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Abstract

Irritability is a prevalent, impairing transdiagnostic symptom, especially during adolescence, yet 

little is known about irritability’s neural mechanisms. A few studies examined the integrity of 

white matter tracts that facilitate neural communication in irritability, but only with extreme, 

disorder-related symptom presentations. In this preliminary study, we used a group connectometry 

approach to identify white matter tracts correlated with transdiagnostic irritability in a community/

clinic-based sample of 35 adolescents (mean age=14 years, SD=2.0). We found positive and 

negative associations with irritability in local white matter tract bundles including sections of the 

longitudinal fasciculus; frontoparietal, parolfactory, and parahippocampal cingulum; corticostriatal 

and thalamocortical radiations; and vertical occipital fasciculus. Our findings support functional 

neuroimaging studies that implicate widespread neural pathways, particularly emotion and reward 

networks, in irritability. Our findings of positive and negative associations reveal a complex 

picture of what is “good” white matter connectivity. By characterizing irritability’s neural 

underpinnings, targeted interventions may be developed.
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1. Introduction

Adolescence is a pivotal time for neurological development, particularly the ongoing 

process of neural pruning, and features major changes in white matter tracts as adolescents 

transition into young adulthood (Colby et al., 2013; Hagmann et al., 2010; Klingberg, 
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2008; Spear, 2013). Simultaneously, adolescents undergo profound changes in their 

psychosocial development and experience a dramatic uptick in psychiatric symptoms during 

this period (Casey et al., 2010). Prior studies have found associations between structural 

brain alterations, including white matter tissue integrity, and psychopathology throughout 

adolescence (Hamilton et al., 2008; Thomason & Thompson, 2011; van Velzen et al., 

2020). Indeed, white matter (i.e., myelin) is critical for efficient communication between 

neurons and, when degraded, is associated with poorer mood and cognitive functioning (e.g., 

emotion regulation, working memory, inhibitory control, information processing speed; 

Eden et al., 2015; Fields, 2008; Magistro et al., 2015; Penke et al., 2012; Takeuchi et al., 

2011; Zheng et al., 2018). Impairments in neurobehavioral functioning, such as inhibitory 

control, are in turn associated with increased vulnerability for a range of psychopathology 

(Perhamus & Ostrov, 2021), thus, providing further evidence of potential impacts of white 

matter degradation on psychiatric symptoms in youth.

More recently, investigations of transdiagnostic psychiatric symptoms (i.e., Research 

Domain Criteria research; Insel et al., 2010) have shown neural circuitry aberrations differ 

not only by diagnostic category, but across dimensions of behavioral domain criteria 

(Nielsen et al., 2021; Sabharwal et al., 2016; Stout et al., 2018). Irritability, defined as 

a lowered threshold to anger as compared to peers, is of transdiagnostic import, as it 

features in multiple psychiatric diagnoses (e.g., depressive, anxiety, bipolar, disruptive mood 

dysregulation, autism spectrum, and attention deficit hyperactivity disorders; Brotman et 

al., 2017; Leibenluft & Stoddard, 2013). Although some degree of irritability is normative 

in adolescence, clinically elevated levels are associated with impairment in adulthood, 

including increased risk for psychopathology (i.e., depression, anxiety, suicidality) and 

lower socioeconomic attainment (Dougherty et al., 2015; Elvin et al., 2021; Orri et al., 

2019; Stringaris et al., 2009). Thus, irritability is a consequential transdiagnostic symptom 

dimension, with the potential for far-reaching advancement in the understanding and 

treatment of many different psychiatric disorders (Krieger et al., 2013; Leibenluft, 2017). 

Characterizing the neural underpinnings of irritability, including structural differences in 

white matter integrity, may prove valuable in identifying and targeting specific pathways for 

treatment.

Diffusion weighted imaging provides high-resolution images that are used to make 

inferences about white matter microstructural integrity. One more common index of white 

matter integrity computed from diffusion weighted imaging is fractional anisotropy, which is 

thought to relate to the degree of white matter tissue tract coherence and myelination across 

fiber bundles. In clinical neuroscience, decreased fractional anisotropy has been shown in 

many psychiatric diagnoses with irritability features, including depressive (Chen et al., 2021; 

van Velzen et al., 2020), bipolar (Brown et al., 2021), generalized anxiety (Liao et al., 2014), 

attention deficit hyperactivity (Hamilton et al., 2008), autism spectrum (Shukla et al., 2011), 

and disruptive mood dysregulation (Linke et al., 2020) disorders. Despite these findings with 

diagnostic categories, far fewer studies have examined the relationship between youth brain 

microstructure and transdiagnostic symptoms such as irritability.

Prior examinations of neural mechanisms of irritability have primarily focused on functional 

activity in response to functional MRI tasks or during rest, implicating prefrontal and 
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temporal regions associated with reward and emotion regulation (Dougherty et al., 2018; 

Hodgdon et al., 2021; Kryza‐Lacombe et al., 2021; Nielsen et al., 2021; Wiggins et al., 

2016); yet, valuable insights about potential structural differences in neural circuitry remain 

underexplored. To date, there have only been three studies examining diffusion-weighted 

brain images with respect to irritability (Gregory et al., 2015; Henderson et al., 2013; 

Linke et al., 2020). Gregory et al., (2015) found that adults with Huntington’s disease 

who reported higher levels of irritability showed less structural integrity across nearly 

all white matter tracts across the entire brain. Another study (Henderson et al., 2013) 

observed increased irritability levels in adolescents with major depressive disorder were 

associated with decreased integrity in prefrontal-striatal white matter tracts as well as 

within the occipital cortex and near the amygdala. More recently, irritability investigated 

transdiagnostically across youths with disruptive mood dysregulation or bipolar disorders 

and healthy volunteers was associated with weakened white matter integrity in centralized 

structures (e.g., corpus callosum and corticospinal tract; Linke et al., 2020). Taken together, 

there is budding evidence of abnormal white matter integrity in individuals with irritability-

related disorders; however, prior studies primarily focused on irritability within specific 

diagnostic categories (or in the case of Linke et al., 2020, across extreme psychiatric 

presentations). As such, this line of investigation is still vastly underdeveloped, particularly 

for the range of irritability (low to moderately high) seen typically in the community.

Given the prior literature, the current preliminary study aims to identify irritability-related 

alterations in white matter integrity in adolescents recruited from the community by 

referrals from an anxiety/depression clinic, with varying degrees of irritability-related 

psychopathology symptoms commonly seen in the community. We predict a negative 

relationship between white matter integrity and irritability, measured dimensionally, in 

tracts connecting prefrontal and temporal, and parietal regions associated with reward and 

emotion regulation (Deveney et al., 2013; Hodgdon et al., 2021; Kryza‐Lacombe et al., 

2021; Scheinost et al., 2021; Tseng et al., 2019; Wiggins et al., 2016).

2. Methods

2.1. Participants

Data were collected from N=45 adolescents (mean age=13.97 years, SD=1.95; n=30 

recruited from the community and enriched for clinical symptoms commonly seen in the 

community, n=15 referred from a local research clinic conducting a randomized controlled 

trial for a brief behavioral intervention for anxiety and depression). Distributions of 

irritability levels overlapped between the recruitment sources (see Supplemental Materials 

Table S2), and additional analyses were conducted to determine if recruitment source were 

primarily driving findings (see Results: Additional Analyses). Youths were excluded from 

participation if they or their parent/guardian reported MRI contraindications (e.g., metal 

implants, dental braces, weight >300 lbs., claustrophobia), any major medical problems 

with clear impact on the youth’s central nervous system, and/or if youth were unable to 

understand procedures sufficiently to provide assent, based on a qualified research team 

member’s assessment. Informed consent or assent were obtained from youth participants. 

Permission was obtained from a parent or guardian of participants younger than 18 years 
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old. Procedures were approved by the University of California San Diego Institutional 

Review Board and accepted by joint agreement by the San Diego State University 

Institutional Review Board. Data from ten participants were excluded due to incomplete 

MR data acquisition (n=4), issues with image reconstruction or dropout (n=3), or errors in 

sequence parameters (i.e., inconsistent b-values; n=3), resulting in a final sample of N=35 

youths.

2.2. Irritability Measures

Irritability was measured using the Affective Reactivity Index (ARI; Stringaris et al., 

2012). The dimensional irritability score from the ARI is comprised of six symptom items 

(Cronbach’s alpha = .84). Respondents chose among “1=not true”, “2=somewhat true”, and 

“3=certainly true” for each item. The total score is generated by summing the scores of 

the six symptom items, with higher scores indicating more severe irritability symptoms. 

The ARI has excellent psychometric properties and has been validated in adolescents across 

multiple contexts (Dougherty et al., 2020; Evans et al., 2020). Both youth self-report and 

parent-report (on youth) versions of ARI were collected, but given recent work suggesting 

that youth self-report and parent report ARI measure potentially different constructs and 

the former has a vantage for reporting affective states in adolescents (Dougherty et al., 

2020), we conducted the primary analysis using the youth self-report ARI. Analyses using 

parent-report ARI generated largely similar patterns and are presented in the Supplement.

2.3. Neuroimaging acquisition

Brain images were acquired using a 3.0T General Electric Discovery MR750 scanner with 

a Nova Medical 32-channel head coil. Participants were acclimated to MRI procedures 

in a mock scanner prior to scanning. Diffusion-weighted images were acquired using 

a single-shot multi-shell EPI sequence with 98 diffusion directions, six b=0 frames, 

and two b-values of 500 and 1000 at 46 directions each (TR=4000ms; TE=89). Two 

diffusion images were collected using reverse phase-encoded blips (A>P, P>A) to 

mitigate opposite-direction distortions. A field map scan was included to correct for 

B0 distortion. Additionally, a high-resolution T1-weighted magnetization prepared rapid 

gradient echo sequence with prospective motion correction was used for alignment 

(MPRAGE PROMO; TR=4.94s; TE=1.988ms; TI=1060ms; slice thickness=1.0mm; voxel 

size=1.0mm3; matrix=256×256mm; flip angle=8°; FOV=25.6).

2.4. Neuroimaging processing

After acquisition, reverse phase-encoded diffusion-weighted image pairs were combined 

into a single image to correct for susceptibility-induced off-resonance field and eddy 

current distortions using FSL’s TOPUP function (Andersson et al., 2003; Smith et al., 

2004). Eddy current distortion correction and standard space registration were completed 

with FSL’s Diffusion Toolbox (FDT; Andersson & Sotiropoulos, 2016). Further processing 

was conducted with DSI Studio (F. Yeh, 2021) to prepare for correlational tractography 

(i.e., connectometry) analyses. To estimate the spin distribution function directly from the 

diffusion data, images were reconstructed in the Montreal Neurological Institute (MNI) 

space through q-space diffeomorphic reconstruction with a diffusion length ratio of 1.25 

(F.-C. Yeh et al., 2010; F.-C. Yeh & Tseng, 2011). Goodness-of-fit was assessed with an 
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R2 statistic between each participant’s quantitative anisotropy (QA) map and MNI QA; a 

cutoff of R2>.5 was used for quality assurance based on DSI developer recommendations 

and previous studies (Mojtahed Zadeh et al., 2018; F.-C. Yeh & Tseng, 2011; Zhuang et 

al., 2021). Generalized fractional anisotropy, calculated using the orientation distribution 

function, was chosen as the principal white matter microstructure index because it improves 

anisotropy measurement of areas with multiple diffusion directions (i.e., crossing fibers; 

Tuch, 2004). Like traditional fractional anisotropy estimates, greater generalized fractional 

anisotropy is associated with better white matter integrity (Tuch, 2004).

2.5. Statistical analyses

To examine the relationship between while matter tract integrity and irritability, we used 

DSI Studio (F. Yeh, 2021) to conduct group connectometry analyses. Connectometry is 

a measure of correlational tractography where fundamental units of the fiber structure, 

defined as local connectomes, are regressed with variables of interest to determine the 

association between the variable and white matter tract integrity. DSI Studio calculates 

the strength of neural connectivity within local connectomes based on density diffusing 

spins between proximal voxels within individual white matter tracts (F.-C. Yeh et al., 

2016). Generalized fractional anisotropy values within local connectomes are then correlated 

with our study variable of interest, youth-reported irritability, and permutated to obtain the 

false discovery rates (FDRs) of resulting significant white matter tracts. Four iterations of 

topology-informed pruning and 4000 randomized permutations on the length of coherent 

associations were used (F.-C. Yeh et al., 2016). The connectometry analysis was run with 

minimum tract length 20 voxels (40mm) and a T-score threshold of 2, as prior studies 

have done (Hula et al., 2020; Olvet et al., 2016; F.-C. Yeh et al., 2013, 2016). To account 

for potential rank order effects with the irritability scale, Spearman partial correlation was 

used to determine the association between irritability and white matter integrity, with age 

and gender as covariates. Coherent bundles for significant positive and negative correlations 

were separated manually and identified by tract name using DSI Studio’s tract recognition 

tool. As an illustrative analysis to determine direction of effects, mean generalized fractional 

anisotropy values were extracted for each participant and post-hoc Spearman correlations 

were conducted in SPSS (Version 28), with FDR correction for each tract bundle. We chose 

DSI Studio for better inclusion of all tracts and to reduce Type II error compared to TBSS 

methods. For full transparency, we report all results received from DSI Studio.

3. Results

3.1. Participants

Our sample included 35 children and adolescents aged 11–19 years (M=14.11, SD=1.90) 

and the majority were female (57.14%). The racial makeup of the sample was 54.29% 

White, 22.86% Biracial, 8.57% African American/Black, 2.86% Asian/Pacific Islander, 

while 11.43% indicated Other; 12 participants (34.29%) identified as Hispanic/Latino/a/x. 

The mean for youth-reported irritability was 2.74 (SD=2.60), which is above the established 

clinical cutoff of 2 (Kircanski et al., 2017; Stringaris et al., 2012). All demographic 

information is presented in Table 1.

Hodgdon et al. Page 5

Psychiatry Res Neuroimaging. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Connectometry Results

Connectometry analyses revealed several tracts whose generalized fractional anisotropy 

values were positively correlated with youth irritability symptoms (FDR=0.013; examples 

presented in Figure 1), including tracts connecting multiple cortical regions, i.e., left 

superior longitudinal fasciculus in the subsection of the paracingulate fascicle, right 

inferior longitudinal fasciculus, bilateral frontoparietal, and bilateral parolfactory cingulum. 

Tracts that connected basal ganglia/limbic and cortical regions, including bilateral superior 

corticostriatal, right superior and posterior thalamocortical radiations, and right lateral 

parahippocampal; posterior tracts, including the dorsal portion of the right vertical occipital 

fasciculus, left cerebellum, corticospinal medial lemniscus; as well as tracts associated with 

sensory processing, including acoustic and optic radiations, were also positively correlated 

with irritability severity.

However, other tracts, as well as different regions within some of the same tracts that 

were positively correlated, showed a negative correlation between generalized fractional 

anisotropy and youth irritability severity (FDR=0.046; examples presented in Figure 

2). Indeed, cortico-cortical tracts, including the dorsal portion of the left superior and 

right superior longitudinal fasciculus, dorsal bilateral frontal-parietal, left dorsolateral and 

medial-ventral parahippocampal and right medial ventral parahippocampal and anterior left 

parolfactory cingulum, were negatively correlated with irritability symptoms. Some portions 

of tracts connecting basal ganglia/limbic regions with cortex, including right anterior and 

left superior corticostriatal and left posterior thalamic radiation, were negatively correlated 

with irritability, as were visual regions, i.e., left cranial nerve II, right optic radiation tracts, 

and bilateral vertical occipital fasciculus, and posterior regions, i.e., bilateral cerebellum and 

middle cerebellar peduncle. FDR for each tract bundle is reported in Table 2.

All irritability-related tracts are presented in Supplemental Figures, both positively 

correlated tract (Figure S1) and negatively correlated tracts (Figure S2). Additional analyses 

(see Supplemental Materials Table S3) suggested that these correlations were not primarily 

driven by age, gender, recruitment source, or co-occurring anxiety or depression symptoms.

4. Discussion

The present study represents a novel investigation of white matter integrity alterations 

related to irritability in youths from the community. Overall, the connectometry analyses 

identified several white matter tracts that were correlated with youth-reported irritability, 

including both positive and negative associations. The few prior studies, which primarily 

focused on irritability in the context of a particular disorder (e.g., Huntington’s disease, 

depression, bipolar, and disruptive mood dysregulation disorders; Gregory et al., 2015; 

Henderson et al., 2013; Linke et al., 2020) or extreme, disorder-related presentations of 

irritability (Linke et al., 2020), solely identified negative correlations between irritability 

and white matter integrity as measured by fractional anisotropy. By contrast, our findings, 

which evaluated individual differences in brain structures from a transdiagnostic perspective, 

including a spectrum of irritability severity typically seen in the community, suggest a 

more complex picture (both negative and positive correlations). Indeed, our findings of 

both positive and negative correlations demonstrate that greater fractional anisotropy values 
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may not always be “better” – at least in terms of irritability severity. This new nuance 

to the current understanding of structural connectivity in irritability parallels a similar 

evolution in the autism literature: whereas autism was once characterized as a disorder 

of underconnectivity (e.g., Just et al., 2004), multiple studies subsequently implicating 

overconnectivity in addition (e.g., Monk et al., 2010) showed that greater connectivity may 

not always be “better.” Rather than greater or lesser connectivity, maintaining a delicate 

balance within and among networks may be the mark of mental health (Picci et al., 2016).

Consistent with prior white matter studies (Gregory et al., 2015; Henderson et al., 2013; 

Linke et al., 2020), we observed that irritability was associated with widespread alterations 

in white matter integrity across broad swaths of the brain (e.g., longitudinal facisculi, 

corticospinal, posterior thalamic radiation, and inferior fronto-occipital) during this key 

adolescence period. These widespread alterations highlight the foundational nature of 

irritability neural mechanisms and may explain in part why irritability is involved in an 

array of psychiatric disorders and moreover has far-reaching, life-span consequences (e.g., 

detrimental mental health and socioeconomic outcomes; Dougherty et al., 2015; Elvin et al., 

2021; Orri et al., 2019; Stringaris et al., 2009). Deviations from the typical trajectories of 

structural tissue development during this window of neural development may have profound 

impacts on optimal psychological functioning (Arain et al., 2013; Ashtari et al., 2007; 

Blakemore & Choudhury, 2006; Ziegler et al., 2019). Whereas DSI is not a direct measure 

of biological changes in white matter, these diffusion alterations may reflect degradation 

of white matter and thus, impaired communication among neurons. This in turn, may 

contribute to the altered activation and functional connectivity in irritability. Given the 

importance of white matter tracts for neurochemical communication in brain circuitry, this 

study emphasizes the transdiagnostic and foundational importance of youth irritability.

Overall, our connectometry findings implicated tracts connecting reward, emotion, and 

emotion regulation regions that have been identified in prior activation and functional 

connectivity work on irritability (Dougherty et al., 2018; Hodgdon et al., 2021; Kryza‐
Lacombe et al., 2021; Nielsen et al., 2021; Scheinost et al., 2021; Tseng et al., 2019; 

Wiggins et al., 2016). First, we found that irritability was associated with anterior, 

midcingulate and parahippocampal cingulum tracts, all of which have essential connections 

from the limbic center to the prefrontal cortex (Bubb et al., 2018; Heilbronner & Haber, 

2014). Irritability-related neural circuits, (e.g., reward processing), align with the anterior 

and midcingulate cingulum regions (Dougherty et al., 2018; Hodgdon et al., 2021; 

Kryza‐Lacombe et al., 2021). Further, alterations in anterior cingulum tracts demonstrate 

involvement of these tracts in a variety of psychiatric symptoms associated with anxiety, 

depression and obsessive-compulsive disorders (Bubb et al., 2018). Second, similar to 

limbic system, we found both superior and anterior corticostriatal tract differences related 

to irritability. The corticostriatal circuit undergoes significant changes during adolescence, 

marking developmental maturation of reward-based learning and inhibition (Chahal et 

al., 2021; Chen et al., 2021; Larsen et al., 2018). Investigations of functionality of the 

corticostriatal tracts reveal affective, reward and cognitive control network connections (Cox 

& Witten, 2019; Larsen et al., 2018), which map on to neural underpinnings of irritability 

(Brotman et al., 2017; Hodgdon et al., 2021; Kryza‐Lacombe et al., 2021). Third, our 

findings of longitudinal fasciculus and frontoparietal tract involvement in irritability may 
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reflect the connection between the frontal and parietal lobes that had previously been seen 

in functional imaging studies (Scheinost et al., 2021; Tseng et al., 2019; Wiggins et al., 

2016). Although these regions are responsible for an array of functions, these findings 

are consistent with prior work implicating motor control (Scheinost et al., 2021; Tseng 

et al., 2019) and face emotion recognition/mentalizing (Rich et al., 2008; Wiggins et al., 

2016) as processes disrupted in irritability. Altogether, our microstructural findings bolster 

prior functional imaging work uncovering the psychological processes, such as reward and 

emotion regulation, related to irritability.

This study had several limitations. First, due to the modest sample, this investigation of 

white matter microstructure is preliminary. Second, although additional analyses suggested 

that age, gender, and recruitment source were not primarily driving our findings, such 

potential confounds cannot be ruled out. Third, as irritability is associated with other neural 

alterations such as cortical volume (Besteher et al., 2017; Dennis et al., 2019), this may 

be a confound despite normalization to a common template. This work documenting white 

matter integrity alterations in irritability sets the stage for follow-on research to investigate 

the relationship between gray and white matter changes in irritability. Lastly, clinical 

presentations are often complex. Although we focused on levels of irritability typically 

seen in the community by recruiting from community organizations and psychology clinics 

focusing on internalizing problems, and additional analyses suggested the involvement 

of irritability above and beyond depression and anxiety symptoms, other co-occurring 

symptoms may come into play. Additional research with larger samples, narrower age 

ranges, and varied clinical presentations will be needed to address the limitations of the 

current study.

Irritability is a pervasive and often impairing experience for many youths and has 

transdiagnostic import. Our findings help to explicate the neural pathways involved in 

irritability, bolstering prior work implicating widespread neural dysfunction, especially 

in regions associated with reward and emotion regulation and moreover suggesting that 

a complex pattern of over- and underconnectivity may mark irritability during the key 

adolescent developmental period. Such work will be foundational to elucidate the etiology of 

irritability and lay the groundwork for therapies that address these neural mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transdiagnostic irritability involves reward and emotion neural networks

• Connectometry analyses reveal widespread irritability-related tract 

associations

• White matter integrity is positively and negatively correlated with irritability
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Figure 1. 
Three white matter tract bundle examples that are positively correlated with youth-

reported irritability (t-threshold=2). All tract bundles are located in the right 

hemisphere. Abbreviations: FpCg=Frontoparietal Cingulum; SCs=Superior Corticostriatal; 

PhCg=Parahippocampal Cingulum; ILF=Inferior Longitudinal Fasciculus.
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Figure 2. 
Two white matter tract bundle examples that are negatively correlated with youth-reported 

irritability(t-threshold=2). The superior longitudinal fasciculus and frontoparietal cingulum 

tract bundle is located in the left hemisphere and the anterior corticostriatal tract bundle 

is in the right hemisphere. Abbreviations: FpCg=Frontoparietal Cingulum; SLF=Superior 

Longitudinal Fasciculus; ACs=Anterior Corticostriatal.
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Table 1.

Sample Characteristics

Total N 35

% n

Female 57.14 20

Race

African American/Black 8.57 3

Asian/Pacific Islander 2.86 1

White 54.29 19

Biracial 22.86 8

Other 11.43 4

Ethnicity

Hispanic/Latinx 34.29 12

Medication Use 25.71 9

Household monthly income (M (SD)) 7480.19 (6002.98)

M SD Range

Age 14.11 1.90 11 – 19

Irritability Symptoms (ARI; Youth report on self) 2.74 2.60 0 – 10

Note: N=sample size; M=mean; SD=standard deviation ARI=Affective Reactivity Index
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Table 2.

False Discovery Rates for Positive and Negative Correlated Tract Bundles (t-threshold=2)

Bundle Regions Number of Tracts Mean Length (mm) FDR

Positively Correlated Tracts

Right Parahippocampal Cingulum, Right Inferior Longitudinal Fasciculus 10 42.205 0.017

Right Superior Corticostriatal, Right Superior Thalamic Radiation, Right Acoustic 
Radiation 815 43.798 0.017

Right Optic Radiation, Right Posterior Thalamic Radiation, Right Acoustic Radiation 30 42.539 0.017

Right Posterior Thalamic Radiation, Right Vertical Occipital Fasciculus 149 43.342 0.017

Right Posterior Thalamic Radiation, Right Vertical Occipital Fasciculus 4 43.028 0.017

Right Frontal Parietal Cingulum, Right Parolfactory Cingulum 287 47.191 0.015

Left Superior Longitudinal Fasciculus, Bilateral Frontal Parietal Cingulum, Left 
Parolfactory Cingulum 122 43.676 0.017

Left Superior Thalamic Radiation, Left Superior Corticostriatal 22 42.375 0.017

Left Superior Longitudinal Fasciculus 2 45.015 0.017

Left Cerebellum 1 40.067 0.013

Negatively Correlated Tracts

Middle Cerebellar Peduncle 61 42.338 0.057

Right Parahippocampal Cingulum 5 41.615 0.046

Right Vertical Occipital Fasciculus, Right Optic Radiation 41 44.691 0.070

Right Anterior Corticostriatal 29 43.937 0.057

Left Superior Corticostriatal 3 42.668 0.057

Right Cerebellum 52 41.537 0.046

Left CNII 5 44.390 0.070

Left Parahippocampal Cingulum, Left Cerebellum 81 42.179 0.057

Left Parahippocampal Cingulum, Left Superior Corticostriatal 50 43.653 0.057

Left Vertical Occipital Fasciculus, Left Posterior Thalamic Radiation, Left Cerebellum 219 45.077 0.070

Left Posterior Thalamic Radiation 6 44.344 0.070

Left Superior Longitudinal Fasciculus, Bilateral Frontal Parietal Cingulum 30 43.550 0.057

Left Parolfactory Cingulum 3 41.340 0.046

Right Frontal Parietal Cingulum, Right Superior Longitudinal Fasciculus 234 44.443 0.070

Middle Cerebellar Peduncle, Right Inferior Cerebellar Peduncle 13 43.701 0.057
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