficult to parameterize, i.e., we

would either need to estimate or explore a combinatorially large number of rate constants). How-

16



ever, we can use Weighted Ensemble to compute the evacuation time assuming koff is sufficiently

low, such that all molecules are in the highest-order oligomer, shown in Fig. 2.5. Here, again, we

assume that diffusion coefficient is reduced proportional to the number of subunits in the complex.

For oligomers larger than dimers, we assume the ensemble is homogenous and only made of the

largest complex. Between oligomer size 1 and 2, we show heterogeneous mixtures using the same

sweep of koff from Fig. 2.4, but plotted as a function of the average number of subunits in each

independently diffusing particle,

Avg. # subunits =
2[# dimers] + [# monomers]
[# dimers] + [# monomers]

. (2.2)

Consistent with the result for dimers, these larger oligomers evacuate faster, despite diffusing more

slowly. Indeed, hexamers with strong binding evacuate within 1 second.

We have assumed that the diffusion coefficient of oligomers is Dn = D1/n, where n is the number

of subunits. Note that for a single molecule with a transmembrane domain, or multiple transmem-

brane domains very close together, previous findings suggest a linear decrease in D with lateral

radius of the diffusing membrane protein [43], while, other studies found that D depends more

weakly on protein radius [78], and it has also been shown that the size-dependent decrease in D of

membrane proteins depends on factors such as membrane crowding [55]. In our case, we assume

the oligomers result from the attachment of multiple molecules each with a single transmembrane

domain of unchanged size. So, the transmembrane domains are further apart than in [43, 78, 55],

and therefore hydrodynamic interactions between the transmembrane domains is weaker. Previous

studies suggest that, if separated by the size of a protein, the hydrodynamic interactions are weak

and the scaling of drag coefficient with n becomes linear [30]. Nonetheless, our assumption of

Dn = D1/n may overestimate the decrease in D upon oligomerization; in this case, the effect (de-

crease of MFPT upon dimerization/oligomerization) would be stronger than that shown in Figs. 2.4

and 2.5.
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Close Contacts

Model for molecule behavior at a close contact

T cell receptor triggering can be induced by the formation of cellular protrusions called microvilli,

which push against a surface, creating a region in close contact [40] between two surfaces, as

shown schematically in Fig. 2.6A. If the close contact membrane-separation is smaller than the

resting size of CD45, it has been hypothesized that this leads to dynamics in which CD45 can

diffuse out but not back into the area of close contact [40]. Note that this is distinct from models

in which the membrane deformation is tent-shaped or wedge-shaped, and therefore induces non-

diffusive advection on compressed molecules [3]. We begin this section by exploring the model

regime in which CD45 has an unspecified compressional resistance at a close contact size.

Although the compressional resistance of CD45 is a key property in kinetic segregation models,

estimates are challenging. Efforts to measure a similar molecule [15] have yielded estimates around

kspring = 0.1pN/nm. If a close contact is held in place by T cell receptors bound to antigen, the

height difference between the rest size of CD45 and the close contact size has been estimated to be

∆z = 6.6nm [21].

For large regions of close-contact, such as those induced by large microvilli, molecular size

and compressibility imply an intermediate re-entry probability

Using a Boltzmann relationship between the compression energy and the re-entry probability (see

Methods, Eq. 2.3), we can compute how these two molecular properties influence the ability of

CD45 to enter the close contact, shown in Fig. 2.6B. Stiff or large molecules enter the ROI with

near-zero probability, and soft or small molecules enter with high probability, but the physiologi-

cally estimated parameters lead to an entry probability of pentry ≈ 0.6. Our finding is in contrast to
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previous models, e.g. [40], which assumed pentry = 0. We perform simulations of the evacuation

process with varying pentry to investigate its effect on evacuation.

How well-approximated is the evacuation time by assuming zero re-entry, or by assuming free

diffusion? It cannot be well-approximated by both, since the evacuation time we found above at

pentry = 1 is many orders of magnitude larger than the evacuation time in simulations from [40],

who assumed pentry = 0.

Physiological levels of molecular compressibility lead to significant reentry, leading in turn

to significant delays in evacuation compared to purely one-way evacuation.

We use our WE-Smoldyn algorithm to simulate a density ρ = 9 of molecules undergoing diffusion,

but with the assumption that a given molecule, after exiting thte ROI, re-enters with probability

pentry. We find that the evacuation times, shown in Fig. 2.6C, indeed vary between the simple

diffusion case pentry = 1 and the no-entry case pentry. The evacuation time, given physiological

estimates of kspring and ∆z, is around 105 seconds (pink vertical bar in Fig. 2.6C). Although this

value is orders of magnitude faster than the evacuation time computed for the pentry = 1 case

(simple diffusion), it remains substantially longer than T Cell triggering times.

Note that estimates of kspring have varied widely [16, 15]. As empirical uncertainty bounds are not

presently available, we explored the effect of a potential two-fold increase or decrease of kspring.

Propagation of this uncertainty to pentry implies a range from 0.36 to 0.77 (gray dashed lines in

Fig. 2.6C), with a corresponding variation in the computed MFPT over approximately five orders

of magnitude. These results demonstrate the high sensitivity of evacuation times on pentry and, in

turn, on the biophysical parameters that govern CD45 movement near the close contact.

We validate our results at pentry = 1 by comparison with our simulations for simple, unhindered

diffusion. We also solve for an analytic expression for the MFPT at pentry = 0. This calcula-

tion is performed in the Supporting Text and shown in Supplemental Fig. 1.1. Agreement with
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WE-Smoldyn is shown as the open green circle in Fig. 2.6C. We further performed brute force

simulation for 0 < pentry < 0.3.

The dramatic effect of even small changes in pentry led us to wonder about the relative importance

of close contact size and gap size (which determined pentry). Note that, so far, all figure panels

have shown evacuation time and densities nondimensionalized by scaling with the radius of the

ROI. Rescaling to physical units, at a fixed physical density ρ̃, would require simulations over a

range of pentry and ρ. Instead, we make use of our finding that evacuation time is an approximately

exponential function of pentry, and use this as an ansatz in Eq. 2.4 (Methods).

Evacuation times in physical units are shown in Fig. 2.6D, for a density 160 × µm−2. Note this

is lower than the physiological estimates used elsewhere by about 4-fold but at the limit of our

current computational capability. At these parameters, a close contact region of radius less than

∼ 100nm evacuates spontaneously in sub-second time. Close contacts that are perfectly impen-

etrable also evacuate in sub-second time, up to at least 250nm, comparable to the size observed

[17, 40]. However, close contacts larger than 100nm with 20% or more re-entry probability have

significant slow-down in evacuation. Here, an observed change in the shape of the curves leads to

an interesting prediction: At low pentry < 0.2, relative changes in pentry lead to more significant

changes in evacuation time compared to the same relative change in close contact radius. At high

pentry > 0.6, relative changes in close contact radius RROI lead to more significant changes in

evacuation time compared to the same relative change in entry probability. At the physiological

estimate pentry = 0.6, roughly, a 20% reduction in pentry has the same effect in reducing MFPT as

a roughly 20% reduction in size of the close contact.

20



Discussion

The paradigm of kinetic segregation — triggering a receptor by local depletion of its deactivating

enzyme – has been proposed for a variety of surface receptors [34, 73]. The most developed ex-

ample is T cell receptor triggering by CD45 depletion. In this work, we show that, first, simple

diffusive motion of CD45 leads to spontaneous depletion extremely rarely, in agreement with previ-

ous results [74]. Spontaneous depletion is therefore not at risk of false positive receptor triggering

in the absence of an external cue. Second, we show that oligomerization of CD45 dramatically

increases the speed of depletion. And third, we show that a close contact may accelerate depletion,

but depending on its gap size and the mechanical properties of CD45, depletion may nevertheless

be extremely slow.

Our results on oligomerization make a prediction: that externally-induced oligomerization of

CD45 into higher-order structures would lead to more rapid receptor triggering, and indeed suf-

ficient oligomerization (e.g., dominant heptamers, Fig. 2.5) would lead to spontaneous receptor

triggering. Such oligomerization could be performed on the extracellular regions of CD45. This

could therefore provide a test of the prediction, particularly in a controlled system like a liposo-

mal reconstitution [52]. It also predicts a mechanism through which CD45 modulation leads to

orders-of-magnitude changes in a very proximal step in T cell function. It is intriguing to spec-

ulate the effect of oligomerization on overall T cell signaling, and on engineered T cell function,

e.g., T cells used in therapeutics [47, 96]. However, the observation that CD45 has both positive

and negative regulation of overall T cell signaling [91, 98? ] suggests a highly nonlinear sys-

tem, which demands more careful quantitation and quantitative modeling. Outside the context of

CD45, galectins [39, 38] can cross-link surface proteins via their sugars, but their role is not clear.

These galectins can generate higher-order oligomers. They also have weak specificity, and there-

fore could be a general mechanism to evacuate molecules with many sugars. It could also be that

oligomerization is induced not by direct protein-protein interaction, but rather by a mobile raft of
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lipid heterogeneity. Such oligomers would satisfy a similar mathematical model, perhaps with a

different diffusion coefficient.

Calculation of the theoretical evacuation time at a close contact has implications for models of

close-contact surface molecule dynamics. In particular, Fernandes et al. [40] made the assumption

that once a CD45 leaves the close contact region, it cannot re-enter (pentry = 0). We confirm

here that this leads to depletion times on the order of seconds. However, using estimates of CD45

geometry and mechanics, we compute that if there is a 60% chance of re-entry, the depletion time

increases to 105 seconds, much slower than observed timescales of receptor triggering [40, 54, 50].

Formally, there are several possible resolutions to this discrepancy: If the estimated geometry

and mechanical properties of CD45 are accurate, there must be another phenomenon contributing

to evacuation. Alternatively, the molecular spacing could be smaller than estimated in [21], or the

molecules could be much stiffer. Indeed, according to our model, a factor of two change in estimate

of the latter parameter (i.e., in the spring constant of CD45) induced a greater than hundred-fold

change in the evacuation time. This sensitivity shows that close contacts under the current model

could indeed result in short-enough (or nearly so) evacuation times, under different estimates of

biophysical parameters. Thus, the question of what mechanisms drive evacuation, and particularly

the estimation of pentry, warrants further study.

The model we used is minimal in its assumptions and therefore subject to limitations. Our model

focuses on the kinetic segregation mechanism, however, it has been proposed that kinetic segre-

gation is just one of many mechanisms contributing to T cell receptor triggering [93]. Moreover,

we focus on the inhibitory effect of CD45 on TCR signaling, whereas CD45 can both positively

and negatively influence TCR signaling [29]. Within the kinetic segregation model, one limita-

tion is our focus exclusively on total depletion, when the last molecule leaves the ROI. In reality,

other steps in receptor triggering include ligand binding and receptor phosphorylation [22]. So,

a more realistic model could be formulated in which the number of CD45 in the ROI determine

a next-event rate. This rate would be high for total evacuation, and slower for partial evacuation.
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The MFPT one would study would be the time until the next-event has occurred. Without further

assumptions, it is possible this next-event could happen slower than the total evacuation time, since

it adds a subsequent step, or faster, since it can be triggered when evacuation is not total. Another

limitation is the assumption of a flat, two-dimensional membrane. In particular, our considera-

tion of microvilli ignored the purely geometric effect of a microvillus, in which distances around

the perimeter of the microvillus are smaller than distances around the ROI in our flat simulations.

Simulating diffusion on such curved surfaces is computationally possible, but more expensive, in

Smoldyn [5] and would require more characterization of the 3-dimensional shape of microvilli.

Yet another limitation is our focus on motion of CD45, when in reality the receptor moves as well

[22]. Further integrative models, at the cell scale, may also include multiple receptors, and there-

fore multiple opportunities for a T cell to activate. Future research may explore these directions.

Crowding is prevalent in biology [19, 37, 36, 28, 61, 89, 68]. For that reason, there are exam-

ples in which un-crowding may be important — that is, when molecules must evacuate from a

region before a given process can occur, and so the problem of making space is of general inter-

est. These include the many transient cell-cell contacts which occur during tissue development

(e.g., the delta-notch system [70, 85]). There are also membrane-membrane contacts within cells,

including between the endoplasmic reticulum and plasma membrane (where crowding could mod-

ulate interactions of molecules including Ora1 and Slim1 [62]). In 1D, an example is offered by

transcriptional control in eukaryotes, which is achieved by the binding of many classes of pro-

teins to DNA [88, 58]. Transcription factors (TFs) locate to binding sites within promoters and

enhancers by 1D diffusion along the DNA and by attachment/detachment into the 3D cytoplasm

[46, 69, 71]. The binding of larger structures, such as nucleosomes, which occupy ∼ 150 base

pairs (bp) of DNA, is inhibited by the presence of TFs, and therefore it is intriguing to wonder

whether evacuation timescales are significant. Furthermore, enhancers, which are ∼ 200 − 1000

bp stretches of DNA with 5-30 TF binding sites of various classes, may require evacuation of nu-

cleosomes and transcriptional repressors to activate their target genes. Again in 1D, microtubules

(inflexible polymers of the protein tubulin) are decorated by hundreds of microtubule-associated
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proteins [2, 82]. These proteins exhibit significant crowding [28, 61] and lateral diffusion along

the microtubule lattice [31, 48]. Large microtubule-binding molecules may therefore have to wait

for a region to be clear before binding.

Simulations performed here would be unfeasible without recourse to an enhanced sampling algo-

rithm. Weighted Ensemble has been applied to many different types of stochastic dynamics sim-

ulations, however ongoing challenges are present, e.g., in a priori selection of state-space binning

strategies, hyperparameters, and weighting schemes to optimize convergence of desired observ-

ables [104]. Further systematic study of Weighted Ensemble hyperparameter selection and analy-

sis methods should lead to further increases in efficiency and empower future rare event simulation

studies. Our WE-Smoldyn code base was built on top of the Smoldyn dynamics engine, which

is widely used, flexible and with a large user base. We anticipate the combination of Weighted

Ensemble with spatial stochastic simulation, as highlighted by full-featured software like MCell-

WESTPA [33], will open new avenues of research, including for the evacuation questions posed in

the previous paragraph.

Methods

Model and Dynamics

Diffusion

Smoldyn is a time-stepping simulator with a continuous spatial domain (as opposed to a lattice-

method). At each time step, molecule displacements are drawn from a Gaussian distribution whose

width is determined by their diffusion coefficient D, with each chemical species having their own

diffusion coefficient. At each Smoldyn timestep, Smoldyn tracks the location of each molecule,

and stopping when it observes a complete evacuation of the ROI (Fig. 2.1A, right). Aside from
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interactions with boundaries, barriers, and for molecular binding, all molecules diffuse indepen-

dently and do not interact with each other. Boundary conditions were chosen to be reflective,

though preliminary results did not show substantial differences between reflective and periodic

boundary conditions.

As we are using a time-stepping based method, the determination of whether or not a molecule has

evacuated the ROI within a timestep is based only on its starting and ending locations, and specific

details of the trajectory between the time-steps are lost. This representation results in evacuation

events that occur between two sequential time-steps that are not observed by the method. As

evacuation events are lost but none are gained, this would result in estimates of the MFPT that are

higher than the true value rather than an underestimate. To minimize the number of evacuation

events lost from these missing trajectories, we chose to use a small Smoldyn timestep, ∆t = 10−6.

To ensure this choice of ∆t is small enough we confirmed that smaller timesteps give similar

results, as shown in Fig. 2.8.

Intermolecular interactions and reversible dimerization

Smoldyn uses an algorithm that is qualitatively similar to the Collins-Kimball model of bi-molecular

reactions and approaches the Smoluchowski model for short time steps [8]. The association reac-

tion occurs when two monomers diffuse within a pre-defined distance of each other referred to as

the binding radius, rbind. Dissociation of dimers into two monomers is probabilistically determined

at each time step, with probability determined by the detachment rate koff [8].

Two-dimensional reactions are more complicated to analyze than their 3D counterparts [100? ].

For example, there is no exact relationship between rbind and a well-mixed kon. We confirm that,

for our choice of ∆t = 10−6 and ranges of rbind and koff , the steady-state unbound (monomeric)

fraction is a smoothly increasing function of koff and decreasing function of rbind, as shown in

Fig. 2.9A. The dissociation constant, meaning the value of koff at which half of subunits are in
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monomers, is a weakly increasing function of rbind, as expected by previous theoretical treatments.

[100? ]. The unbinding radius, the distance between two monomers that dissociated in the previous

step, was set such that the geminate recombination probability was 0.2, which gives runbind a

nominal value of 0.0443134 (≈ 4 nm).

Close Contacts

By representing close contacts of the system as energy barriers caused from compression of molecules

inside the ROI/close contact, we can then model these energy barriers by creating asymmetric be-

havior between molecules attempting to enter the ROI and those leaving it. Molecules attempting

to leave the ROI are free to do so, while those attempting to enter are only allowed to do so prob-

abilistically. The energy barrier between the ROI and rest of the domain is taken to be the energy

required to compress a spring, Espring = 1/2k∆z2, where k is the physiological spring constant

and ∆z is the size of the compression. The thermodynamic relationship between this probability

and the energy compression is given by

pentry = e
−Espring

kbT (2.3)

where kb is Boltzmann’s constant and T is the temperature. According to this definition, pentry

gives the probability that a molecule has energy greater than Espring (and thus may gain entry to

the ROI); it follows that pentry also equals the ratio of concentrations of molecules inside versus

outside the ROI at equilibrium. (Note, however, that pentry is not the same as the instantaneous

probability of entry of a single molecule during a collision event in the simulation. Particle-based

simulation of this type of partial transmission was discussed previously by Andrews [4], and we

made use of Smoldyn’s built-in functionality for implementation.) In the absence of evidence

otherwise, we assume the presence of the close contact does not influence diffusion coefficient D.
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Parameter estimates and model nondimensional scaling

Estimates for RROI range from 100− 220 nm [17, 40, 3], depending in part on the definition, e.g.,

whether it is the minimum region necessary for receptor triggering, or the observed depletion zone

size. The diffusion coefficient D has been estimated to range from 0.01µm2/s [18] to 0.3µm2/s

[40]. Roughly setting RROI = 100nm and D = 0.01µm2/s conveniently sets the characteristic

timescale D/R2
ROI = 1s.

Given the wide ranges of estimates, throughout this work we report times and distances in these

scaled (nondimensional) units. Where appropriate, we report results in physical units, denoting

these by explicitly including the unit (e.g. seconds or nanometers), and, if clarity necessitates, we

use a tilde to denote the parameter with physical units. Domain size L and binding radius rbind

have units of RROI. The corresponding physical parameters L̃ = LRROI and r̃bind = rbindRROI

have units of nanometers or microns. The dynamics-engine timestep ∆t has units of D/R2
ROI and

the detachment rate koff has units of R2
ROI/D.

The scaled molecule density ρ has units of molecules per R2
ROI, and the physical molecular density

ρ̃ = ρ/R2
ROI has units of molecules per square nanometer. Another interchangeable quantity is

the number of particles in the ROI in a uniform distribution, nin = πρ = πR2
ROIρ̃. For CD45,

estimates range from 482µm−2 [40] to 1000µm−2 [3]. For RROI = 100nm, this corresponds to a

density ranging from ρ = 4.82 to ρ = 10. We use ρ = 9 as our focus [3] in all figures unless

otherwise noted (e.g., in the ρ sweeps in Fig. 2.3 and the physical unit plot in Fig. 2.6D).

Ansatz for rescaling close contact evacuation time to physical units

To return to physical dimensions, a constant physical density ρ̃ requires varying scaled density ρ

since ρ̃ = ρ/R2
ROI. In Fig. 2.6D, we plot the evacuation time in physical units over a range of

RROI. Doing so would require a full exploration of both nondimensional ρ and pentry, which is
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outside of our computational capacity. So, as an approximation, we take the result in Fig. 2.6C,

which suggests that evacuation time T (pentry) is a simple exponential function of pentry, that varies

between the pentry = 0 limit and pentry = 1 limit. In other words,

T (p) ≈ T (0)

(
T (1)

T (0)

)p

(2.4)

where p = pentry. The MFPTs for T (1) can be obtained from the simple diffusion simulations in

Fig. 2.3A, while the MFPTs for T (0) can be obtained analytically, see Fig. 1.1B.

Weighted Ensemble

Algorithm Overview

Weighted Ensemble obtains information of long timescale processes through multiple short timescale

trajectories, hereafter denoted as replicas. A group of simulation replicas are initialized and at-

tributed a probabilistic weight (see Fig. 2.2A). These replicas are allowed to evolve into a steady

state distribution based on the ensemble space, which is then organized into bins based on location

inside the state space. After the definition of these bins, the simulations are allowed to evolve

for a fixed amount of time τ with periodic duplication and deletion of certain simulations (Fig.

2.2B). These duplications and deletions, dubbed splitting and merging, respectively, are done in

such a way that preserves the total probabilistic weight of the system: splitting involves separating

a simulation into two identical simulations each with half as much weight, and merging involves

giving the weight from a deleted simulation to a simulation inside the same bin as the deleted sim-

ulation. While the total weight and its distribution between bins might change as the simulation

evolves, the number of simulations inside each bin is manipulated so that computation power is

evenly split between bins. Our binning order parameter is the number of subunits inside the ROI,

nin. So each monomer inside the ROI increased the order parameter by 1, while for simulations
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with dimerization, each dimer inside the ROI increased the order parameter by 2.

If a replica reached the bin where nin = 0, hereafter referred to as the flux bin, the replica is

removed from memory, its probabilistic weight is recorded as outgoing flux, and then the weight

is redistributed according to one of two different methods, see Fig. 2.7 and Reweighting Methods

(below).

Model initialization

Each WE simulation is initialized with 1000 replicas of a Smoldyn simulation. In each replica,

each of N molecules is randomly and uniformly placed throughout the entire domain. After this

initialization, WE splitting and merging, and flux measurements are performed before each subse-

quent step of Smoldyn dynamics (Fig. 2.7C).

In simulations involving more than one molecular species, initialization is done with homogeneous

molecular mixtures; either N monomers or N/2 dimers are uniformly distributed in the simulation,

depending on which is closer to the steady state as found by brute force simulations in Fig. 2.9.

Reweighting Methods

There were two methods of redistributing weight removed from the system through flux into the

flux bin (nin = 0, see Fig 2.7). The first method, which was the method used unless otherwise

noted, involves redistributing the weight by renormalization; the weight of all remaining replicas

is scaled by the total weight remaining in the simulation. If replica i evacuates, it is removed and

the weight for a replica j remaining in the simulation will scale according to

wj →
wj

1− wi

. (2.5)
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This method works for calculating the mean transition time from the steady-state distribution (or

small perturbation from steady-state) to a rare fluctuation. In other words, we are measuring the

MFPT from A → B, where B is defined as the bin nin = 0 (which is rarely visited), and A is

defined as encompassing all bins nin > 0. Note that in many WE applications, significant time

is required for the system to reach steady state, before which accurate MFPT estimates cannot be

obtained from the averaged flux-to-target [12]. In our system, we know a priori the equilibrium

distribution of particles undergoing simple diffusion. Our initialization of replicas according to the

equilibrium distribution thus starts close to the non-equilibrium steady-state distribution (reached

after some number of τ iterations), where the small weight entering the flux bin is continuously

removed and returned to the remaining bins.

In some scenario, the evacuated state is not rare, and therefore the steady-state distribution is

not well-approximated by the equilibrium distribution assuming no evacuation. Specifically, this

occurs for simple diffusion when ρ ≤ 1, at the left of Fig. 2.3A, and for close-contact simulations

where pentry ≈ 0 (Fig. 2.6). In this latter scenario the steady state is the completely evacuated

state, and we are seeking to compute a different transition time: from the uniform steady state (as

if pentry = 1) to the evacuated state. In these scenarios, a second reweighting method was used.

This is described schematically in Fig 2.7B. In these method, weight from an evacuated replica

is not redistributed to remaining replicas. Rather, each time a replica evacuates, a new replica is

initialized as described above and given all of the weight from the evacuating replica. This ensures

that the weight distribution throughout the state space remains statistically accurate, even when the

flux of weight throughout the space is unidirectional.

Hyperparameters

The above-described Weighted Ensemble method requires the specification of hyperparameters

τ , mtarg, and the max number of iterations. In principle, the selection of these hyperparameters

should not impact the results of the WE simulation, but will impact the efficiency of convergence
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to an accurate MFPT.

In an effort to maximize the observed number of flux events, mtarg was chosen to be high to

maximize the number of replicas in bins nearby the flux bin (transient bins), but not higher than

allowed by computer memory limitations. The values were mtarg = 100 for Fig. 2.3, Fig. 2.8, and

200 for Fig. 2.4, Fig. 2.5.

The WE step was chosen to be τ = 50∆t, which we found to be large enough to give replicas time

to change bins before the splitting and merging process began, while also avoiding being too long

to ensure a high number of replicas inside the transient bins.

Implementation

Smoldyn simulations were executed through Smoldyn’s C library, libsmoldyndyn [5]. Combina-

tion of Smoldyn with Weighted Ensemble was written in C and is available to the public at

https://github.com/dydtaylor/libsmoldynWE

. Execution of libsmoldynWE simulations was done on UCI’s high performance cluster. Brute

force Smoldyn simulations were executed in libsmoldyndyn, but outside of the libsmoldynWE

weighted ensemble framework. All data was analyzed in MATLAB. Evaluation of analytical solu-

tion for pentry = 1 was done in Wolfram Mathematica.

Analysis

To allot for burn-in time, i.e., an initial transient while the replicas approach a steady state, the first

half of each run is discarded, and the mean flux measured in the second half of the run is taken to

be a single measurement of the mean flux ϕ̄, averaged across WE steps. Each WE data point in

this paper is calculated from 10 independent WE simulations; multiple independent runs are used
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to minimize the effect of spurious correlations between iterations [104], which can cause inter-

run variability in estimates (e.g., as seen in Fig. 2.2C). These 10 repeats are then arithmetically

averaged to give an estimate of the mean flux, averaged across repeats, ⟨ϕ̄⟩, with error bars given

by the standard error of the mean for the 10 WE simulations.

The average flux recorded from replicas reaching the flux bin, ϕ̄ is used to calculate the MFPT

from the Hill relation [49, 12], T = 1/ϕ̄. The error bars of the flux δϕ then propagate to MFPT

error bars by δT = |T |2δϕ.

To calculate MFPT from brute force simulations, the arithmetic mean of 1000 (Fig. 2.3) or 500

(Fig. 1.1B) independent repeats was used, with error bars giving the standard error of the mean for

those simulations. To calculate the single molecule first passage time distribution for Fig. 1.1A, an

empirical CDF was created from the result of 20,000 brute force evacuations of a single molecule

placed uniformly within the ROI.

To calculate monomer fractions from brute force simulations, purely monomeric Smoldyn simu-

lations are initialized and run for 15 units of time. Afterwards, the monomer fraction we report is

average measured over these last 5 time units.

Method validation

Several methods were used to validate the WE results. For MFPTs where achieving brute force

results was computationally viable, brute force results were included along with WE results (see

Figs. 2.3, 2.6C). Monomer and dimer fractions were verified with brute force Smoldyn simulations

(Fig. 2.9). For each binding radius presented, the sigmoidal monomer fraction vs unbinding rate

curve was executed for a range of timesteps to verify the timestep of ∆t = 10−6 was small enough.

Close-contact WE simulations were found to agree with brute force simulations for low pentry (Fig.

2.6C). For pentry = 1 we verified the endpoint with our simple diffusion WE simulations for ρ = 9.
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An analytical solution for close-contact simulations when pentry = 0 was obtained, see Supple-

mental. The analytic solution for a single molecule’s first passage time distribution was compared

with an empirical CDF obtained from 20000 brute force Smoldyn simulations (Fig. 1.1A) and the

analytical form for the MFPT for a variety of evacuating molecules was compared with the results

from brute force Smoldyn simulations, 500 for each data point (Fig. 1.1B). The analytic solution

for the parameters used in the close-contact WE simulations is included in Fig. 2.6C.

An asymptotic solution for the MFPT for homogeneous monomeric solutions was obtained from

previous work [74]. When applicable, these asymptotics were used to verify WE results (Figs.

2.3A, 2.8). However, as can be seen in figures 2.3, 2.8, agreement with the asymptotics at higher

densities is dependent on the size of the domain used. For a range of densities, we did a sweep of

domain sizes (Fig. 2.8). Weighted Ensemble estimates reach to within one order of magnitude of

the asymptotics above ≈ L = 5 at the highest simulated densities.

Convergence in time-step was done by comparing MFPT estimates for larger time-steps with the

chosen time-step to ensure MFPT estimates did not undergo drastic differences in MFPT estimates.

The time step of ∆t = 10−6, used for all simulations unless otherwise stated, is compared with

with the timestep of ∆t = 5× 10−6 is shown in supplemental figure 2.8B-D.
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Figure 2.2: Weighted Ensemble algorithm with Smoldyn spatial dynamics simulations. (A) Partitioning of
simulation state-space into bins based on the number of molecules in the ROI, 0 < nin < N , where N
is the total number of molecules. Bar heights represent the relative probability of the system to be found
in the corresponding bin at equilibrium. In the simplest case in which molecules experience diffusion-only
dynamics, this is a binomial distribution. (B) Description of the algorithm. Individual simulations (replicas)
are shown as purple circles, and have statistical weights that can vary from replica to replica, represented
here through circle size. Simulations are allowed to propagate according to dynamics simulated by the
dynamics engine Smoldyn [7] for a period of time τ . After the dynamics step has completed, the replicas
are reexamined to see their new bin locations. The number of replicas in each bin is then compared to
mtarg, the desired number of replicas in each bin. Bins with more than mtarg replicas have a “merging”
event, where the replicas with the smallest individual weights are removed and their weight is redistributed
to another replica within the same bin. Bins with fewer than mtarg (but still > 0) replicas have “splitting”
events where the replicas with the most weight are duplicated into 2 daughter replicas, with the weight from
the parent being redistributed equally to the daughters. Flux events, representing complete evacuations of
the ROI, (red) have their replicas deleted and weight redistributed to replicas outside of the flux bin. For
details on this redistribution of weights from flux events, see 2.7. (C) Flux measurements from multiple,
independent runs displayed in two different ways: total flux accumulated (top, y-axis scaled linearly) and
flux accumulated per WE iteration (bottom, y-axis scaled logarithmically; fewer runs shown for clarity).
For each WE run, the measurements in the first half of the run are discarded to exclude the fluxes that
might be measured during weight redistribution between the initial simulation state and the simulation state
after many WE steps have passed. The mean fluxes measured during this period from multiple independent
runs (slopes of dashed lines) are then used to estimate the mean first-passage time to the evacuated state.
Cumulative fluxes for 7 runs are shown in the top figure, with the time series for 3 of those runs being
shown in the bottom plot. Since the bottom plot is on a logarithmic scale, WE iterations where no flux was
measured (in this case, ∼ 90 % of iterations) do not appear.

34



0 1 2 3 4 5 6 7 8 9 10

100

105

1010

1015

Weighted Ensemble, L = 5
Brute Force
Asymptotics

Phys
CD45

A.

Density (Units of #/R2, approx 10-4 nm-2)

B.

C
om

pu
ta

tio
n

Ti
m

e
(s

)
0 1 2 3 4 5 6 7 8 9 10

102

104

106

Figure 2.3: Mean evacuation time from the ROI for molecules only experiencing diffusion shows evacuation
times well outside the experimentally observed timescales at physiological densities. Despite this drastic in-
crease in evacuation times, use of Weighted Ensemble (WE) allows calculation on computationally-feasible
timescales. (A) Evacuation times for densities ranging up to ρ = 10 molecules per R2

ROI. Estimate of
physiological density of CD45 assuming an ROI of ∼ 100nm in radius and ∼ 9× 10−4 molecules per nm2

(see main text) marked with a vertical line. Evacuation times from WE for domain size L = 5 (blue) agree
with brute force simulations (red) at low ρ and with an asymptotic (infinite domain) approximation at low to
intermediate ρ [74]. (The asymptotics overestimate evacuation times for both methods at very low ρ). Each
WE data point uses 10 independent runs. Error bars for WE runs are computed by taking the average flux
measured from the second half of each WE run as a single measurement, computing the 95% confidence
interval of these flux measurements, and propagating these errors. Brute force error bars come from the
standard error of the mean for 1000 runs. (B) Total computational costs for the data points in (A). WE data
points come from summing the computation time of 10 independent WE simulations, with mtarg = 100
replicas per bin. WE runs were programmed to run until flux measurements from the final 1/3 of WE iter-
ations and the middle 1/3 of WE met the following criteria: (i) Non-zero flux measurements in each third
numbered at least 500 (ii) The KS-statistic between the two thirds reached a value of 0.02 or lower (iii) The
KS-statistic between the two thirds with zeros removed reached a value of 0.3 or lower. Oftentimes, one or
more of these requirements would not be met prior to reaching computation limits of an individual run, and
in that case WE simulation would automatically stop after 2.5 days of computational time spent on WE and
Smoldyn dynamics. Brute force data points come from summing the computation time of 1000 indepen-
dent brute force evacuation events. WE simulations used reweighting method 2 for ρ ≤ 1 and reweighting
method 1 for ρ > 1 (see supplemental Fig. 2.7). Parameters were τ = 50∆t, mtarg = 100,∆t = 10−6.
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Figure 2.4: Dimerization of evacuating molecules causes several-order reduction in evacuation time
(MFPT). (A) Right: Schematic of dimerization model used in Smoldyn. Molecules, diffusing at a rate
D1, that get within a certain distance, rbind = 0.001, of each other combine into a dimer that diffuses at
a rate of D2 = D1/2. These dimers have an unbinding rate, koff , which varies across simulations. Left:
Reduction in unbinding rate koff (moving right-to-left on axes) leads to several-order reduction in evacuation
time. At low dimerization fraction (high koff ), evacuation time is the same as for non-interacting diffusing
molecules with ρ = 9, D = D1, shown by the upper dashed line. At high dimerization fraction (low koff ),
evactuation time is the same as for non-interacting particles but with half the density and half the diffusion
coefficient, i.e., ρ = 4.5, D = D2. (B) Average monomer fraction for the simulations given in (A) vs koff .
(C) Same data as (A) and (B) showing the relationship between monomer fraction and evacuation time. A
10-fold reduction in evacuation time (vertical line in (A) and (C)) occurs when only 20% of the individual
molecules are in a dimer, suggesting even weak binding can have drastic impacts on evacuation events.
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Figure 2.6: Formation of close contacts creates an energetic barrier for entry into the ROI. Even moderate
energy barriers can create order of magnitude reduction in evacuation time at physiological densities. (A)
Schematic of close contacts and how we chose to model them in Smoldyn. Close contacts, such as those from
microvilli, can cause compression of large transmembrane particles such as CD45. The energy associated
with this compression is modeled as a compressed spring Espring = 1/2k∆z2, where k is the compressional
spring constant, and ∆z is the distance of compression. This leads to dynamics in which movement into the
ROI is reduced. We model the reduction as a probability pentry from the thermodynamic relation Eq. 2.3.
(B) Heatmap of pentry for a variety of compressional stiffnesses kspring and the compression size ∆z. Pink
dashed lines represent physiological estimates of both. Solid pink rectangle represents two-fold increase
and decrease of kspring. (C) Evacuation time (MFPT) versus pentry, with the physiological estimate for
pentry given by the vertical dashed, pink line. Included are results from WE simulations (blue) brute force
simulations (purple). At pentry = 1, we include the diffusion-only simulation result from Fig. 2.3 (red).
At pentry = 0, we compute an analytic expression for the MFPT in Eq. A.29 and Fig. 1.1, shown here in
green. The inset shows, with a linear y-axis, close agreement between brute force and WE for pentry < 0.1.
For WE runs, an alternative method of redistributing weight in the flux bin is used, see 2.7. Gray dashed
lines show pentry and MFPT if the spring contant were increased or decreased by two-fold. (D) Evacuation
time versus radius of close contact, RROI, re-scaled to physical units (seconds, microns) to show impact of
physical parameters, assuming the ansatz Eq. 2.4. Here we use lower density of CD45 of 160µm−2 (lower
than central estimate used elsewhere) to achieve simulation at larger ROIs.
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Figure 2.7: Different reweighting methods used for WE simulations. Method A is used for figures 2.2C,
2.3, 2.4, and 2.5. Method B is used for the WE runs in 2.6C and D. (A) Upon occurrence of a flux event,
the weight from the flux event, wi is returned to the simulation by scaling the weight of the remaining
simulations by their remaining weight, wj → wj/1− wi. Note how weight distribution changes if replica
movement between the bins is limited, e.g. in figure 2.6 with pentry = 0. As bins are based on the number
of molecules inside the ROI, no weight is allowed to re-enter a bin after it leaves, which has a significant
impact on steady-state weight distribution. (B) Upon occurrence of a flux event, the weight is given to a
newly initialized replica drawn from the starting state distribution (all molecules are placed randomly and
uniformly throughout the domain). (C) Pseudo-code of WE algorithm described in 2.2, including reweight-
ing method “redistributeFluxWeight()”.

39



2 3 4 5 6
Domain Length (Units of L/R, approx 100nm)

1010

1015

Density  = 9 (molecules / R 2)

A. B.

C. D. E.

2 3 4 5 6

1010

1015

1020
Density  = 10 (molecules / R 2)

2 3 4 5 6 7
105

106

107

108

Density  = 6 (molecules / R 2)

2 3 4 5 6 7
106

108

1010

Density  = 7 (molecules / R 2)

dt=1x10-6
dt=5x10-6
Asymptotics

2 3 4 5 6

1010

1015

Density  = 8 (molecules / R 2)
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[74]. Weighted Ensemble estimates of evacuation time approach the asymptotic estimate as L increases. At
density ρ = 9 (D), the Weighted Ensemble estimate reaches to within about one order of magnitude of the
asymptotic near domain size L = 5. In light of this, dimerization simulations in the main text were chosen
to have a domain size of L = 5.333RROI (leading to total number of monomeric subunits N = 256 at
ρ = 9). To investigate impact of time step on convergence, time steps of ∆t = 10−6 and ∆t = 5 × 10−6

were used for panels B,C and D. For all runs included, WE parameters were τ = 50∆t, mtarg = 100. Each
data point had 10 WE runs, with error bars representing standard error of the mean as calculated in Methods.
Error bars were calculated from the 95% confidence interval of the mean flux, and propagating this error to
the MFPT.
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Figure 2.9: Particle-based reaction diffusion simulations of reversible binding kinetics on a 2D domain.
Simulations were done in Smoldyn with 256 monomeric subunits in a square domain with side length
L = 5.333 and run until reaching a steady state fraction of monomers. Each curve was independently
found to be insensitive to decreasing the simulation time-step ∆t. (A) Monomer fraction at steady state
for a range of koff and rbind. (B) The effective dissociation constant, i.e., the unbinding rate koff for which
50% of the monomeric subunits are in the monomeric form, as a function of binding radius. For binding
radii close to the estimated physiological binding radius of rbind = 10−2 (corresponding to roughly 1nm),
the steady-state monomer we see weak insensitivity between the monomer fraction and the binding radius,
as previously reported, due to the complicated logarithmic nature of two-dimensional diffusion [101, 60].
At binding radii larger than 0.3, the system approaches the crowding regime, resulting in large impact to
monomer fraction.
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Table 2.1: Table of model variables, model parameters, Weighted Ensemble and simulation hyperparame-
ters. For discussion of values of model parameters, see Results and Methods.

Symbol Description Value unless specified
Model parameters

RROI Radius of region of interest 100 nm
D Diffusion coefficient of single-subunit molecule 0.01 µm2/s
ρ Surface density of molecule (units of molecules per R2

ROI) 9R−2
ROI

ρ̃ Surface density of molecule (units of molecules per µm2) 900µm−2

(note exception in Fig. 2.6D)
nin Mean number of molecules in the ROI assuming uniform nin = πρ ≈ 30

Model variables
nin Number of particles in ROI
ϕ Rate of flux into the evacuated state
T Mean time to the evacuated state (units of R2

ROI/D)
T̃ Mean time to the evacuated state (units of seconds)

Simulation hyperparameters
∆t Dynamics timestep 10−6R2

ROI/D ≈ 10−6s
N Total number of particles N = L2ρ= 256
L Domain size 5.333RROI ≈ 533 nm

Weighted Ensemble hyperparameters
τ Time interval between WE merging/splitting 50∆t ≈ 5× 10−5s

mtarg Number of replicas per bin 50-200
(No symbol) Number of repeated WE runs 10
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Chapter 3

Quantifying Uncertainty in Weighted

Ensemble Simulations and Optimizing

Weighted-Ensemble Specific Parameters

Introduction

Error Quantification

While much work has been done making use of Weighted Ensemble since its first introduction by

Huber and Kim in 1995 [51, 84, 81, 102, 103, 105, 32, 104], including work on binning methods

[1], there is an ambiguity with error quantification. WE simulations are useful for estimating the

order of magnitude of quantities[79, 13]. Many WE simulations produce high log-variance data

sets [13], and error bars are typically large relative to the quantity measured. A consequence of

this is the production of unphysical confidence intervals using standard uncertainty methods (i.e.

standard error of the mean) [72]. In the context of the prior chapter on cell surface MFPTs, these
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can produce negative lower-bounds on the confidence intervals.

Many of these properties of high log-variance data sets have been studied before, see, e.g. [13,

45, 72, 1]. We approach this uncertainty from two different directions: within-run variation and

between-run variation. The former comes from looking at the flux trace, weight distribution, and

other quantities from a single WE simulation, with the hope being that properties from these can

be used to make determinations of uncertainty. The latter involves using multiple independent and

identically distributed (iid) WE simulations to estimate mean and standard error of the mean; it is a

somewhat crude approach, as improving uncertainty estimated from multiple iid WE simulations is

best done by simply throwing more computational power at the problem, and requires little insight

to create uncertainty estimates regardless of the specifics of the WE simulations.

While each replica inside a WE simulation has internal dynamics that function independently from

each other, the creation of daughter replicas through the splitting process necessitates that there

are correlations between successive measurements. As such, each successive flux measurements

from a single WE simulation are not statistically independent[104, 13, 45]. While treating each

successive measurement as independent is inappropriate, if one can determine the correlation time

of the flux measurements then one could split an individual WE simulation into multiple indepen-

dent measurements, helping to improve the precision of the simulations. However, this correlation

time cannot always be easily determined.

In a WE simulation, if one is interested in measuring a MFPT for a given process, one needs to

define a target state, as well as the bin weight distribution associated with starting state. While the

initial configuration of the starting state may be arbitrary, the weight distribution must be allowed

to converge to a non-equilibrium steady state in order to obtain accurate flux measurements. As

such, it makes sense to discard portions of the WE dataset that are made prior to reaching this non-

equilibrium steady state. This is consistent with practices used for similar molecular simulations,

even those not implementing WE, see [45]. Determining how much of the data should be discarded

depends on being able to distinguish the steady-state weight distribution from the initial weight
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distribution. It is worth noting the general difficulty with determining convergence for a stochastic

system when the true value of the measurements are not known a priori [24]. Additionally, several

of the flux traces we observed in the previous chapter had distinguishable trends and clear visible

correlations, see Fig. 3.4. As a consequence, we began investigating potential metrics that can be

used to evaluate how well a WE simulation has converged with itself as well as accuracy.

Investigating quantitative differences between Weighted Ensemble metapa-

rameters.

In addition to simulation parameters associated with the physical dynamics of a system, e.g. diffu-

sion coefficient, chemical binding rates, etc., WE simulations have specific metaparameters associ-

ated with the execution of the WE process. The metaparameters of primary focus in this paper are

τ , the period of WE splitting / merging, and mtarg, the number of replicas maintained in each WE

bin in the splitting and merging process, the number of WE iterations to perform, and lastly the

bin definitions for a WE simulation. For the system we studied in chapter 2, our ability to create

more bins is limited by the discrete nature of our order parameter; we will focus primarily on τ

and mtarg, while the number of WE iterations is dependent on computational resources.

Choosing an appropriate τ and mtarg is “somewhat of an artform” [13]. The field would benefit

from a method of determining an ideal set of metaparameters, and some recent progress has been

made in this area [9]. Our goal is to see if there were clear indications of certain metaparameter

sets performing measurably better than others and to discover properties that can predict simulation

accuracy.
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Measuring and Understanding Uncertainty in WE

Before discussing uncertainty quantification in WE, it is worth first noting two different ways to

use sets of WE simulations to calculate a first passage time. One approach involves treating each

WE simulation as a measurement of the average flux, using the full set of WE simulations to get

a combined measurement of the average flux, then using that flux estimate to calculate the first

passage time. Another approach involves treating each WE simulation as a measurement of the

MFPT, then averaging the individual MFPT estimates to calculate the first passage time. For a set

of n WE simulations, each WE simulation can be used to get an estimate of the flux ϕi or of the

MFPT Ti =
1
ϕi

. The averaging methods therefore amount to:

Tarithmetic =
1

ϕ
=

(
1

n

∑
i

(ϕi)

)−1

(3.1)

Tharmonic = T =
1

n

∑
i

Ti =
1

n

∑
i

(
1

ϕi

)
. (3.2)

Where the subscripts indicate the method of averaging the fluxes. Note, the harmonic mean of

1/x is equal to the reciprocal of the arithmetic mean of x, thus Tarithmetic corresponds to using the

arithmetic mean of the fluxes and the harmonic mean of the Ti, while Tharmonic, which involves

taking the arithmetic mean of the Ti, corresponds to using the harmonic mean of the fluxes. It is

worth noting that the harmonic mean is always less than or equal to the arithmetic mean, which

implies that Tarithmetic ≤ Tharmonic for our reciprocals of these means. Indeed, this is confirmed in

Fig. 3.1 A, B.

Moving on to error quantification, we note multiple ways of calculating errors from sets of WE

simulations. Firstly, for a set of n iid WE simulations, one can use the n WE simulations to

calculate a standard error of the mean, which was done to create the error bars in Fig. 3.1 A,

B. Additionally, one can consider variance about a trend that is known a priori, or the “wobble”
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about the known behavior. For instance, in Fig. 3.1B, the large-domain behavior of the simulations

implies an eventual horizontal trend. If we make the generous assumption that we have reached

convergence at L > 6, we can calculate the SEM amongst the TL in that region. In the figure, this

corresponds to a SEM of 16 data points, each one corresponding to a different L. This wobble-

implied error is included in Fig. 3.1C as horizontal grey lines. Furthermore, one can instead

consider that each of the 10 WE simulations that goes into the 16 data points as a measure of this

horizontal asymptote, and instead calculate the SEM of the conglomerate 160 WE simulations. As

can be seen in Fig. 3.1 C, these values are similar to the wobble-implied error but clearly distinct

from it. Also included are the error bars from each of the 16 data points. It is comforting to note

that these error bars are all within an order of magnitude from the other two errors, suggesting

that despite the method chosen to calculate the error bars, the broader impact on conclusions made

from WE simulations is minor.

The Search for Key Metrics in Weighted Ensemble

In all real uses the true values and trends of quantities estimated from WE are not known, and

the only way to come up with more accurate estimates is to throw more computation time at the

problem. There are many different ways of doing so; one can make individual WE simulations

more taxing or run them for longer, or one can simply run more independent WE simulations.

The ambiguity in the nature of how many data points can be collected from an individual WE run

has inspired our search for specific metrics that might be used to understand when a WE simula-

tion has converged to its steady-state. In our search for these metrics, we investigated statistical

properties of flux traces to see if there were any trends between these metrics and accuracies of

the measurements. In the following tests, we assumed that we knew the true value of the answer

from an asymptotic value given by [74], and then attempted to find trends between our metrics of

interest and the accuracies of the simulations. In particular, we investigated Kolmogorov-Smirnov

(KS) test statistics determining convergence of WE simulations within-run, our own modified KS

47



Error Method Comparison

2 4 6 8
105

106

107

108

109 MFPT vs DomainLength

MFPT, Harmonic Mean Fluxes
MFPT, Arithmetic Mean Fluxes (used in paper)

6 6.5 7

106

MFPT vs DomainLength

MFPT, Harmonic Mean Fluxes
MFPT, Arithmetic Mean Fluxes (used in paper)

A B

CC

Figure 3.1: A. WE Evacuations for a particle density of 6 molecules per unit area vs total domain size.
Each data point has 10 identical WE simulations averaged together, with the two different curves being
associated with how the average was taken. Error bars are obtained from the SEM of the 10 WE simulations.
The expected behavior of this curve is a smooth decay towards the asymptotic value for this MFPT [74].
However, sometimes nearby points will display behavior contrary to the general trend. For each data point,
note that the MFPT estimate from the arithmetic mean of the fluxes lies below the equivalent estimate
from the harmonic mean of the fluxes. B. The latter 16 data points from A. At larger L, the curve takes a
generally flat shape, suggesting the measurements should be for the same MFPT. In spite of that, we still see
a “wobble” of the curve, and in this regime you can see pairs of points that do not have overlapping error
bars. This wobble suggests an error distinct from the SEM measured for each data point. C. For the final 16
data points, we compare the magnitudes of errors calculated from 3 different methods: the error suggested
from the wobble (SEM of the 16 data points plotted in B), the SEM from the 10 runs of an individual data
point (error bars from A, B), and the SEM from combining all 160 runs together, with error defined as in
3.3. We note that the wobble error and the 160 run total error are similar in magnitudes in both cases.

statistic (see below and Fig. 3.2), the fraction of non-zero measurements in our flux trace, and

within run variance.

Because WE is best used for order of magnitude estimates, we choose to measure accuracy in
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terms of logarithmic differences.

log a = |log ϕ− logG| (3.3)

Where log a is our logarithmic accuracy estimator, ϕ is the average measured flux, and G is the av-

erage flux predicted from the asymptotics given by [74]. Using this quantity, a value of x indicates

agreement to within x − 1 orders of magnitude between simulation and asymptotics, e.g. a value

of 1 indicates complete agreement.

Our first investigation was of the KS statistic on accuracy measurements, with the logic being

that once steady-state has been achieved, flux values will be sampled from the same probability

distribution. We therefore calculated a KS statistic for each WE simulation by comparing the

distribution of flux values in the third quarter of the run with the flux values in the fourth quarter

of the run. However, as is shown in Fig. 3.3 A, oftentimes there are a large number of null

flux measurements, resulting in KS values that can become very small very quickly regardless of

behavior of the non-null values. Our solution was to create a dual-distribution KS statistic (DKS),
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Figure 3.2: Visual representation of differences between the ECDFs used for the KS statistic and the DKS
statistic. For the DKS statistic, zeros in both of the KS distributions are removed, and a new KS statistic is
calculated from the new DKS distributions.

which we visually represent in Fig. 3.2, with the intention being to compare the non-null values

of the fluxes. To do so, we counted the number of null measurements in both the third quarter

and fourth quarter of data. Null measurements that were duplicated in both quarters were removed
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Figure 3.3: Candidate metrics of flux measurements do not reveal a correlation with estimated accuracy.
A. Comparing 3rd quarter and 4th quarter ECDFs of the flux measurements (left, showing the minimum
recorded KS statistic) reveals that even fairly large KS statistics can have lower errors than even some of the
smallest KS statistics, suggesting the statistic is inappropriate for an accuracy predictor. In general, a high
frequency of zeros in the flux measurements can cause this statistic to get very small. B. The Dual distri-
bution KS statistic, one comparing 3rd and 4th quarter ECDFs with zeroes contained in both distributions
removed. Similar to the KS statistic, the scatter plot shows that this DKS statistic is not indicative of achiev-
ing a certain error magnitude. C. A flux time series with the largest fraction of non-zero measurements. A
high fraction of non-zero measurements does seem to be indicative of lower errors, but in general a high
fraction of zero measurements doesn’t preclude a high accuracy. D. In run variation of flux from average
flux. Blue is the cumulative flux measured from a WE simulation, while red is the average cumulative flux
measurement from the run. A high value indicates large deviations between the in-run behavior, something
associated with large weight distribution deviations, which might be associated with the weight distribution
significantly varying from the non-equilibrium steady-state distribution. The scatter plot, however, reveals
no trend between this statistic and overall accuracy.

completely, while a quarter with more null measurements would retain the extras. These two dual-

distributions, with the nulls removed, then had a KS test performed on them, resulting in the DKS
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statistic. However, similar to the KS statistic, investigating trends between this DKS statistic and

the error (Fig. 3.3B) again showed no notable trends; in fact, some of the lowest error values were

obtained even for DKS values of nearly 1.

Our next investigation was in the fractional number of non-zero flux measurements (fractional

NNZ). Prior to performing a detailed investigation, we understood that a high fractional NNZ was

not exclusive to accurate simulations; we had observed very low NNZ fractions giving some of

the more accurate results. Nevertheless, the scatter plot in Fig. 3.3 C shows some of the strongest

trends of the four scatter plots included. While a low NNZ fraction was still capable of giving

accurate measurements, the largest errors were eliminated as NNZ fraction increased, suggesting

that NNZ fraction is indicative of a good WE setup where weight is allowed to travel more freely.

Lastly, we created a metric for within-run variation from the run’s average values. The total flux

measured at any one WE step is compared to the expected flux measured at that time step (given

that the total amount of flux measured is already known), with the logic being that large variations

between the cumulative flux measured and the expected flux measured is indicative of large chunks

of weight traveling throughout the system rather than an idealized steady, continuous weight at

each time step. However, the scatter plot of this metric shown in Fig. 3.3D again shows a lack of

any significant trends.

The Sawtooth Effect

One key feature observed in WE simulations, albeit hard to quantify, was sawtooth-shaped flux

traces, see Figs. 3.4, 3.5. This appears to be a general feature of the WE algorithm, e.g., see

Bogetti et al. [13]. Though never directly observed, our hypothesis is that these sawtooth traces

are the result of large amounts of weight entering into a bin in one step followed by slow decay as

the weight in the bin propagates outside of the bin, with each spike being associated with weight

from a new replica first entering the bin. To investigate this, flux time series were compared
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Figure 3.4: Weight time-series for a variety of bins. A. The bin weight vs WE step for the same WE
simulation. Fine-grained bins of the WE simulation are bins 0 through 8, with bin 9 being the first of 4
coarse grained bins. While the coarse grained bin doesn’t show significant correlations between it and the
weight of the fine-grained bins, the fine-grained bins show distinctive saw-tooth behavior that propagates
through all of them, though some are lost as the distance from the coarse-grained bins increases. Note,
weight is scaled by T ∗/τ , hence values > 1. B. Bin weight ratios between several fine-grained bins and the
coarse-grained bin with its fine-grained neighbor. Note in the fine-grained bins these ratios are mostly flat,
though there are spikes that appear to correlate with the beginning of a new saw-tooth.

with bin weight time series of neighboring bins, see Fig 3.4 A. Our weighted ensemble bins were

divided such that bins 0-8 were much more finely-grained than the remaining bins of the system.

A side-by-side comparison revealed that these sawtooth patterns existed in each of the fine-grained

bins, though detail is lost in bins furthest away from the coarse-grained bins. This suggests that the

weight in these bins is much less dependent on how the weight propagates between the fine-grained

bins and more dependent on how weights get introduced into the bins from the coarse-grained bins.

To investigate this further, time series of the ratio of neighboring bin weights were created. In-

terestingly, the fine-grained bin ratios appeared to somewhat frequently get restored to a constant

value, with the break from these constant values being spikes that temporally align to the start of

a new sawtooth. This suggests that amongst the fine-grained bins, weight propagates very quickly

throughout them, though not instantaneously. Furthermore, the ratio between a fine-grained bin

and its coarse grained neighbor is continuously increasing aside from spikes downwards associ-

ated with the start of a sawtooth. This suggests that in fact, the coarse grained bins are ultimately

the main drivers of flux measurements. A future direction that has recently been investigated by [9]

would be in creating a set of different mtarg values for each bin, with few replicas existing in the

coarsest grained bins and a very large mtarg in the coarse grained bins neighboring the fine-grained
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Figure 3.5: Flux time series for a variety of dynamics parameters koff and metaparameters mtarg. Higher
mtarg is correlated with fewer zeros and less dramatic sawtooth behavior.

bins.

Metaparameter Dependence

After investigating the properties of many flux traces, we moved on to running identical dynamics

simulations with different WE metaparameters and comparing the results. In Fig. 3.5 we see that

for several different simulations, there can still be sawtooth like behavior even at relatively large

mtarg values such as for koff = 50000 and mtarg = 200. However, it is clear that these increases

in mtarg do visibly have an impact on the one metric above associated with higher accuracies,

the NNZ fraction. Unfortunately, this higher mtarg limits the number of WE iterations that can
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finish. Each WE simulation was set up to use 2.5 days of computation time, and we can see that

the number of iterations completed seems to scale inversely with mtarg, thus counter balancing

the increased NNZ fraction with lower flux measurements total. Rather than comparing NNZ

fractions across WE metaparameter sets, instead we chose to do a large sweep showcasing the

impact of metaparameters on accuracy measurements for a dynamically simpler system, allowing

us to use brute force simulation results as a test for accuracy. The results are given in Fig. 3.7. Each

square of the heatmap is associated errors given from 3 iid WE simulations, while simultaneously

implementing a computation time limit of total number of dynamics steps that can be executed,

dtmax = τ ∗ nbins ∗mtarg. Unfortunately, rather than achieving a desired outcome of clear regions

of τ and mtarg, we see that most metaparameter sets resulted in good accuracies within an order of

magnitude (heatmap values of 2 or less).

Discussion

Our goal of this investigation was to help clear up ambiguities of WE simulations involving sim-

ulation accuracy and optimization of metaparameters with regards to simulation accuracy. In the

process, we desired to create a method of selecting metaparameters that would minimize error for

a fixed amount of computational resources, with an ideal method being one that is easily adaptable

to a wide range of WE simulations rather than the 2d surface dynamics evacuations that were the

primary focus of WE simulations in this dissertation. While we were unsuccessful in our goal

of creating a method for metaparameter selection, our investigation revealed several illuminating

properties of WE simulations which we will summarize here.

Firstly, there is ambiguity in how best to calculate the MFPT, whether done from taking an arith-

metic mean of first passage times or arithmetic mean of fluxes. There is a relationship between

the two, as the arithmetic mean of the MFPT / fluxes is the harmonic mean of the fluxes / MFPT.

In our cases, the arithmetic mean of the fluxes makes the most intuitive sense, while also agreeing
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Figure 3.6: Influence of mtarg on MFPT estimates, at constant number of WE iterations, shows that higher
mtarg is associated with both better estimates for the MFPT as well as lower spread between MFPT esti-
mates. For each of the 4 panels, 2 WE runs were done for a variety of unbinding rates koff and replicas per
bin mtarg. WE iterations per panel are approx. 22000 for τ = 20, 10000 for τ = 50, 5000 for τ = 100,
and 2800 for τ = 200. Unbinding rates were chosen such that monomerization fraction was approximately
1 for each of the runs, so that MFPTs for each run should be identical (black horizontal line).

more closely with the predictions from asymptotics 2.1.

Secondly, while quantification of error can be done by comparing to a priori trends or through

conglomeration of many runs, we see that in general these different methods of quantifying error

give similar results on an order of magnitude scale.

Thirdly, identifying a metric that consistently predicts accuracy of WE simulations is difficult,

especially if one desires that those that do not pass a certain threshold of the metric will fail.

Of the metrics investigated, only NNZ fraction seemed to have any sort of correlation between

accuracy and the metric, and even then it only implied that you would be consistently within 2
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Figure 3.7: Heatmap of logarithmic accuracy defined in Eq. 3.3 across a wide range of τ and mtarg values
for given computation times. The overall trend is relatively minor and hard to distinguish, as most of the
simulations pass a basic accuracy threshold of order-of-magnitude accuracy (values 2 and below).

orders of magnitude, which might not be satisfactory. We furthermore see that metaparameter

selection based around this NNZ metric might result in other limitations, such as the number of

WE iterations that actually get completed (Fig. 3.5).

Lastly, we identified how weights in fine-grained bins can be dependent on incoming weights

from relatively few replicas in the coarse grained bins. While this is somewhat obvious, the fast

propagation of these weights throughout the fine-grained bins suggests that even more computation

time might be ideally placed on the transitional states. As a consequence, we hypothesize that

careful choice of binning methods will optimize computational resources. While the purpose of

Weighted Ensemble is to better allocate computational resources to rare regions, ensuring a smooth

entry into those rare regions is perhaps equally important, if not more so.
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Moving forwards, we wish to see if there is a consistent way to find the “worst” metaparameters, or

specifically metaparameter sets that are clearly and consistently worse than other metaparameter

sets. In general, accuracy was relatively static across different sets of metaparameters, even in

those that impacted the NNZ metric. As the landscape of the heatmap in Fig. 3.7 is relatively flat

and remained relatively flat across a variety of computation times, it is possible that the specific

metaparameters chosen aren’t important so long as there is enough opportunity for replicas to make

key transitions between bins.
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Chapter 4

Discussion

In this dissertation, we investigated rare events in the context of cell surface dynamics, specifi-

cally the evacuation of CD45 from T-cell receptors during antigen discrimination. While there

are many potential causes of directed motion on the cell surface, a minimalist approach of start-

ing with simply thermal diffusion reveals a clear fundamental difference in timescale separating

evacuation from a purely thermal evacuation and the evacuations observed physiologically. To

attempt to bridge this gap in timescales, we investigated the impact of several common features

of cell-surface dynamics to see their impact on evacuation timescales. We found that dimerization

/ oligomerization and energy barriers, which correspond to the necessary compression of CD45

molecules in order for a close contact to form, both can help to bring the timescale closer to the

physiological limit.

In the process of studying these surface dynamics, we created software that combines the bio-

chemical simulator Smoldyn with the rare event sampling algorithm Weighted Ensemble. Our

foray into Weighted Ensemble caused us to look in a greater detail at properties of the simulation

traces output by the method. This investigation into the broader properties of Weighted Ensemble

was inspired by the desire to help create a standard for both understanding uncertainty estimates
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from a single Weighted Ensemble trace as well as the impact of Weighted Ensemble-specific sim-

ulation metaparameters on these uncertainty estimates as well as the overall accuracy of Weighted

Ensemble simulations. We will discuss the impact of each of these projects below.

Impact of oligomerization and close contacts on receptor triggering

The activation of TCRs and evacuation of CD45 surrounding them during antigen discrimination

is a widely observed but not fully explained phenomenon. Of the many models of T-cell activation,

such as kinetic proofreading, receptor scanning, and serial triggering, only the kinetic segregation

model attempts to explain the observed evacuations of CD45 from the regions surrounding the

TCR. In this work, we created a simple model for kinetic segregation, starting froCom a thermal-

only regime. In this sense, while the triggering of TCRs is clearly the motivation for the work, the

main focus of this work is the study of how these additional features impact rare evacuations in

diffusive processes rather than in creating a model as close to the real-world scenario as possible.

In that regard, our work on dimerization and close contacts reveal that the relatively simple effect

of partial limitations on entry into the evacuation region and oligomerization of the evacuators

can have drastic impacts on the speed of the evacuation events which in turn can influence the

feasibility of the evacuation being observed on a timescale useful to an individual cell.

The impact of oligomerization on these evacuation events might seem obvious upon first observa-

tion of the asymptotic estimates for diffusion-only evacuations and their approximately exponential

dependence on the density of the evacuators. However, the ability of this self-binding to make an

impact on the feasibility of an event cannot be understated. For CD45, for instance, evacuation

times of a purely monomeric solution can decrease from hundreds of years to 10s of hours while

still remaining explicitly non-homogeneous. For instance, evacuation times of around 105 seconds,

or ∼ 1 day were observed for a solution with a monomerization fraction of 0.2. While this sort

of timescale is not applicable to the phenomenon of TCR activation, this brings the timescale of

59



the event from one that is virtually never observable to one that can be observed within the life-

time of the cell. Furthermore, the extension of a dimerization process to one of oligomerization

can further reduce these timescales to sub-second processes in extreme cases. In fact, the near-

exponential dependence of these evacuation times on the density of the evacuating particles has

shown how even small changes in the binding affinity can have order of magnitude impacts on

these evcaution times, as can be seen from our CD45 estimate of a 10-fold reduction in MFPT at a

monomerization fraction of 0.8. Even at the lowest densities, the differences between monomeric

and dimeric solutions can mean reduction from timescales of minutes to seconds, a difference that

cannot be understated when considering binary outcomes such as the triggering of a receptor. We

would very much like to see future experimental research that attempts to control the triggering of

a process by changing the binding affinity of molecules that evacuate the nearby region.

Similar to oligomerization, the statement that an energy barrier can cause drastic decreases in

these evacuation times might be seen as a prediction that is meant to be self-fulfilling. Indeed,

our work on evacuation times for diffusing particles in the one-way case reveals that when these

energy barriers are in place, evacuation times grow incredibly slowly with density. However,

the connection with the physiological estimates for the spring constant of CD45 suggest that this

energy difference alone is not enough to explain the evacuation of the region on the timescales

observed physiologically. However, this does potentially provide a means of testing the causal

relationship of kinetic segregation on TCR activation; whether or not the evacuation triggers the

activation or the activation (or rather, the initialization of the close-contact by the T-cell and antigen

providing cell). If kinetic segregation is necessary simply because of the physical barrier that CD45

creates between the two cells, rather than some biochemical property of CD45 such as binding

affinity, then replacing CD45 with proteins of varying length and stiffness might give insight into

how these mechanical properties influence CD45 evacuation and TCR triggering.

It is worth mentioning that while segregation between activated TCRs and CD45 has been ob-

served experimentally, the resolution of these observations has not determined to what extent these
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evacuations actually need to be achieved on a per-molecule basis. Complete evacuation of the re-

gion is a very large obstacle to overcome for diffusive processes alone. However, the possibility

that only partial evacuation is necessary might have significant impacts on the overall evacuation

time, especially in cases where dimerization and close contacts are present. If partial evacuation

is all that is required for a triggering event, then the MFPTs we found in this work would be over-

estimates of the time to TCR triggering. As our current software is well situated to investigate

the evacuation times for partial evacuations using the Weighted Ensemble method, investigations

into the timescale of partial evacuations for diffusion-only as well as the other simple models in

this document is certainly within our technological, though not temporal, reaches. Furthermore,

while the work in this document suggests that the processes investigated alone are not sufficient

to explain CD45 activation in the context of TCR activation, perhaps the introduction of partial

evacuation alleviates the need for active processes to achieve these evacuations.

Conversely, an evacuation event occurring does not ensure that an antigen presenting cell is able

to utilize the evacuation. With the high surface density of CD45, there exists the possibility that

the evacuation events to be short-lived relative to the time it takes for an antigen presenting cell to

take advantage of the evacuation. In that case, the time for the first evacuation would be an un-

derestimate of the true triggering time. While this paper does not provide resolution between the

simultaneous over/underestimations mentioned here, we reiterate that the time to achieve partial

evacuations can be measured from changing the Smoldyn runtime commands programmed in Lib-

smolWE to stop simulations upon partial evacuations instead of full evacuations in combination

with changing how the flux bin is defined. Similarly, the triggering event could be modeled as a

Poisson rate that occurs when the evacuation has occurred, potentially even adjusting the rate to

distinguish between partial and full evacuations. Nonetheless, the conclusions from this work on

the impact of dimerization and close contacts remains valid for complete evacuation events, though

we encourage awareness of the above mentioned effects when considering evacuation events as a

condition for receptor triggering.

61



Uncertainty quantification and metaparameter selection in Weighted Ensem-

ble rare event simulation

Weighted ensemble simulations can often result in data sets that have a high log-variance and

correlated data, and complications that result from these favor approaching conclusions made from

these data sets in “atypical” ways compared to the more “typical” methods such as standard error

of the mean. Firstly, when combining data from iid WE runs one could compute the mean in two

different ways, choosing to either take an arithmetic mean for individual MFPT estimates or an

arithmetic mean for individual flux estimates. Furthermore, it is known that the result calculated

from the arithmetic mean of flux estimates will always be less than the arithmetic mean of MFPT

estimates. The work of chapter 2 resulted in frequent over estimations of an asymptotic solution,

and as a result lent itself towards using arithmetic means of individual flux estimates, though this

trend need not always be true.

There are multiple potential ways we identified to determine uncertainty from combinations of

WE runs: using the SEM from iid WE runs, or comparison of sets of similar runs and using

regression analysis. Regardless of which of these methods is used to calculate error, resulting error

bars remain mostly the same to within order of magnitude. Metrics created to serve as accuracy

predictors in general had little correlation between the metric and known accuracy to ground truth.

The one metric investigated that did show some sort of correlation was the fraction of non-zero flux

measurements for a WE simulation. In spite of this correlation, we found that low NNZ fractions

did not preclude low errors. The ability of low NNZ fractions to have very high ground truth

accuracies was somewhat surprising, and we believe that this information is useful in situations

where the user’s ability to create more bins is limited, (e.g. discrete order parameters). When

fixing the total computation time allowed for WE simulations, we did not see clear trends between

mtarg, τ , and overall accuracy relating to ground truth.

WE traces often show “sawtooth” behavior in flux bins as well as neighboring fine-grained bins.
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Furthermore, the appearance of these sawtooths in one bin appeared to be correlated with simi-

lar behavior in its neighbors. We saw indications that higher mtarg values were associated with

higher non-zero fractions as well as less dramatic sawtooth behavior, while higher mtarg values

also showed better agreement with ground truth and less spread between estimates. We hypothe-

size that the sawtooth behavior remains a possible candidate as an accuracy predictor, though we

did not succeed at finding a way to quantify this behavior that agreed with ad hoc visual inspec-

tion. We believe that future work investigating properties of WE simulations should investigate

these sawtooths, specifically their influence on accuracy and self-convergence. We hypothesize

that these sawtooths are indicative of larger overall trends in weight distribution spawning from

relatively few parent replicas, resulting in highly correlated data. As such, a desire for the weight

distribution to come from many different parent replicas and minimize correlations suggest that

minimizing the severity of these sawtooths can be useful for WE simulation optimization should

these hypotheses be true.
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Appendix A

Analytic derivation of pentry = 0 FPT

distribution

Here we compute the mean first evacuation time from a disc of a collection of molecules un-

dergoing diffusion, when reentry is prohibited (pentry = 0). To solve this problem, we first find

expressions involving evacuation time for a single molecule placed at a specific location inside the

region to be evacuated. We then use that to find the mean first evacuation time for a molecule

placed arbitrarily in the domain by averaging its expression across the domain. Lastly, we adapt

that expression to systems of N non-interacting molecules placed randomly across the domain as

an expression of the mean final evacuation time. Note that the single-particle exit problem has

been solved previously, see [83].

Single Molecule Evacuation

Let R = RROI and p = p(r, t|r0) be the probability density of a single molecule given the

molecule’s initial position r0 = (r0, θ0). This probability obeys the two-dimensional diffusion
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equations

1

D
∂tp = ∂2

rp+
1

r
∂rp+

1

r2
∂2
θp (A.1)

with boundary conditions

p(r, 0) = δ(r− r0) (A.2)

p(R, θ, t) = 0. (A.3)

This equation is separable, p(r, θ, t) = T (t)Θ(θ)R(r). The separated equations are

∂tT +Dλ2T = 0 (A.4)

∂2
θΘ+m2Θ = 0. (A.5)

r2∂2
rR + r∂rR + (r2λ2 −m2)R = 0 (A.6)

The temporal and angular solutions are

T (t) = Ce−λ2Dt (A.7)

Θ(θ) = A sin(mθ) +B cos(mθ) (A.8)

for unknown constants A,B,C. The periodicity requires that Θ(θ) = Θ(θ + 2π), which demands

m be an integer. The radial equation is an example of Bessel’s equation, and given the boundedness

of the solution at the origin it is appropriate to limit the possible solutions to Bessel functions of

the first kind. This also defines the constant λ to be one of the zeroes of the Bessel function for

some corresponding m, with Jm(λm,nR) = 0, where the m subscript specifies the order of Bessel

function and n subscript refers to one of the (infinitely many) zeroes of the function. Combining
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arbitrary constants our solution may be written generally as

p(r, t|r0) =
∑
m

∑
n

(
e−(λm,n/R)2DtJm(λm,nr/R) [Am,n cos(mθ) +Bm,n sin(mθ)]

)
. (A.9)

Survival Probability and Passage Time Distributions

We introduce the survival probability G(t), the probability that the molecule remains in the evacu-

ation region at time t. This can be expressed in terms of an integral over the position

G(t|r(0) = r0) =

∫
Ω

dr p(r, t|r0), (A.10)

where Ω is the spatial domain of the evacuation of radius R. This leads to

G(t|r(0) = r0) = 2π

∫ R

0

rdr
∑
n

Ane
−(λn/R)2DtJ0(λnr/R) (A.11)

= 2πR2
∑
n

An

λn

J1(λn)e
−(λn/R)2Dt. (A.12)

Eq. A.11 by recognizing that the integral vanishes when m > 0 and relabeling the indices to only

count the zeros of J0. Eq. A.12 the property of Bessel functions
∫
rν+1Jν(r)dr = rν+1Jν+1(r)

[75].

Using the orthogonality relation

∫ R

0

J0(λmr/R)J0(λnr/R)rdr =
1

2
R2[J1(λn)]

2δmn , (A.13)
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allows us to find the coefficients

An =
1

πR2J1(λn)

∫
Ω

J0(λnr/R)δ(r− r0)dr (A.14)

=
J0(λnr0/R)

πR2[J1(λn)]2
, (A.15)

and our final expression for the survival probability G is

G(t|r0) = 2
∑
n

e−(λn/R)2DtJ0(λnr0/R)

J1(λn)λn

. (A.16)

The survival probability can also be written in terms of the distribution of first passage times,

ϱ(τ |r0), as

G(t|r(0) =
∫ ∞

t

ϱ(τ |r0) dτ , (A.17)

which implies

ϱ(τ |r0) = −∂τG(τ |r0) . (A.18)

Integration by parts then gives the mean first passage time of a single diffusing molecule in terms

of its positional probability distribution,

τ =

∫ ∞

0

τϱ dτ =

∫ ∞

0

dτ G =

∫ ∞

0

dτ

∫
Ω

dr p(r, τ |r0) . (A.19)

To find the mean first passage time for a molecule randomly placed throughout the domain, rather

than at a specific initial condition r0, we average across all possible initial conditions

⟨τ⟩ = 1

πR2

∫ ∞

0

∫
Ω

τϱ dτ dr0 =
1

πR2

∫ ∞

0

dτ

∫
Ω

dr

∫
Ω

dr0 p(r, τ |r0) =
∫ ∞

0

dτ⟨G(τ)⟩ . (A.20)
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where

⟨G(t)⟩ = 2

πR2

∫
Ω

dr0
∑
n

e−(λn/R)2DtJ0(λnr0/R)

J1(λn)λn

= 4
∑
n

(
e−(λn/R)2Dt

λ2
n

)
. (A.21)

We confirm this result by comparison with brute-force simulation in Fig. 1.1A.

As an aside, noting that the molecule should always remain in the region at t = 0, ⟨G(t)⟩ should

evaluate to 1 at t = 0, implying the following property of the zeroes of the order 0 Bessel function

of the first kind:

∞∑
n=1

1

λ2
n

=
1

4
, (A.22)

which is an interesting relation that this work confirms numerically.

Generalization to N Molecules

To generalize this solution for N distinct, non-interacting molecules consider the joint probability

that all molecules evacuate prior to some time t′:

P (τN,All ≤ t′) = P (τ1 ≤ t′, τ2 ≤ t′, ..., τN ≤ t′) (A.23)

=
∏
i

Pi(τi ≤ t′) , (A.24)

where P (τN,All ≤ t′) is the probability that the evacuation time for every molecule is less than

t′. As the molecules are independent and non-interacting, we express it as a product of their indi-

vidual probabilities of evacuating prior to t′, Pi. These Pi are the complement to each molecule’s

associated G(t|ri) given in the previous section,

Pi(τi ≤ t′) = 1−G(t′|ri) . (A.25)
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We are interested in the survival probability of the entire system of N particles, which we can

substitute into Eq. A.19 and Eq. A.20 to get the mean first passage time of the entire system. We

designate the total survival probability GN,Any(t), i.e. the probability that at least one molecule

remains inside the evacuation region at some time t, as the complement to the probability of every

molecule evacuating.

GN,Any(t) = 1− P (τN,All ≤ t) . (A.26)

Combining Eq. A.26 into Eq. A.23 yields

GN,Any(t
′|r1, ..., rN) = 1−

∏
i

(1−G(t′|ri)) . (A.27)

As the molecules are non-interacting, we can use Cov(G(t′|r1), G(t′|r2)) = 0 to obtain ⟨G(t′|r1)G(t′|r2)⟩ =

⟨G(t′|r1)⟩⟨G(t′|r2)⟩ = ⟨G(t)⟩2 and find an expression for the spatial average of the probability at

least one molecule remains in the region of interest. The spatial average of GN,Any can then be

written as

⟨GN,Any(t)⟩ = 1− (1− ⟨G(t)⟩)N = −

(
N∑
k=1

(
N

k

)
(−⟨G(t)⟩)k

)
(A.28)

The mean first passage time for the entire system is then given by

⟨τN,All⟩ =
∫ ∞

0

dτ⟨GN,Any(τ)⟩ (A.29)

We confirm this result by comparison with brute-force simulation in Fig. 1.1B.

Placement Outside of Evacuation Region To account for placement outside of the evacuation

region, if we have n molecules and ⟨τm,All⟩ is the evacuation time for exactly m molecules inside

the ROI, with m ≤ N , we can use the fact that for each molecule, the probability of being placed

inside the evacuation region is p(rj ∈ ΩROI) = AROI/ADomain, the ratio of areas of the ROI and the
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whole domain. The overall evacuation then can be measured as a mean of the possible evacuation

times across the Bernoulli trials of successful molecule placement inside the evacuation region,

⟨τAll⟩ =
∑
i

((
N

i

)(
AROI

ADomain

)i(
ADomain − AROI

ADomain

)n−i

⟨τi,All⟩

)
. (A.30)
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Figure 1.1: Evaluation of analytical solution for MFPT with pentry = 0 shows strong agreement with brute
force simulation. (A) Cumulative distribution for the first passage time of a single molecule to leave the ROI
from analytical expression in Eq. A.21 (black) and Smoldyn results come as the result of 20000 individual
simulations (blue). (B) MFPT for multiple molecules inside of the domain, analytically from Eq. A.29
(black) and computationally from Smoldyn (blue). In addition to the N values shown, an analytic value for
N=256 is given in Fig. 2.6C. Error bars for Smoldyn results are given as the standard error of the mean for
500 Smoldyn simulations per data point.
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