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Abstract

Simulating sampling algorithms with people has proven a use-
ful method for efficiently probing and understanding their
mental representations. We propose that the same methods
can be used to study the representations of Large Language
Models (LLMs). While one can always directly prompt either
humans or LLMs to disclose their mental representations intro-
spectively, we show that increased efficiency can be achieved
by using LLMs as elements of a sampling algorithm. We ex-
plore the extent to which we recover human-like representa-
tions when LLMs are interrogated with Direct Sampling and
Markov chain Monte Carlo (MCMC). We found a significant
increase in efficiency and performance using adaptive sam-
pling algorithms based on MCMC. We also highlight the po-
tential of our method to yield a more general method of con-
ducting Bayesian inference with LLMs.
Keywords: Mental representation, Large Language Models,
Markov Chain Monte Carlo, Gibbs Sampling, Bayesian infer-
ence

Introduction
How do we know what representations artificial intelligence
(AI) systems are using? For “white box” machine learning
models, such as decision trees and Bayesian models, the rep-
resentations are typically transparent and directly tied to the
features and architecture of the model. Interpreting these
models often involves looking at the coefficients, rules, or
structures they use to make predictions. However, state-of-
the-art AI systems frequently employ “black box” deep neu-
ral networks (e.g., LeCun et al., 2015; Vaswani et al., 2017),
which are notoriously difficult to interpret.

The increasingly proprietary nature of models used in AI
can also mean that their internal mechanisms are not readily
accessible, posing a significant challenge for researchers who
seek to understand the representations used by these models.
Historically, the representations used by neural network mod-
els have been identified by analyzing the activation patterns of
artificial neurons (e.g., Kornblith et al., 2019). However, the
efficacy of neuron-level approaches diminishes as AI systems
expand in both depth and the number of model parameters. In
this context, we propose an alternative approach, drawing in-
spiration from cognitive psychology, to investigating the rep-
resentations used by AI systems via their behaviors (i.e., the
outputs they produce).

Cognitive psychologists have spent decades developing
methods for elucidating the content of individuals’ mental
representations, such as the structure of object categories and

the utilities assumed to different choice actions (Sanborn et
al., 2010; Shepard & Arabie, 1979; Torgerson, 1958). These
mental representations, while not directly observable, can be
inferred through the analysis of behavior. In this paper, we
adapt behavioral methods based on sampling from subjective
probability distributions to AI systems. We evaluate the effi-
ciency and performance of three such methods, with the goal
of exploring the correspondence between the representations
inferred from AI systems and those of humans.

Our focus in this paper is on recovering color representa-
tions of an object, which can be defined within a 3D space.
This choice is strategic: it addresses the concern that in sim-
pler domains certain behavioral methods are not distinguish-
able from each other, while in more complex domains the
visualization of results becomes challenging. Formally, an
agent’s color representation can be conceptualized as a prob-
ability distribution over a color space x, conditioned upon a
given object c, expressed as p(x|c). Here, x represents a color
defined in terms of Hue, Saturation, and Lightness (HSL) val-
ues. For instance, the mental representation of a strawberry’s
color would be represented as a probability distribution across
a range of colors, each specified by unique HSL parameters.

Our analysis focuses on GPT-4 as an example system,
based on its impressive ability to solve a wide range of prob-
lems that were previously only solvable by humans. Its ca-
pabilities extend to engaging in open-ended dialogues and
demonstrating a surprising familiarity with visual concepts
(Bubeck et al., 2023; Rathje et al., 2023). The remainder
of this paper is dedicated to applying behavioral methods to
extract and analyze GPT-4’s representation of color. It is im-
portant to note, however, that the applicability of these behav-
ioral methods is not confined solely to GPT-4. Indeed, these
methods can be readily adapted and applied to other AI sys-
tems, provided they possess the necessary knowledge base.
This flexibility highlights the potential for broader implica-
tions and uses of our methodological approach in the evolving
landscape of AI research.

Background
Our work draws on a class of cognitive psychology meth-
ods that elicit mental representations in humans by inte-
grating people into sampling algorithms. A notable exam-
ple of such an approach is the World Color Survey (Kay et
al., 2009). In this survey, people are presented with colors
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Figure 1: Illustrations of the four behavioral methods used to recover mental representations for GPT-4. (A) Direct Prompting
with GPT-4: GPT-4 is directly prompted to generate a HSL color code corresponding to a specified object. (B) Direct
Sampling with GPT-4: In this iterative process, a random HSL color code is sampled and presented to GPT-4, which then
evaluates the extent to which this color matches the target object. (C) Markov chain Monte Carlo (MCMC) with GPT-4:
Each iteration involves proposing a new color, derived from the previously selected color, and then deciding whether to accept
this new color or retain the old one. (D) Gibbs Sampling with GPT-4: In each step, GPT-4 is tasked with deducing and filling
in a missing dimension of the HSL color code to better match the target object. In all panels, HSL color codes are colorized to
assist easier comparison.

that exhaustively sample from the color space, and they are
then asked to provide evaluations of these colors (Kay et al.,
2009). However, exhaustively enumerating every possible
stimulus quickly becomes infeasible for dealing with high-
dimensional or continuous-scale stimuli because the space
is simply too vast to explore thoroughly. In contrast, more
recent methods that have adopted adaptive sampling algo-
rithms, such as Markov chain Monte Carlo (MCMC), to ex-
plore people’s representation more efficiently. These methods
have shown enhanced efficacy in exploring the structure of
mental representations in domains including color, emotional
prosody, face, and fruit (e.g., Sanborn and Griffiths, 2007).

Probing Large Language Models
Approaches to probing and interpreting information encoded
in LLMs at the neuronal level primarily involve associating
internal representations with external properties. This is done
by training a secondary classifier on the activation of artifi-
cial neurons, with the aim of predicting specific properties
(Alain & Bengio, 2016). Researchers typically use a trained
LLM to generate representations, then employ another clas-
sifier that uses these representations to predict a certain prop-
erty. This method has shown promise in assessing whether
LLMs encode syntactic information (Belinkov, 2022) and,
more recently, in analyzing the semantic structure of sen-
tences (Zhang, McCoy, et al., 2023). However, we diverge
from these methods by focusing on recovering representa-
tions from LLMs using behavioral methods, making our work
complementary to existing approaches.

From Behaviors to Representations
As shown in Figure 1, we tested four behavioral methods,
which can be broadly categorized into two classes: static and
adaptive. Static methods typically involve presenting par-
ticipants with a predefined set of stimuli, selected by the
researcher prior to the commencement of the experiment.
These methods do not modify the stimuli in response to par-

ticipants’ judgments during the course of the experiment. Ex-
amples of static methods include Direct Prompting and Direct
Sampling.

In contrast, adaptive methods dynamically tailor the se-
lection of stimuli for participants based on their previous
responses. This approach allows for a more dynamic and
responsive experimentation process. Notable examples of
adaptive methods are Markov chain Monte Carlo (MCMC)
and Gibbs Sampling with People (Harrison et al., 2020; San-
born & Griffiths, 2007). Both methods iteratively adjust the
selection of stimuli, with the aim of achieving a more accurate
representation of the participant’s mental state by considering
their prior judgments.

Direct Prompting with GPT-4
Perhaps the most basic behavioral method to elicit an agent’s
mental representation involves instructing it to introspectively
disclose it. In GPT-4, this could be achieved by directly
prompting the model to reveal the conditional probability
p(x|c) by providing the object c.

For example, in exploring the color representation of a
strawberry, we directly prompted GPT-4 with the following
text: “You are a participant in a color judgment task. You
will be asked to describe an object’s color in each question.
Your objective is to generate an apt color code in HSL for-
mat to match the given object as well as possible. Remember,
it’s essential to answer the question with a single HSL code,
even if the generated color or the object might seem unusual
at times. Please limit your response to just the three values of
the HSL code, for example, ‘h, s, l’. What color matches the
following object: strawberry.”

Direct Sampling with GPT-4
An alternative static method that circumvents the need for the
agent to explicitly report a full color code is Direct Sampling.
In this approach, the researcher randomly sample a valid HSL
color code at each step, denoted as xi ∼ p(x). p(x) is a uni-
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Figure 2: The evolution of the mean color representation across successive iterations. Each row within a color patch represents
a single chain. Human data were adapted from Harrison et al. (2020).

form distribution over the entire color space. Subsequently,
GPT-4 is tasked with determining whether the sampled color
corresponds to the specified object, indicated by 1c. That is,
GPT-4 is only required to make a binary choice at each step,
simplifying the task of directly reporting a color from scratch.
Gradually, we approximate the conditional probability with
the positive examples that were classified as the object:

x1c ∼ pc(x) = p(x|c) (1)

Using the same strawberry example, we implemented Di-
rect Sampling with GPT-4 as follows: “You are a partici-
pant in a color judgment task. You will see a question about
whether a color (represented in HSL format) matches an ob-
ject. Simply answer either ’yes’ or ’no’ based on your inter-
pretation of the object’s color in the question. Does the color
[300, 97, 48] match the following object: strawberry?”

Markov Chain Monte Carlo with GPT-4
MCMC with People (MCMCP) is a well-established adap-
tive method to elicit people’s mental representations (San-
born & Griffiths, 2007; Sanborn et al., 2010). We adapted
the method to GPT-4. The key idea is to construct a Markov
chain whose stationary distribution is p(x|c), and thus the se-
quence of states generated by this chain can be interpreted as
samples from the stationary distribution.

The Markov chain is initiated with an arbitrary value, x.1

To progress the chain, a new candidate value, x′, is generated
by sampling from a proposal distribution q(x′|x). Then the
agent makes a decision on whether to accept x′ based on its
relative probability compared to x under the target distribution
p(x|c). This process hinges on two key assumptions: (i) the
proposal distribution is symmetric, q(x′|x) = q(x|x′), and (ii)

1As suggested by an anonymous reviewer, the chain can alter-
natively be initialized with the color values elicited from directly
prompting GPT-4.

the probability of accepting the proposed value matches the
Barker acceptance function (Barker, 1965):

A(x′|x,c) = p(x′|c)
p(x′|c)+ p(x|c)

(2)

Under these conditions, the sequence of states generated by
this Markov chain will converge to a stationary distribution
that is consistent with p(x|c).

Here we specify the proposal distribution for 90% of tri-
als as a multivariate Gaussian distribution with a covariance
matrix that is an identity matrix multiplied by 30: q(x′|x) =
N(x,30I3). On the other 10% of trials, the proposed stimu-
lus was sampled uniformly within the color space, facilitat-
ing large jumps in the stimulus space (Martin et al., 2012).
In each iteration, GPT-4 was given a binary choice between
two options, x and x′. The positions of these options were
randomized.

The structure of the prompts implementing MCMC with
GPT-4 is as follows: “You are a participant in a color choice
task. You will see a question with two color options in HSL
format. Simply choose either Option A or Option B. Remem-
ber, it’s essential to pick one color that better matches the
object in the question, even if the choices might seem unusual
at times. Please limit your response to just ’A’ or ’B’. Which
color better matches the following object: strawberry. Option
A[0, 53, 12] or Option B[274, 81, 47]?”

Gibbs Sampling with GPT-4
Gibbs Sampling with People (GSP) is a recent extension of
the MCMCP method (Harrison et al., 2020). Gibbs Sampling
involves cyclically sampling from each dimension based on
the conditional probability p(xk|x−k,c) (Geman & Geman,
1984). Analogously, in GSP, participants contribute to the
update of coordinates. This is achieved by adjusting a slider
corresponding to the current stimulus dimension, xk, while
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Figure 3: Samples in the color space produced by humans and those generated by GPT-4 using the four behavioral methods
(displayed as columns). The overlaid contours are estimates derived from kernel density using a Gaussian kernel with a
bandwidth of 1.

keeping the other dimensions, x−k, constant (Harrison et al.,
2020). The fundamental assumption in GSP is that partic-
ipants select an option i for the k-th dimension following a
specific probability distribution:

p(choose i) = p(xk = i|x−k,c) (3)

If satisfied, this process will converge to a stationary distribu-
tion matching p(x|c).

We provided specific prompts that implement Gibbs Sam-
pling with GPT-4 as follows: “You are a participant in a color
judgment task. You will see an object and a color code in
HSL format, however, one dimension of the given HSL color
code is unknown. Your objective is to assign an apt integer
to the unknown dimension to make the HSL color code match
the given object as well as possible. Remember, it’s essen-
tial to complete the color, even if the generated color might
seem unusual at times. Please limit your response to just the
value you’d like to assign to the unknown dimension. Adjust
the unknown dimension of HSL color to match the following
object as well as possible: strawberry. Color: [270, 50, ’un-
known’]”

Recovering Color Representations from GPT-4
To recover mental representations for a low-dimensional per-
ceptual domain, color, we employed a variety of behavioral
methods to engage with GPT-4. Most of these methods have
been used to elicit human representations (Harrison et al.,
2020; Sanborn & Griffiths, 2007; Sanborn et al., 2010). Hy-
pothesizing that GPT-4 can mimic human decision-making
processes, we substituted human participants with GPT-4, en-
abling us to harvest samples directly from the LLM’s color
representation.

Stimuli
Our experimental design mirrors the human study conducted
by Harrison et al. (2020), which used the HSL color values.

Hue values range from 0 to 360, while both saturation and
lightness extend from 0 to 100. We aimed to recover the
representations of six specific objects within this color spec-
trum, enabling direct comparisons with corresponding human
representations. These objects are ‘Chocolate’, ‘Lemon’,
‘Strawberry’, ‘Grass’, ‘Eggshell’, and ‘Lavender’, each of-
fering a distinct color profile for analysis.

We adapted the human data from Harrison et al. (2020).
Their research demonstrated that an aggregated GSP method
is particularly effective in eliciting color representations from
human participants. To briefly describe the process, each ag-
gregated GSP chain was randomly initialized with an HSL
color. Participants manipulated one color dimension at a time
using a slider. For each iteration, judgments from five partic-
ipants were aggregated and their mean value was used as the
seed for the next iteration. Participants were only allowed to
participate in a given chain only once to ensure within-chain
trial independence (Harrison et al., 2020).

In the experiment conducted by Harrison et al. (2020), par-
ticipants received the following instructions: “In each trial of
this study you will be presented with a word and a color and
your task will be to modify that color using a slider such that
it best matches the target word. No prior expertise is required
to complete this task, just answer what you intuitively think
is the right color.” Participants then completed up to 20 tri-
als, responding to the prompt: “Adjust the slider to match the
following word as well as possible: ⟨word⟩”.

Procedure
GPT-4 was assigned to tasks of recovering color represen-
tations for the six objects tested in Harrison et al. (2020)
through Direct Prompting, Direct Sampling, MCMC, and
Gibbs Sampling. Detailed descriptions of the implementa-
tion for each method, along with corresponding visual illus-
trations, are presented in Figure 1. For all six objects, we
configured GPT-4’s temperature at 1.0. This setting makes
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Figure 4: Cumulative R̂ of Gibbs Sampling with People plus
aggregation (left), MCMC with GPT-4 (middle), and Gibbs
Sampling with GPT-4 (right). Reaching the threshold of 1.1
suggests convergence of the Markov chain.

the model’s outputs based on the model’s learned probabili-
ties. To ensure robustness and reliability in our findings, we
ran all four behavioral methods for a total of 500 iterations.
For methods that are based on sampling algorithms (Direct
Sampling, MCMC, and Gibbs Sampling), we reinitialized the
methods four times. This results in a cumulative total of 2000
samples, which were generated across four distinct chains.
Figure 3 displays representative samples produced by each
method, and Figure 2 depicts the evolution of the mean color
representation across successive iterations.

Results
Convergence Diagnostic for Markov Chains
The convergence of the Markov chains in MCMC and Gibbs
sampling can be assessed using the Gelman-Rubin diagnostic
(Gelman & Rubin, 1992). This diagnostic calculates the ratio
of within-chain variance to between-chain variance, denoted
as R̂, serving as an indicator of the extent of convergence. A
threshold of R̂ ≤ 1.1 is commonly adopted as a criterion for
satisfactory convergence in Markov chains. We present cu-
mulative R̂ values in Figure 4. In alignment with previous em-
pirical studies involving human participants (Harrison et al.,
2020), the MCMC with GPT-4 exhibited the slowest rate of
convergence. In contrast, the Gibbs sampling method demon-
strated significantly quicker convergence, typically reaching
stability within 10 iterations.

Representational Alignment of Humans and GPT-4
Upon verifying the convergence of the Markov chains, our
analysis investigated the alignment of color representations
between humans and GPT-4. First, the color space was dis-
cretized into a 18×10×10 grid across the H-S-L dimensions,
adopting a broader bin width to minimize the impact of minor
color variations. Next, we estimated the probability density
within each defined bin.

For the purpose of this comparison, we selected the human
color representations derived from the GSP+aggregation con-
dition reported in Harrison et al. (2020), as this method has
demonstrated best performance in recovering human mental
representations.

Table 1: Distributional and mode distances (indicated in
parentheses) between GPT-4 and human representations.

Direct
Prompting

Direct
Sampling MCMC

Gibbs
Sampling

Choc. .99 (9.2) .96 (4.6) .85 (4.0) .95 (7.7)
Lemon 1.00 (13.5) .99 (5.0) .95 (3.2) 1.00 (9.3)
Strwb. .80 (5.1) .93 (5.5) .93 (4.7) .93 (9.1)
Grass 1.00 (6.3) .99 (5.9) .98 (5.5) .99 (6.5)
Eggsh. .98 (3.7) 1.00 (4.9) .96 (5.7) .87 (3.6)
Lav. 1.00 (5.4) .87 (3.8) .81 (5.8) .97 (3.6)

Note. Human representations for these objects were derived
from data reported in Harrison et al. (2020). Bold num-
bers represent the best correspondence with human among
the four behavioral methods (smaller is better). From top to
bottom, the tested objects are ‘Chocolate’, ‘Lemon’, ‘Straw-
berry’, ‘Grass’, ‘Eggshell’, and ‘Lavender’.

We developed two metrics to evaluate the representational
alignment between humans and GPT-4. The first metric aims
to quantify the overall agreement between the two distribu-
tions, p̂human(x|c) and p̂GPT-4(x|c). For this purpose, we em-
ployed the Hellinger distance:

H2(p̂human, p̂GPT-4) =
1
2 ∑

dx∈X

(√
p̂human(dx)−

√
p̂GPT-4(dx)

)2

The Hellinger distance is symmetric and bounded between 0
and 1, where 0 indicates identical distributions and 1 indicates
maximum dissimilarity. This bounded range can be more in-
tuitive and easier to interpret than unbounded measures. It
is more robust when dealing with distributions that have zero
probabilities.

While assessing the overall distributional alignment is cru-
cial, it is also important to examine the most probable or rep-
resentative mental state (i.e., argmaxx p(x|c)). Accordingly,
we measured the Euclidean distance between the modes of
the mental representations as derived from GPT-4 and hu-
mans. This second metric allows for a focused comparison
of the most probable representational in both representations.

We calculated both metrics based on each of the 500-
sample chains generated by Direct Sampling, MCMC, and
Gibbs Sampling. Then these values were averaged over 4
repetitions of the sampling process. The resulting data are
summarized in Table 1. Moreover, the progression of repre-
sentational alignment throughout these iterations is depicted
in Figure 5.

We found that among the methods employed, MCMC with
GPT-4 exhibits notably superior performance in closely ap-
proximating the overall distributions and the modes of most
human color representations (see Table 1 and Figure 5).
Meanwhile, the other adaptive method, Gibbs Sampling with
GPT-4, showed best performance in accurately representing
eggshell and the mode of lavender. In contrast, both static
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Figure 5: Comparing color representations in humans and
GPT-4. (left) Hellinger distance between the color represen-
tations derived from GPT-4 and those from humans. (right)
Euclidean distances between the modes of representations
from GPT-4 and humans. In both measures, lower numerical
values are indicative of a stronger correspondence. Shaded
areas indicate ±SEM.

methods, including Direct Prompting and Direct Sampling
with GPT-4, significantly lag behind in performance. Overall,
the integration of GPT-4 with adaptive methods was more ef-
ficient than the integration with static methods in replicating
human color representations.

Discussion
We developed and evaluated a novel class of adaptive meth-
ods with LLMs, using color as a case study. Our approach is
grounded in two fundamental design principles: first, the in-
corporation of LLM outputs as integral components in sam-
pling algorithms, and second, the dynamic modification of
prompts based on previous responses from the LLMs. We
tested integrating GPT-4 with various sampling algorithms,
including Direct Sampling, MCMC, and Gibbs sampling.
The objective was to recover human-like color representation.
Our findings demonstrate that adaptive methods (MCMC and
Gibbs sampling) significantly surpass the performance of
static methods (Direct Prompting and Direct Sampling).

Towards Doing Bayesian Inference with LLMs
While we have focused on recovering conditional probabili-
ties like p(x|c) from GPT-4, the success of the methods we
have presented here suggests that they could be adapted to
sampling from other distributions. This capability is crucial
in Bayesian inference, where many problems involve approx-
imating the posterior probability of hypotheses h given data
d, p(h|d). This posterior probability is, in essence, a form of
conditional probability distribution. Our methods could sig-
nificantly broaden the scope for applying LLMs in Bayesian
inference tasks. This can be achieved by constructing Markov
chains with LLMs, which can be framed as simple as either
choice-based or estimation-focused tasks.

The adaptive methods we employed are especially note-
worthy. These methods dynamically alter prompts based on
previous responses from LLMs, presenting a promising av-
enue for effectively conducting Bayesian inference. They
not only simplify the task format for LLMs but also offer

a more efficient means to navigate through the hypothesis
space. While more advanced sampling algorithms such as
Hamiltonian Monte Carlo (Betancourt, 2017) and the No-
U-Turn Sampler (Hoffman & Gelman, 2014) could replace
MCMC and Gibbs Sampling, the optimal choice of sampling
algorithm should be determined by a combination of the tar-
get distribution’s geometry and the response characteristics of
the LLMs. This is because there are crucial assumptions that
need to be satisfied (e.g., those outlined in Equations 2 and 3
for MCMC with GPT-4 and Gibbs sampling with GPT-4 re-
spectively) to ensure that the sampling algorithms effectively
converge to the correct target distribution.

It is important to note the distinction between our approach
and other recent approaches for implementing Bayesian infer-
ence using LLMs (e.g., Wong et al., 2023; Zhang, Wong, et
al., 2023). For example, Wong et al.’s (2023) proposal pri-
marily leverages LLMs as translators, converting natural lan-
guage inputs into probabilistic programming language state-
ments. These statements are then subjected to Bayesian in-
ference. This process essentially transforms LLMs into inter-
mediaries, facilitating the translation from natural languages,
which are inherently challenging for Bayesian inference, to
symbolic representations that are more amenable to proba-
bilistic programming languages, such as Church (Goodman
et al., 2012). In contrast, our proposal advocates for a more
direct usage of LLMs in Bayesian inference, positioning them
as the primary computational mechanism rather than mere
translators. Our findings suggest that constructing a Markov
chain with LLMs for Bayesian inference might be more effi-
cient compared to prompting LLMs directly.

Limitations and Future Directions
Our study underscores the potential of adaptive methods in
recovering color representations from LLMs. Further inves-
tigation is required to assess the applicability of behavioral
methods across different domains and to verify if LLMs em-
ploy these human-like representations in solving cognitive
task. The efficacy of adaptive methods is heavily contingent
upon the congruence between our presupposed assumptions
regarding the nature of LLM responses and the actual re-
sponse patterns exhibited by these models. Recent research
also suggests that LLMs may exhibit a yes-response bias,
which could complicate analyses of yes/no responses (Den-
tella et al., 2023).

In addition, there are various hyperparameters in the sam-
pling algorithms and the LLMs, such as the proposal distri-
butions and the temperature, that offer opportunities for fine-
tuning. Tailoring these parameters to specific domains could
potentially enhance the performance of these algorithms and
minimize the total number of token requests for LLMs. Our
research paves the way for future explorations into optimizing
these parameters to achieve greater efficiency and accuracy.
Acknowledgments. This work and related results were made
possible with the support of the NOMIS Foundation. H.
Yan acknowledges the Chancellor’s International Scholarship
from the University of Warwick for additional support.
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